
MAT2006: Elementary Real Analysis
Homework 1

W. Lee.

Due date: Tomorrow

Question 2.2-11. Let us call an irrational number α ∈ R well approximated by rational numbers if
for any natural numbers n, N ∈ N there exists a rational number p/q such that |a−p/q| < 1/(Nqn).

a) Construct an example of a well-approximated irrational number.

Let α be the Liouville’s constant, which means

α = 10−1! + 10−2! + 10−3! + . . .+ 10−n! + . . .

To prove this is a well-approximated irrational number, we first show it is irrational, and then
show it is well-approximated.

To show its irrationality, we can verify that it is transcendental, hence not algebraic; but any
rational numbers are algebraic (of order 1), therefore the proof is finished. Assume that it is
an algebraic number of order n, then we construct

αn =
1

101!
+

1

102!
+ · · ·+ 1

10n!

It follows that

|αn − α| = 1

10(n+1)!
+

1

10(n+2)!
+ · · ·

≤ 2× 1

10(n+1)!

=
2

(10n!)n+1

Let qn = 10n!, this means ∣∣∣∣α− p

qn

∣∣∣∣ ≤ K

qn+1
n

has one solution qn. You can easily see that qn+1, qn+2 . . . are all solutions of the above
inequality, because

|α− αn| ≥ |α− αn+1| ≥ . . . ≥ |α− αn+k| ≥ . . .

Therefore, it has infinitely many solutions for order n+ 1, which means it is approximable by
rational numbers to order n + 1. Since algebraic number of order n cannot be approximable
to order higher than n, α must be transcendental, hence irrational.
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Define pn,N/qn,N as the sum of the first n+N terms of α, we take qn+N = 10(n+N)!,∣∣∣∣α− pn,N
qn,N

∣∣∣∣ = 10−(n+N+1)! + 10−(n+N+2)! + . . .

< 2 · 10−(n+N+1)!

< (10(n+N)!)−(n+N)

= (10(n+N)!)−n(10(n+N)!)−N

< (10(n+N)!)−n10−N

< (10(n+N)!)−nN−1 =
1

Nqnn+N

Therefore, α is well-approximated.

b) Prove that a well-approximated irrational number cannot be algebraic, that is, it is tran-
scendental (Liouville’s theorem).

Suppose a well-approximated number α is algebraic of order n, define

f(x) = anx
n + . . .+ a1x+ a0

Then f(α) = 0, and if p/q, (q > 0) is not a solution of f(x) = 0∣∣∣∣f (p

q

)∣∣∣∣ = |anpn + an−1p
n−1 + an−1p

n−1 + · · ·+ a0q
n|

qn
≥ 1

qn∣∣∣∣f (p

q

)∣∣∣∣ = ∣∣∣∣f (p

q

)
− f(α)

∣∣∣∣ ≤ |f ′(η)|
∣∣∣∣α− p

q

∣∣∣∣ ≤ M

∣∣∣∣α− p

q

∣∣∣∣
We conclude that if p/q is not a solution of f(x) = 0,∣∣∣∣α− p

q

∣∣∣∣ ≥ 1/M

qn

However, for all n and N , α also satisfies there exists p/q, such that∣∣∣∣α− p

q

∣∣∣∣ < 1

Nqn
<

1

N

Since N can be arbitrarily large, the number of solutions for f(x) = 0 is finite (at most n),
and α is irrational (ensuring that L.H.S. not equal to zero), we can find N such that p/q is not
a solution of f(x) = 0 but still satisfies the above inequality, which implies, for large enough
N ∣∣∣∣α− p

q

∣∣∣∣ < 1

Nqn

has a solution p/q which is not a solution of f(x) = 0. Take N > M , then we have∣∣∣∣α− p

q

∣∣∣∣ < 1

Nqn
<

1/M

qn

and ∣∣∣∣α− p

q

∣∣∣∣ ≥ 1/M

qn

which yields a contradiction. Hence a well-approximated number is transcendental.

In fact, one can easily prove that a well-approximated number cannot be rational.
This could also prove the number we construct in a) must be irrational.
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Question 2.2-17. Let A+B be the set of numbers of the form a+ b and A ·B the set of numbers
of the form a · b, where a ∈ A ⊂ R and b ∈ B ⊂ R. Determine whether it is always true that

a) sup(A+B) = supA+ supB

This is true. Let a∗ = supA and b∗ = supB. Since a∗ and b∗ are upper bounds, we have
∀ a ∈ A, a∗ ≥ a and ∀ b ∈ B, b∗ ≥ b. Thus ∀ a+ b ∈ A+ B, we have a∗ + b∗ ≥ a+ b, which
shows a∗ +B∗ is upper bound of A+B.

Also, since a∗ and b∗ are the least upper bound, we have

∀ϵ1 > 0, ∃a0 ∈ A, such that a∗ − ϵ1 < a0

∀ϵ2 > 0, ∃b0 ∈ B, such that b∗ − ϵ2 < b0

By taking ϵ = ϵ1 + ϵ2, we have

∀ϵ > 0, ∃a0 + b0 ∈ A+B, such that a∗ + b∗ − ϵ < a0 + b0

Therefore, a∗ + b∗ is the least upper bound of A+B, hence sup(A+B) = supA+ supB.

b) sup(A ·B) = supA · supB

This is not always true. Take A = [−2, 2], and B = [−2,−1], then supA = 2 and supB = −1.
However, sup(A ·B) = 4, which shows sup(A ·B) ̸= supA · supB.

Question 2.3-1. Show that

a) if I is any system of nested intervals, then

sup {a ∈ R|[a, b] ∈ I} = α ≤ β = inf {b ∈ R|[a, b] ∈ I}

and
[α, β] =

∩
[a,b]∈I

[a, b]

Since I is a system of nested intervals, so it must have upper bound and lower bound. We
know the real any bounded subset of real number has supremum and infimum, so α and β

both exists.

Now we prove α ≤ β. Suppose α > β, and let L = α − β > 0. Since α is the least upper
bound, ∀ ϵ > 0, ∃ aτ > α− ϵ; since β is the greatest lower bound, ∀ ϵ > 0, ∃ bτ < β + ϵ. Take
ϵ = L/2,

∃ aτ0 > α− L

2
=

α+ β

2

∃ bτ1 < β +
L

2
=

α+ β

2

Hence aτ0 > bτ1 , if we denote the corresponding interval of aτ0 as [aτ0 , bτ0 ], and denote the
corresponding interval of bτ1 as [aτ1 , bτ1 ], these two intervals have no intersection, which means
they are not nested intervals. Contradiction implies α ≤ β.
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To prove [α, β] =
∩

[a,b]∈I

[a, b], we need two steps as follows

(I) Prove [α, β] ⊂
∩

[a,b]∈I

[a, b]. Take arbitrary x ∈ [α, β], since α is upper bound, x ≥

α ≥ aτ for all aτ . Similarly, x ≤ β ≤ bτ for all bτ . For any aτ , bτ , aτ ≤ x ≤ bτ .
We can conclude that for any [a, b] ∈ I, x ∈ [a, b], which proves x ∈

∩
[a,b]∈I

[a, b]. Hence

[α, β] ⊂
∩

[a,b]∈I

[a, b].

(II) Prove
∩

[a,b]∈I

[a, b] ⊂ [α, β]. Take arbitrary x ∈
∩

[a,b]∈I

[a, b], we have x ∈ [a, b], for all

[a, b] ∈ I. If x < α, ∃ aτ0 > x, which means x /∈ [aτ0 , bτ0 ]. If x > β, ∃ bτ1 < x, which
means x /∈ [aτ1 , bτ1 ]. These two cases both contradicts the fact that x ∈ [a, b], for all
[a, b] ∈ I, hence α ≤ x ≤ β. Therefore,

∩
[a,b]∈I

[a, b] ⊂ [α, β].

b) if I is a system of nested open intervals (a, b) the intersection
∩

(a,b)∈I

(a, b) may happen to

empty.

Take (an, bn) =
(
0, 1

n

)
, if we assume there is an element in the intersection, denote it as a.

Therefore, we have for any n, a ∈ (0, 1
n
). However, if we take n0 =

[
1
a

]
+1, then n0 >

1
a
, which

means a /∈ (0, 1
n0
). Contradiction shows that our assumption is wrong, i.e., there is no element

in the intersection.

Question 2.3-2. Show that

a) from a system of closed intervals covering a closed interval it is not always possible to
choose a finite subsystem covering the interval;

Let the system of closed intervals be

G =

{
[2, 3],

[
0, 2− 1

n

]∣∣∣∣n ∈ N+

}
G is a cover of closed interval [0, 3], but it’s impossible to find finite many subcovers to cover
[0, 3], because if we choose N subcovers, then

(
2− 1

N
, 2
)

is not covered.

b) from a system of open intervals covering an open interval it is not always possible to choose
a finite subsystem covering the interval;

Let the system of open intervals be

G =

{(
0, 2− 1

n

)∣∣∣∣n ∈ N+

}
G is a cover of open interval (0, 2), but it’s impossible to find finite many subcovers to cover
(0, 2), because if we choose N subcovers, then

(
2− 1

N
, 2
)

is not covered.

c) from a system of closed intervals covering an open interval it is not always possible to
choose a finite subsystem covering the interval.
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Let the system of closed intervals be

G =

{[
1

n
, 3− 1

n

]∣∣∣∣n ∈ N+

}
G is a cover of open interval (0, 3), but it’s impossible to find finite many subcovers to cover
(0, 3), because if we choose N subcovers, then

(
0, 1

N

)
and

(
2− 1

N
, 3
)

are not covered.

Question 2.3-3. Show that if we take only the set Q of rational numbers instead of the complete
set R of real numbers, taking a closed interval, open interval, and neighborhood of a point r ∈ Q
to mean respectively the corresponding subsets of Q, then none of the three lemmas proved above
remains true.
(Note: The three lemmas are Cauchy-Cantor, Heine-Borel, and Bolzano-Weierstrass,
which are above this chapter in textbook, not the three statements in the above Ques-
tion 2.3-2.)

First, on the set Q, the Cauchy-Cantor lemma is wrong, which means it is possible that for a
system of nested closed interval I1 ⊃ I2 · · · In ⊃ · · · , whose intersection is empty.

Take In = [
√
2,
√
2 + n−1] ∩Q, then we have

∞∩
n=1

In = {
√
2} ∩Q = ∅

Thus the intersection of such nested closed interval is empty.

Second, on the set Q, the Heine-Borel lemma is wrong, which means there exists a system of
open intervals covering a closed interval contains no finite subcover of that closed interval.

Take In = (−1,
√
2− n−1] ∩Q, this system covers [0,

√
2] ∩Q, because

∞∪
n=1

In = (−1,
√
2) ∩Q

Also, if we take away any one of them, say In, the union will not contain all rational number in
(
√
2− (n− 1)−1,

√
2− n−1), which means not cover [0,

√
2] ∩Q.

Third, on the set Q, the Bolzano-Weierstrass lemma is wrong, which means some bounded
infinite set of rational numbers has no limit point.

We only need to take an infinite sequence of rational number that converges to irrational
number. Define

xn+1 =
1

2

(
xn +

2

xn

)
, x1 = 2

It’s easy to show all terms in this sequence is rational number by induction. You will see in Question
3.1-7 that this sequence xn converges to

√
2, and actually, its explicit formula is as follows

xn =
√
2 +

2
√
2

(3 + 2
√
2)2n−1 − 1

Question 2.4-1. Show that the set of real numbers has the same cardinality as the points of the
interval (−1, 1).
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Construct a bijective mapping between (−1, 1) and R, which is denoted as

f(x) =
x

1− |x|
x ∈ (−1, 1)

First, this mapping is injective, because for any

x1

1− |x1|
=

x2

1− |x2|

we have
x2 − x2|x1| = x1 − x1|x2|

Since 1 − |x1| and 1 − |x2| are both positive, x1 and x2 must be both positive or both negative.
Therefore, x2 − x2x1 = x1 − x1x2 or x2 + x2x1 = x1 + x1x2, which means x1 = x2.

Second, this mapping is surjective, because for any real number c, Let

x

1− |x|
= c

If c ≥ 0, then x ≥ 0, and x = c
1+c

∈ [0, 1); if c < 0, then x < 0, and x = c
1−c

∈ (−1, 0).

Therefore, these two sets have the same cardinality.

Question 2.4-2. Give an explicit one-to-one correspondence between

a) the points of two open intervals;

We don’t consider interval containing infinity. We want to construct a bijective mapping
between (a, b) and (c, d). The mapping f : (a, b) 7→ (c, d) is as follows

f(x) = c+
d− c

b− a
(x− a)

b) the points of two closed intervals;

We don’t consider interval containing infinity. We want to construct a bijective mapping
between [a, b] and [c, d]. The mapping f : [a, b] 7→ [c, d] is as follows

f(x) = c+
d− c

b− a
(x− a)

c) the points of a closed interval and the points of an open interval;

We don’t consider interval containing infinity. We only need to construct a bijective mapping
between (0, 1) and [0, 1]. The mapping F : (0, 1) 7→ [0, 1] is as follows (by Schröder–Bernstein
theorem)

F (x) =

 x x ̸= 1
2
± 1

2·3n

3x− 1 x = 1
2
± 1

2·3n

, n ∈ N+
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To generalize the result, we can apply what we construct in a) and b), which means

(a, b) 7→ (0, 1) 7→ [0, 1] 7→ [c, d]

d) the points of the closed interval [0, 1] and the set R.

We only need to construct (0, 1) 7→ R. The mapping F : (0, 1) 7→ R is as follows

F (x) =

 1
2x

− 1 x ∈
(
0, 1

2

)
1

2x−2
+ 1 x ∈

[
1
2
, 1
)

To obtain the mapping from [0, 1] to R, we can apply the inverse of the mapping we construct
in c), which means

[0, 1] 7→ (0, 1) 7→ R

The explicit correspondence between [0, 1] and R is

f(x) =



1

2x
− 1 x ̸= 1

2
− 1

2 · 3n
, n ∈ N+, x ∈

(
0,

1

2

)
1

2x− 2
+ 1 x ̸= 1

2
+

1

2 · 3n
, n ∈ N+, x ∈

[
1

2
, 1

)
3

2x+ 2
− 1 x =

1

2
− 1

2 · 3n
, n ∈ N

3

2x− 4
+ 1 x =

1

2
+

1

2 · 3n
, n ∈ N

Question 2.4-3. Show that

a) every infinite set contains a countable subset;

For an infinite set A, we pick arbitrary element in A, denote as a1, and let A = A/{a1}.
Since A is infinite, we could pick element for any times, and A will still be infinite. Put all
ai together as a set B, then B ⊂ A, and it’s obvious that each element in B has a bijective
mapping to natural number {1, 2, 3, . . .}. Hence, the B is a countable subset. (Note that the
above procedure is based on the Axiom of Choice).

b) the set of even integers has the same cardinality as the set of all natural numbers.

We only need to construct a bijective mapping from f : Z2 7→ N, where Z2 denote the set of
all even integers.

f(x) =

 x x ≥ 0, x ∈ Z2

−(x− 1) x < 0, x ∈ Z2

This f is injective, because for f(x1) = f(x2), if x1, x2 ≥ 0, then by definition x1 = x2; if
x1, x2 < 0, −(x1 − 1) = −(x2 − 1) =⇒ x1 = x2; if x1 ≥ 0, x2 < 0, then contradiction, because
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f(x1) = x1 ≥ 0, f(x2) = −x2 + 1 < 0, they cannot be equal; simlar argument can be applied
for x1 < 0, x2 ≥ 0. Hence x1 = x2.

This f is surjective, because for any natural number n, if it is even (including 0), then its
preimage is n; if it is odd, then its preimage is −(n+ 1) ∈ Z2. Hence f is surjective.

Therefore, the set of even integers has the same cardinality as the set of all natural numbers.

c) the union of an infinite set and an at most countable set has the same cardinality as the
original infinite set.

Let A denote the infinite set, and B denote the at most countable set. Since we have proved
that infinite set has a countable subset, A has a countable subset A′. Therefore, if B is finite,
then a finite set union with a countable set is still countable, hence there exists a bijective
mapping f : B ∪ A′ 7→ A′; if B infinite, then B and A′ are both countable, and the union of
two countable sets is still countable, hence there exists a bijective mapping f : B ∪A′ 7→ A′.

Now we construct an bijective mapping from A ∪B 7→ A,

g(x) =

x x ∈ A\A′

f(x) x ∈ B ∪A′

because f(x) and x are both bijective mapping. Hence, the union of an infinite set and an at
most countable set has the same cardinality as the original infinite set.

d) the set of irrational numbers has the cardinality of the continuum (same cardinality as R).

First, it is trivial to prove the set of rational number is at most countable. We also know that
irrational number set is infinite, because if it is finite, R = Q∪Qc will be countable, which by
definition is wrong. By part c), irrational number set union with an at most countable set Q
will have the same cardinality as the original set Qc, which means R has the same cardinality
as Qc.

e) the set of transcendental numbers has the cardinality of the continuum.

Using the same argument as part d), we only need to prove algebraic number is countable, then
substitute the algebraic to rational, and transcendental to irrational, the logics are exactly the
same. However, the proof of algebraic number being countable has been done in the lecture,
so we finish the proof.

Question 2.4-7. On the closed interval [0, 1] ⊂ R describe the sets of numbers x ∈ [0, 1] whose
ternary representation x = 0.α1α2α3 . . . , αi ∈ {0, 1, 2}, has the property:

a) α1 ̸= 1;

This set of number represents exactly all numbers in

[0, 1]

\(
1

3
,
2

3

)
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Note that
1

3
= 0.0222 . . . ,

2

3
= 0.2000 . . .

b) (α1 ̸= 1) ∧ (α2 ̸= 1);

This set of number represents exactly all numbers in

[0, 1]

\(
1

3
,
2

3

)
∪
(
1

9
,
2

9

)
∪
(
7

9
,
8

9

)

c) ∀ i ∈ N (αi ̸= 1) (the Cantor set).

This set of number represents exactly all numbers in

C = [0, 1]

\
∞∪

n=1

2n−1−1∪
k=0

(
3k + 1

3n
,
3k + 2

3n

)

Question 2.4-8. (Continuation of Question 2.4-7.) Show that

a) the set of numbers x ∈ [0, 1] whose ternary representation does not contain 1 has the same
cardinality as the set of all numbers whose binary representation has the form 0.β1β2 . . .;

Consider the following mapping

f

(
∞∑
k=1

αk3
−k

)
=

∞∑
k=1

αk

2
2−k

Ternary representation with only digits 0 and 2 was mapped to a binary representation by
replacing all 2 with 1.

One can prove that f is surjective but not injective, because every element of binary repre-
sentation only contains 0 and 1, if we replace all 1 by 2, the element only contains 0 and 2,
which is exactly a ternary representation with only digits 0 and 2. Hence, it is surjective.

However, it is not injective because for two distinct element in Cantor set (0.2022 . . .)3 and
(0.2200 . . .)3, their image under f is (0.1011 . . .)2 and (0.1100 . . .)2, but (0.1011 . . .)2 =

(0.1100 . . .)2.

Also we need to know that every real number in [0, 1] can be represented as a binary number
of the form 0.β1β2 . . . where βi ∈ {0, 1}. Thus, the Cantor set is a subset of the set of all
numbers whose binary representation has the form 0.β1β2 . . ..

Therefore, the set of numbers x ∈ [0, 1] whose ternary representation does not contain 1 has the
same cardinality as the set of all numbers whose binary representation has the form 0.β1β2 . . ..
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However, if we want to avoid the use of the statement “every real number in [0, 1] can be rep-
resented as a binary number”, we can consider what type of element in ternary representation
with only 0 and 2 may be mapped to the same element in binary representation. Notice that
this is caused by 0.α1α2 . . . αN02222 . . ., which means 0 does not appear infinitely often. Such
number will have the same image under f as the number 0.α1α2 . . . αN20000 . . ..

Let a set C ′ contains all numbers of the form 0.α1α2 . . . αN20000 . . ., this set must be countable,
since for each fixed N , there are 2N such number in total. If we denote the Cantor set as C,
the set of all numbers whose binary representation has the form 0.β1β2 . . . as B, and consider
the same mapping f from C\C ′ to B, this mapping is bijective. Thus C\C ′ has the same
cardinality as B.

However, we have proved in Question 2.4-3. that the union of an infinite set and an at most
countable set has the same cardinality as the original infinite set, so C has the same cardinality
as C\C ′, hence the same cardinality as B.

b) the Cantor set has the same cardinality as the closed interval [0, 1].

Since Cantor set is obviously a subset of closed interval [0, 1], hence the identity mapping
is a injective mapping from Cantor set to [0, 1]. We only need to show that there exists a
surjective mapping from Cantor set to [0, 1]. However, for any number y ∈ [0, 1], its binary
representation can be translated into a ternary representation of a number x in Cantor set by
replacing all the 1s by 2s. Therefore, such surjective mapping exists, which means Cantor set
and the closed interval [0, 1] have the same cardinality.

Question 3.1-2. A ball has fallen from height h bounces to height qh, where q is a constant
coefficient between 0 < q < 1. Find the time that elapses until it comes to rest and the distance it
travels through the air during the time.

We assume it is rectilinear motion with constant acceleration g, then the time the ball elapses
until rest is

t =

√
2h

g
+ 2

√
2qh

g
+ 2

√
2q2h

g
+ . . .

=

√
2h

g
(1 + 2

√
q + 2

√
q2 + . . .)

= 2

√
2h

g
(
1

2
+ q1/2 + q1 + q3/2 + . . .)

=
1 +

√
q

1−√
q

√
2h

g
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The total distance is

D = h+ 2qh+ 2q2h+ . . .

= h(1 + 2q + 2q2 + . . .)

= 2h(
1

2
+ q + q2 + . . .)

=
1 + q

1− q
h

Question 3.1-3. We mark all the points on a circle obtained from a fixed point by rotations of
the circle through angles of n radians, where n ∈ Z ranges over all integers. Describe all the limit
points of the set so constructed.

The limit points of the set are all points on the circle. To prove this, we need to prove positive
integer n is dense in [0, 2π] in radian measure, i.e., { n

2π
}2π is dense in [0, 2π]. Thus we only need to

show that { n
2π
} is dense in [0, 1].

First prove for any given real number x and positive integer N > 1, there exists integer p, q,
0 < q < N , such that |qx− p| < 1/N .

Consider mx − [mx], where m = 1, 2, . . . , N + 1. Since 0 ≤ mx − [mx] < 1, there must be
m1,m2 such that

|m2x− [m2x]− (m1x− [m1x])| <
1

N
, 0 < m1 < m2 ≤ N

Let q = m2 −m1, p = [m2x]− [m1x], then 0 < q < N , and |qx− p| < 1
N

.

Since we can easily see 1
2π

is irrational number, next we prove that {nα} is dense in [0, 1] for
any irrational number α.

For any s, t ∈ [0, 1] (W.O.L.G, we suppose 0 ≤ t < s ≤ 1), let L = s − t, take sufficiently
large n such that 1

n
< L < 1. From what we proved just now, there exists integer m,w, such that

0 < m < n and 0 < |mα− w| < 1
n

. Let β = mα− w, then mα = w + β, 0 < |β| < 1
n

.

(I) If 0 < β < 1
n

, let k = 0, 1, . . . , [1/β], then at least one {kmα} is in [0, 1]. This is because
kmα = kw+ kβ, so {kmα} = {kβ}. Since k < 1

β
, we have {kmα} = kβ, which corresponds to

0, β, 2β, . . . , [1/β]β. We can observe that the distance between any two number is β < 1
n
< L,

and the distance between the last number [1/β]β and boundary value 1 is no more than β,
because

1

β
≥
[
1

β

]
≥ 1

β
− 1 =⇒ 1 ≥ β

[
1

β

]
≥ 1− β =⇒ 0 ≤ 1− β

[
1

β

]
≤ β

Thus, at least one of 0, β, 2β, . . . , [1/β]β will be in (t, s), which means {kmα} is dense in [0, 1].

(II) If − 1
n

< β < 0, let k = 0, 1, . . . , [1/|β|], then at least one {kmα} is in [0, 1]. This is
because kmα = kw + kβ, but since β is negative, {kmα} = 1 − k|β|, which corresponds to
1, 1−|β|, 1−2|β|, . . . , 1− [1/|β|]|β|. We also observe that the distance between any two number
is |β| < 1

n
< L, and the distance between the last number 1 − [1/|β|]|β| and the boundary
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value 0 is also no more than |β|, because

0 ≤ 1

|β|
−
[
1

|β|

]
≤ 1 =⇒ 0 ≤ 1−

[
1

|β|

]
|β| ≤ |β|

Thus, at least one of 1, 1− |β|, 1− 2|β|, . . . , 1− [1/|β|]|β| will be in (t, s), which means {kmα}
is dense in [0, 1].

Therefore, for any s, t ∈ [0, 1], 0 ≤ t < s ≤ 1, there exists {nα} in (t, s), which shows it is dense in
[0, 1]. Take α = 1

2π
, and the proof is finished.

Question 3.1-6. If a and b are positive numbers and p an arbitrary nonzero real number, then the
mean of order p of the numbers a and b is the quantity

Sp(a, b) =

(
ap + bp

2

) 1
p

In particular for p = 1 we obtain the arithmetic mean of a and b, for p = 2 their square-mean,
and for p = −1 their harmonic mean.

a) Show that the mean Sp(a, b) of any order lies between the numbers a and b.

Let c = Sp(a, b) > 0, then we have cp = (ap + bp)/2 which shows cp is between ap and bp.
If p > 0, xp is increasing when x > 0, so that cp is between ap, bp yields c is between a, b.
If p < 0, xp is decreasing when x > 0, also that cp is between ap, bp yields c is between a, b.

b) Find the limits of the sequences

{Sn(a, b)}, {S−n(a, b)}

To find the limit of {Sn(a, b)}, using L’Hôpital’s rule

lim
n→∞

(
an + bn

2

) 1
n

= lim
n→∞

exp
{
1

n
ln an + bn

2

}
= exp

{
lim
n→∞

1

n
ln an + bn

2

}
= exp

{
lim
n→∞

an ln a+ bn ln b

an + bn

}
= exp

{
lim
n→∞

[
ln a+

(b/a)n ln(b/a)
1 + (b/a)n

]}
= exp

{
lim
n→∞

[
ln a+

ln(b/a)
(a/b)n + 1

]}

If a ≥ b, the limit is exp{ln a} = a; if a < b, the limit is exp{ln b} = b.
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To find the limit of {S−n(a, b)}, using L’Hôpital’s rule

lim
n→∞

(
a−n + b−n

2

) 1
−n

= lim
n→∞

exp
{

1

−n
ln a−n + b−n

2

}
= exp

{
lim
n→∞

1

−n
ln a−n + b−n

2

}
= exp

{
lim
n→∞

a−n ln a+ b−n ln b

a−n + b−n

}
= exp

{
lim
n→∞

[
ln a+

(b/a)−n ln(b/a)
1 + (b/a)−n

]}
= exp

{
lim
n→∞

[
ln a+

ln(b/a)
(a/b)−n + 1

]}
= exp

{
lim
n→∞

[
ln a+

ln(b/a)
(b/a)n + 1

]}

If a ≥ b, the limit is exp{ln b} = b; if a < b, the limit is exp{ln a} = a.

Question 3.1-7. Show that if a > 0, the sequence xn+1 = 1
2

(
xn + a

xn

)
converges to the square

root of a for any x1 > 0.
Estimate the rate of convergence, that is, the magnitude of the absolute error |xn−

√
a| = |∆n|

as a function of n.

We need to prove xn is a decreasing and bounded below sequence when n ≥ 2, so that we could
say it is convergent.

xn+1 =
1

2

(
xn +

a

xn

)
≥ 1

2
· 2
√
xn · a

xn

=
√
a

Therefore, for any n ≥ 2, xn is bounded below by
√
a.

xn+1 − xn =
1

2

(
a

xn

− xn

)
=

a− x2
n

2xn

≤ 0

Hence xn is decreasing when n ≥ 2. Therefore, xn converges.

Take the limit as n → ∞ on both sides, denote the limit as λ, and we have

λ =
1

2

(
λ+

a

λ

)
Since all terms are no less than

√
a, we obtain λ =

√
a (negative solution is impossible).

There are many ways to estimate the rate of convergence, since I’m not so smart, I just use
brutal force, i.e., calculate the explicit formula of xn.

xn+1 +
√
a =

x2
n + 2

√
axn + a

2xn

=
(xn +

√
a)2

2xn

xn+1 −
√
a =

x2
n − 2

√
axn + a

2xn

=
(xn −

√
a)2

2xn

Take the quotient of them, we obtain

xn+1 +
√
a

xn+1 −
√
a
=

(
xn +

√
a

xn −
√
a

)2
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Define
bn+1 =

xn+1 +
√
a

xn+1 −
√
a

We conclude that bn+1 = b2n, it yields that bn = b1
2n−1

for any n ≥ 2, where

b1 =
x1 +

√
a

x1 −
√
a

Finally, we can solve xn explicitly by knowing x1,

xn =
√
a+

2
√
a(

x1+
√
a

x1−
√
a

)2n−1

− 1

, n ≥ 2

Therefore, it’s easy to see the rate of convergence is

|xn −
√
a| = |∆n| =

2
√
a(

x1+
√
a

x1−
√
a

)2n−1

− 1

, n ≥ 2

If x1 =
√
a, xn =

√
a for all n ≥ 2, |∆n| = 0.

Question 3.1-8. Show that

a) S0(n) = 10 + · · ·+ n0 = n,

S1(n) = 11 + · · ·+ n1 =
n(n+ 1)

2
=

1

2
n2 +

1

2
n,

S2(n) = 12 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
=

1

3
n3 +

1

2
n2 +

1

6
n,

S3(n) =
n2(n+ 1)2

4
=

1

4
n4 +

1

2
n3 +

1

4
n2,

First, it’s easy to calculate that S0(n) = 10+ · · ·+n0 = n, and consider the following binomial
expansion,

1k =(2− 1)k =

(
k

0

)
2k(−1)0+

(
k

1

)
2k−1(−1)1+· · ·+

(
k

k

)
20(−1)k (1)

2k =(3− 1)k =

(
k

0

)
3k(−1)0+

(
k

1

)
3k−1(−1)1+· · ·+

(
k

k

)
30(−1)k (2)

... =
... =

... +
... +· · ·+

...

(n− 1)k =(n− 1)k =

(
k

0

)
nk(−1)0+

(
k

1

)
nk−1(−1)1+· · ·+

(
k

k

)
n0(−1)k (n-1)

Take the summation of (1) to (n− 1), we have

Sk−1(n) =
1

k
nk + 1− 1

k
+

1

k

k∑
i=2

(
k

i

)
(Sk−i(n)− 1)(−1)i

Therefore, let k = 2, 3, 4, we could have

S1(n) =
1

2
n2 + 1− 1

2
+

1

2
(n− 1)(−1)2 =

1

2
n2 +

1

2
n

S2(n) =
1

3
n3 + 1− 1

3
+

1

3

[
3

(
1

2
n2 +

1

2
n− 1

)
(−1)2 + (n− 1)(−1)3

]
=

1

3
n3 +

1

2
n2 +

1

6
n
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S3(n) =
1

4
n4 + 1− 1

4
+

1

4

4∑
i=2

(
4

i

)
(S4−i(n)− 1)(−1)i =

1

4
n4 +

1

2
n3 +

1

4
n2

Therefore, since S0(n) is a polynomial in n of degree 1, and S1(n) is a polynomial in n of
degree 2, we suppose Si(n) is a polynomial in n of degree i + 1 for all i ≤ k, by induction
(Strong induction) we need to prove Sk+1(n) is a polynomial in n of degree k + 2. Since

Sk+1(n) =
1

k + 2
nk+2 + 1− 1

k + 2
+

1

k + 2

k+2∑
i=2

(
k + 2

i

)
(Sk+2−i(n)− 1)(−1)i

We know that the highest order term in Sk+1(n) is 1
k+2

nk+2, the middle term is a constant
term with respect to n, and the summation term is a linear combination of Si(n), which is at
most of order n+ 1. Therefore, we prove that Sk+1(n) is a polynomial in n of degree k + 2.

b) lim
n→∞

Sk(n)
nk+1 = 1

k+1
.

From the above formula of Sk(n) we can see that the highest order term is 1
k+1

nk+1, and other
term are o(nk+1) terms, therefore,

lim
n→∞

Sk(n)

nk+1
= lim

n→∞

1

k + 1
+ lim

n→∞

o(nk+1)

nk+1
=

1

k + 1

Question 3.2-1.

a) Prove that there exists a unique function defined on R and satisfying the following condi-
tions:

f(1) = a (a > 0, a ̸= 1),

f(x1) · f(x2) = f(x1 + x2),

f(x) 7→ f(x0) as x → x0.

Since in the textbook we have already define the exponential function, we can easily clarify
the existence of a function satisfying the above conditions, i.e., f(x) = ax. Now we need to
check the uniqueness.

For any function g that satisfies the above conditions, take x1 = 0, x2 = 1, we have

g(0) · g(1) = g(1) = a =⇒ g(0) = 1

For x2 ∈ N, take x1 = 1

g(1) · g(x2) = g(1 + x2) =⇒ a · g(x2) = g(1 + x2)

Therefore, g(x) is recursively defined by g(2) = ag(1), g(3) = a2g(1), . . . g(n) = an−1g(1) = an.
These values are uniquely defined, because g(1) is fixed. If some g(n) not equal to an, Property
2 will not hold for such function g.

15



Similarly, x2 ∈ Z, x2 < 0, take x1 = −x2 ∈ N,

g(−x2) · g(x2) = g(0) =⇒ a−x2 · g(x2) = 1

Hence, g(x2) = ax2 for x2 ∈ Z, x2 < 0. Now we obtain g(x) = ax for all x ∈ Z, and they are
uniquely defined. If some g(n) not equal to an, Property 2 will not hold for such function g.

Let x = m/n where n ̸= 0, m,n ∈ Z, then

g
(m
n

)
· g
(m
n

)
= g

(
2
m

n

)
By induction, we have [

g
(m
n

)]n
= g

(
n
m

n

)
= g(m) = am

which shows for all rational number r, g(r) = ar. These values are uniquely defined. If some
g(r) not equal to ar, Property 2 will not hold for such function g.

Consider x ∈ R, we need to use property 3 to prove the uniqueness of it. For rn ∈ Q,

g(x) = lim
rn→x

ar

However for any x, the limit value on the right hand side exists and is unique by the uniqueness
of limit. This is because for exponential function we know it is continuous on R, so for any
convergent sequence xn, and any real number x,

lim
xn→x

axn = alimxn→x xn = ax

Since we could find rational number sequence rn such that rn → x, g(x) = ax for all real
number x is uniquely defined.

b) Prove that there exists a unique function defined on R+ and satisfying the following con-
ditions:

f(a) = 1 (a > 0, a ̸= 1),

f(x1) + f(x2) = f(x1 · x2),

f(x) 7→ f(x0) for x, x0 ∈ R+, as x → x0.

This is simlar to part a), the existence is easy to see, just take f(x) = loga x. Now we need to
check the uniqueness.

For any function g that satisfies the above conditions, take x1 = x2 = 1, we have

g(1) + g(1) = g(1 · 1) = g(1) =⇒ g(1) = 0

For x2 ∈ N+, take x1 = x2 = a,

g(a) + g(a) = g(a2) = 2

By induction, we have g(ax) = x for all positive integer x.
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Similarly, take x1 = a, x2 = a−1,

g(a) + g(a−1) = g(a · a−1) = g(1) = 0 =⇒ g(a−1) = −g(a) = −1

By induction, we have g(a−n) = −n, which means g(ax) = x for all integer x.

Let x = m/n where m,n ∈ N, n ̸= 0, then

g
(
a

m
n

)
+ g

(
a

m
n

)
= g

(
a2

m
n

)
By induction,

n
[
g
(
a

m
n

)]
= g

(
an

m
n

)
= g(am) = m =⇒ g

(
a

m
n

)
=

m

n

which shows for all rational number r, g(ar) = r. These values are uniquely defined. If some
g(ar) not equal to r, Property 2 will not hold for such function g.

Consider x ∈ R, we need to use property 3 to prove the uniqueness of it. For rn ∈ Q,

g(ax) = lim
rn→x

g(arn) = lim
rn→x

rn = x

Thus g(ax) is uniquely defined as x for any real number x. Since we know exponential function
is nonnegative, ax > 0, we can take t = ax, and t > 0. We have g(t) = loga t. For each x

we have a unique t, and also unique loga t. Hence g(t) = loga t for all real number t > 0 is
uniquely defined.

Question 3.2-2.

a) Establish a one-to-one correspondence φ : R 7→ R+ such that φ(x+y) = φ(x) ·φ(y) for any
x, y ∈ R, that is so that the operation of multiplication in the image (R+) corresponds to the
operation of addition in the pre-image (R). The existence of such a mapping means that the
groups (R,+) and (R+, ·) are identical as algebraic objects, or, as we say, they are isomorphic.

It’s easy to think of the function φ(x) = ex. ex is a bijective mapping from the whole real
number set to positive real number set.

b) Prove that the groups (R,+) and (R\0, ·) are not isomorphic.

Using what we learn in abstract algebra, we need to find a structural property that is not
shared by these two binary structure. Consider the equation x ∗ x ∗ x = x, for element in
(R,+), i.e., x + x + x = x which has a unique solution x = 0; for element in (R\0, ·), i.e.,
x · x · x = x which has two solution ±1 (x = 0 is not in R\0).

This means the groups (R,+) and (R\0, ·) have different structural property, which implies
they are not isomorphic.

If you don’t want to use the knowledge of abstract algebra, we may assume there exists bijective
mapping g from R and R\0. Then for any x, y ∈ R, we have

g(x+ y) = g(x) · g(y)
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Take x = y, we have g(2x) = [g(x)]2 > 0 for all x ∈ R. Since g(x) is bijective, −1 ∈ R\0, there
must exists x0 ∈ R such that g(x0) = −1. We know x0

2
∈ R, therefore

g(x0) = g
(
2 · x0

2

)
=
[
g
(x0

2

)]2
> 0

This is a contradiction, which means there does not exist any bijective mapping g. Hence, the
groups (R,+) and (R\0, ·) are not isomorphic.
Warning! One-to-one correspondence means bijective mapping!

Question 3.2-3. Find the following limits.

a) lim
x→+0

xx

By using L’Hôpital’s rule, we have

lim
x→+0

xx = lim
x→+0

ex ln x

= elimx→+0 x ln x

= elimx→+0
ln x
1/x

= e
limx→+0

1/x

−1/x2

= elimx→+0 −x

= e0 = 1

b) lim
x→+∞

x1/x

By using L’Hôpital’s rule, we have

lim
x→+∞

x1/x = lim
x→+∞

e
ln x
x

= elimx→+∞
ln x
x

= elimx→+∞
1/x
1

= e0 = 1

c) lim
x→0

loga(1+x)

x

By using L’Hôpital’s rule, we have

lim
x→+0

loga(1 + x)

x
= lim

x→+0

ln(1 + x)

x ln a

= lim
x→+0

1/(x+ 1)

ln a

=
1

ln a
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d) lim
x→0

ax−1
x

By using L’Hôpital’s rule, we have

lim
x→0

ax − 1

x
= lim

x→0

ax ln a

1

=
a0 ln a

1

= ln a

Question 3.2-4. Show that

1 +
1

2
+

1

3
+ · · ·+ 1

n
= lnn+ c+ o(1) as n → ∞

where c is a constant. (The number c = 0.57721 . . . is called Euler’s constant.)

Let partial sum Sn be defined as follows

Sn =
n∑

k=1

1

k
− lnn

We need to prove
Sn = c+ o(1) ⇐⇒ lim

n→∞
Sn = c

First we check Sn is decreasing.

Sn − Sn+1 = ln n+ 1

n
− 1

n+ 1
= − ln

(
1− 1

n+ 1

)
− 1

n+ 1
> −

(
− 1

n+ 1

)
− 1

n+ 1
= 0

Second we prove Sn is bounded below.

Sn >
n∑

k=1

ln
(
1 +

1

k

)
− lnn = ln(n+ 1)− lnn > 0

Therefore, Sn is decreasing and bounded below, which means it is convergent to a constant, denoted
as c. Note that we don’t need to calculate the value of c in this question.

Question 3.2-5. Show that

a) if two series
∞∑

n=1

an and
∞∑

n=1

bn with positive terms are such that an ∼ bn as n → ∞, then
the two series either both converge or both diverge.

First, suppose
∞∑

n=1

an converges and an ∼ bn as n → ∞, we have

∀ ϵ1 > 0, ∃N1, ∀ n > m ≥ N1,

∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ < ϵ1

∀ ϵ2 > 0, ∃N2, ∀ n ≥ N,

∣∣∣∣ bnan − 1

∣∣∣∣ < ϵ2
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Since an and bn are positive, we have ∀ ϵ2 > 0, ∃N2, ∀ n ≥ N

|bn − an| < ϵ2an ⇐⇒ (1− ϵ2)an < bn < (1 + ϵ2)an

Take N = max{N1, N2}, and ϵ = (1 + ϵ2)ϵ1, for any n > m ≥ N , we have∣∣∣∣∣
n∑

k=m

bk

∣∣∣∣∣ ≤
n∑

k=m

|bk|

=
n∑

k=m

bk

=
n∑

k=m

(1 + ϵ2)ak

≤ (1 + ϵ2)

∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ ≤ (1 + ϵ2)ϵ1 = ϵ

Thus
∞∑

n=1

bn converges.

Second, suppose
∞∑

n=1

an diverges and an ∼ bn as n → ∞, we have

∃ ϵ1 > 0, ∀ N1, ∃ n > m ≥ N1,

∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ ≥ ϵ1

∀ ϵ2 > 0, ∃N2, ∀ n ≥ N,

∣∣∣∣ bnan − 1

∣∣∣∣ < ϵ2

Since an and bn are positive, we have ∀ ϵ2 > 0, ∃N2, ∀ n ≥ N

|bn − an| < ϵ2an ⇐⇒ (1− ϵ2)an < bn < (1 + ϵ2)an

Take ϵ2 =
1
2
, we have bn > 1

2
an.

Take N = max{N1, N2}. There exists ϵ = 1
2
ϵ1, ∀ N0, ∃ n > m ≥ max{N,N0}, such that∣∣∣∣∣

n∑
k=m

bk

∣∣∣∣∣ =
n∑

k=m

bk

>
n∑

k=m

1

2
ak

=
1

2

∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ ≥ 1

2
ϵ1 = ϵ

b) the series
∞∑

n=1

sin 1
np converges only for p > 1.

If p ≤ 0, then 1
np is increasing to infinity as n → ∞. Since sine function is a periodic function

on R, it’s easy to see lim
n→∞

sin 1
np ̸= 0, thus the series cannot converge.

If p > 0, 1
np is decreasing to 0 as n → ∞. Since x is equivalent to sinx as x → 0, we conclude

that 1
np ∼ sin 1

np . By what we proved in part a), we know
∞∑

n=1

sin 1
np converges when

∞∑
n=1

1
np
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converges, i.e., p > 1 (proved in Rudin’s book). On the contrary, it diverges if
∞∑

n=1

1
np diverges,

i.e., 0 < p ≤ 1.

Question 3.2-6. Show that

a) if an ≥ an+1 > 0 for all n ∈ N and the series
∞∑

n=1

an converges, then an = o
(
1
n

)
as n → ∞;

To prove an = o
(
1
n

)
, we need to prove lim

n→∞
nan = 0.

Since
∞∑

n=1

an converges, an must converges to zero, for any ϵ > 0, there exists N0, for all n > N0,
an < ϵ.

Also, for any ϵ > 0, there exists N for any n > m ≥ N ,
n∑

i=m+1

ai < ϵ

Take n = 2m, we have

ma2m <
2m∑

i=m+1

ai < ϵ

Since for any ϵ > 0, there exists N , such that for any m ≥ N ,

ma2m < ϵ =⇒ 2ma2m < 2ϵ

For any ϵ > 0, take n ≥ 2N + 2N0, if n = 2m, from the above equation we have

nan < 2ϵ

If n = 2m+ 1, we need to show
(2m+ 1)a2m+1 < 3ϵ

And since
(2m+ 1)a2m+1 ≤ (2m+ 1)a2m = 2ma2m + a2m

we have
(2m+ 1)a2m+1 ≤ 2ma2m + a2m < 2ϵ+ ϵ = 3ϵ

Therefore, lim
n→∞

nan = 0.

b) if bn = o
(
1
n

)
, one can always construct a convergent series

∞∑
n=1

an such that bn = o(an) as
n → ∞;

For any bn satisfies lim
n→∞

nbn = 0, we can construct the same
∞∑

n=1

an,

∞∑
n=1

an =
∞∑

n=1

(−1)n
1

n

such that bn = o(an), because

lim
n→∞

bn
an

= lim
n→∞

(−1)nnbn = 0

The above statement can be easily proved by the definition of limit.
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c) if a series
∞∑

n=1

an with positive terms converges, then the series
∞∑

n=1

An, where An =√
∞∑

k=n

ak −
√

∞∑
k=n+1

ak also converges, and An = o(an) as n → ∞;

The partial sum of
∞∑

n=1

An is

n∑
m=1

Am =

√√√√ ∞∑
k=1

ak −

√√√√ ∞∑
k=2

ak +

√√√√ ∞∑
k=2

ak −

√√√√ ∞∑
k=3

ak

+

√√√√ ∞∑
k=3

ak −

√√√√ ∞∑
k=4

ak + . . .+

√√√√ ∞∑
k=n

ak −

√√√√ ∞∑
k=n+1

ak

=

√√√√ ∞∑
k=1

ak −

√√√√ ∞∑
k=n+1

ak

Since
∞∑

n=1

an converges to a constant, say b, and an is positive,

lim
n→∞

n∑
k=1

Ak =
√
b− 0 =

√
b

Thus the series
∞∑

n=1

An is convergent.

Consider rationalizing the numerator

An =

√√√√ ∞∑
k=n

ak −

√√√√ ∞∑
k=n+1

ak =
an√

∞∑
k=n

ak +

√
∞∑

k=n+1

ak

We can see

lim
n→∞

an
An

= lim
n→∞

√√√√ ∞∑
k=n

ak +

√√√√ ∞∑
k=n+1

ak

 = 0 + 0 = 0

Thus, an = o(An) as n → ∞.

d) if a series
∞∑

n=1

an with positive terms converges, then the series
∞∑

n=1

An, where An =√
∞∑

k=n

ak −
√

∞∑
k=n+1

ak also converges, and An = o(an) as n → ∞.

It follows from c) and d) that no convergent (resp. divergent) series can serve as a universal
standard of comparison to establish the convergence (resp. divergence) of other series.
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The partial sum of
∞∑

n=2

An is

n∑
m=2

Am =

√√√√ 2∑
k=1

ak −

√√√√ 1∑
k=1

ak +

√√√√ 3∑
k=1

ak −

√√√√ 2∑
k=1

ak

+

√√√√ 4∑
k=1

ak −

√√√√ 3∑
k=1

ak + . . .+

√√√√ n∑
k=1

ak −

√√√√n−1∑
k=1

ak

=

√√√√ n∑
k=1

ak −

√√√√ 1∑
k=1

ak

Since
∞∑

n=1

an diverge to infinity (positive terms),

lim
n→∞

n∑
k=2

Ak = +∞+
√
a1 = +∞

Thus the series
∞∑

n=2

An is divergent.

Consider rationalizing the numerator

An =

√√√√ n∑
k=1

ak −

√√√√n−1∑
k=1

ak =
an√

n∑
k=1

ak +

√
n−1∑
k=1

ak

We can see
lim
n→∞

An

an
= lim

n→∞

1√
∞∑

k=n

ak +

√
∞∑

k=n+1

ak

=
1

+∞+∞
= 0

Thus, An = o(an) as n → ∞.

Question 3.2-10. Show that

a) if bn
bn+1

= 1 + βn, n = 1, 2, . . ., and the series
∞∑

n=1

βn converges absolutely, then the limit
lim
n→∞

bn = b ∈ R exists;

Since
∞∑

n=1

βn converges, we have lim
n→∞

βn = 0. Therefore, there exists N such that ∀ n >

N, |βn| < 1
3
, ensuring 1 + βn > 0. For n > N ,

bN+1

bn+1

=
bN+1

bN+2

bN+2

bN+3

· · · bn
bn+1

which gives us
bN+1

bn+1

=
n∏

k=N+1

(1 + βk) > 0

The corresponding infinite product of the partial product on the right hand side converges if
∞∑

n=N+1

ln(1 + |βn|) converges
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Since |βn| → 0 as n → ∞, we have ln(1 + |βn|) ∼ |βn|. By what we proved in Question
3.2-5., we conclude

∑∞
n=1 ln(1 + |βn|) and

∑∞
n=1 |βn| both converge or diverge.

Since
∞∑

n=1

βn converges absolutely, we know

∞∑
n=1

ln(1 + |βn|)

converges, and so does
∞∑

n=N+1

ln(1 + |βn|)

Thus, as n → ∞, bN+1

bn+1
converges to some nonzero constant value. Since bN+1 is also a constant

value, the limit of bn+1 must exist.

b) if an

an+1
= 1+ p

n
+αn, n = 1, 2, . . ., and the series

∞∑
n=1

αn converges absolutely, then an ∼ c
np

as n → ∞;

Let bn = an

1/np , and consider

bn
bn+1

=
ann

p

an+1(n+ 1)p
=

an
an+1

1

(1 + 1
n
)p

=
1 + p

n
+ αn

(1 + 1
n
)p

For any real number p, we have binomial expansion

bn
bn+1

=
1 + p

n
+ αn

(1 + 1
n
)p

=
1 + p

n
+ αn

1 + p
n
+O( 1

n2 )
= 1 +

αn −O( 1
n2 )

(1 + 1
n
)p

Let
βn =

αn −O( 1
n2 )

(1 + 1
n
)p

We need to prove
∑

βn converges absolutely, then we can apply the result in part a). To
achieve this,

|βn| ≤
|αn|

(1 + 1
n
)p

+
|O( 1

n2 )|
(1 + 1

n
)p

For any p, (1 + 1
n
)−p is either decreasing or increasing, and it is bounded. Also,

∑
|αn| and∑

|O( 1
n2 )| both converge. By Abel’ Test, we conclude that

∞∑
n=1

(
|αn|

(1 + 1
n
)p

+
|O( 1

n2 )|
(1 + 1

n
)p

)
converges, and by comparison test,

∑
|βn| converges, i.e.,

∑
βn converges absolutely.

Applying the result in part a),

lim
n→∞

bn = c ̸= 0 ⇐⇒ lim
n→∞

an
1
np

= c

This shows for constant c,
an ∼ c

np
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Note: Newton’s generalized binomial theorem (∀ r ∈ R)

(x+ y)r =
∞∑
k=0

(
r

k

)
xr−kyk

= xr + rxr−1y +
r(r − 1)

2!
xr−2y2 +

r(r − 1)(r − 2)

3!
xr−3y3 + · · ·

c) if the series
∞∑

n=1

an is such that an

an+1
= 1+ p

n
+αn and the series

∞∑
n=1

an converges absolutely,

then
∞∑

n=1

an converges absolutely for p > 1 and diverges for p ≤ 1 (Gauss’ test for absolute

convergence of a series).

From part b), we have known that an ∼ c
np , which means |an| ∼ |c|

np . From Question 3.2-5.,
we conclude that both

∞∑
n=1

|an| and
∞∑

n=1

|c|
np converge or diverge. By Cauchy condensation law,

it’s easy to see
∞∑

n=1

|c|
np converges if p > 1, and diverges if p ≤ 1 (See Rudin’s book). Therefore,

we can conclude that
∞∑

n=1

|an| converges if p > 1, and diverges if p ≤ 1. This is exactly the

same as
∞∑

n=1

an converges absolutely for p > 1 and diverges for p ≤ 1.

(Waring! Since an ∼ c
np , there exists N such that for all n > N , all an have the

same sign, which means if
∞∑

n=1

|an| diverges, then
∞∑

n=1

an must also diverge.)

Question 3.2-11. Show that

lim
n→∞

(
1 + an+1

an

)n

≥ e

for any sequence {an} with positive terms, and that this estimate cannot be improved.

We first prove that there
1 + an+1

an
> 1 +

1

n
, i.o.

Suppose it’s not true, then there exists N , such that ∀ n > N ,

1 + an+1

an
≤ 1 +

1

n

It’s easy to see
an+1

n+ 1
≤ an

n
− 1

n+ 1

which means for all m
an+m

n+m
≤ an

n
−

n+m∑
k=n+1

1

k

However, since the series (harmonic series) diverge to infinity, for sufficiently large m,

an+m

n+m
≤ an

n
−

n+m∑
k=n+1

1

k
< 0 =⇒ an+m < 0

which contradicts the fact that an is positive. Hence we finish the proof of infinitely often.
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Since there are infinitely many an which satisfy
1 + an+1

an
> 1 +

1

n

we take a subsequence of an, denoted as ank
, which satisfies the above condition,

lim
n→∞

(
1 + an+1

an

)n

≥ lim
k→∞

(
1 + ank+1

ank

)nk

≥ lim
k→∞

(
1 +

1

nk

)nk

= e

Now we obtain a lower bound of this upper limit, if we can prove it is the greatest lower bound,
then it cannot be improved. If we take a1 = 1, an = n lnn, n ≥ 2, then we can prove that

lim
n→∞

[
1 + (n+ 1) ln(n+ 1)

n lnn

]n
= e

which is given by

lim
n→∞

[
1 +

1 + (n+ 1) ln(n+ 1)− n lnn

n lnn

] n ln n
1+(n+1) ln(n+1)−n ln n

· 1+(n+1) ln(n+1)−n ln n
ln n

= e

We first consider the limit of (n+ 1) ln(n+ 1)− n lnn as n → ∞, it’s easy to see

(n+ 1) ln(n+ 1)− n lnn = n ln
(
1 +

1

n

)
+ ln(n+ 1)

Since ln(1 + x) ∼ x as x → 0, if we take n → ∞,

n ln
(
1 +

1

n

)
∼ n · 1

n
= 1

Combined with the fact that ln(n+1) tends to infinity, it shows that the limit of (n+1) ln(n+1)−
n lnn is infinity. Therefore, we let

N(n) =
1 + (n+ 1) ln(n+ 1)− n lnn

n lnn

Since both denominator and numerator tend to infinity, we can apply L’Hôpital’s rule, which shows

lim
n→∞

N(n) = lim
n→∞

ln(n+ 1)− lnn

1 + lnn
= lim

n→∞

∣∣∣∣− 1

n+ 1

∣∣∣∣ = 0

If we take M(n) = 1/N(n), then M(n) tends to positive infinity as n → ∞. Therefore, the original
problem becomes

lim
n→∞

[
1 + (n+ 1) ln(n+ 1)

n lnn

]n
= lim

n→∞

[
1 +

1

M(n)

]M(n) n
M(n)

We finally check the limit of n
M(n)

,

lim
n→∞

1 + (n+ 1) ln(n+ 1)− n lnn

lnn
= lim

n→∞

ln(n+ 1)− lnn
1
n

= lim
n→∞

n ln
(
1 +

1

n

)
= 1

Therefore,

lim
n→∞

[
1 +

1

M(n)

]M(n) n
M(n)

=

{
lim
n→∞

[
1 +

1

M(n)

]M(n)
} lim

n→∞
n

M(n)

= e1

This means the lower bound is reached by some an, so it cannot be improved.
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