
MAT2006: Elementary Real Analysis
Homework 5

W. Lee.

Due date: Today

Question 7.1-1. The distance d(E1, E2) between the sets E1, E2 ⊂ Rm is the quantity

d(E1, E2) := inf
x1∈E1,x2∈E2

d(x1, x2)

Give an example of closed sets E1 and E2 in Rm having no points in common for which d(E1, E2) = 0.

Construct E1, E2 as follows,

E1 = { #»x ∈ Rm | #»x = (
√
n1 + π, 2, 2, . . . , 2), n1 ∈ N},

E2 = { #»x ∈ Rm | #»x = (
√
n2, 2, 2, . . . , 2), n2 ∈ N}

Since E1 and E2 are countable sets, they have no limit point, hence they are closed. They cannot
have common point because for all n1, n2,

√
n1 + π ̸= √

n2. The distance of them are truly zero,
because

inf
x1∈E1,x2∈E2

d(x1, x2) = inf
n1,n2∈N

∣∣√n1 + π −
√
n2

∣∣ ≤ inf
n1,n2∈N

|n1 − n2|+ π√
n1 + π +

√
n2

= 0

Therefore, such E1, E2 are the sets that we want to find.

Question 7.1-2. Show that

a) the closure E in Rm of any set E ⊂ Rm is a closed set in Rm;

We tend to prove the complement of E, namely E
c, is open. Hence, we only need to prove any

points of Ec are interior points. However, if x ∈ E
c, then x /∈ E. Since E is a closed set, so

x is not the limit point of E, and must have a neighborhood B(x) which has no intersection
with E. Since B(x) has no intersection with E, it is contained in E

c. Notice that x is chosen
arbitrarily, which means every x ∈ E

c is an interior point of Ec. This shows that E
c is open,

so E is closed.

b) the set ∂E of boundary points of any set E ⊂ Rm is a closed set;

Boundary point is the point whose arbitrary neighborhood has intersection with both E and
Ec. Denote Int(E;Ec) as the complement of ∂E. For any x /∈ ∂E, x has at least one
neighborhood which lies either entirely in E or Ec. For such neighborhood, let’s denote it
as B(x). For any y ∈ B(x), it is an interior point of B(x), hence has a neighborhood with
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no intersection with either E or Ec. Thus y ∈ Int(E;Ec) for all y ∈ B(x). This shows that
B(x) ⊂ Int(E;Ec), which implies x is an interior point of Int(E;Ec). Since x is arbitrarily
chosen, Int(E;Ec) is open, and its complement ∂E is closed.

c) if G is an open set in Rm and F is closed in Rm, then G\F is open in Rm.

Since G\F means G ∩ F c, and F c is open in Rm, we ought to show that the intersection of
two open set in Rm is still open. This is trivial, denote K = G ∩ F c, for any x ∈ K, x must
be in both G and F c. In this way, there exists δ1 > 0, δ2 > 0 such that Bδ1(x) ⊂ G and
Bδ2(x) ⊂ F c. Take δ = min{δ1, δ2}, then Bδ(x) ⊂ Bδ1(x) ⊂ G and Bδ(x) ⊂ Bδ2(x) ⊂ F c.
Hence, Bδ(x) ⊂ K, so x is an interior point of K. Since it is chosen arbitrarily in K, K is an
open set, and the proof is finished.

Question 7.1-3. Show that if K1 ⊃ K2 ⊃ · · ·Kn ⊃ · · · is a sequence of nested nonempty compact
sets, then

∩∞
i=1 Ki ̸= ∅.

First we denote Gi = Ki
c, where Gi is open because Ki is compact and hence closed. Suppose∩∞

i=1 Ki = ∅, then for all points x ∈ K1, there exists some i such that x /∈ Ki, hence x ∈ Gi. This
means {Gi}∞i=1 is an open cover of K1. Since K1 is compact, there exists a finite subcover of it in
{Gi}∞i=1. Denote it as {Gpj

}nj=1 where pj is the index of G. Hence,

K1 ⊂
n∪

j=1

Gpj
=⇒ K1 ∩Kp1

∩ · · · ∩Kpn
= ∅

But this is impossible, because if we denote α = max{1, p1, p2, . . . , pn}, then

K1 ∩Kp1
∩ · · · ∩Kpn

= Kα ̸= ∅

Therefore, contradiction shows that
∩∞

i=1 Ki ̸= ∅

Question 7.1-4.

a) In the space Rk a two-dimensional sphere S2 and a circle S1 are situated so that the
distance from any point of the sphere to any point of the circle is the same. Is this possible?

Yes, this is possible. Consider in the space R5, a sphere centered at origin (x1, x2, x3, x4, x5) =

(0, 0, 0, 0, 0), with radius R, such that x2
1 + x2

2 + x2
3 = R2, x4 = x5 = 0. Also consider a circle

centered at origin, with radius r, such that x2
4+x2

5 = r2, x1 = x2 = x3 = 0. Thus, for arbitrary
point on sphere S2, it can be expressed as (a, b, c, 0, 0); for arbitrary point on circle S1, it can
be expressed as (0, 0, 0, d, e). The distance between them is

d =
√
(a− 0)2 + (b− 0)2 + (c− 0)2 + (0− d)2 + (0− e)2 =

√
R2 + r2

which is a constant. Thus, such situation is possible at least in Euclidean space with dimension
larger than or equal to 5.

b) Consider problem a) for sphere Sm, Sn of arbitrary dimension in Rk. Under what relation
m,n, and k is this situation possible?
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Notice that here the sphere is defined in the generalized manner. Therefore, the sphere Sn is
defined as

Sn =
{
x ∈ Rn+1 : ∥x∥ = r

}
From part a), we know that at least when k ≥ m+ n+2, the situation can be possible. From
the definition, we know k is at least 1+max{m,n}. W.L.O.G., let’s assume m > n and Sm is
centered at origin with xm+2 = · · · = xk = 0, then k ≥ m+ 1. Consider the points satisfying
the distance between each of them and all points on Sm are all equal, they must satisfy the
expression (0, 0, . . . , 0︸ ︷︷ ︸

m+1

, xm+2, . . . , xk) (Check this is really true). All such points constitute a

Rk−m−1 space. Since we need all points on Sn lies in Rk−m−1 space, k − m − 1 ≥ n + 1.
This shows that k ≥ m + n + 2 is necessary. Hence the necessary and sufficient condition is
k ≥ m+ n+ 2.

Question 7.2-1. Let f ∈ C(Rm;R). Show that

a) the set E1 = {x ∈ Rm | f(x) < c} is open in Rm;

We tend to prove every point in E1 is interior point. Take arbitrary x0 ∈ E1, we need to prove
Bδ(x0) ⊂ E1 for some δ > 0. Since f is continuous, then for any ϵ > 0, there exists δ > 0,
such that |f(x)− f(x0)| < ϵ. Take ϵ = [c− f(x0)]/2, since f(x0) < c, ϵ > 0. Then there exists
δ > 0, such that for x ∈ Bδ(x0),

f(x) < f(x0) + ϵ =
c+ f(x0)

2
<

c+ c

2
= c

Hence Bδ(x0) ⊂ E1, and we finish our proof.

b) the set E2 = {x ∈ Rm | f(x) ≤ c} is closed in Rm;

We tend to prove E2
c = {x ∈ Rm | f(x) > c} is open, then E2 must be closed. The method

to prove E2
c is open is the same as part a). Take arbitrary x0 ∈ E2

c, we need to prove
Bδ(x0) ⊂ E2

c for some δ > 0. Since f is continuous, then for any ϵ > 0, there exists δ > 0,
such that |f(x)− f(x0)| < ϵ. Take ϵ = [f(x0)− c]/2, since f(x0) > c, ϵ > 0. Then there exists
δ > 0, such that for x ∈ Bδ(x0),

f(x) > f(x0)− ϵ =
c+ f(x0)

2
>

c+ c

2
= c

Hence Bδ(x0) ⊂ E2
c, and we finish our proof.

c) the set E3 = {x ∈ Rm | f(x) = c} is closed in Rm;

Notice that the complement of E3, namely E3
c = {x ∈ Rm | f(x) ̸= c}, is the union of E1 and

E2
c. Hence, we only need to prove the union of two open sets is still open, but this is too

easy. For arbitrary point in E3
c, it is either in E1 or E2

c. Hence it is an interior point of E1

or E2
c. In this way, it has a neighborhood contained in E1 or E2

c, thus in E3
c. This shows

E3
c is open, and its complement E3 is closed.
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d) if f(x) → +∞ as x → +∞, then E2 and E3 are compact in Rm;

We have proved that E2 and E3 are closed. Thus we only need to prove they are bounded.
Since E3 ⊂ E2, we only need to prove that E2 is bounded. Suppose it is not bounded, then
by definition, we have

∀ M > 0, M ∈ N, ∃xM ∈ E2, s.t. ∥xM∥ ≥ M

Since f(x) → ∞ as x → ∞, for any fixed c, there exists N such that f(xM ) > c if M ≥ N .
This means that xM is not in E2, which is a contradiction. Thus, E2 is bounded, and E3 is
automatically bounded. Therefore, E2, E3 are both compact.

e) for any f : Rm 7→ R the set E4 = {x ∈ Rm |ω(f ;x) ≥ ϵ} is closed in Rm.

We tend to prove E4
c = {x ∈ Rm |ω(f ;x) < ϵ} is open. For arbitrary point x ∈ E4

c, we
need to prove it is an interior point, i.e., for some neighborhood of x, all points y in it satisfy
ω(f ; y) < ϵ. It suffices to show at least one of its neighborhood satisfies ω(f ;Bδ(x)) < ϵ (then
all point in it will satisfy ω(f ; y) < ϵ).

This is trivial, because ω(f ;x) = limδ→0+ ω(f ;Bδ(x)), and if for any δ > 0, ω(f ;Bδ(x)) ≥ ϵ,
then the limit ω(f ;x) must be no less than ϵ, which contradicts the fact that ω(f ;x) < ϵ.
Hence, E4

c is really an open set, which means E4 is closed.

Question 7.2-2. Show that the mapping f : Rm 7→ Rn is continuous if and only if the preimage of
every open set in Rn is an open set in Rm.

Suppose f is continuous on Rm and V is an open set in Rn. Denote the preimage of V as W .
We need to show every point of W is an interior point of W . Suppose p ∈ Rm and f(p) ∈ Rn. Since
V is open, there exists ϵ > 0 such that Bϵ(f(p)) ⊂ V . Since f is continuous at p, there exists δ > 0

such that d(f(x), f(p)) < ϵ for all x ∈ Bδ(p). Then all points in Bδ(p) are mapped into Bϵ(f(p)),
thus in V . Hence Bδ(p) ⊂ W . Again, p is arbitrarily chosen in Rm, every point in W is an interior
point and the proof is completed.

Conversely, suppose W is open in Rm for every open set V in Rn. Fix p ∈ Rm and ϵ > 0, let
V be Bϵ(f(p)). Since V is open, W is also open. Thus, there exists δ > 0 such that Bδ(p) ⊂ W .
For all x ∈ Bδ(p) (actually for all x ∈ W ), f(x) ∈ V = Bϵ(f(p)). This is just saying for all ϵ > 0,
there exists δ > 0, such that for all x ∈ Bδ(p), we have d(f(x), f(p)) < ϵ, thus f(x) is continuous at
p. Since p is taken arbitrarily, f is continuous on Rm.
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The following question is not required, since connectedness wasn’t taught in
MAT2006 but MAT1003.

Question 7.2-3. Show that

a) the image f(E) of a connected set E ⊂ Rm under a continuous mapping f : E 7→ Rn is a
connected set;

If we regard all “connected” here as generally defined conception, then the proof
is as follows.

Suppose f(E) is not connected, then f(E) = A ∪B, where A and B are nonempty separated
subsets of E. Recall that A and B is separated if and only if A ∩ B = B ∩ A = ∅. Denote
G = f−1(A) and H = f−1(B). Then E = G∪H, and neither G nor H is empty (A and B are
nonempty).

Since A ⊂ A, G = f−1(A) ⊂ f−1(A). Don’t forget that the preimage of any closed set under
continuous function is still closed, so f−1(A) is closed. Therefore, G ⊂ f−1(A). It follows that
f(G) ⊂ A. Remember we defined f(H) = B, and A ∩ B is empty, so G ∩H must be empty
(otherwise their image must have common point). Similarly, you can show that H ∩G by the
exactly same procedure (since G and H are equivalent to each other). This shows that G and
H are nonempty separated sets, meaning that E is not connected and yielding a contradiction.
Therefore, f(E) is connected.

If we regard all “connected” here as “pathwise-connected” as defined in Zorich’s
textbook, then the proof is as follows.

Since E is pathwise-connected, for arbitrary two points x, y in E, there exists a path (contin-
uous function) Γ : [a, b] 7→ E such that Γ(a) = x,Γ(b) = y. Since f is continuous on E, the
restriction of it (denoted as g) on Γ([a, b]) is still continuous. Then we can construct a function
h : [a, b] 7→ f(E), defined by h = g ◦ Γ, which is still continuous on [a, b]. For any two points
c, d in f(E), we can find their preimage in E, denoted as c0, d0, and g(c0) = c, g(d0) = d. Then
we can find such h that h(a) = g(c0) = c and h(b) = g(d0) = d. This means h is a path from
c to d, which lies in f(E). Hence, f(E) is pathwise-connected.

b) the union of connected sets having a point in common is a connected set;

If we regard all “connected” here as generally defined conception, then the proof
is as follows.

Denote a collection of connected sets as {Aα}I , where I is the index set. Denote the common
point p ∈

∩
α∈I Aα, and Y =

∪
α∈I Aα. Suppose Y is not connected, then Y = C ∪D, where

C,D is nonempty separated sets. Since p must be either in C or D, W.O.L.G., suppose p ∈ C.
Since Aα is connected, it must lie in either C or D. However, p ∈ Aα and p ∈ C, so Aα

lie in C for all α ∈ I. This yields that
∪

α∈I Aα = C, showing that D is empty, which is a
contradiction. So Y must be connected.
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If we regard all “connected” here as “pathwise-connected” as defined in Zorich’s
textbook, then the proof is as follows.

First we denote the common point as p, and the collection of connected sets as Y = {Aα}I .
Choose arbitrary two points in Y , then suppose these two points x1, x2 are in Aα1

and Aα2
.

If α1 = α2, it’s trivial that there exists a path connecting them. If α1 ̸= α2, then there
exists a path Γ1 : [a, b] 7→ Y , such that Γ(a) = x1,Γ(b) = p. There also exists another path
Γ2 : [b, c] 7→ Y such that Γ(b) = p,Γ(c) = x2. By pasting lemma (or gluing lemma), since [a, b]

and [b, c] are closed, Γ1,Γ2 are continuous, and Γ1(x) = Γ2(x) for every x ∈ [a, b] ∩ [b, c], we
obtain the combination of Γ1,Γ2, denoted as Γ : [a, c] 7→ Y , which is continuous and defined
by setting Γ(x) = Γ1(x) if x ∈ [a, b], and Γ(x) = Γ2(x) if x ∈ [b, c]. Hence Γ is a path from x1

to x2 in Y , meaning that Y is also pathwise-connected.

c) the hemisphere (x1)2 + · · ·+ (xm)2 = 1, xm ≥ 0, is a connected set;

Here it suffices to show that this set is pathwise-connected set, because pathwise-connected
set must be connected (you can prove it easily). We first prove A\{0}, where
A = {(x1, . . . , xm) |xm ≥ 0}, is pathwise connected. We take arbitrary two points in A\{0},
and connect them with a line, then there are two cases, one is this line going through 0, the
other is this line not going through 0. For the second case, this line is a path in A\{0}; for the
first case, we pick another point in A\{0} that is not on the line, link the two points with this
new point, then the broken line is a path in A\{0}. Hence, A\{0} is a pathwise-connected set.

Construct a mapping f : A\{0} 7→ B, where B is the hemisphere in the question, and f( #»x ) =
#»x/∥ #»x∥. One can check this function f is surjective and continuous, then by part a), since the
preimage is pathwise-connected, the image B is also pathwise-connected. Since the surjectivity
is too trivial, we only prove the continuity of f . For arbitrary ϵ > 0, for any fixed x0 in the
domain, take δ = ∥ #»x0∥ϵ/2, for any ∥ #»x − #»x0∥ < δ, we have

f( #»x )− f( #»x0) =
∥ #»x0∥ #»x − #»x0∥ #»x∥

∥ #»x∥∥ #»x0∥

=
∥ #»x0∥ #»x − ∥ #»x∥ #»x + ∥ #»x∥ #»x − #»x0∥ #»x∥

∥ #»x∥∥ #»x0∥

=
(∥ #»x0∥ − ∥ #»x∥) #»x + ∥ #»x∥( #»x − #»x0)

∥ #»x∥∥ #»x0∥

Thus, we have

∥f( #»x )− f( #»x0)∥ ≤

∥∥∥∥ #»x0∥ − ∥ #»x∥
∥∥∥∥ #»x∥+ ∥ #»x∥

∥∥∥ #»x − #»x0

∥∥∥
∥ #»x∥∥ #»x0∥

≤ ∥ #»x − #»x0∥∥ #»x∥+ ∥ #»x∥∥ #»x − #»x0∥
∥ #»x∥∥ #»x0∥

=
2∥ #»x − #»x0∥

∥ #»x0∥
< ϵ

Hence, f is continuous (not uniformly) at every point in domain A\{0}.

d) the sphere (x1)2 + · · ·+ (xm)2 = 1, is a connected set;
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Denote the sphere (x1)2+ · · ·+(xm)2 = 1 as A, the hemisphere (x1)2+ · · ·+(xm)2 = 1, xm ≥ 0,
as B, and the hemisphere (x1)2 + · · · + (xm)2 = 1, xm ≤ 0 as C. Since we have proved B is
pathwise-connected in part c), a similar proof will show that C is also pathwise-connected. B

and C obviously have a common point (actually infinitely many common points), and by part
b), the union of B and C is pathwise-connected. Since A = B ∪ C, A is pathwise-connected
(thus also connected).

e) if E ⊂ R and E is connected, then E is an interval in R (that is, a closed interval, a
half-open interval, an open interval, or the entire real line);

Here it suffices to show above statement is true under the assumption that E is only connected
(not necessarily pathwise-connected). We only need to prove that if E is connected set, then
it satisfies that if x, y ∈ E, then any z between x, y is in E. If x = y, this is trivial. If
x ̸= y, W.O.L.G., we assume x < y, if there exists some z ∈ (x, y), but z ∈ E, we can write
E = Az ∪Bz, where

Az = E ∩ (−∞, z), Bz = E ∩ (z,∞)

Since x ∈ Az, y ∈ Bz, A,B are nonempty. Since Az ⊂ (−∞, z), Bz ⊂ (z,+∞), they are
separated. Hence E is not connected, which is a contradiction. Thus such z does not exist.

Now we can see if E is bounded above and below, then we have three cases. If its supremum and
infimum lie in E, then E = [infE, supE]; if one of them lies out of E, then E = (infE, supE]

or E = [infE, supE); if both of them lie out of E, then E = (infE, supE).

If E is either unbounded above or below, then we have four cases. If it is unbounded above and
cannot assume its infimum, then E = (infE,+∞); if it is unbounded above and can assume its
infimum, then E = [infE,+∞). If it is unbounded below and cannot assume its supremum,
then E = (−∞, supE); otherwise E = (−∞, supE].

If E is unbounded above and below, then E = (−∞,+∞) = R. Hence we finish the proof.

f) if x0 is an interior point and x1 an exterior point in relation to the set M ⊂ Rm, then the
support of any path with endpoints x0, x1 intersects the boundary of the set M .

Notice that the support of any path with endpoints must be pathwise-connected set since it is
the image of closed interval under continuous mapping (see the definition of path). Suppose
any path with endpoints x0, x1 does not intersect the boundary of the set M , then any point
on the path is interior to M or M c. Thus, the support Γ(I) can be divided into two parts,
i.e., Γ(I) = A ∪B, where A and B are disjoint because A ⊂ M\∂M , B ⊂ M c\∂M c. Thus, A
and B are separated sets, because they lie in two nonempty separated sets respectively. This
shows that Γ(I) is not connected. Therefore, Γ(I) is not pathwise-connected, which gives a
contradiction indicating that any path with endpoints x0, x1 must intersect the boundary of
the set M .
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