
MAT2006: Elementary Real Analysis
Homework 3

W. Lee.

Due date: Tomorrow

Question 5.1-1. Show that

a) the tangent to the ellipse
x2

a2
+

y2

b2
= 1

at the point (x0, y0) has the equation
xx0

a2
+

yy0
b2

= 1

Let’s use brutal method to deal with this problem. Consider the following ellipse,

x

y

A

B
M

We fix A = (x0, y0), and take B = (x0 + h, y0 + h′), where (h, h′) ̸= (0, 0), so that A and
B are both on the ellipse. We also denote the middle point of line segment AB as C =

(x0 + h/2, y0 + h′/2). Then we have
x2
0

a2
+

y20
b2

= 1 (1)

(x0 + h)2

a2
+

(y0 + h′)2

b2
= 1 (2)

Subtract (1) from (2), we obtain

(2x0 + h)h

a2
= −(2y0 + h′)h′

b2

If the line segment AB has a slope k, then

k =
h′

h
= − b2

a2
2x0 + h

2y0 + h′

Notice that if 2y0 + h′ = 0, k does not exist, line segment AB reduces to x = x0. If not, then

AB : y −
(
y0 +

1

2
h′
)

= k

[
x−

(
x0 +

1

2
h

)]
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which can be rewritten as

AB :

[
y −

(
y0 +

1

2
h′
)]

a2(2y0 + h′) = −b2(2x0 + h)

[
x−

(
x0 +

1

2
h

)]
We can see that for the new formula, even if k doesn’t exist, i.e., AB : x = x0 is still included,
hence this formula can represent all AB as long as A,B are distinct points. To obtain tangent
line passing A, by definition, we only need to make B go as closed as A. Hence, take the limit
as (h, h′) → (0, 0) on both sides, we have

(y − y0)a
2y0 = −b2x0(x− x0)

Slightly change the order of the above equation, we have

x0x

a2
+

y0y

b2
=

x2
0

a2
+

y20
b2

Since (x0, y0) is on the ellipse, the right hand side of the above equation is equal to 1, which
yields the tangent line

xx0

a2
+

yy0
b2

= 1

b) light rays from a source located at a focus F1 =
(
−
√
a2 − b2, 0

)
or F1 =

(√
a2 − b2, 0

)
of

an ellipse with semiaxes a > b > 0 are gathered at the other focus by an elliptical mirror.

Again, we only use the most intelligible way to achieve our goal. Denote F1 = (−c, 0), F2 =

(c, 0), consider

x

y

F1 F2D

A

where A = (x0, y0). Draw the tangent line going through A, and AD is the line segment
perpendicular to the tangent line, we need to prove ∠F1AD = ∠DAF2. If A = (±a, 0), then
∠F1AD = ∠DAF2 = 0; if A = (0,±b), then AF1 = AF2, so ∠F1AD = ∠DAF2 is trivial.
If x0 = ±c, i.e., the slope of F1A or F2A doesn’t exist, then we only consider one case, i.e.,
A = (−c, b2/a), because the other three cases are equivalent due to the symmetric property of
ellipse.

From part a), we have known that the slope of tangent line going through A is −x0b
2/y0a

2.
Denote the slope of AD as k = y0a

2/x0b
2 = −a/c, and denote the slope of F1A as k1 (if exists),

F2A as k2 (if exists). Then we have

tan∠DAF2 =
k2 − k

1 + kk2
=

−b2/2ac+ a/c

1 + b2/2c2

Substitute b2 = a2 − c2, we have

tan∠DAF2 =
−b2/2ac+ a/c

1 + b2/2c2
=

c

a
= tan∠F1AD
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Finally, we consider the remaining cases, where k, k1, k2 all exists.

k =
y0a

2

x0b2
, k1 =

y0
x0 + c

, k2 =
y0

x0 − c

We need to prove tan∠F1AD = tan∠DAF2, where

tan∠F1AD =
k − k1
1 + k1k

=

y0a
2

x0b2
− y0

x0+c

1 + y0a2

x0b2
y0

x0+c

, tan∠DAF2 =
k2 − k

1 + kk2
=

y0

x0−c
− y0a

2

x0b2

1 + y0a2

x0b2
y0

x0−c

Thus, we have

⇐=

y0a
2

x0b2
− y0

x0 + c

1 +
y0a

2

x0b2
y0

x0 + c

=

y0
x0 − c

− y0a
2

x0b2

1 +
y0a

2

x0b2
y0

x0 − c

⇐=

(
y0a

2

x0b2
− y0

x0 + c

)(
1 +

y0a
2

x0b2
y0

x0 − c

)
=

(
1 +

y0a
2

x0b2
y0

x0 + c

)(
y0

x0 − c
− y0a

2

x0b2

)
⇐=

x0

x2
0 − c2

+
a2

x0b2
y20

x2
0 − c2

=
a2

x0b2
+

a4

x0b4
y20

x2
0 − c2

⇐=
x2
0b

2 + a2y20
x0b2(x2

0 − c2)
=

a2b2(x2
0 − c2) + a4y20

x0b4(x2
0 − c2)

⇐=
x2
0b

2 + a2y20
b2

=
a2b2(x2

0 − c2) + a4y20
b4

⇐=
a2b2

b2
=

a2b2(x2
0 − c2) + a4y20

b4

⇐= b2(x2
0 − c2) + a2y20 = b4

⇐= a2b2 − b2c2 = b4

This shows that tan∠F1AD = tan∠DAF2, which means ∠F1AD = ∠DAF2. Hence, for any
(x0, y0) on ellipse, ∠F1AD = ∠DAF2, which completes the proof.

Question 5.1-2. Write the formulas for approximate computation of the following values:

a) sin
(
π
6
+ α

)
for values of α near 0;

We can use the best linear approximation, i.e.,

f(α) = f(0) + f ′(0)(α− 0) =
1

2
+

√
3

2
α

b) sin (30◦ + α◦) for values of α◦ near 0;

Similarly, we also use the best linear approximation, but be careful about the unit of α.

f(α◦) = f(0◦) + f ′(0◦)(α◦ − 0◦) =
1

2
+

√
3

2
α◦

or equivalently,

f(α) =
1

2
+

√
3π

360
α
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c) cos
(
π
4
+ α

)
for values of α near 0;

Similar to part a), we have

f(α) = f(0) + f ′(0)(α− 0) =

√
2

2
−

√
2

2
α

d) cos (45◦ + α◦) for values of α◦ near 0.

Similar to part b), we have

f(α◦) = f(0◦) + f ′(0◦)(α◦ − 0◦) =

√
2

2
−

√
2

2
α◦

or equivalently,

f(α) =

√
2

2
−

√
2π

360
α

Question 5.1-3. A glass of water is rotating about its axis at constant angular velocity ω. Let
y = f(x) denote the equation of the curve obtained by cutting the surface of the liquid with a plane
passing through its axis of rotation.

a) Show that f ′(x) = ω2

g
x, where g is the acceleration of free fall.

Consider the following free-body diagram

x

y

A

mg

N

ma

θ

ω

At dynamic equilibrium, for arbitrary point A = (x, y) on the curve, we have N sin θ = mω2x

N cos θ = mg

Since we also have
tan θ =

dy

dx
=

ω2

g

Hence, we have f ′(x) = ω2

g
x.
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b) Choose a function f(x) that satisfies the condition given in part a).

As we proved in part a), we can just take

f(x) =
ω2

2g
x2

Then f ′(x) = ω2

g
x.

c) Does the condition on the function f(x) given in part a) change if its axis of rotation does
not coincide with the axis of the glass?

No, the condition will change to f ′(x) = ω2

g
(x+ d), where x = d (d ̸= 0) is its axis of rotation

and y-axis is the vertical axis of the glass.

Question 5.1-4. A body that can be regarded as a point mass is sliding down a smooth hill under
the influence of gravity. The hill is the graph of a differentiate function y = f(x).

a) Find the horizontal and vertical components of the accleration vector that the body has at
the point (x0, y0).

First, the tangent line at (x0, y0) is

y − y0 = f ′(x0)(x− x0)

Denote the included angle of the tangent line and horizontal line as θ, then tan θ = f ′(x0).
According to the free body diagram, we know thatmg cos θ = N

mg sin θ = ma

Thus, we can solve that a = g sin θ, and the horizontal and vertical components areax = g sin θ cos θ

ay = g sin2 θ

Since tan θ = f ′(x0), we have 
ax =

f ′(x0)

1 + [f ′(x0)]2
g

ay =
[f ′(x0)]

2

1 + [f ′(x0)]2
g

b) For the case f(x) = x2 when the body slides from a great height, find the point of the
parabola y = x2 at which the horizontal component of the acceleration is maximal.

Let f(x) = x2, f ′(x) = 2x. Consider horizontal component

ax =
f ′(x0)

1 + [f ′(x0)]2
g =

g
1

f ′(x0)
+ f ′(x0)
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Since the sign of f ′(x0) only indicates the direction of acceleration, we can only consider
positive case. In this way, when f ′(x0) = 1, ax will obtain its maximal value g/2. In this case,
x0 =

1
2
, and y0 =

1
4
. Similarly, for negative case, x0 = − 1

2
, and y0 =

1
4
.

Question 5.1-5. Set

Ψ0(x) =


x, if 0 ≤ x ≤ 1

2

1− x, if 1

2
≤ x ≤ 1

and extend this function to the entire real line so as to have period 1. We denote the extended
function by φn. Further, let

φn(x) =
1

4n
φ0 (4

nx)

The function φn(x) has period 4−n and a derivative equal to +1 or —1 everywhere except at the
points x = k

2n+1
, n ∈ Z. Let

f(x) =
∞∑

n=1

φn(x)

Show that the function f is defined and continuous on R, but does not have a derivative at any
point.

It is easy to prove that φ0(x) is continuous on R, because it is continuous on every interval
(n, n+ 1), and we can see φ0(n+) = φ0(n−) = φ0(0) = 0 for any n ∈ Z.

Therefore, since every φn(x) can be regarded as a composite function of φ0(x) and continuous
function, φn(x) must be continuous on R.

We can easily see that every φn(x) is bounded, i.e.,|φn(x)| ≤ 0.5 · 4−n. Hence, by Weierstrass
M-Test, the convergence of

∑∞
n=1 0.5 · 4−n implies that fk converges to f uniformly, where

fk(x) =
k∑

n=1

φn(x)

The convergence of fk shows that f is well-defined on R.

Also, fk(x) is continuous because it is the sum of finitely many continuous function. In this
case, f is also continuous.

Fix a real number x and positive integer m, and put

δm = ±1

4
· 4−m

where the sign is well-chosen so that no r/2 (r ∈ Z) lies in the interior between 4mx and 4m(x+δm).
This can be obtained because 4m|δm| = 1

4
. If x coincides with r/2, take positive sign for all m.

Define
γn =

φn(4
n(x+ δm))− φn(4

nx)

δm

When n > m, 4nδm is an integer, by the periodicity of φn(x), γn = 0. When 1 ≤ n ≤ m,

|γn| =
|φn(4

n(x+ δm))− φn(4
nx)|

|δm|
=

(1/4)m+1−n

|δm|
=

(1/4)m+1−n

(1/4)4−m
= 4n
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Since |γn| = 4n, we conclude that

f(x+ δm)− f(x)

δm
=

∞∑
n=1

1

4n
γn =

m∑
n=1

1

4n
γn

We can see that 1
4n
γn = ±1, which means

lim
n→∞

1

4n
γn ̸= 0

Therefore, the series
∞∑

n=1

1

4n
γn

will not converge, and since as m → ∞, δm → 0, the derivative of f(x) at any x does not exist.

Question 5.2-1. Let α0, α1, . . . , αn be given real numbers. Exhibit a polynomial Pn(x) of degree
n having the derivatives P

(k)
n (x0) = αk, k = 0, 1, . . . , n, at a given point x0 ∈ R.

Suppose the polynomial of degree n is defined as

Pn(x) = λnx
n + λn−1x

n−1 + λ1x+ λ0

Since P
(k)
n (x0) = αk, k = 0, 1, . . . , n, we have

1 x0 x2
0 · · · xn−1

0 xn
0

0 1 2x0 · · · (n− 1)xn−2
0 nxn−1

0

0 0 2 · · · (n− 1)(n− 2)xn−3
0 n(n− 1)xn−2

0

...
...

...
...

...
...

0 0 0 · · · (n− 1)! n · (n− 1) · · · 2 · x0

0 0 0 · · · 0 n!


·



λ0

λ1

λ2

...
λn−1

λn


=



α0

α1

α2

...
αn−1

αn


Notice that the matrix U on the left hand side is an upper triangular matrix, thus, to solve this
system, we could use backward substitution (Tom Luo taught this technique in MAT2004). Here
Ui,j denote the entry of matrix U at i-th row, j-th column.

λn =
αn

Un+1,n+1

...

λm =
αm −

∑n
i=m+1 Um+1,i+1λi

Um+1,m+1

for 0 < m < n

...

λ0 =
α0 −

∑n
i=1 U1,i+1λi

U1,1

Therefore, the polynomial Pn(x) with the above coefficients will be the required answer.

Question 5.2-2. Compute f ′(x) if
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a) f(x) =


exp

(
− 1

x2

)
for x ̸= 0

0 for x = 0

When x ̸= 0,
f ′(x) =

(
2

x3

)
exp

(
− 1

x2

)
When x = 0,

f ′
+(0) = lim

h→+0

f(0 + h)− f(0)

h

= lim
h→+0

e−1/h2

h
Take t = 1/h

= lim
t→+∞

t

et2

= lim
t→+∞

1

2tet2
= 0

Similarly,
f ′
−(0) = lim

t→−∞

1

2tet2
= 0

Hence, f ′(0) = f ′
+(0) = f ′

−(0) = 0. In conclusion, f ′(x) is given by

f ′(x) =


(

2

x3

)
exp

(
− 1

x2

)
for x ̸= 0

0 for x = 0

b) f(x) =

 x2 sin 1

x
for x ̸= 0

0 for x = 0

When x ̸= 0,
f ′(x) = 2x sin 1

x
+ x2 cos 1

x

(
− 1

x2

)
= 2x sin 1

x
− cos 1

x

When x = 0,

f ′
+(0) = lim

h→+0

f(0 + h)− f(0)

h

= lim
h→+0

h2 sin 1
h

h

= lim
h→+0

h sin 1

h
Take t = 1/h

= lim
t→+∞

sin t

t
= 0

Similarly,
f ′
−(0) = lim

t→−∞

sin t

t
= 0

Hence, f ′(0) = f ′
+(0) = f ′

−(0) = 0. In conclusion, f ′(x) is given by

f ′(x) =

 2x sin 1

x
− cos 1

x
for x ̸= 0

0 for x = 0
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c) Verify that the function in part a) is infinitely differentiable on R, and that f (n)(0) = 0.

Since f(x) is differentiable and its derivative has the form of

f ′(x) =


(

2

x3

)
exp

(
− 1

x2

)
for x ̸= 0

0 for x = 0

We assume that f (n)(x) exists and has the form of

f (n)(x) =


[

n∑
k=1

ak
xn+2k

]
exp

(
− 1

x2

)
for x ̸= 0

0 for x = 0

where ak is some certain constant (we don’t care the exact value, as long as it is fixed for each
k).

By induction, we can compute f (n+1)(x). When x ̸= 0,

f (n+1)(x) = [f (n)(x)]′ =

[
n∑

k=1

2ak
xn+2k+3

+
n∑

k=1

−(n+ 2k)ak
xn+2k+1

]
exp

(
− 1

x2

)

=

[
n+1∑
k=1

bk
x(n+1)+2k

]
exp

(
− 1

x2

)

where

bk ≜


− (n+ 2k)ak k = 1

[2− (n+ 2k)]ak 2 ≤ k ≤ n

2ak k = n+ 1

We can see that f (n+1)(x) is also differentiable (composition, summation and multiplication of
elementary function) and has the same form of our assumption, hence our assumption is true
when x ̸= 0, for arbitrary n.

When x = 0, by definition,[
f
(n+1)
+

]
(0) = lim

h→+0

f (n)(0 + h)− f (n)(0)

h

= lim
h→+0

[∑n
k=1

ak

hn+2k

]
exp

(
− 1

h2

)
h

= lim
h→+0

[
n∑

k=1

ak
hn+2k+1

]
exp

(
− 1

h2

)
Take t = 1/h

= lim
t→+∞

∑n
k=1 akt

n+2k+1

et2
= 0

Similarly,

f
(n+1)
− (0) = lim

t→−∞

∑n
k=1 akt

n+2k+1

et2
= 0
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Hence, f (n+1)(0) = f
(n+1)
+ (0) = f

(n+1)
− (0) = 0. In conclusion, our assumption is true for all

x ∈ R and arbitrary n. This shows that f(x) is real smooth function (infinitely differentiable)
and f (n)(0) ≡ 0.

d) Show that the derivative in part b) is defined on R but is not a continuous function on R.

Since the derivative in part b) is defined as

f ′(x) =

 2x sin 1

x
− cos 1

x
for x ̸= 0

0 for x = 0

It is well-defined on R. Now let’s check its continuity at x = 0. Consider the right hand side
limit of f ′(x),

lim
x→0+

f ′(x) = lim
x→0+

[
2x sin 1

x
− cos 1

x

]
We can see 2x sin 1

x
converges to zero as x → 0+, but cos 1

x
diverges because when x → 0+, 1

x

goes to +∞, and cos(+∞) vibrates between [−1, 1]. Hence, f ′(x) is not continuous at x = 0.

e) Show that the function

f(x) =


exp

(
− 1

(1 + x)2
− 1

(1− x)2

)
for − 1 < x < 1

0 for 1 ≤ |x|

is infinitely differentiable on R.

The original function can be transformed into

f(x) =


exp

(
− 2

(1− x2)2

)
for − 1 < x < 1

0 for 1 ≤ |x|

When −1 < x < 1, it’s easy to see f(x) is differentiable, i.e.,

f ′(x) = − 8x

(1− x2)3
exp

(
− 2

(1− x2)2

)
Assume that when −1 < x < 1, f (n)(x) exists, and has the form (which satisfies the case when
n = 1)

f (n)(x) =
n∑

k=1

∑n
L=0 ak,Lx

L

(1− x2)n+2k
exp

(
− 2

(1− x2)2

)
where ak,L is arbitrary fixed coefficients (some may be zero).

We can see f (n)(x) is differentiable, i.e., f (n+1)(x) exists, and has the form of

f (n+1)(x) =

[
n∑

k=1

− 8x

(1− x2)3
·
∑n

L=0 ak,Lx
L

(1− x2)n+2k
+

n∑
k=1

∑n+1
L=0 bk,Lx

L

(1− x2)n+2k+1

]
exp

(
− 2

(1− x2)2

)

=

[
n∑

k=1

∑n
L=0 −8ak,Lx

L+1

(1− x2)n+2k+3
+

n∑
k=1

∑n+1
L=0 bk,Lx

L

(1− x2)n+2k+1

]
exp

(
− 2

(1− x2)2

)

=
n+1∑
k=1

∑n+1
L=0 ck,Lx

L

(1− x2)(n+1)+2k
exp

(
− 2

(1− x2)2

)

10



where bk,L and ck,L are coefficients that you don’t need to compute. By induction, we conclude
that our assumption is correct, that is, when −1 < x < 1, f(x) is differentiable for arbitrary
n.

When |x| > 1, f(x) is constant function zero, so it is infinitely differentiable, and the derivative
is zero.

Finally, we need to deal with two points x = ±1. Considet x = 1, by definition, using similar
technique as part c), we can find that f ′(1) = 0. Also f ′(−1) = 0 for the same reason. Suppose
f (n)(±1) exists and also equal to zero, We want to prove f (n+1)(±1) = 0.

By definition,

f
(n+1)
+ (1) = lim

h→0+

f (n)(1 + h)− f (n)(1)

h

= lim
h→0+

1

h

n∑
k=1

∑n
L=0 ak,L(1 + h)L

(1− (1 + h)2)n+2k
exp

(
− 2

(1− (1 + h)2)2

)

= lim
h→0+

n∑
k=1

Pn(h)

P2n+4k+1(h)
exp

(
− 2

(1− (1 + h)2)2

)
Take t = 1/h

= lim
t→+∞

n∑
k=1

Pn(1/t)

P2n+4k+1(1/t)
exp

(
− 2t4

(2t+ 1)2

)
= 0

Similarly, f (n+1)
+ (1) = 0. Therefore, f (n+1)(1) = 0. You can also show that f (n+1)(−1) = 0.

Thus, our assumption is correct, and we conclude that f(x) is infinitely differentiable at x ∈ R,
with

f (n)(x) =


n∑

k=1

∑n
L=0 ak,Lx

L

(1− x2)n+2k
exp

(
− 2

(1− x2)2

)
for − 1 < x < 1

0 for 1 ≤ |x|

The computation of derivative is very tedious, so you can try to avoid such me-
chanical calculations.

Question 5.2-3. Let f ∈ C∞(R). Show that for x ̸= 0

1

xn+1
f (n)

(
1

x

)
= (−1)n

dn

dxn

(
xn−1f

(
1

x

))

When n = 1,
d

dx
f

(
1

x

)
= − 1

x2
f ′
(
1

x

)

11



When n = 2,

d2

dx2

[
xf

(
1

x

)]
=

d

dx

[
f

(
1

x

)
− 1

x
f ′
(
1

x

)]
=

d

dx
f

(
1

x

)
+

d

dx

[
−1

x
f ′
(
1

x

)]
= − 1

x2
f ′
(
1

x

)
+

1

x2
f ′
(
1

x

)
+

1

x3
f ′′
(
1

x

)
= (−1)2

1

x3
f ′′
(
1

x

)
By strong induction, we suppose for all n = 1, 2, . . . , k, we have

dn

dxn

(
xn−1f

(
1

x

))
= (−1)n

1

xn+1
f (n)

(
1

x

)
Consider when n = k + 1,

dk+1

dxk+1

(
xkf

(
1

x

))
=

dk

dxk

[
d

dx

(
xkf

(
1

x

))]
=

dk

dxk

[
kxk−1f

(
1

x

)
− xk−2f ′

(
1

x

)]
= k

dk

dxk

[
xk−1f

(
1

x

)]
− d

dx

{
dk−1

dxk−1

[
xk−2f ′

(
1

x

)]}
= k(−1)k

1

xk+1
f (k)

(
1

k

)
+

d

dx

[
(−1)k

1

xk
f (k)

(
1

x

)]
(1)

= k(−1)k
1

xk+1
f (k)

(
1

k

)
− k(−1)k

1

xk+1
f (k)

(
1

x

)
− (−1)k

1

xk+2
f (k+1)

(
1

x

)
= (−1)k+1 1

xk+2
f (k+1)

(
1

x

)
Notice that in step (1), we substitute the original terms for another two terms in our assumption.
One can easily see that when n = k + 1, the formula still holds. Therefore, we finish the proof.

Question 5.2-4. Let f be a differentiable function on R. Show that

a) if f is an even function, then f ′ is an odd function;

If f is an even function, then f(x) = f(−x) for x ∈ R. Consider

f ′(−x) = lim
h→0

f(−x+ h)− f(−x)

h

= lim
h→0

f(x− h)− f(x)

h
Take t = −h

= lim
t→0

f(x+ t)− f(x)

−t

= lim
t→0

−f(x+ t)− f(x)

t
= −f ′(x)

Therefore, f ′(x) is an odd function.

b) if f is an odd function, then f ′ is an even function;

12



If f is an odd function, then f(−x) = −f(x) for x ∈ R. Consider

f ′(−x) = lim
h→0

f(−x+ h)− f(−x)

h

= lim
h→0

−f(x− h) + f(x)

h
Take t = −h

= lim
t→0

−f(x+ t) + f(x)

−t

= lim
t→0

f(x+ t)− f(x)

t
= f ′(x)

Therefore, f ′(x) is an even function.

c) (f ′ is odd) ⇐⇒ (f is even).

You really need to be careful that for this question, you cannot exchange the
“odd” with “even”.

Since f ′ is odd, we have f ′(−x) = −f ′(x). We consider

[f(x)− f(−x)]′ = f ′(x)− f ′(−x)(−1)

= f ′(x) + f ′(−x) = 0

Therefore, we can see f(x)− f(−x) = c for all x ∈ R, where c is constant.

Since f(x) is differentiable, f(x)− f(−x) must be continuous at x = 0, i.e.,

f(0)− f(−0) = 0 = c

Thus, c = 0, and we have f(x) = f(−x) for all x ∈ R, meaning that f(x) is even function.

The other direction we have proved it in part a), so we finally have (f ′ is odd) ⇐⇒ (f is even).

Question 5.2-5. Show that

a) the function f(x) is differentiable at the point x0 if and only if f(x)−f(x0) = φ(x)(x−x0),
where φ(x) is a function that is continuous at x0 (and in that case φ(x0) = f ′(x0));

We first prove the “if” part. When x → x0, x ≠ x0, we have

lim
x→x0

f(x)− f(x0)

x− x0

= lim
x→x0

φ(x)

Since φ(x) is continuous at x0, so the limit exist, and

lim
x→x0

f(x)− f(x0)

x− x0

= lim
x→x0

φ(x) = φ(x0)

Then we prove the “only if” part. Since f(x) is differentiable at x0, we can define a function
φ(x) as

φ(x) =


f(x)− f(x0)

x− x0

if x ̸= x0

f ′(x0) if x = x0

13



We only need to prove such φ(x) is continuous at x0, which is equivalent to show

lim
x→x0

φ(x) = φ(x0)

Notice that the L.H.S. is

lim
x→x0

φ(x) = lim
x→x0

f(x)− f(x0)

x− x0

= f ′(x0)

which is by definition equal to the R.H.S., therefore, we finish the proof.

b) if f(x)− f(x0) = φ(x)(x− x0) and φ ∈ C(n−1) (U(x0)), where U(x0) is a neighborhood of
x0, then f(x) has a derivative (f (n)(x0)) of order n at x0.

Since φ ∈ C(n−1) (U(x0)), φ(n−1)(x) exists and is continuous. We know that (x − x0) is
infinitely differentiable, thus f(x) = φ(x)(x − x0) + f(x0) is at least (n − 1)-th differentiable
in the neighborhood U(x0), and by chain rule, we can see

f ′(x) = φ′(x)(x− x0) + φ(x)

f ′(x) = φ′′(x)(x− x0) + 2φ′(x)

...

f (n−1)(x) = φ(n−1)(x)(x− x0) + (n− 1)φ(n−2)(x)

We consider f (n)(x0) by definition,

f (n)(x0) = lim
x→x0

f (n−1)(x)− f (n−1)(x0)

x− x0

= lim
x→x0

φ(n−1)(x)(x− x0) + (n− 1)φ(n−2)(x)− (n− 1)φ(n−2)(x0)

x− x0

= φ(n−1)(x0) + lim
x→x0

(n− 1)φ(n−2)(x)− (n− 1)φ(n−2)(x0)

x− x0

= φ(n−1)(x0) + (n− 1) lim
x→x0

φ(n−2)(x)− φ(n−2)(x0)

x− x0

= φ(n−1)(x0) + (n− 1)φ(n−1)(x0)

= nφ(n−1)(x0)

Therefore, f(x) has a derivative f (n)(x0) of order n at x0, which equal to nφ(n−1)(x0).

Question 5.2-6. Give an example showing that the assumption that f−1 be continuous at the point
y0 cannot be omitted from Theorem 3 (The derivative of an inverse function).

We can take f : [0, 1) ∪ [2, 3] 7→ [0, 2] which is defined as

f(x) =

 x x ∈ [0, 1)

x− 1 x ∈ [2, 3]

Notice that f(x) is continuous on [0, 1) ∪ [2, 3], and since we define the derivative at endpoint
x = 0, 2, 3 as the left or right hand side derivative, f(x) is differentiable at any point in its domain.
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We can easily see that f−1 : [0, 2] 7→ [0, 1) ∪ [2, 3] is defined as

f−1(x) =

 x x ∈ [0, 1)

x+ 1 x ∈ [1, 2]

It’s obvious that f−1(x) is discontinuous at x = 1, because f(1−) = 1 and f(1+) = 2. Since f−1(x)

is not continuous, its derivative does not exist at x = 1, let alone (f−1)′(1) will not coincide with
(f ′(2))−1.

Question 5.3-1. Choose numbers a and b so that the function f(x) = cosx − 1 + ax2

1 + bx2
is an

infinitesimal of highest possible order as x → 0.

Using Taylor series, we have

cosx = 1− x2

2!
+

x4

4!
+ o(x4)

Function f(x) can be rewritten as

f(x) =
−1− ax2 + (1 + bx2)[1− x2

2!
+ x4

4!
+ o(x4)]

1 + bx2
=

(b− a− 1/2)x2 + (1/24− b/2)x4 + o(x4)

1 + bx2

Since we need to have
lim
x→0

f(x)

xn
= 0

To make n larger, we need to make the lowest order term in numerator as high as possible. Since
we only have two degree of freedom, we can only make (b−a− 1/2) = 0 and (1/24− b/2) = 0. This
yields b = 1/12 and a = −5/12. Although the exact highest order of infinitesimal is not easy to see,
such a, b indeed ensure you the highest order.

Question 5.3-2. Find lim
x→∞

x
[
1
e
−
(

x
x+1

)x]
.

Take x = 1
t
, we conclude that

lim
x→∞

x

[
1

e
−
(

x

x+ 1

)x]
= lim

t→0

1

t

[
1

e
−
(

1

1 + t

)1/t
]

= lim
t→0

(1 + t)1/t − e

e(1 + t)1/tt

= lim
t→0

et
−1 ln (1+t) − e

e(1 + t)1/tt

= lim
t→0

et
−1 ln (1+t)−1 − 1

(1 + t)1/tt

= lim
t→0

t−1 ln (1 + t)− 1

(1 + t)1/tt

= lim
t→0

ln (1 + t)− t

(1 + t)1/tt2

= lim
t→0

1

(1 + t)1/t
ln (1 + t)− t

t2
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Now we consider the following limit

lim
t→0

ln (1 + t)− t

t2
= lim

t→0

(1 + t)
−1 − 1

2t

= lim
t→0

−1

2(1 + t)
= −1

2

Consider what we have already known

lim
t→0

(1 + t)1/t = e

Therefore, we conclude that

lim
x→∞

x

[
1

e
−
(

x

x+ 1

)x]
= lim

t→0

1

(1 + t)1/t
ln (1 + t)− t

t2

= lim
t→0

1

(1 + t)1/t
lim
t→0

ln (1 + t)− t

t2

= − 1

2e

Question 5.3-3. Write a Taylor polynomial of ex at zero that makes it possible to compute the
values of ex on the closed interval −1 ≤ x ≤ 2 within 10−3.

We expand ex at x = 0, and we can first figure out that e < 3 by using the definition of e.
Hence,

ex = 1 +
1

1!
x+

1

2!
x2 + · · ·+ 1

n!
xn +

eξ

(n+ 1)!
xn+1

For x, ξ ∈ [−1, 2], we have ∣∣∣∣ eξ

(n+ 1)!
xn+1

∣∣∣∣ ≤ e2

(n+ 1)!
|x|n+1 ≤ 9× 2n+1

(n+ 1)!

Solve the inequality
9× 2n+1

(n+ 1)!
≤ 10−3

We get n ≥ 10, hence the required polynomial is

ex ≈ 1 +
1

1!
x+

1

2!
x2 + · · ·+ 1

10!
x10

Question 5.3-4. Let f be a function that is infinitely differentiable at 0. Show that

a) if f is even, then its Taylor series at 0 contains only even powers of x;

We have proved in Question 5.2-4 that if f is even, then f ′ will be odd, and if f ′ is odd,
f ′′ = (f ′)′ will be even. Thus, by induction we can see that fn will be odd if n is odd, fn will
be even if n is even. The Taylor series of f at 0 is

f(x) = f(0) +
f ′(0)

1!
x+

f ′′(0)

2!
x2 + · · ·+ fn(0)

n!
xn + · · ·
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Since fn will be odd if n is odd, so for all odd n, fn(0) = 0. Hence, for k ∈ N,

f(x) = f(0) +
f ′′(0)

2!
x2 + · · ·+ f2k(0)

(2k)!
x2k + · · ·

Therefore, the Taylor series of f at 0 contains only even power (if f ≡ c, where c is constant,
then it contains 0 power of x, which is also even.)

b) if f is odd, then its Taylor series at 0 contains only odd powers of x.

Similarly, if f is odd, then f(0) = 0, f ′ is even, and f ′′ = (f ′)′ is odd. Thus, by induction, we
can see that fn will be even if n is odd, and odd if n is even. The Taylor series of f at 0 is

f(x) = 0 +
f ′(0)

1!
x+

f ′′(0)

2!
x2 + · · ·+ fn(0)

n!
xn + · · ·

Since fn will be odd if n is even, so for all even n, fn(0) = 0. Hence, for k ∈ N,

f(x) =
f ′(0)

1!
x+ · · ·+ f2k+1(0)

(2k + 1)!
x2k+1 + · · ·

Therefore, the Taylor series of f at 0 contains only odd power (if f ≡ c = 0, then it contains
0 power of x, which is even, but such case should not be included.)

Question 5.3-5. Show that if f ∈ C(∞)[−1, 1] and f (n)(0) = 0 for n = 0, 1, 2, . . ., and there exists
a number C such that sup

−1≤x≤1
|f (n)(x)| ≤ n!C for n ∈ N, then f ≡ 0 on [−1, 1].

Expand f(x) at x0 using Taylor’s expansion, we have

f(x) = f(x0) +
f ′(x0)

1!
(x− x0) + · · ·+ f (n)(x0)

n!
(x− x0)

n +
f (n+1)(ξ)

(n+ 1)!
(x− x0)

n+1

Take x0 = 0, for some ξ ∈ [0, 1] we have

f(x) = f(0) +
f ′(0)

1!
x+ · · ·+ f (n)(0)

n!
xn +

f (n+1)(ξ)

(n+ 1)!
xn+1

Since f (n)(0) = 0 for all n, we have

|f(x)| =
∣∣∣∣f (n+1)(ξ)

(n+ 1)!
xn+1

∣∣∣∣ ≤ |c||xn+1|

If −1 ≤ x < 1, for each fixed x, take limit (n → ∞) on both sides, we have |f(x)| ≤ 0, hence f ≡ 0.
Since f(x) must be continuous on [−1, 1], thus f(1) = f(1−) = 0 and f(−1) = f((−1)+) = 0.
Therefore f ≡ 0 on [−1, 1].

Question 5.3-6. Let f ∈ C(n)(−1, 1) and sup
−1≤x≤1

|f(x)| ≤ 1. Let mk(I) = inf
x∈I

|f (k)(x)|, where I is

an interval contained in (−1, 1). Show that

a) if I is partitioned into three successive intervals I1, I2, and I3 and µ is the length of I2,
then

mk(I) ≤
1

µ

(
mk−1(I1) +mk−1(I3)

)
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Apply MVT on interval I2, there exists ξ ∈ I2, such that

f (k)(ξ) =
f (k−1)(x3)− f (k−1)(x1)

x3 − x1

Since f (k)(ξ) ≥ inf
x∈I

|f (k)(x)| = mk(I), we have

mk(I) ≤
f (k−1)(x3)− f (k−1)(x1)

x3 − x1

≤ 1

µ

(
f (k−1)(x3)− f (k−1)(x1)

)
≤ 1

µ

(
|f (k−1)(x3)|+ |f (k−1)(x1)|

)
Since for all x1, x3, we have the above relation, i.e., the right hand side is an upper bound of
mk(I), the least upper bound also satisfies the above relation. Thus, we have

mk(I) ≤
1

µ

(
mk−1(I3) +mk−1(I1)

)

b) if I has length λ, then

mk(I) ≤
2k(k+1)/2kk

λk

We prove it by induction. When k = 1, this is obviously true, because sup
−1≤x≤1

|f(x)| ≤ 1.

Suppose it is true for k = n, then for k = n+ 1, we have (Denote the length of Ii as |Ii|)

mn+1(I) ≤
1

|I2|
[mn(I3) +mn(I1)]

≤ 1

|I2|

[
2n(n+1)/2nn

|I1|n
+

2n(n+1)/2nn

|I3|n

]
= 2n(n+1)/2nn 1

|I2|

[
1

|I1|n
+

1

|I3|n

]
Notice that the above inequality holds for any partition of I into I1, I2, I3, so we can take
|I2| = λ

n+1
and |I1| = |I3| = nλ

2(n+1)
. Therefore, we have

mn+1(I) ≤ 2n(n+1)/2nn 1

|I2|

[
1

|I1|n
+

1

|I3|n

]
= 2n(n+1)/2nnn+ 1

λ

2 · 2n(n+ 1)n

nnλn

=
2(n+1)(n+2)/2(n+ 1)(n+1)

λn+1

Hence, we verify that for k = n+ 1, our assumption still holds, meaning that our assumption
is correct. Hence the proof is finished.

c) there exists a number αn depending only on n such that if |f ′(0)| ≥ αn, then the equation
f (n)(x) = 0 has at least n− 1 distinct roots in (−1, 1).

Question 5.3-7. Show that if a function f is defined and differentiable on an open interval I and
[a, b] ⊂ I, then
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a) the function f ′(x) (even if it is not continuous!) assumes on [a, b] all the values between
f ′(a) and f ′(b);

We only consider the case that f ′(a) < λ < f ′(b). Let g(x) = f(x) − λx on [a, b], we have
g′(x) = f ′(x) − λ. It’s easy to see that g′(a) = f ′(a) − λ < 0, which means g(a) is not the
maximum value of g(x) in [a, b]. Similarly, g′(b) > 0 means that g(b) is not the maximum
value of g(x) in [a, b]. However, since g(x) is continuous function on closed interval, so it must
assume its maximum value in [a, b]. Hence, there exist ξ ∈ (a, b), such that g(ξ) assume the
maximum value of g. Since g(x) is differentiable at ξ, g′(ξ) = 0. Thus, f ′(ξ) = λ. We choose
λ arbitrarily, so f ′(x) assumes all value between f ′(a) and f ′(b) on [a, b].

The case that f ′(a) > λ > f ′(b) is left as exercise so that you can check whether you really
understand such proof. In conclu

b) if f ′′(x) also exists in (a, b), then there is a point ξ ∈ (a, b) such that f ′(b) − f ′(a) =

f ′′(ξ)(b− a).

Since f ′(x) may not be continuous on [a, b], we cannot apply MVT directly. Instead, suppose
such ξ doesn’t exist. Then let m = f ′(b)−f ′(a)

b−a
, and f ′′(x) ̸= m for all x ∈ (a, b). Although

f ′(x) may be discontinuous at a or b, f ′′(x) satisfies intermediate value property on any closed
interval contained in [a, b]. This implies that either f ′′(x) > m for all x ∈ (a, b) or f ′′(x) < m

for all x ∈ (a, b), because if f ′′(x1) > m and f ′′(x2) < m, then there must exist p ∈ [x1, x2]

such that f ′′(p) = m, which is a contradiction.

If f ′′(x) > m for all x ∈ (a, b), then g(x) = f ′(x)−mx is strictly increasing and differentiable
on (a, b) and defined on [a, b]. This implies that limx→a+ g(x) exists and can be a finite number
or negative infinity. If it is negative infinity, then there exists a right half-neighborhood N+

δ (a)

of a such that for all x ∈ N+
δ (a), g(x) < g(a) − 1. Then on closed interval [a, δ/2], g(x)

cannot attain all values between g(a) and g(δ/2), therefore the intermediate value property
fails, which is a contradiction to the conclusion of part (a), thus limx→a+ g(x) must be a finite
number. Then f ′(x) must have right-hand-side limit at a. Similarly, f ′(x) must also have
left-hand-side limit at b. Therefore f ′(x) is continuous on [a, b], and we can apply MVT to
obtain ξ such that f ′′(ξ) = m, which contradicts to our assumption that such ξ doesn’t exist.

The only possibility now is that f ′′(x) < m. However, using similar argument we can show
that in this case f ′(x) is still continuous on [a, b], so MVT implies the existence of such ξ,
which means our assumption is wrong, i.e., there exists ξ such that f ′′(ξ) = m, and the proof
is finished.

Question 5.3-8. A function f(x) may be differentiable on the entire real line, without having a
continuous derivative f ′(x).

a) Show that f ′(x) can have only discontinuities of second kind.

Suppose f ′(x) has discontinuity of first kind at a, i.e., both one-side limits exist, but at least one
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of them are not equal to the function value at that point. W.O.L.G., we can assume this one-
side limit is f ′(a+), and f ′(a+) ̸= f ′(a). Here we only consider the case that f ′(a+) < f ′(a).

Since f ′(a+) < f ′(a), there exists ξ, such that f ′(a+) < ξ < f ′(a). Since f ′(a+) is the limit of
f ′(x) as x → a+, by definition, for all ε > 0, there exists δ > 0, such that |f ′(x)−f ′(a+)| < ε.
for all x ∈ (a, a+ δ). Take ε = (ξ − f ′(a+))/2, so we have a δ satisfies the above relation, and

f ′(x) < f ′(a+) + ε =
ξ + f ′(a+)

2
< ξ for all x ∈ (a, a+ δ)

However, since f ′(a+δ/2) < ξ < f ′(a), by what we proved in Question 5.3-7(a), there exists
λ ∈ (a, a + δ/2), such that f ′(λ) = ξ. This is a contradiction, because we have just proved
that for any x ∈ (a, a+ δ), f ′(x) < ξ. Hence f ′(a+) ≥ f ′(a).

The contradiction of f ′(a+) > f ′(a) is similar, and you can prove it to check whether you
understand this. After that, we yield that f ′(a+) = f ′(a), which contradicts our assumption
that f ′(a+) ̸= f ′(a). Hence, no discontinuity of first kind can appear in the derivative of some
differentiable function on the entire real line.

b) Find the flaw in the following “proof” that f ′(x) is continuous.

Proof. Let x0 be an arbitrary point on R and f ′(x0) the derivative of f at the point x0.
By definition of the derivative and Lagrange’s theorem

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

= lim
x→x0

f ′(ξ) = lim
ξ→x0

f ′(ξ)

where ξ is a point between x0 and x and therefore tends to x0 as x → x0.

The flaw lies in the third equality above. Actually the third equality fails if the function is
not continuously differentiable, i.e., f ′(x) is not continuous. This is mainly because f ′(ξ(x))

is continuous with respect to x, but not continuous with respect to ξ. Combine with what
we proved in part a), f ′(ξ) can only have second kind of discontinuity with respect to ξ, so
limξ→x0

f ′(ξ) may not exist. Hence, even if as x → x0, ξ also tends to x0. we can only take
the limit as x → x0 but not ξ → x0, and

lim
x→x0

f ′(ξ(x)) ̸= lim
ξ→x0

f ′(ξ(x))

Question 5.3-9. Let f be twice differentiable on an interval I. Let M0 = sup
x∈I

|f(x)|, M1 =

sup
x∈I

|f ′(x)| and M2 = sup
x∈I

|f ′′(x)|. Show that

a) if I = [−a, a], then

|f ′(x)| ≤ M0

a
+

x2 + a2

2a
M2

We consider Taylor’s expansion, when h1 ̸= h2 and x+ h1, x+ h2 ∈ [−a, a],

f(x+ h1) = f(x) + f ′(x)h1 +
f ′′(x+ θ1h1)

2!
h2
1 0 < θ1 < 1 (1)
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f(x+ h2) = f(x) + f ′(x)h2 +
f ′′(x+ θ2h2)

2!
h2
2 0 < θ2 < 1 (2)

Consider (1)− (2), we have

f ′(x) =
f(x+ h1)− f(x+ h2)

h1 − h2

+
f ′′(x+ θ1h1)

2(h1 − h2)
h2
1 −

f ′′(x+ θ2h2)

2(h1 − h2)
h2
2

Thus, by triangular inequality,

|f ′(x)| ≤ |f(x+ h1)− f(x+ h2)|
|h1 − h2|

+
|f ′′(x+ θ1h1)|
2|h1 − h2|

h2
1 +

|f ′′(x+ θ2h2)|
2|h1 − h2|

h2
2

≤ 2

|h1 − h2|
M0 +

(h2
1 + h2

2)

2|h1 − h2|
M2

Let
2

|h1 − h2|
=

1

a
and (h2

1 + h2
2)

2|h1 − h2|
=

x2 + a2

2a

Then we have  |h1 − h2| = 2a

h2
1 + h2

2 = 2a2 + 2x2

W.L.O.G., we can assume h1 > h2, because if not, we can regard h1 as h2 and h2 as h1. Thus,
we can solveh1 = a+ |x|

h2 = −a+ |x|
if x ∈ [−a, 0],

h1 = a− |x|

h2 = −a− |x|
if x ∈ [0, a]

One can check that such solutions truly satisfy x + h1, x + h2 ∈ [−a, a]. Therefore, we have
finished our proof.

b)

M1 ≤ 2
√
M0M2, if the length of I is not less than 2

√
M0/M2

M1 ≤
√
2M0M2, if I = R

If the length of I is not less than 2
√

M0/M2, let I = [a, a + l], then we take h1 = a + l − x,
h2 = a− x, where x ∈ [a, a+ l]. Then from part a), we have

|f ′(x)| ≤ 2

|h1 − h2|
M0 +

(h2
1 + h2

2)

2|h1 − h2|
M2

Thus, the above inequality means for all l, we have

|f ′(x)| ≤ 2

l
M0 +

l2 + 2h1h2

2l
M2 ≤

2

l
M0 +

l2

2l
M2 =

2

l
M0 +

l

2
M2

since h1h2 < 0. Take l = 2
√
M0/M2, we have

M1 = sup
x∈I

|f ′(x)| ≤ 2
√
M0M2

Note that if I is not closed, then we just take [a+ ϵ, a+ l − ϵ], and then take limit as ϵ → 0,
we will obtain exactly the same answer.

If I = R, for any h1, take h2 = −h1, then we have

|f ′(x)| ≤ 1

h1

M0 +
h1

2
M2
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Let h1 =
√
2M0/M2, we have

M1 = sup
x∈I

|f ′(x)| ≤
√
2M0M2

c) the numbers 2 and
√
2 in part b) cannot be replaced by smaller numbers;

First, consider f(x) = 2x2 − 1 on I = [−1, 1]. We can check that M0 = 1, M1 = M2 = 4 on
[−1, 1], and the length of I is 2, which is no less than 2

√
1/4 = 1. And 4 = M1 = 2

√
M0M2 =

2
√
1 · 4. Since the equality can be obtained, this 2 cannot be replaced by smaller number.

Second, consider the following function,

f(x) =



−1− (x+ 1/2)2

1 + (x+ 1/2)2
if x ≤ −1

2

4(x+ 1/2)2 − 1 if −1

2
≤ x ≤ 0

−4(x− 1/2)2 + 1 if 0 ≤ x ≤ 1

2
1− (x− 1/2)2

1 + (x− 1/2)2
if x ≥ 1

2

For this function, it’s easy to see that its range is [−1, 1] on R, so M0 = 1. Take the first order
derivative, one can verify M1 = 4 and also M2 = 8 by taking the second derivative (A little
bit tedious for rigorous proof, but quite intuitive if you draw the graph of the function). This
shows that

4 = M1 =
√
2M0M2 =

√
2 · 1 · 8 = 4

Since the equality can be obtained, this
√
2 cannot be replaced by smaller number.

d) if f is differentiable p times on R and the quantities M0 and Mp = sup
x∈R

|f (p)(x)| are finite,

then the quantities Mk = sup
x∈R

|f (k)(x)|, 1 ≤ k < p, are also finite and

Mk ≤ 2k(p−k)/2M
1−k/p
0 Mk/p

p

The case when p = 2 is proved in part b), now we assume what we need to prove is true when
p = m, i.e., for 1 ≤ k ≤ m− 1,

Mk ≤ 2k(m−k)/2M
1−k/m
0 Mk/m

n

Also, you should know how to prove Mm ≤
√
2Mm−1Mm+1 (m ≥ 1) in general, by using

similar method in part a), and setting the same value to h1, h2 as part b) (This is a good
exercise for you to check whether you really understand such method.) Suppose you have
proved it, then we have

Mm ≤
√
2Mm−1Mm+1 ≤

√
2 · 2(m−1)/2M

1/m
0 M

1−1/m
m Mm+1

Solve Mm (Notice that there is a M
1−1/m
m term on right hand side!), we have

Mm ≤ 2m/2M
1/(m+1)
0 M

m/(m+1)
m+1
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Substitute it into our assumption, we have

Mk ≤ 2k(m−k)/2M
1−k/m
0 Mk/m

n

≤ 2k(m−k)/2M
1−k/m
0 2k/2M

k/[m(m+1)]
0 M

k/(m+1)
m+1

≤ 2k(m+1−k)/2M
1−k/(m+1)
0 M

k/(m+1)
m+1

which shows for p = m+ 1, our assumption still holds. By induction, the proof is finished.

Question 5.3-10. Show that if a function f has derivatives up to order n+ 1 inclusive at a point
x0 and f (n+1)(x0) ̸= 0, then in the Lagrange form of the remainder in Taylor’s formula

rn(x0;x) =
1

n!
f (n) (x0 + θ(x− x0)) (x− x0)

n

where 0 < θ < 1 and the quantity θ = θ(x) tends to 1
n+1

as x → x0.

Apply Taylor’s expansion to order n− 1 and n at x = x0, we have

f(x) = f(x0) +
f ′(x0)

1!
(x− x0) + · · ·+ f (n−1)(x0)

(n− 1)!
(x− x0)

n−1 +
f (n)(x0 + θ(x− x0))

n!
(x− x0)

n

and
f(x) = f(x0) +

f ′(x0)

1!
(x− x0) + · · ·+ f (n+1)(x0)

(n+ 1)!
(x− x0)

n+1 + o
(
(x− x0)

n+1
)

Use the second one to subtract the first one, we have

f (n)(x0 + θ(x− x0))− f (n)(x0) =
f (n+1)(x0)

n+ 1
(x− x0) + o

(
(x− x0)

)
Divide both sides by θ(x− x0), and rearrange the equation as follows

θ =

f (n+1)(x0)

n+ 1
+ o(1)

f (n)(x0 + θ(x− x0))− f (n)(x0)

θ(x− x0)

Take x → x0, θ(x− x0) → 0, we have

θ −→

f (n+1)(x0)

n+ 1
f (n+1)(x0)

=
1

n+ 1

Question 5.3-11. Let f be a function that is differentiable n times on an interval I. Prove the
following statements.

a) If f vanishes at (n+ 1) points of I, there exists a point ξ ∈ I such that f (n)(ξ) = 0.

Suppose f vanishes at x1 < x2 < · · · < xn < xn+1, and all xi ∈ I. Apply Rolle’s theorem
to each interval (xi, xi+1), we can find z1, . . . , zn such that x1 < z1 < x2 · · · < zn < xn+1,
and f ′(zi) = 0. In this case, all zi will lie in I. Now apply Rolle’s theorem to f ′(x) on each
interval (zi, zi+1), we can find w1, . . . , wn−1 such that z1 < w1 < z2 · · · < wn−1 < zn, and
f ′′(wi) = 0. By induction, we can continue this process until we find ξ1 < ξ2, ξi ∈ I such that
f (n−1)(ξi) = 0. Again, using Rolle’s theorem, we can obtain ξ ∈ (ξ1, ξ2), such that f (n)(ξ) = 0.
Thus, we proved the Generalized Rolle’s Theorem.
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b) If x1, x2, . . . , xn are points of the interval I, there exists a unique polynomial L(x) (the
Lagrange interpolation polynomial) of degree at most (n − 1) such that f(xi) = L(xi), i =

1, . . . , n. In addition, for x ∈ I there exists a point ξ ∈ I such that

f(x)− L(x) =
(x− x1) · · · (x− xn)

n!
f (n)(ξ)

The existence is easy, since we can find one polynomial as follows

P (x) =
n∑

k=1

f(xk)Ln,k(x)

where, for each k = 1, . . . , n,

Ln,k(x) =
(x− x1)(x− x2) · · · (x− xk−1)(x− xk) · · · (x− xn)

(xk − x1)(xk − x2) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
=

n∏
i=1
i ̸=k

(x− xi)

(xk − xi)

It’s obvious that

Ln,k(xi) =

 1 if i = k

0 if i ̸= k

Hence, we can easily verify that P (xi) = f(xi) for i = 1, . . . , n. Also, this polynomial is of
degree n− 1, because each Ln,k is of degree n− 1.

To prove the uniqueness, assume that Q(x) is another polynomial of degree n − 1 agreeing
with f at x1, . . . , xn. Consider the polynomial D = P −Q, we have

D(xk) = P (xk)−Q(xk) = f(xk)− f(xk) = 0 for k = 1, . . . , n

Thus each xk is a root of D(x) with at least multiplicity one, which means

D(x) = (x− x1) · · · (x− xn)R(x)

where R(x) is another polynomial. However, this is impossible, because D(x) is at most of
degree n − 1, and now you need degree of at least n to obtain n roots with multiplicity one.
The only possible is that R(x) ≡ 0, which means D(x) ≡ 0. Hence Q(x) = P (x), showing that
P (x) is unique.

Therefore, such P (x) is exactly the L(x) we need to find. Finally, we need to prove L(x)

satisfies
f(x)− L(x) =

(x− x1) · · · (x− xn)

n!
f (n)(ξ)

Note that if x = xk, for any k = 1, . . . , n, then f(xk) = L(xk), and choosing any ξ yields the
above result.

If x ̸= xk, for all k = 1, . . . , n, define g(t) on I, such that

g(t) = f(t)− L(t)− [f(x)− L(x)]
n∏

i=1

(t− xi)

(x− xi)
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It’s easy to see g(t) ∈ C(n)(I), and for t = xk, g(xk) = 0. Moreover,

g(x) = f(x)− L(x)− [f(x)− L(x)]
n∏

i=1

(x− xi)

(x− xi)
= 0

Hence, g vanishes at n + 1 distinct numbers x, x1, . . . , xn. By part a), there exists a number
ξ ∈ I, such that g(n)(ξ) = 0. Thus,

0 = g(n)(ξ) = f (n)(ξ)− L(n)(ξ)− [f(x)− L(x)]
dn+1

dtn+1

[
n∏

i=1

(t− xi)

(x− xi)

]
t=ξ

Since L is of degree n− 1, so L(n)(t) = 0. Also, the last term is a polynomial of degree n, so
its derivative is just the product of its leading coefficient and n!, i.e.,

dn+1

dtn+1

[
n∏

i=1

(t− xi)

(x− xi)

]
t=ξ

=
n!∏n

i=1(x− xi)

Therefore, we could yield

0 = f (n)(ξ)− [f(x)− L(x)]
n!∏n

i=1(x− xi)

which is equivalent to

f(x)− L(x) =
(x− x1) · · · (x− xn)

n!
f (n)(ξ)

c) If x1 < x2 < · · · < xp are points of I and ni, 1 ≤ i ≤ p, are natural numbers such that
n1 + n2 + · · ·+ np = n and f (k)(xi) = 0 for 0 ≤ k ≤ ni − 1, then there exists a point ξ in the
closed interval [x1, xp] at which f (n−1)(ξ) = 0.

Since n1 + n2 + · · · + np = n, for all ni, we have 0 ≤ ni ≤ n. Denote mi as the number of j
such that nj = i. Therefore,

0 ·m0 + 1 ·m1 + · · ·+ n ·mn = n

For simplicity, we define Sk =
∑n

i=k mi, then the above equation is equivalent to

0 + S1 + S2 + · · · =
n∑

k=1

Sk = n

In this case, we can choose S1 points z01 < · · · < z0S1
out of xi (hence these points are distinct),

such that f(z0i ) = 0. By Rolle’s theorem, there exists S1 − 1 points z11 < · · · < z1S1−1, such
that f ′(z1i ) = 0, and each z1i lies in the open interval between z0i and z0i+1. Notice that except
for the S1 − 1 points we find, originally there exists S2 points which are the roots of f ′(x).
These S2 points are all distinct from the previous S1 − 1 ones (This is essential, you should
consider the reason). In total, we have S1 + S2 − 1 distinct roots of f ′(x), meaning that
we can find S1 + S2 − 2 points z21 < · · · < z2S1+S2−2 such that f ′′(z2i ) = 0, where z2i lies in
open interval between z1i and z1i+1. By induction, you can proceed this process until you find
S1 + · · ·+Sn−1 − (n− 1) points such that f (n−1)(xn−1

i ) = 0. Again, don’t forget originally you
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have Sn points satisfying the same condition. Hence, the total number of points that satisfies
f (n−1)(xn−1

i ) = 0 is

S1 + · · ·+ Sn−1 + Sn − (n− 1) = n− (n− 1) = 1

Obviously, such ξ = xn−1
1 lies in [x1, xp].

d) There exists a unique polynomial H(x) of degree (n − 1) such that f (k)(xi) = H(k)(xi)

for 0 ≤ k ≤ ni − 1. Moreover, inside the smallest interval containing the points x and xi,
i = 1, . . . , p, there is a point ξ such that

f(x) = H(x) +
(x− x1)

n1 · · · (x− xn)
np

n!
f (n)(ξ)

Suppose there is H(x) such that

H(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1

Then for each i and k, f (k)(xi) = H(k)(xi) is one equation, and we have n such equations in
total, so we can form an n× n linear system A #»x =

#»
b , where #»x is the coefficients of H(x), #»

b

is all f (k)(xi). If we can prove A is nonsingular, then #»x is unique, and H(x) must exist and is
unique.

To prove A is nonsingular, consider its null space, A #»x =
#»
0 . This shows H(k)(xi) = 0 for all

i, k. Thus, H(x) = C(x)
∑p

i=1(x − xi)
ni . Since H(x) is only of order n − 1, C(x) can only

equal to zero, meaning that H(x) ≡ 0. Thus, #»x =
#»
0 . Since the null space of A only contains

the trival element, its rank is zero, meaning that the column space of A is of rank n. Thus, A
is full rank and full rank matrix must be nonsingular.

Note that if x = xi, where ni ≥ 1, then for any i, f(xi) = H(xi), and choosing any ξ yields
the above result.

If x ̸= xi, where ni ≥ 1, then we define g(t) on I, such that

g(t) = f(t)−H(t)− [f(x)−H(x)]

p∏
i=1

(t− xi)
ni

(x− xi)ni

Similar to part b), you can verify that g(k)(xi) = 0 for any i = 1, · · · , p and 0 ≤ k ≤ ni − 1.
Notice that g(x) = 0, so we can denote x as xp+1, with np+1 = 1, then n1+ · · ·+np+1 = n+1.
By part c), there exists a ξ ∈ I∗ where I∗ is the smallest interval containing xi, i = 1, · · · , p+1,
such that g(n)(ξ) = 0, which means

0 = g(n)(ξ) = f (n)(ξ)− 0− [f(x)−H(x)]
dn

dtn

[
p∏

i=1

(t− xi)
ni

(x− xi)ni

]
t=ξ

which is equivalent to say

0 = f (n)(ξ)− [f(x)−H(x)]

p∏
i=1

n!

(x− xi)ni
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Therefore, we have

f(x) = H(x) +
(x− x1)

n1 · · · (x− xn)
np

n!
f (n)(ξ)

Question 5.3-12. Show that

a) between two real roots of a polynomial P (x) with real coefficients there is a root of its
derivative P ′(x);

We only consider when two real roots are different, for the case that they are equal, see part
b). If x1, x2 are two real roots of P (x), we have P (x1) = P (x2). Since P (x) is a polynomial,
it is continuous and differentiable on R, so we can apply Rolle’s Theorem, which means there
exists ξ ∈ (x1, x2), such that P ′(ξ) = 0. Hence, between two real roots of P (x) there is a root
of P ′(x).

b) if the polynomial P (x) has a multiple root, the polynomial P ′(x) has the same root, but
its multiplicity as a root of P ′(x) is one less than its multiplicity as a root of P (x);

Suppose this root has multiplicity of order m ≥ 2, then it can be written as

P (x) = (x− x0)
mP̃ (x)

where P̃ (x0) ̸= 0. Take the derivative, we have

P ′(x) = m(x− x0)
m−1P̃ (x) + (x− x0)

mP̃ ′(x)

Thus, we could yield P ′(x0) = 0 + 0 = 0. Hence, the polynomial P ′(x) has the same root as
P (x).

Since
P ′(x) = (x− x0)

m−1(mP̃ (x) + (x− x0)P̃
′(x))

we consider a new polynomial R(x), where

R(x) = mP̃ (x) + (x− x0)P̃
′(x)

One could easily see that R(x0) ̸= 0 because

R(x0) = mP̃ (x0) + (x0 − x0)P̃
′(x) = mP̃ (x0) + 0 ̸= 0

Thus P ′(x) only has root x0 of order m− 1, which is one less than that of P (x).

c) if Q(x) is the greatest common divisor of the polynomials P (x) and P ′(x), where P ′(x) is
the derivative of P (x), then the polynomial P (x)

Q(x)
has the roots of P (x) as its roots, all of them

being roots of multiplicity 1.

From part b), we know that if P (x) has a real root x0, then we have P (x) = (x− x0)
mP̃ (x),

where P̃ ′(x0) ̸= 0. Also, we can write P ′(x) = (x−x0)
m−1R(x), where R(x0) ̸= 0. This shows

that their great common divisor Q(x) = (x− x0)
m−1Q̃(x), where Q̃(x0) ̸= 0.
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Consider
P (x)

Q(x)
=

(x− x0)
mP̃ (x)

(x− x0)m−1Q̃(x)
=

(x− x0)P̃ (x)

Q̃(x)

We can obtain that P (x0)/Q(x0) = 0/Q̃(x0) = 0 because Q̃(x0) ̸= 0. Hence, the polynomial
P (x)/Q(x) has the same roots of P (x). Also, we can write

P (x)

Q(x)
= (x− x0)

P̃ (x)

Q̃(x)

where P̃ (x0) ̸= 0 and Q̃(x0) ̸= 0, thus P̃ (x0)/Q̃(x0) ̸= 0. This proves that the roots of P (x)
Q(x)

only have multiplicity 1.

Question 5.3-13. Show that

a) any polynomial P (x) admits a representation in the form c0+c1(x−x0)+ · · ·+cn(x−x0)
n;

Apply the Taylor’s expansion to any polynomial Pn(x) with Lagrange form of remainder, we
have

f(x) = f(x0)+f ′(x0)(x−x0)+
f ′′(x0)

2!
(x−x0)

2+ · · ·+ f (k)(x0)

k!
(x−x0)

k+
f (k+1)(ξ)

(k + 1)!
(x−x0)

k+1

However, here f = Pn(x) and if k ≥ n, f (k+1)(x) ≡ 0. Hence,

Pn(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2 + · · ·+ f (n)(x0)

n!
(x− x0)

n

Denote c0 = f(x0), c1 = f ′(x0), and so on, we can conclude that for any Pn(x), we have

Pn(x) = c0 + c1(x− x0) + c2(x− x0)
2 + · · ·+ cn(x− x0)

n

b) there exists a unique polynomial of degree n for which f(x) − P (x) = o
(
(x − x0)

n
)

as
E ∋ x → x0. Here f is a function defined on a set E and x0 is a limit point of E.

(Here f(x) must be at least Cn function. Hence the existence can be ensured by
Taylor expansion.)

Suppose there exist two polynomials satisfies the condition, denote them as P(x) and Q(x).
Then we have

Dn(x) = P(x)−Q(x) = o
(
(x− x0)

n
)

as x → x0

Since Dn(x) is a polynomial of degree n, we can write

Dn(x) = an(x− x0)
n + an−1(x− x0)

n−1 + · · ·+ a0

Since Dn(x) = o
(
(x− x0)

n
)

as x → x0, we have

lim
x→x0

an(x− x0)
n + an−1(x− x0)

n−1 + · · ·+ a0
(x− x0)n

= 0

However, this is true only if all coefficients are zero, because if there exists some nonzero
coefficient(s), then the one with the highest order of n in denominator will be the dominant
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term, and since all terms above tend to infinity as x → x0, it will never vanish. Hence, all
coefficients are zero, Dn(x) ≡ 0. This shows P (x) = Q(x), which means there exists a unique
polynomial.

Question 5.3-15.

a) Applying Lagrange’s theorem to the function 1
xα , where α > 0, show that the inequality

1

n1+α
<

1

α

(
1

(n− 1)α
− 1

nα

)
holds for n ∈ N and α > 0.

Applying Lagrange’s theorem to the function 1
xα , for n ≥ 2, we have

f(n)− f(n− 1) = f ′(ξ)[n− (n− 1)] =⇒
(

1

nα
− 1

(n− 1)α

)
= −αξα−1

Since α > 0, we have −αξα−1 is increasing for ξ ∈ [n− 1, n], which shows(
1

nα
− 1

(n− 1)α

)
≤ − α

nα+1

Slightly rearrange the terms we will obtain

1

n1+α
<

1

α

(
1

(n− 1)α
− 1

nα

)

b) Use the result of a) to show that the series
∞∑

n=1

1
nσ converges for σ > 1.

Using what we prove in part a), let σ = α+ 1 where α > 0, we have
∞∑

n=1

1

nα+1
<

∞∑
n=1

1

α

(
1

(n− 1)α
− 1

nα

)
= 1 + lim

n→∞

1

α

(
1− 1

nα

)
= 1 +

1

α

Hence positive series
∞∑

n=1

1
nσ converges when σ > 1.

Question 5.4-1. Let x = (x1, . . . , xn) and α = (α1, . . . , αn), where xi ≥ 0, αi > 0 for i = 1, . . . , n

and
n∑

i=1

αi = 1. For any number t ̸= 0 we consider the mean of order t of the numbers x1, . . . , xn

with weights αi:

Mt(x, α) =

(
n∑

i=1

αix
t
i

)1/t

In particular, when α1 = · · · = αn = 1
n

, we obtain the harmonic, arithmetic, and quadratic means
for t = −1, 1, 2 respectively.

Show that
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a) lim
t→0

Mt(x, α) = xα1
1 · · ·xαn

n , that is, in the limit one can obtain the geometric mean;

If one of xi, say xk, is zero, then we need to consider the left and right limit separately. If
t > 0, then 0t = 0; if t < 0, then 0t = ∞. We can see

Mt(x, α) =

 n∑
i=1
i ̸=k

αix
t
i + αk0

t


1/t

Thus,

lim
t→0+

 n∑
i=1
i ̸=k

αix
t
i + αk0

t


1/t

= lim
t→0+

 n∑
i=1
i ̸=k

αix
t
i


1/t

= 0

because
lim
t→0+

n∑
i=1
i ̸=k

αix
t
i = 1− αk < 1

and 1/t → +∞. However, for the left limit, we need to be careful,

lim
t→0−

 n∑
i=1
i ̸=k

αix
t
i + αk0

t


1/t

= lim
t→0−

(
αk0

t
)1/t

= 0

Although 0t is not defined when t ≤ 0, but we can regard f(t) = (0t)1/t = 0 as a function
defined on t ̸= 0. Hence, we conclude that when there exists xi = 0,

lim
t→0

Mt(x, α) = 0 = xα1
1 · · ·xαk−1

k−1 · 0αk · xαk+1

k+1 · · ·xαn
n

If all xi is nonzero, it would be a standard problem, we first take logarithm and then apply
L’Hôpital’s rule, then

lim
t→0

(
n∑

i=1

αix
t
i

)1/t

= exp
{

lim
t→0

1

t
ln
(

n∑
i=1

αix
t
i

)}

= exp
{

lim
t→0

∑n
i=1 αix

t
i lnxi∑n

i=1 αixt
i

}
= exp

{∑n
i=1 αi lnxi∑n

i=1 αi

}
= exp

{
n∑

i=1

αi lnxi

}
= xα1

1 · · ·xαn
n

b) lim
t→+∞

Mt(x, α) = max
1≤i≤n

xi;
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This is also standard, suppose there xk ̸= 0 is the largest one (not necessarily unique), then

lim
t→+∞

(
n∑

i=1

αix
t
i

)1/t

= lim
t→+∞

(
xt
k

n∑
i=1

αi

(
xi

xk

)t
)1/t

= xk lim
t→+∞

(
n∑

i=1

αi

(
xi

xk

)t
)1/t

= xk = max
1≤i≤n

xi

This is because xi/xk ≤ 1, and
n∑

i=1

αi

(
xi

xk

)t

= ak +
n∑

i=1
i ̸=k

αi

(
xi

xk

)t

≤ 1

Hence, we have (notice that ak > 0)

1 = lim
t→+∞

α
1/t
k ≤ lim

t→+∞

(
n∑

i=1

αi

(
xi

xk

)t
)1/t

≤ lim
t→+∞

11/t = 1

If xk = 0, then all xi = 0, and Mt(x, α) ≡ 0, which obviously satisfies what we need to prove.

c) lim
t→−∞

Mt(x, α) = min
1≤i≤n

xi;

If none of xi is zero, then it is similar to part b), suppose xk is the smallest one (not necessarily
unique)

lim
t→−∞

(
n∑

i=1

αix
t
i

)1/t

= lim
t→+∞

(
n∑

i=1

αix
−t
i

)−1/t

= lim
t→+∞

(
x−t
k

n∑
i=1

αi

(
xi

xk

)−t
)−1/t

= xk lim
t→+∞

(
n∑

i=1

αi

(
xk

xi

)t
)−1/t

= xk = min
1≤i≤n

xi

This is because xk/xi ≤ 1, and

1 = lim
t→+∞

α
−1/t
k ≥ lim

t→+∞

(
n∑

i=1

αi

(
xi

xk

)t
)−1/t

≥ lim
t→+∞

1−1/t = 1

When some xi = 0, then xk = 0 must be the smallest one. When t < 0, we assume that
0t > xt

i for any nonzero xi. Then

ak0
t ≤

n∑
i=1

αix
t
i ≤

n∑
i=1

αi0
t = 0t

which implies

0 = lim
t→−∞

(
ak0

t
)1/t ≥ lim

t→−∞

(
n∑

i=1

αix
t
i

)1/t

≥ lim
t→−∞

(
0t
)1/t

= 0
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Hence, we have

lim
t→−∞

(
n∑

i=1

αix
t
i

)1/t

= 0 = xk = min
1≤i≤n

xi

d) Mt(x, α) is a nondecreasing function of t on R and is strictly increasing if n > 1 and the
numbers xi are all nonzero.

If n = 1, Mt(x, α) = x1, which is constant function, hence it is a nondecreasing function. If
some xi is zero, then Mt(x, α) = 0 for all t < 0. The reason is the same as part c), for all
t < 0,

0 = a
1/t
k · 0 ≥

(
ak0

t
)1/t ≥ ( n∑

i=1

αix
t
i

)1/t

≥
(
0t
)1/t

= 0

If all xi is nonzero, then we can apply standard procedure. Consider

g(t) =
1

t
ln
(

n∑
i=1

αix
t
i

)

We can show that

g′(t) =
1

t2

[
t ·
∑n

i=1 αix
t
i lnxi∑n

i=1 αixt
i

− ln
(

n∑
i=1

αix
t
i

)]
Denote

h(t) = t ·
∑n

i=1 αix
t
i lnxi∑n

i=1 αixt
i

− ln
(

n∑
i=1

αix
t
i

)
We can show that

h′(t) =
t∑n

i=1 αixt
i

( n∑
i=1

αix
t
i ln2 xi

)(
n∑

i=1

αix
t
i

)
−

(
n∑

i=1

αix
t
i lnxi

)2


By Cauchy-Schwarz inequality (let ui =
√

aixt
i lnxi and vi =

√
aixt

i), we can conclude that
h′(t) > 0 when t > 0, h′(t) < 0 when t < 0. Hence, h(t) decreasing when t < 0, increasing
when t > 0. Since h(0) = 0, h(t) > 0 for t ̸= 0. Thus g′(t) > 0 for t ̸= 0. Hence, g(t) is strictly
increasing when t < 0 and t > 0. In conclusion, Mt(x, α) is strictly increasing when n > 1 and
all xi > 0.

Similar procedure can be applied to the case that some xi is zero for t > 0, and the result
shows Mt(x, α) is still strictly increasing when t > 0 (You can just delete those terms that has
zero xi, because 0t = 0 for t > 0). However, previously we show that it is constant zero when
t < 0, we can only say it is a nondecreasing function for t on R.

Question 5.4-2. Show that |1 + x|p ≥ 1 + px+ cpφp(x), where cp is a constant depending only on
p,

φp(x) =

 |x|2 for |x| ≤ 1

|x|p for |x| > 1
if 1 < p ≤ 2

and φp(x) = |x|p on R if 2 < p.
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Since when x = 0, ϕp(0) = 0, the inequality always holds, so we don’t consider that trivial case.
First we consider when 1 < p ≤ 2. For |x| ≤ 1, let

ϕ(x) =
(1 + x)p − 1− px

x2

We want to find the minimum value of it. Take the derivative, we have

ϕ′(x) =
g(x)

x3
, where g(x) = px(1 + x)p−1 + px− 2(1 + x)p + 2

Also,

g′(x) = p(p− 1)x(1 + x)p−2 + p− p(1 + x)p−1, and g′′(x) = p(p− 1)(p− 2)x(1 + x)p−3

Since 1+x ≥ 0, we know that when x > 0, g′′(x) < 0; x < 0, g′′(x) > 0. This means g′(x) increasing
on [−1, 0), and decreasing on (0, 1]. The maximum value of g′(x) is g′(0) = 0. Hence g′(x) ≤ 0,
meaning that g(x) is decreasing on [−1, 1]. But g(0) = 0, meaning that g(x) > 0 on [−1, 0); g(x) < 0

on (0, 1]. Hence, ϕ′(x) < 0, and ϕ(x) is decreasing on [−1, 0) and (0, 1]. Apply L’Hôpital’s rule,
we can verify that ϕ(x) only has removable discontinuity at x = 0, so ϕ(x) is decreasing on [−1, 1].
The minimum value is ϕ(1) = 2p − p− 1.

Although it is tedious, but we can do the same thing for x > 1 and x < −1. For x > 1, we let

ϕ(x) =
(1 + x)p − 1− px

xp

Similarly, we have

ϕ′(x) =
pg(x)

xp+1
, where g(x) = −(1 + x)p−1 − x+ 1 + px

Also,
g′(x) = (p− 1)[1− (1 + x)p−2] > 0

But since g(0) = 0, so g(x) > 0 when x > 1, meaning that ϕ′(x) > 0. Hence ϕ(x) is increasing on
(1,∞). Let’s consider when x → ∞,

lim
x→∞

ϕ(x) = lim
x→∞

(
1 +

1

x

)p

− lim
x→∞

1

xp
− lim

x→∞

p

xp−1
= 1

This means on (1,∞), 1 > ϕ(x) > ϕ(1) = 2p − p− 1.

For x < −1, by exactly the same method, set

ϕ(x) =
(−1− x)p − 1− px

(−x)p

We can show that there exists a unique xp (only depends on p) such that ϕ(x) increasing on (−∞, xp)

and decreasing on (xp,−1). Check the limit when x → −∞, we have

lim
x→−∞

ϕ(x) = 1

Hence ϕ(x) > 1 on (−∞,−1), and since ϕ(−1) > ϕ(1) = 2p−p−1, we conclude that when 1 < p ≤ 2,
the minimum value of ϕ(x) for x ∈ R is 2p−p−1. Thus, the maximum we can take is cp = 2p−p−1,
which only depends on p.
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Then we consider p > 2. When x > 0, define

ϕ(x) =
(1 + x)p − 1− px

xp

Similarly, we have

ϕ′(x) =
pg(x)

xp+1
, where g(x) = −(1 + x)p−1 − x+ 1 + px

Also,
g′(x) = (p− 1)[1− (1 + x)p−2] < 0

Since g(0) = 0, so g(x) < 0 when x > 0, meaning that ϕ′(x) < 0. Hence ϕ(x) is decreasing on
(0,∞). Now you need to be careful, because the discontinuity of ϕ(x) at x = 0 is not removable,
actually when x → 0+, by L’Hôpital’s rule, we have

lim
x→0+

ϕ(x) = lim
x→0+

(
1 +

1

x

)p−2

= +∞

The limit of ϕ(x) as x → ∞ is the same as before, which is just 1. Hence, ϕ(x) > 1 for x > 0.

Finally, when x < 0, we need to further separately consider when x < −1 and x ∈ [−1, 0). For
the case x ∈ [−1, 0), we define

ϕ(x) =
(1 + x)p − 1− px

(−x)p

You can easily check that ϕ(x) is increasing on [−1, 0), and the limit as x → 0− is also +∞. Hence,
the minimum is obtained by ϕ(−1) = p− 1 > 1. Thus, the global minimum is not in [−1, 0).

Consider if x < −1, we define

ϕ(x) =
(−1− x)p − 1− px

(−x)p

We have
ϕ′(x) =

pg(x)

xp+1
, where g(x) = −(−1− x)p−1 + x− 1− px

If we consider
g′(x) = (p− 1)[(−1− x)p−2 − 1] > 0

Then ϕ′(x) is increasing on (−∞,−1), and ϕ′(−2) = 2p − 4 > 0, ϕ′(−6) = 6p − 7 − 5p−1 < 0. For
the second inequality, consider h(p) = 6p− 7− 5p−1, h′(p) = 6− 5p−1 ln 5 < h′(2) = 6− 5 ln 5 < 0,
so h(p) decreasing when p > 2. But h(2) = 0, so h(p) < 0. Thus, ϕ′(x) = 0 has a unique solution
xp in (−6,−2) for any p > 2, where xp only depends on p. We also know that ϕ(x) is decreasing
on (−∞, xp) and increasing on (xp,−1). Since we know that ϕ(xp) < ϕ(−2) = p/2p−1 < 1, so xp is
the global minimum. (Also, you can show that the limit of ϕ(x) as x → −∞ is 1.) In this way, the
largest cp we can take is cp = ϕ(xp).

Actually, we can find that ϕ(xp) < ϕ(−2) = p/2p−1, taking p → ∞, we have ϕ(xp) ≤ 0. But
ϕ(x) is always nonegative, so the limit of ϕ(xp) is zero. Thus, the largest cp we can take will tend
to zero as p grows, and xp will tend to −2.

Question 5.4-3. Verify that cosx <
( sin x

x

)3 for 0 < |x| < π
2
.
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Consider the function f(x) for |x| < π
2

defined by

f(x) =
sinx

(cosx)1/3 − x

Take the first derivative, we have

f ′(x) =
(cosx)4/3 + (1/3) sin2 x(cosx)−2/3

(cosx)2/3 − 1

=
(cosx)4/3 + (1/3)(1− cos2 x)(cosx)−2/3 − (cosx)2/3

(cosx)2/3 Take t = (cosx)2/3

=
3t3 + (1− t3)− 3t2

3t2

=
(2t+ 1)(t− 1)2

3t2
Since t ∈ (0, 1)

> 0

Therefore, f ′(x) > 0 for 0 < |x| < π
2
, meaning f(x) is increasing on (−π

2
, π
2
). Notice that f(0) = 0,

hence f(x) > 0 on (0, π
2
) and f(x) < 0 on (−π

2
, 0).

When x ∈ (0, π
2
), we have x3 > 0 and cosx > 0, so

sinx

(cosx)1/3 − x > 0 =⇒ sinx

(cosx)1/3 > x =⇒ sin3 x

cosx > x3 =⇒ sin3 x

x3
> cosx

When x ∈ (−π
2
, 0), we have x3 < 0 and cosx > 0, so

sinx

(cosx)1/3 − x < 0 =⇒ sinx

(cosx)1/3 < x =⇒ sin3 x

cosx < x3 =⇒ sin3 x

x3
> cosx

Therefore, for 0 < |x| < π
2
, we have

cosx <

(
sinx

x

)3

Question 5.4-4. Study the function f(x) and construct its graph if

a) f(x) = arctan log2 cos
(
πx+ π

4

)
;

b) f(x) = arccos
(
3
2
− sinx

)
;

c) f(x) = 3
√
x(x+ 3)2.

d) Construct the curve defined in polar coordinates by the equation φ = ρ
ρ2+1

, ρ ≥ 0, and
exhibit its asymptotics.

e) Show how, knowing the graph of the function y = f(x), one can obtain the graph of the
following functions f(x) +B, Af(x), f(x+ b), f(ax), and, in particular −f(x) and f(−x).

Question 5.4-5. Show that if f ∈ C(a, b) and the inequality

f

(
x1 + x2

2

)
≤ f(x1) + f(x2)

2
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holds for any points x1, x2 ∈ (a, b), then the function f is convex on (a, b).

We need to prove for all x ∈ (a, b), the inequality

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

holds for all λ ∈ [0, 1]. First we only consider if λ = k
2n

, where n = 0, 1, . . . and k ∈ N, k ≤ 2n.

When n = 0, λ = 0, 1, the inequality is obvious correct. When n = 1, λ = 0, 1
2
, 1, the inequality

is also true because of the hypothesis in the question. Hence, we suppose it is true for n, and we
attempt to verify it is also true for n+1. For any λ = k

2n+1 , if k is even, then write k = 2m, we can
reduce λ to m

2n
. This must hold because of our assumption.

If k is odd, then write k = (k − 1)/2 + (k + 1)/2, denote s = (k − 1)/2, t = (k + 1)/2, and we
have integers s, t ∈ [0, 2n].

λ =
k

2n+1
=

s
2n

+ t
2n

2
=

p+ q

2
where p = s

2n
, q = t

2n
. Thus, we have

f(λx+ (1− λ)y) = f

(
[px+ (1− p)y] + [qx+ (1− q)y]

2

)
≤ f(px+ (1− p)y) + f(qx+ (1− q)y)

2

≤ [pf(x) + (1− p)f(y)] + [qf(x) + (1− q)f(y)]

2

=
p+ q

2
f(x) +

(
1− p+ q

2

)
f(y)

= λf(x) + (1− λ)f(y)

Hence, by induction, we proved that for any n, the Jensen’s inequality holds for λ = k
2n

, where
k ∈ N, k ≤ 2n.

Now consider function g(λ) : D 7→ R, where D is unknown and

g(λ) = λf(x) + (1− λ)f(y)− f(λx+ (1− λ)y)

Since f is continuous, it is easy to check g is also continuous. The pre-image of [0,+∞) (closed set)
under g must be closed. Also, the pre-image of [0,+∞) contains λ = k

2n
, hence it must contain the

closure of { k
2n
}, which is exactly the interval [0, 1]. Hence for any λ ∈ [0, 1], g(λ) ≥ 0, which shows

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y)

Therefore, f(x) is convex by definition.

Question 5.4-6. Show that

a) if a convex function f : R 7→ R is bounded, it is constant;

If a convex function is bounded and not a constant, there exists x1 < x2, such that f(x1) ̸=
f(x2). W.O.L.G., we can assume f(x1) < f(x2). The secant line determined by (x1, f(x1))

and (x2, f(x2)) is

y1(x) =
f(x2)− f(x1)

x2 − x1

(x− x1) + f(x1)
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Then we claim that for all x > x2, f(x) ≥ y1(x). If not, there exists at least one point
x0 > x2 > x1, such that f(x0) < y1(x0), which is

f(x0) <
f(x2)− f(x1)

x2 − x1

(x0 − x1) + f(x1)

Slightly change the form of the above equation, we have

f(x0)− f(x1)

x0 − x1

<
f(x2)− f(x1)

x2 − x1

(1)

However, since x2 ∈ (x1, x0), and open interval is convex on R, we can find t ∈ (0, 1), such that
x2 = tx1 + (1− t)x0, and if we denote the secant going through (x1, f(x1)) and (x0, f(x0)) as

y2(x) =
f(x0)− f(x1)

x0 − x1

(x− x1) + f(x1)

we have f(x2) = f(tx1 + (1− t)x0) ≤ tf(x1) + (1− t)f(x0) = y2(x2). This shows that

f(x2) ≤
f(x0)− f(x1)

x0 − x1

(x2 − x1) + f(x1)

Slightly change the form, we will obtain

f(x2)− f(x1)

x2 − x1

≤ f(x0)− f(x1)

x0 − x1

(2)

Combine (1) and (2), we can prove our claim that for all x > x2, f(x) ≥ y1(x) by contradiction.

Since y1(x) is a linear function, and the slope of it is positive, if x → +∞, y1(x) will tend
to infinity. However, when x > x2, f(x) ≥ y1(x), so f(x) also tends to infinity as x → +∞,
which contradicts the fact that f(x) is bounded.

b) if

lim
x→−∞

f(x)

x
= lim

x→+∞

f(x)

x
= 0

for a convex function f : R 7→ R, then f is constant.

Similar to part a), suppose it is not constant, there exists x < y ∈ R, such that f(x) ̸= f(y).
W.O.L.G., we suppose f(x) < f(y). From part a), for any z > y > x,

f(z) ≥ g(z) =
f(y)− f(x)

y − x
(z − y) + f(y)

when z > 0,
f(z)

z
≥ f(y)− f(x)

y − x

z − y

z
+

f(y)

z

Let z → +∞, we have

lim
z→+∞

f(z)

z
≥ lim

z→+∞

[
f(y)− f(x)

y − x

z − y

z
+

f(y)

z

]
=

f(y)− f(x)

y − x
> 0

which contradicts the assumption that limz→+∞[f(x)/x] = 0. Hence, f(x) is a constant.

c) for any convex function f defined on an open interval a < x < +∞ (or —∞ < x < a), the
ratio f(x)

x
tends to a finite limit or to infinity as x tends to infinity in the domain of definition

of the function.
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Since the open interval (a,+∞) and (−∞, a) are symmetric, we only consider one case,
(−∞, a). We need to prove the function defined on (−∞, a− 1]

g(x) =
f(x)− f(a− 1)

x− (a− 1)

is an increasing function. If not, there exists x < y < a− 1, such that

f(x)− f(a− 1)

x− (a− 1)
>

f(y)− f(a− 1)

y − (a− 1)

Slightly change the form of the above equation, we have

f(x)− f(a− 1)

x− (a− 1)
[y − (a− 1)] + f(a− 1) < f(y)

This means (y, f(y)) is above the secant line going through (x, f(x)) and (a − 1, f(a − 1)).
However, since y lies between x and a − 1, y is a convex combination of them, meaning that
(y, f(y)) should be under the secant line of (x, f(x)) and (a − 1, f(a − 1)). This gives a
contradiction, so the function g(x) is increasing.

Since g(x) is increasing, h(x) = g(−x) must be decreasing. If h(x) is bounded, then it will
converge to a finite value as x → +∞; if not, it will diverge to negative infinity as x → +∞.
This means g(x) will converge to a finite value or diverge to infinity as x → −∞.

Question 5.4-7. Show that if f : (a, b) 7→ R is a convex function, then

a) at any point x ∈ (a, b) it has a left-hand derivative f
′

− and a right-hand derivative f
′

+,
defined as

f
′

−(x) = lim
h→−0

f(x+ h)− f(x)

h

f
′

+(x) = lim
h→+0

f(x+ h)− f(x)

h

and f
′

−(x) ≤ f
′

+(x);

We first prove the existence of one-side derivative of arbitrary convex function. If we denote

F (h) =
f(x+ h)− f(x)

h
h ∈ (a− x, 0) ∪ (0, b− x)

Then it suffices to show that one-side limit of F (h) exists at h = 0. To show that, we can
show a sufficient condition for that, that is, F (h) is nondecreasing with respect to h. If F (h) is
nondecreasing on (a−x, 0)∪(0, b−x), F (x) on (a−x, 0) is bounded above by f(y), y ∈ (0, b−x),
so F (x) has left-hand limit at x = 0; F (x) on (0, b−x) is bounded below by f(y), y ∈ (a−x, 0),
so F (x) has right-hand limit at x = 0.

There are three cases we need to consider, namely, h1 < h2 < 0, 0 < h1 < h2, and h1 < 0 < h2.
Here we only prove the most complicated case, i.e., h1 < 0 < h2. First we write the secant
line passing through (x+ h1, f(x+ h1)) and (x+ h2, f(x+ h2)),

y(ξ) =
f(x+ h2)− f(x+ h1)

h2 − h1

(ξ − x− h1) + f(x+ h1)
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Since f(x) is convex, we know that f(x) ≤ y(x), i.e.,

f(x) ≤ f(x+ h2)− f(x+ h1)

h2 − h1

(−h1) + f(x+ h1)

which yields that

f(x+ h2)− f(x)

h2

≥ f(x+ h1)− f(x)

h1

⇐⇒ F (h2) ≥ F (h1)

Hence F (x) is nondecreasing for h1 < 0 < h2. The other two cases are similar, so we conclude
that F (x) is nondecreasing on the whole domain (a− x, 0) ∪ (0, b− x). According to what we
analyze just now, f ′

− and f
′

+(x) exist.

Now we prove f
′

−(x) ≤ f
′

+(x). For small h > 0, we have F (−h) ≤ F (h), i.e.,

f(x− h)− f(x)

−h
≤ f(x+ h)− f(x)

h

Let h → 0+, the above inequality yields f
′

−(x) ≤ f
′

+(x).

b) the inequality f
′

+(x1) ≤ f
′

−(x2) holds for x1, x2 ∈ (a, b) and x1 < x2;

Let x = x1 in F (h), we have

F (h) =
f(x1 + h)− f(x1)

h

For h1 = ξ − x1 and h2 = x2 − x1, ∀ ξ ∈ (x1, x2), we have h1 < h2, thus F (h1) ≤ F (h2), i.e.,

f(ξ)− f(x1)

ξ − x1

≤ f(x2)− f(x1)

x2 − x1

Similarly, let x = x2 in F (h) and consider h1 = x2 − ξ, h2 = x2 − x1, F (−h2) ≤ F (−h1), we
can obtain

f(x2)− f(x1)

x2 − x1

≤ f(x2)− f(ξ)

x2 − ξ

For the first inequality, let ξ → x1+, we have

f
′

+(x1) ≤
f(x2)− f(x1)

x2 − x1

Similarly, let ξ → x2− in the second inequality, we have

f(x2)− f(x1)

x2 − x1

≤ f
′

−(x2)

Hence f
′

+(x1) ≤ f
′

−(x2).

c) the set of cusps of the graph of f(x) (for which f
′

−(x) ̸= f
′

+(x)) is at most countable.

For the cusp x0 of the graph, f ′

−(x0) < f
′

+(x0). Thus we can consider the intervals
(f

′

−(x0), f
′

+(x0)) for all cusps x0. We need to prove for distinct x0, the intervals they form are
mutually disjoint. For all x0, consider any y, z, y < x0 < z, we have

f
′

−(y) ≤ f
′

+(x0) ≤ f
′

−(x0) < f
′

+(x0) ≤ f
′

−(z) < f
′

+(z)
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Hence, as long as x0 are different, the open interval it forms will be disjoint. In this way,
if we pick one r0 ∈ Q in each different interval, they are also distinct. Assign each interval
with a rational number in that interval, collect all assigned rational numbers in a set A, and
denote the set of all cusps-generated intervals as B, then there exists a bijective mapping from
A → B. Since A is at most countable, B is also at most countable. Hence, the set of cusps of
the graph of f(x) is at most countable.

Question 5.4-8. The Legendre transform of a function f : I 7→ R defined on an interval I ⊂ R is
the function

f∗(t) = sup
x∈I

(
tx− f(x)

)
Show that

a) The set I∗ of values of t ∈ R for which f∗(t) ∈ R (that is, f∗(t) ̸= ∞) is either empty or
consists of a single point, or is an interval of the line, and in this last case the function f∗(t)

is convex on I∗.

Denote gx(t) = tx − f(x) for each fixed x ∈ I, then gx(t) is a linear function with effective
domain R, so it is convex on R. This is equivalent to say the epigraph of gx(t) is a convex set
in R2. Therefore, if we take the supremum of all gx(t), the epigraph of the resulting function
f∗(t) should be the intersection of the epigraphs of all gx(t). Since the intersection of convex
sets is always convex, the epigraph (notice that epigraph excludes all points where the function
value is +∞) of f∗(t) is convex, i.e., f∗(t) is convex on R. Then it is easy to see the effective
domain of f∗(t) must be a convex set in R. However, the convex set in R can only be empty
set, singleton, or interval.

Now we only need to show all three cases exist for some specific example. If f(x) = −x2 with
I = R, then f∗(t) = supx∈R(tx+ x2) = +∞ for all t ∈ R, so in this case I∗ = ∅. If f(x) = x

with I = R, then

f∗(t) = sup
x∈R

(tx− x) =

0 if t = 1

+∞ if ̸= 1

which shows that in this case I∗ = {1} is a single point. If f(x) = x2 with I = R, then
f∗(t) = supx∈R(tx− x2) = t2

4
. In this case, I∗ = R. Therefore, all three cases are possible. In

particular, if f∗(t) is finite over an interval, since the epigraph of f∗(t) is convex on R, it is
convex on I∗, so f∗(t) is a convex function restricted on I∗.

b) If f is a convex function, then I∗ ̸= ∅, and for f∗ ∈ C(I∗)

(f∗)∗ = sup
t∈I∗

(
xt− f∗(t)

)
= f(x)

for any x ∈ I. Thus the Legendre transform of a convex function is involutive, (its square is
the identity transform).

If we do not assume f is a closed function on I, then this statement is wrong. Consider the
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following function

f(x) =

x2 x ∈ [−1, 1)

2 x = 1

where I = [−1, 1] and f(x) is obviously convex but not closed. By simple calculation, we can
obtain I∗ = R, and

f∗(t) =


t− 1 t ≥ 2

t2/4 t ∈ (−2, 2)

−t− 1 t ≤ −2

which is a continuous function on I∗. However, if we consider x = 1, then

f∗∗(1) = sup
t∈R

(t− f∗(t)) = 1 ̸= 2 = f(1)

Therefore, we need to add an assumption that f is a closed function on I. Under such a
condition, we can prove the desired result. For any fixed x ∈ I, f(x) ≥ xt−f∗(t) for all t ∈ I∗,
which is true by definition of f∗(t). Therefore, by taking supremum on both sides, it is trivial
that f(x) ≥ f∗∗(x).

Now we need to prove f(x) ≤ f∗∗(x) for all x ∈ I. Suppose not, if we denote the epigraph
of f as epi(f), combined with the fact that f(x) ≥ f∗∗(x), epi(f) ⊊ epi(f∗∗). Note that
(x0, t0) ∈ epi(f∗∗) but (x0, t0) /∈ epi(f). Since f is convex and closed, epi(f) is a convex closed
set, so by separating hyperplane theorem, there exists (a, b) ̸= (0, 0) and a constant c such
that

ax+ bt < c < ax0 + bf∗∗(x0), ∀ (x, t) ∈ epi(f)

where b ≤ 0 because if b > 0, as t → ∞, the LHS is positive infinity but the RHS is a finite
value, which is a contradiction.

If b = 0, then ax < c < ax0 for all (x, t) ∈ epi(f). In this case, choose a ŷ ∈ I∗, and we want
to find a small enough ϵ > 0 such that

(a+ ŷϵ)x− ϵt < c < (a+ ŷϵ)x0 − ϵf∗∗(x0)

Since f∗(ŷ) ≥ xŷ − f(x) ≥ xŷ − t for all (x, t) ∈ epi(f), it suffices to find ϵ such that

ax < c < ax0 − ϵ(f∗∗(x0)− ŷx0 + f∗(ŷ))

This ϵ > 0 exists because f∗∗(x0)− ŷx0 + f∗(ŷ) is a finite constant, which means as long as ϵ

is small enough, the above inequality will hold. Therefore, we find a new pair of a′ = a + ŷϵ

and b′ = −ϵ < 0 such that the resulting hyperplane strictly separates the point (x0, t0) and
epi(f). Then by normalization, we can always take b = −1 and find a corresponding a and c

such that
ax− t < c < ax0 − f∗∗(x0), ∀ (x, t) ∈ epi(f)

Since (x, f(x)) ∈ epi(f), we can obtain ax− f(x) < c < ax0 − f∗∗(x0) for all x ∈ I. Take the
supremum on x over I on both sides, we have f∗(a) ≤ c < ax0 − f∗∗(x0). This contradicts to
the fact that f∗(t) ≥ xt − f∗∗(x) for all t ∈ I∗ and x ∈ I. Therefore, f(x) ≤ f∗∗(x) for all
x ∈ I, and we are done.
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c) The following inequality holds:

xt ≤ f(x) + f∗(t) for x ∈ I and t ∈ I∗

We only consider the case when I∗ is nonempty. In this case, since for all x ∈ I, we have

f∗(t) = sup
x∈I

(
tx− f(x)

)
≥ tx− f(x)

It is easy to see xt ≤ f(x) + f∗(t) for x ∈ I and t ∈ I∗.

d) When f is a convex differentiable function, f∗(t) = txt − f(xt), where xt is determined
from the equation t = f ′(x). Use this relation to obtain a geometric interpretation of the
Legendre transform f∗ and its argument t, showing that the Legendre transform is a function
defined on the set of tangents to the graph of f .

Since f is convex differentiable, ht(x) = tx− f(x) on I is a concave differentiable function. It
is obvious that if ht(x) has a stationary point xt in the interior of I, then this point must be
a global maximizer of ht(x) over interval I. In this case f∗(t) = txt − f(xt) where t = f ′(xt).
This shows Legendre transform is a function defined on the set of tangents to the graph of f .

However, if for some t ∈ I∗, t = f ′(x) has no solution for x ∈ I (e.g., consider f(x) = x2 for
x ∈ I, where I = [−1, 1] and I∗ = R), then we have several cases to consider. Notice that
we only assume f(x) to be differentiable on the interior of I no matter I is open, closed or
half-open half-closed. This means f(x) may be discontinuous at boundary of I. Also, it is
reasonable to assume I has nonempty interior. Denote Idc as interval with end ponts c, d (c < d

can be finite or infinite), then

• When |f(c+)| = |f(d−)| = ∞ (we assume f(−∞) = f(−∞+) and f(∞) = f(∞−)), first
note that it is impossible that f(c+) = f(d−) = −∞, because f(x) is convex, so any
point x ∈ (c, d) satisfies f(x) ≤ −∞, then f(x) is not a real-valued function on I, which
is a contradiction.

Second, if f(c+) = f(d−) = ∞, then we need to consider whether the end points c, d

are fintie or not. If c > −∞ and d < ∞, then f ′(x) → ∞ as x → d− and f ′(x) → −∞
as x → c+. Imagine if f ′(x) is bounded above, fixed x0 ∈ (c, d), for z > x0, by MVT,
f(z) − f(x0) = f ′(ξ)(z − x0). As z → d−, f(z) − f(x0) → ∞, z − x0 → d − x0 > 0,
but d − x0 is bounded, so f ′(ξ) → ∞, which is a contradiction. Similarly, if f ′(x) is
bounded below, we can also obtain such contradiction. By intermediate value property
of f ′(x) (even if f ′(x) is not continuous, this property holds), f ′(x) can attain any value
in R when x ∈ (c, d), so t = f ′(x) always has a solution. If one and only one of c, d is
infinite, WLOG, assume c = −∞ and d < ∞. In this case, f ′(x) → ∞ as x → d−, so
when t is large enough, t = f ′(x) always has a solution. It has no solution only when
f ′(x) is bounded below. However, f ′(x) is decreasing as x → −∞, so f ′(x) converges to
some finite number r as x → −∞. If t < r, then tx − f(x) tends to ∞ as x → −∞, so
such t makes f∗(t) = ∞ and t /∈ I∗; if t > r, t = f ′(x) has a solution by intermediate
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value property of f ′(x); if t = r, then there are two possibilities, either tx− f(x) → ∞ as
x → −∞ or tx − f(x) → C where C is some constant number. If tx − f(x) → ∞, then
such t /∈ I∗; if tx− f(x) → C, then t = f ′(x) has no solution for real-valued x, but since
f∗(t) takes supremum over x, f∗(t) = C = (tx − f(x))

∣∣∣
x=−∞

, so we can regarded it as
t = f ′(x) has a solution xd = −∞. The case when c > −∞ and d = ∞ is similar to the
above one. The last case is when c = −∞ and d = ∞. In this case, to make t = f ′(x)

has no solution, it is possible that f ′(x) are bounded either above, below or both. The
argument is quite similar to the c = −∞ and d < ∞ case, but rather compliacted, so we
omit it here.

Finally, if one of f(c+) and f(d−) is positive infinity and the other is negative infinity,
WLOG, assume f(c+) = ∞ and f(d−) = −∞. In this case f(x) must be decreasing on
(c, d). Also, we can see I can only be of the form (c,∞). If c > −∞, then f ′(x) → −∞ as
x → c+, and f ′(x) → r ≤ 0 as x → ∞ where r is a finite constant. Then if t < r, t = f ′(x)

always has a solution x ∈ (c,∞); if t > r, tx − f(x) → ∞ as x → ∞, so such t /∈ I∗; if
t = r, then either tx − f(x) → ∞ or tx − f(x) → C as x → ∞. If tx − f(x) → ∞, then
t /∈ I∗; if tx− f(x) → C, then f∗(t) = C = (tx− f(x))

∣∣∣
x=∞

. The other case is c = −∞,
in this situation, f ′(x) can converge to some finite number s or f ′(x) → −∞ as x → −∞.
The −∞ case is similar as previous case, so we only consider f ′(x) → s as x → −∞. If
t < s, then tx− f(x) → ∞ as x → −∞, so t /∈ I∗; if t = s, then similarly we have either
tx − f(x) → ∞ or tx − f(x) → C. When t ∈ I∗, f∗(t) = C = (tx − f(x))

∣∣∣
x=−∞

. If
s < t < r, then t = f ′(x) has a solution on (−∞,∞); if t = r and t > r, we can use the
same argument as the case when c > −∞.

• When one and only one of f(c+) and f(d−) is infinite, then WLOG, assume |f(c+)| = ∞
and |f(d−)| < ∞. If f(c+) = −∞ and |f(d−)| < ∞, then f(x) must be strictly increasing
on (c, d). Furthermore, I can only be (−∞, d) or (−∞, d] with d < ∞. Note that f ′(−∞)

converges to a finite number r ≥ 0 and f ′(d−) ≤ ∞. If t ≥ f ′(d−), no matter t = f ′(x)

has solution or not, it is always true that f∗(t) = ht(d−); if f ′(−∞) < t < f ′(d−), then
obviously f ′(x) = t has a solution in (−∞, d); if t < f ′(−∞), then tx − f(x) → ∞ as
x → −∞, so such t /∈ I∗; if t = f ′(−∞), then there are two possibilities, one is that
tx− f(x) → ∞ as x → −∞, but this case shows t /∈ I∗; the other case is that tx− f(x)

converges to fintie number C, then f∗(t) = C = (tx − f(x))
∣∣∣
x=−∞

. In conclusion, if one
and only of f(c+) and f(d−) is infinite, f∗(t) is ht(x) evaluated at boundary or the limit
as x approaches to boundary.

• If f(c+) and f(d−) are both finite, then when c = −∞ and d = ∞, f(x) is a constant
function, so I∗{0} and f∗(0) = −f(x). If one and only one of c, d is infinite, say c = −∞
and d < ∞, then f(x) is increasing, and f(x) → s where s is finite as x → −∞. This also
shows f ′(x) → 0 as x → −∞. Thus, if t < 0, then tx− f(x) → ∞ as x → −∞, so t /∈ I∗;
if t = 0, then f∗(t) = −s; if 0 < t < f ′(d−), then t = f ′(x) has a solution; if t ≥ f ′(d−),
then f∗(t) = td − f(d−) since d is finite. If c > −∞ and d < ∞, then if t ≤ f ′(c+),
then f∗(t) = tc− f(c+); if f ′(c+) < t < f ′(d−), then t = f ′(x) has a solution in (c, d); if
t ≥ f ′(d−), then f∗(t) = td− f(d−).
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e) The Legendre transform of the function f(x) = 1
α
xα for α > 1 and x ≥ 0 is the function

f∗(t) = 1
β
tβ, where t ≥ 0 and 1

α
+ 1

β
= 1. Taking account of c), use this fact to obtain Young’s

inequality, which we already know:

xt ≤ 1

α
xα +

1

β
tβ

Notice that I = R+ = {x |x ≥ 0}. By part d), since on I, f(x) is always differentiable and
convex, we can let t = f ′(x) = xα−1 and obtain that xt = t

1
α−1 . Also note that t ≥ 0, so

f∗(t) = (1− 1
α
)t

α
α−1 . By part c), we have

xt ≤ 1

α
xα +

(
1− 1

α

)
t

α
α−1 =

1

α
xα +

1

β
tβ

if we let β = α
α−1

, i.e., 1
α
+ 1

β
= 1.

f) The Legendre transform of the function f(x) = ex is the function f∗(t) = t ln t
e
, t > 0, and

the inequality
xt ≤ ex + t ln t

e

holds for x ∈ R and t > 0.

Notice that here I = R. By part d), let t = f ′(x) = ex, we can solve xt = ln t where t > 0.
Therefore, f∗(t) = t ln t− t. By part c), we conclude immediately that xt ≤ ex + t ln(t/e) for
all x ∈ R and t > 0.

Question 5.5-1. Using the geometric interpretation of complex numbers

a) explain the inequalities |z1 + z2| ≤ |z1|+ |z2| and |z1 + · · ·+ zn| ≤ |z1|+ · · ·+ |zn|;

The first inequality |z1 + z2| ≤ |z1| + |z2| is just a special case of the second one. There are
several explanation of them. One is that between two points the shortest distance is assumed
by line segment between these two points. Since the addition and norm of complex number
is similar to vector addition and norm, if we treat each complex number as a vector, then we
can translate all vectors such that the head of each vector is connected by the tail of another
vector. Thus, |z1 + · · · + zn| means the length of line segment between the tail of the first
vector and the head of the last vector. |z1|+ · · ·+ |zn| means the length of path from the tail
of the first vector to the head of the last vector along vector z1, . . . , zn.

You can also interpret it in this way: the total length of any n − 1 edges in a n-polygon is
larger than the length of the remaining edge. They are equal if and only if all edges lie in the
same line.

b) exhibit the locus of points in the plane C satisfying the relation |z − 1|+ |z + 1| ≤ 3;

All points satisfying the relation above will lie in or on the ellipse

4x2

9
+

4y2

5
= 1
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where (1, 0) and (−1, 0) are two foci of this ellipse. We first notice that the total distance
between z and fixed points (−1, 0) and (1, 0) is less than or equal to 3. If it is equal to three,
then it lie on the ellipse with foci (1, 0) and (−1, 0); also, we know 2a = 3, so a = 3/2, and
b =

√
5/2. By the property of ellipse, any points with total distance between two foci that is

less than 2a will lie in the interior of ellipse.

c) describe all the nth roots of unity and find their sum;

All the nth roots of unity will satisfy znk = 1, which is given by

zk = exp
(
2kπi

n

)
, k = 0, 1, . . . , n− 1

Their sum is given by
n−1∑
k=0

zk =
n−1∑
k=1

exp
(
2kπi

n

)
=

1(1− zn1 )

1− z1
= 0

d) explain the action of the transformation of the plane C defined by the formula z 7→ z̄.

This transformation just maps z into its symmetric point in plane C with respect to x axis.
This is because z̄ = x− yi while z = x+ yi.

Question 5.5-2. Find the following sums:

a) 1 + q + · · ·+ qn;

This is trivial, because when q ̸= 1,

1 + q + · · ·+ qn =
1− qn+1

1− q

when q = 1, the summation is just n+ 1.

b) 1 + q + · · ·+ qn + · · · for |q| < 1;

Since |q| < 1, we have

1 + q + · · ·+ qn + · · · = lim
n→∞

1− qn+1

1− q
=

1

1− q

This is because for any complex number |q| < 1, we have

lim
n→∞

|qn| = lim
n→∞

|rn||einθ| = 0, and lim
n→∞

|qn| = 0 =⇒ lim
n→∞

qn = 0

c) 1 + eiφ + · · ·+ einφ;

Let q = eiφ, from part a), when eiφ ̸= 1, i.e. φ ̸= 2kπ, k ∈ Z, we have

1 + eiφ + · · ·+ einφ =
1− ei(n+1)φ

1− eiφ

when φ = 2kπ, k ∈ Z, the summation is just n+ 1.
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d) 1 + reiφ + · · ·+ rneinφ;

Let q = reiφ, from part a), when reiφ ̸= 1, we have

1 + reiφ + · · ·+ reinφ =
1− rn+1ei(n+1)φ

1− reiφ

when reiφ = 1, the summation is just n+ 1.

e) 1 + reiφ + · · ·+ rneinφ + · · · for |r| < 1;

Since |r| < 1, we have

1 + reiφ + · · ·+ rneinφ + · · · = lim
n→∞

1− rn+1ei(n+1)φ

1− reiφ
=

1

1− reiφ

f) 1 + r cosφ+ · · ·+ rn cosnφ;

Recall part d), we have

1 + r cosφ+ · · ·+ rn cosnφ = Re
{
1− rn+1ei(n+1)φ

1− reiφ

}
which is

1 + r cosφ+ · · ·+ rn cosnφ =
1− r cosφ− rn+1 cos (n+ 1)φ+ rn+2 cosnφ

1− 2r cosφ+ r2

If r = 1, φ = 2kπ or if r = −1, φ = (2k + 1)π, where k ∈ Z, we have

1 + r cosφ+ · · ·+ rn cosnφ = n+ 1

g) 1 + r cosφ+ · · ·+ rn cosnφ+ · · · for |r| < 1;

Since |r| < 1, cosine function is bounded by 1, we have

1 + r cosφ+ · · ·+ rn cosnφ+ · · · = lim
n→∞

1− r cosφ− rn+1 cos (n+ 1)φ+ rn+2 cosnφ
1− 2r cosφ+ r2

=
1− r cosφ

1− 2r cosφ+ r2

h) 1 + r sinφ+ · · ·+ rn sinnφ;

Recall part d), we have

1 + r sinφ+ · · ·+ rn sinnφ = 1 + Im
{
1− rn+1ei(n+1)φ

1− reiφ

}
which is

1 + r sinφ+ · · ·+ rn sinnφ = 1 +
r sinφ− rn+1 sin (n+ 1)φ+ rn+2 sinnφ

1− 2r cosφ+ r2

46



If r = 1, φ = 2kπ or if r = −1, φ = (2k + 1)π, where k ∈ Z, we have

1 + r sinφ+ · · ·+ rn sinnφ = 1

i) 1 + r sinφ+ · · ·+ rn sinnφ+ · · · for |r| < 1.

Since |r| < 1, sine function is bounded by 1, we have

1 + r sinφ+ · · ·+ rn sinnφ+ · · · = lim
n→∞

(
1 +

r sinφ− rn+1 sin (n+ 1)φ+ rn+2 sinnφ

1− 2r cosφ+ r2

)
= 1 +

r sinφ

1− 2r cosφ+ r2

Question 5.5-3. Find the modulus and argument of the complex number lim
n→∞

(
1 + z

n

)n and verify
that this number is ez.

The modulus (which is a continuous function of z) of it is found by

lim
n→∞

∣∣∣(1 + x

n
+

y

n
i
)n∣∣∣ = lim

n→∞

∣∣∣1 + x

n
+

y

n
i
∣∣∣n

= lim
n→∞

(
1 +

2x

n
+

x2 + y2

n2

)n/2

= exp
{

lim
n→∞

n

2
ln
(
1 +

2x

n
+

x2 + y2

n2

)}
= exp

{
lim
n→∞

n

2

(
2x

n
+O

(
1

n2

))}
= ex

The argument (which is also a continuous function of z) of it is found by

lim
n→∞

arg
(
1 +

x

n
+

y

n
i
)n

= lim
n→∞

n arg
(
1 +

x

n
+

y

n
i
)

= lim
n→∞

n arctan
(

y

n+ x

)
= lim

n→∞
n

(
y

n+ x
+O

(
1

n3

))
= y

Hence, we have
lim
n→∞

(
1 +

z

n

)n
= exeiy = ex+iy = ez

Question 5.5-4.

a) Show that the equation ew = z in w has the solution w = ln |z| + iArg z. It is natural to
regard w as the natural logarithm of z. Thus w = Ln z is not a functional relation, since Arg z

is multi-valued.
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Let w = x+ yi and z = a+ bi, then we have

ex+yi = ex(cos y + i sin y) = ex cos y + iex sin y = a+ bi

Thus, we have ex cos y = a and ex sin y = b. Solve x, y in terms of a, b, we have

ex =
√
x2 + y2 = |z|, tan y =

b

a

Hence, x = ln |z|, and y = Arg z, so w = ln |z|+ iArg z. Here Arg z is multi-valued.

b) Find Ln 1 and Ln i.

By part a), we have

Ln 1 = ln |1|+ iArg 1 = 0 + 2kπi = 2kπi, k ∈ Z

Ln i = ln |i|+ iArg i = 0 +
(π
2
+ 2kπ

)
i =

4k + 1

2
πi, k ∈ Z

c) Set zα = eαLn z. Find 1π and ii.

According to the formula and what we calculate in part b), we have

1π = eπLn 1 = e2kπ
2i, k ∈ Z

which means 1π is multi-valued (actually since π is irrational, it has infinitely many value;
recall what we proved in Question 3.1-3, we can further show that all of its value are dense on
unit circle).

ii = eiLn i = e−
4k+1

2 π, k ∈ Z

Here ii also has infinitely many value, but they are not dense on real line and have one
accumulation point 0.

d) Using the representation w = sin z = 1
2i
(eiz − e−iz), obtain an expression for z = arcsinw.

Since w = 1
2i
(eiz − e−iz), we can solve eiz in terms of w,

eiz = iw + (1− w2)1/2

Hence, we have
z = arcsinw = −iLn

[
iw + (1− w2)1/2

]

e) Are there points in C where | sin z| = 2?

We can just find some points z such that sin z = 2, then its modulus must be 2. Use formula
in part d), we have

z = arcsin 2 = −iLn
[
2i+ (−3)1/2

]
Since (−3)1/2 = ±

√
3i, we have

z = −iLn
[(

2±
√
3
)
i
]
=

π

2
+ 2kπ − i ln

(
2±

√
3
)
, k ∈ Z

Hence there exist points in C such that | sin z| = 2.
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Question 5.5-5.

a) Investigate whether the function f(z) = 1
1+z2 is continuous at all points of the plane C.

Since the function 1
w

has only one discontinuous point w = 0, f(z) can be discontinuous only
at w = 1 + z2 = 0, which yields z = ±i. Thus, f(z) is continuous at every point in C\{±i}.

b) Expand the function f(z) = 1
1+z2 in a power series around z0 = 0 and find its radius of

convergence.

The Taylor expansion at z0 = 0 is

1

1 + z2
=

1

1− (−z2)
= 1− z2 + z4 − z6 + · · · =

∞∑
i=0

(−1)iz2i

Apply root test, the convergence radius is

R =
1

lim
n→∞

|cn|1/n
= 1, where cn is 1, 0,−1, 0, 1, 0,−1, . . .

Hence, the radius of convergence of f(z) = 1
1+z2 is 1, it converges when |z| < 1.

c) Solve parts a) and b) for the function 1
1+λ2z2 , where λ ∈ R is a parameter.

Similar to part a), since the function 1
w

has only one discontinuous point w = 0, f(z) can be
discontinuous only at w = 1 + λ2z2 = 0, which yields z = ±λ−1i. Thus, f(z) is continuous at
every point in C\{±λ−1i}. If λ = 0, then f(z) is continuous everywhere in C.

Similar to part b), the Taylor expansion at z0 = 0 is

1

1 + λ2z2
=

1

1− (−λ2z2)
= 1− λ2z2 + λ4z4 − λ6z6 + · · · =

∞∑
i=0

(−1)i(λz)2i

Apply root test, the convergence radius (if λ ̸= 0) is

R =
1

lim
n→∞

|cn|1/n
=

1

|λ|
, where cn is 1, 0,−λ2, 0, λ4, 0,−λ6, 0, . . .

Hence, the radius of convergence of f(z) = 1
1+λz2 is |λ|−1, it converges when |z| < 1

|λ| . If λ = 0,
then the radius of convergence of f(z) is +∞.

Can you make a conjecture as to how the radius of convergence is determined by the relative
location of certain points in the plane C? Could this relation have been understood on the
basis of the real line alone, that is, by expanding the function 1

1+λ2x2 , where λ ∈ R and x ∈ R?

The radius of convergence is equal to the distance between point you expand the function
and the closest singular point (singularity). If we restrict it in real line, this may not be
true, because 1

1+x2 is differentiable in R and has no singularity, but it still has a radius of
convergence, that is, 1. Thus, if we want to use the distance to the closest singularity to
determine the radius of convergence, we need to consider the singularity of the function in C.

Question 5.5-6.
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a) Investigate whether the Cauchy function

f(z) =

 e−1/z2

z ̸= 0

0 z = 0

is continuous at z = 0.

If z = x+ iy, and we let y = 0, then as z → 0, we have

lim
z→0

e−1/z2

= lim
x→0

e−1/x2

= 0 = f(0)

But if we let x = 0, and as z → 0, we have

lim
z→0

e−1/z2

= lim
y→0

e1/y
2

= +∞ ̸= f(0)

Hence f(z) is not continuous at z = 0.

b) Is the restriction f
∣∣∣
R

of the function f in a) to the real line continuous?

It is continuous, because as we proved in a), the function

f(x) =

 e−1/x2

x ̸= 0

0 x = 0

has limit
lim
x→0

e−1/x2

= 0 = f(0)

So it is continuous at x = 0, and the continuity of other points is easy to see.

c) Does the Taylor series of the function f in a) exist at the point z0 = 0?

No, because z0 = 0 is essential singularity point, or you can say it is not continuous, so not
differentiable. Then its Taylor series of course does not exist.

d) Are there functions analytic at a point z0 ∈ C whose Taylor series converge only at the
point z0?

If a function is analytic at a point z0, then it must be analytic in a neighborhood of z0, but
analytic in a neighborhood means its Taylor series converges in this neighborhood. Thus, the
Taylor series of such function is impossible to converge at only one point.

e) Invent a power series
∞∑

n=0

cn(z − z0)
n that converges only at the one point z0.

Consider the power series
∞∑

n=0

n!(z − z0)
n

Check its radius of convergence by root test,

R =
1

lim
n→∞

|cn|1/n
=

1

lim
n→∞

(n!)1/n
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To compute the limit above, we consider

lim
n→∞

(n!)1/n = lim
n→∞

exp
{
1

n

n∑
k=1

ln k

}

= lim
n→∞

exp
{

lnn+
1

n

n∑
k=1

ln k

n

}

= lim
n→∞

n exp
{
1

n

n∑
k=1

ln k

n

}

= lim
n→∞

n exp
{ˆ 1

0

lnx dx

}
= lim

n→∞
ne−1 → +∞

Hence,
R =

1

lim
n→∞

(n!)1/n
= 0

But when z = z0, the series is constant zero, so it is convergent. Thus, z0 is the only point
where this series converges, because if another convergent point exists, convergence radius
should be no less than the distance between these two points.

Question 5.5-7.

a) Making the formal substitution z−a = (z−z0)+(z0−a) in the power series
∞∑

n=0

An(z−a)n

and gathering like terms, obtain a series
∞∑

n=0

Cn(z − z0)
n and expressions for its coefficients in

terms of Ak and (z0 − a)k, k = 0, 1, . . ..

Substitute z − a with (z − z0) + (z0 − a) and gather like terms, we obtain a new series (not
necessarily equal to the original one, and not even converges; this is because rearrange an
infinite series may change the convergence of the original one). Using binomial expansion, the
result is as follows

∞∑
n=0

Cn(z − z0)
n =

∞∑
n=0

[
∞∑

k=n

Ak

(
k

n

)
(z0 − a)k−n

]
(z − z0)

n

where
Cn =

∞∑
k=n

Ak

(
k

n

)
(z0 − a)k−n

b) Verify that if the original series converges in the disk |z − a| < R and |z0 − a| = r < R,
then the series defining Cn, n = 0, 1, . . ., converge absolutely and the series

∞∑
n=0

Cn(z − z0)
n

converges for |z − z0| < R− r.

Since the radius of convergence of the original series is R, we have

1

lim
n→∞

|An|1/n
= R
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If we can prove
1

lim
k→∞

∣∣Ak

(
k
n

)∣∣1/k = R

Then the series
∞∑

k=n

Ak

(
k

n

)
(z − a)k−n

will be convergent for |z − a| < R, but since |z0 − a| = r < R, Cn will be convergent.

Notice that

lim
k→∞

(
k

n

)1/k

= lim
k→∞

[
k(k − 1) · · · (k − n+ 1)

n!

]1/k
Since for any fixed number a, the limit of (k − a)1/k is 1, and there are only finitely many
terms in numerator, thus

lim
k→∞

(
k

n

)1/k

= lim
k→∞

k1/k(k − 1)1/k · · · (k − n+ 1)1/k

(n!)1/k
= 1

Also, you could verify (by definition) that

lim
k→∞

∣∣∣∣Ak

(
k

n

)∣∣∣∣1/k = lim
k→∞

(
k

n

)1/k

lim
k→∞

|Ak|1/k

Hence, we proved that
1

lim
k→∞

∣∣Ak

(
k
n

)∣∣1/k = R

and the convergence (absolutely, because the original series converges absolutely within radius
R) of Cn follows immediately.

To prove the second part, we denote
∞∑

n=0

[
∞∑

k=n

Ak

(
k

n

)
(z0 − a)k−n

]
(z − z0)

n =
∞∑

n=0

∞∑
k=n

Bkn

∞∑
k=0

k∑
n=0

Ak

(
k

n

)
(z0 − a)k−n(z − z0)

n =
∞∑
k=0

k∑
n=0

B′
kn

However, we have
∞∑
k=0

k∑
n=0

B′
kn =

∞∑
k=0

Ak[(z − z0) + (z0 − a)]n

The right hand side converges absolutely if |z− z0|+ |z0−a| < R, i.e., |z− z0| < R− r. Hence,
if |z− z0| < R− r, we can interchange the order of the double summation of

∑∞
k=0

∑k
n=0 B

′
kn,

which is (Theorem 8.3 in Rudin’s book)

∞∑
k=0

k∑
n=0

Ak

(
k

n

)
(z0 − a)k−n(z − z0)

n =
∞∑

n=0

[
∞∑

k=n

Ak

(
k

n

)
(z0 − a)k−n

]
(z − z0)

n

This means if |z− z0| < R− r, the right hand side is equal to left hand side, but left hand side
is convergent, so the right hand side is also convergent, and the proof is finished.
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c) Show that if f(z) =
∞∑

n=0

An(z − a)n in the disk |z − a| < R and |z0 − a| < R, then in the

disk |z − z0| < R− |z0 − a| the function f admits the representation f(z) =
∞∑

n=0

Cn(z − z0)
n.

In part b), we have proved this new series
∑∞

n=0

∑∞
k=n Bkn converges and will converge

to the same value as
∑∞

k=0

∑k
n=0 B

′
kn, but

∑∞
k=0

∑k
n=0 B

′
kn is just

∑∞
n=0 An(z − a)n and∑∞

n=0

∑∞
k=n Bkn is just

∑∞
n=0 Cn(z − z0)

n. In the disk |z − z0| < R − |z0 − a|, we must
have

f(z) =
∞∑

n=0

An(z − a)n =
∞∑

n=0

Cn(z − z0)
n

Question 5.5-8. Verify that

a) as the point z ∈ C traverses the circle |z| = r > 1 the point w = z+z−1 traverses an ellipse
with center at zero and foci at ±2;

Since |z| = r > 1, we set z = reiθ with r > 1. Then we have

w = reiθ +
1

r
e−iθ =

(
r +

1

r

)
cos θ +

(
r − 1

r

)
i sin θ

Hence point w has locus (u, v) with

u =

(
r +

1

r

)
cos θ, v =

(
r − 1

r

)
sin θ

Since r > 1 is fixed, we have

u2

(r + 1/r)2
+

v2

(r − 1/r)2
= 1

which is an ellipse with center at zero and foci at ±2, because

c2 = a2 − b2 =

(
r +

1

r

)2

−
(
r − 1

r

)2

= 4 =⇒ c = 2

b) when a complex number is squared (more precisely, under the mapping w 7→ w2), such an
ellipse maps to an ellipse with a focus at 0, traversed twice.

From part a), we have

w2 = z2 +
1

z2
+ 2 =

(
r2 +

1

r2

)
cos 2θ + 2 +

(
r2 − 1

r2

)
i sin 2θ

Hence point w has locus (u, v) with

u =

(
r2 +

1

r2

)
cos 2θ + 2, v =

(
r2 − 1

r2

)
sin 2θ

Since r > 1 is fixed, we have

(u− 2)2

(r2 + 1/r2)2
+

v2

(r2 − 1/r2)2
= 1
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This is also an ellipse, but translated along positive direction of x-axis by 2 units. Thus, the
original focus (−2, 0) moves to (0, 0) after the translation. It traversed twice because for z, its
argument is θ ∈ [0, 2π), but here w2 have argument 2θ ∈ [0, 4π).

c) under squaring of complex numbers, any ellipse with center at zero maps to an ellipse with
a focus at 0.

Let z = a cos θ + ib sin θ, then w = z2 = a2 cos2 θ − b2 sin2 θ + 2abi sin θ cos θ. Hence point w

has locus (u, v) with

u = a2 cos2 θ − b2 sin2 θ =

(
a2 − 1

2
c2
)

cos 2θ + 1

2
c2, v = ab sin 2θ

Thus we have
(x− (1/2)c2)2

(a2 − (1/2)c2)2
+

y2

a2b2
= 1

We can regard this ellipse as a translation of another ellipse E1 along x-axis by (1/2)c2 in the
positive direction, i.e.,

x2

(a2 − (1/2)c2)2
+

y2

a2b2
= 1

Note that one of the focus of E1 is given by

(c∗)2 = (a2 − (1/2)c2)2 − a2b2 = (a2 − (1/2)c2)2 − a2(a2 − c2) =
1

4
c4 =⇒ c∗ =

1

2
c2

Hence, after translation, this focus (−(1/2)c2, 0) will move to (0, 0).
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