
MAT2006: Elementary Real Analysis
Homework 6

W. Lee.

Due date: Today

Question 8.3-2.

a) Draw the graph of the function z = x2 + 4y2, where (x, y, z) are Cartesian coordinates in
R3.

b) Let f : C 7→ R be a numerically valued function defined on a domain G ⊂ Rm. A level
set (c-level) of the function is a set E ⊂ G on which the function assumes only one value
(f(E) = c). More precisely, E = f−1(c). Draw the level sets in R2 for the function given in
part a).

c) Find the gradient of the function f(x, y) = x2+4y2, and verify that at any point (x, y) the
vector grad f is orthogonal to the level curve of the function f passing through the point.

d) Using the results of a), b), and c), lay out what appears to be the shortest path on the
surface z = x2 + 4y2 descending from the point (2, 1, 8) to the lowest point on the surface
(0, 0, 0).

e) What algorithm, suitable for implementation on a computer, would you propose for finding
the minimum of the function f(x, y) = x2 + 4y2?

Question 8.3-3. We say that a vector field is defined in a domain G of Rm if a vector #»v (x) ∈ TRm
x

is assigned to each point x ∈ G. A vector field #»v (x) in G is called a potential field if there is a
numerical-valued function U : G 7→ R such that #»v (x) = grad U(x). The function U(x) is called the
potential of the field #»v (x). (In physics it is the function −U(x) that is usually called the potential,
and the function U(x) is called the force function when a field of force is being discussed.)

a) On a plane with Cartesian coordinates (x, y) draw the field grad f(x.y) for each of the
following functions: f1(x, y) = x2 + y2; f2(x, y) = −(x2 + y2); f3(x, y) = arctan (x/y) in the
domain y > 0; f4(x, y) = xy.

b) By Newton’s law a particle of mass m at the point 0 ∈ R3 attracts a particle of mass 1

at the point x ∈ R3 (x ̸= 0) with force #»
F = −m| #»r |−3 #»r , where #»r is the vector #  »

Ox (we have
omitted the dimensional constant G0). Show that the vector field #»

F (x) in R3\0 is a potential
field.

c) Verify that masses mi (i = 1, . . . , n) located at the points (ξi, ηi, ζi) (i = 1, . . . , n) re-
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spectively, create a Newtonian force field except at these points and that the potential is the
function

U(x, y, z) =
n∑

i=1

mi√
(x− ξi)2 + (y − ηi)2 + (z − ζi)2

d) Find the potential of the electrostatic field created by point charges qi (i = 1, . . . , n) located
at the points (ξi, ηi, ζi) (i = 1, . . . , n) respectively.

Question 8.3-6. Homogeneous functions and Euler’s identity. A function f : G 7→ R defined in
some domain G ⊂ Rm is called homogeneous (resp. positive-homogeneous) of degree n if the equality

f(λx) = λnf(x)
(

resp. f(λx) = |λ|nf(x)
)

holds for any x ∈ Rm and λ ∈ R such that x ∈ G and λx ∈ G.
A function is locally homogeneous of degree n in the domain G if it is a homogeneous function

of degree n in some neighborhood of each point of G.

a) Prove that in a convex domain every locally homogeneous function is homogeneous.

b) Let G be the plane R2 with the ray L =
{
(x, y) ∈ R2 |x = 2∧ y ≥ 0

}
removed. Verify that

the function

f(x, y) =

 y4/x, if x > 2 ∧ y > 0,

y3, at other points of the domain,

is locally homogeneous in G, but is not a homogeneous function in that domain.

c) Determine the degree of homogeneity or positive homogeneity of the following functions
with their natural domains of definition,

f1(x
1, . . . , xm) = x1x2 + x2x3 + · · ·+ xm−1xm;

f2(x
1, x2, x3, x4) =

x1x2 + x3x4

x1x2x3 + x2x3x4
;

f3(x
1, . . . , xm) = |x1 · · ·xm|l

d) By differentiating the equality f(tx) = tnf(x) with respect to t, show that if a differentiable
function f : G 7→ R is locally homogeneous of degree n in a domain G ⊂ Rm, it satisfies the
following Euler identity for homogeneous functions,

x1 ∂f

∂x1
(x1, · · · , xm) + · · ·+ xm ∂f

∂xm
(x1, · · · , xm) ≡ nf(x1, · · · , xm)

e) Show that if Euler’s identity holds for a differentiable function f : G 7→ R in a domain
G, then that function is locally homogeneous of degree n in G. (Verify that the function
φ(t) = t−nf(tx) is defined for every x ∈ G and is constant in some neighborhood of 1.)

Question 8.4-1. Let z = f(x, y) be a function of class C(1)(G;R).
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a) If ∂f
∂y
(x, y) ≡ 0 in G, can one assert that f is independent of y in G?

No. Let G = {(x, y) |x2 + y2 < 1 or x2 + (y − 2)2 < 1}. Define

f(x, y) =

1 x2 + y2 < 1

0 x2 + (y − 2)2 < 1

Then one can see that ∂f
∂y
(x, y) ≡ 0 in G, but f is dependent on y, since

1 = f(0, 0) ̸= f(0, 2) = 0

b) Under what condition on the domain G does the preceding question have an affirmative
answer?

A sufficient condition is that if for all x0 ∈ R, the set

B = {(x, y) |x = x0} ∩G

is a connected set, and ∂f
∂y
(x, y) ≡ 0 in G. Here connected is equivalent to pathwise-connected,

because B ⊂ {x0}×R, so B is connected if and only if it is an interval on straight line x = x0,
hence it must be pathwise-connected.

Suppose ∃ x0 ∈ R, y1 ̸= y2, such that f(x0, y1) ̸= f(x0, y2), (x0, y1), (x0, y2) ∈ G. Since B is an
interval on straight line (hence convex), G contains all points on the segment between (x0, y1)

and (x0, y2). By MVT (one-dimensional), there exists ξ between y1 and y2, s.t.

f(x0, y2)− f(x0, y1) =
∂f(x0, ξ)

∂y
(y2 − y1)

However, the partial derivative on right hand side is zero, hence f(x0, y2) − f(x0, y1) = 0,
which is a contradiction. Thus, for any fixed x ∈ R, f(x, y1) ≡ f(x, y2) for all y1, y2. Hence, f
is independent of y in G.

Question 8.4-2.

a) Verify that for the function

f(x, y) =


xy

x2 − y2

x2 + y2
, if x2 + y2 ̸= 0,

0 , if x2 + y2 ̸= 0.

the following relations hold,
∂2f

∂x∂y
(0, 0) = 1 ̸= −1 =

∂2f

∂y∂x
(0, 0)

The first order derivative is

∂f

∂x
(x, y) =


y[x4 + 4x2y2 − y4]

(x2 + y2)2
, if x2 + y2 ̸= 0,

0 , if x2 + y2 ̸= 0.
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and

∂f

∂x
(x, y) =


− x[y4 + 4x2y2 − x4]

(x2 + y2)2
, if x2 + y2 ̸= 0,

0 , if x2 + y2 ̸= 0.

Now, let us compute the two mixed second order partial derivatives.

∂2f

∂y∂x
(0, 0) = lim

h→0

fx(0, h)− fx(0, 0)

h
= lim

h→0

−h− 0

h
= −1

and
∂2f

∂x∂y
(0, 0) = lim

h→0

fy(h, 0)− fy(0, 0)

h
= lim

h→0

h− 0

h
= 1

b) Prove that if the function f(x, y) has partial derivatives ∂f
∂x

and ∂f
∂y

in some neighborhood U

of the point (x0, y0), and if the mixed derivative ∂2f
∂x∂y

(or ∂2f
∂y∂x

) exists in U and is continuous at
(x0, y0), then the mixed derivative ∂2f

∂y∂x
(resp. ∂2f

∂x∂y
) also exists at that point and the following

equality holds,
∂2f

∂x∂y
(x0, y0) =

∂2f

∂y∂x
(x0, y0)

In the neighborhood U of point (x0, y0), we can find a closed rectangle with (x0, y0), (x0 +

h1, y0), (x0, y0+h2) and (x0+h1, y0+h2) as its four vertices, if h1 > 0, h2 > 0 is small enough.
Define

F (h1, h2) = f(x0 + h1, y0 + h2)− f(x0, y0 + h2)− f(x0 + h1, y0) + f(x0, y0)

We first prove that for arbitrary small h1, h2, there exists a point (x∗, y∗) in the interior of the
closed rectangle, such that

F (h1, h2)

h1h2

=
∂2f

∂x∂y
(x∗, y∗)

In the rectangle, for any fixed x, by MVT (one-dimensional), there exists ξ ∈ (y0, y0 + h2),
such that

g(x, y0 + h2)− g(x, y0)

(y0 + h2)− y0
=

∂g

∂y
(x, ξ)

where
g(x, y) = f(x+ h1, y)− f(x, y)

Thus,

F (h1, h2)

h2

=
f(x0 + h1, y0 + h2)− f(x0, y0 + h2)

h2

− f(x0 + h1, y0)− f(x0, y0)

h2

=
g(x0, y0 + h2)− g(x0, y0)

h2

=
∂g

∂y
(x0, ξ)

=
∂f

∂y
(x0 + h1, ξ)−

∂f

∂y
(x0, ξ)

Since ξ is fixed, consider MVT again, there exists η ∈ (x0, x0 + h1), such that

F (h1, h2)

h1h2

=
fy(x0 + h1, ξ)− fy(x0, ξ)

h1

=
∂fy
∂x

(η, ξ) =
∂2f

∂x∂y
(η, ξ)
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Since point (η, ξ) lies in the interior of the rectangle, the proof of our claim was finished.

Then, we can prove our main statement. Since ∂2f
∂x∂y

is continuous at (x0, y0), for any ϵ > 0,
there exists small enough h1, h2, such that for all points (x, y) in the rectangle, we have∣∣∣∣ ∂2f

∂x∂y
(x, y)− ∂2f

∂x∂y
(x0, y0)

∣∣∣∣ < ϵ

Also, (η, ξ) always lies in the rectangle, so∣∣∣∣F (h1, h2)

h1h2

− ∂2f

∂x∂y
(x0, y0)

∣∣∣∣ = ∣∣∣∣ ∂2f

∂x∂y
(η, ξ)− ∂2f

∂x∂y
(x0, y0)

∣∣∣∣ < ϵ

Fix h2 and let h1 → 0, we can obtain∣∣∣∣fx(x0, y0 + h2)− fx(x0, y0)

h2

− ∂2f

∂x∂y
(x0, y0)

∣∣∣∣ < ϵ

Let h2 → 0, we can obtain ∣∣∣∣ ∂2f

∂y∂x
(x0, y0)−

∂2f

∂x∂y
(x0, y0)

∣∣∣∣ < ϵ

Since ϵ is arbitrary, we have

∂2f

∂y∂x
(x0, y0) =

∂2f

∂x∂y
(x0, y0)

Question 8.4-3. Let x1, . . . , xm be Cartesian coordinates in Rm. The differential operator

∆ =
m∑
i=1

∂2

∂xi2

acting on functions f ∈ C(2)(G;R) according to the rule

∆f =
m∑
i=1

∂2f

∂xi2
(x1, . . . , xm)

is called the Laplacian.
The equation ∆f = 0 for the function f in the domain G ⊂ Rm is called Laplace’s equation,

and its solutions are called harmonic functions in the domain G.

a) Show that if x = (x1, . . . , xm) and

∥x∥ =

√√√√ m∑
i=1

(xi)2,

then for m > 2 the function
f(x) = ∥x∥2−m

is harmonic in the domain Rm\0, where 0 = (0, . . . , 0).

Notice that
∂f

∂xi
=

∂

∂xi

(
m∑
i=1

(xi)2

) 2−m
2

= (2−m)xi

(
m∑
i=1

(xi)2

)−m
2
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Also, the second derivative

∂2f

∂xi2
= (2−m)

(
m∑
i=1

(xi)2

)−m
2

− (2−m)m(xi)2

(
m∑
i=1

(xi)2

)−m+2
2

Therefore, we can show

∆f =
m∑
i=1

∂2f

∂xi2

=
m∑
i=1

(2−m)

(
m∑
i=1

(xi)2

)−m
2

−
m∑
i=1

(2−m)m(xi)2

(
m∑
i=1

(xi)2

)−m+2
2

= m(2−m)

(
m∑
i=1

(xi)2

)−m
2

− (2−m)m

(
m∑
i=1

(xi)2

)(
m∑
i=1

(xi)2

)−m+2
2

= m(2−m)

(
m∑
i=1

(xi)2

)−m
2

− (2−m)m

(
m∑
i=1

(xi)2

)−m
2

= 0

Hence the function f is harmonic.

Note that the original function is not harmonic, there must be some typo in the
textbook.

b) Verify that the function

f(x1, . . . , xm, t) =
1

(2a
√
πt)m

· exp
(
−∥x∥2

4a2t

)
,

which is defined for t > 0 and x = (x1, . . . , xm) ∈ Rm, satisfies the heat equation

∂f

∂t
= a2∆f,

that is, verify that ∂f
∂t

= a2
m∑
i=1

∂2f
∂xi2 at each point of the domain of definition of the function.

It is not hard to compute that

∂f

∂t
=

1

(2a
√
π)m

t−3m/2
(
−m

2

)
exp

(
−∥x∥2

4a2t

)
+

1

(2a
√
πt)m

exp
(
−∥x∥2

4a2t

)
∥x∥2

4a2t2

=
1

(2a
√
πt)m

exp
(
−∥x∥2

4a2t

)(
−m

2t
+

∥x∥2

4a2t2

)
Also, we can compute

∂f

∂xi
=

1

(2a
√
πt)m

exp
(
−∥x∥2

4a2t

)(
− xi

2a2t

)
Then the second derivative is given by

∂2f

∂xi2
=

1

(2a
√
πt)m

exp
(
−∥x∥2

4a2t

)(
− 1

2a2t
+

(xi)2

4a4t2

)
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Hence, the Laplacian is given by

∆f =
m∑
i=1

∂2f

∂xi2
=

1

(2a
√
πt)m

exp
(
−∥x∥2

4a2t

)(
− m

2a2t
+

∥x∥2

4a4t2

)
Compare ∆f and ∂f

∂t
, we can conclude that

∂f

∂t
= a2

m∑
i=1

∂2f

∂xi2

Question 8.4-6. Prove the following generalization of Rolle’s theorem for functions of several
variables.

If the function f is continuous in a closed ball B(0; r), equal to zero on the boundary of the
ball, and differentiable in the open ball B(0; r), then at least one of the points of the open ball is a
critical point of the function.

We only consider function defined on finite dimensional Euclidean space (at least the closed ball
should be compact), say Rn. By Theorem 4.15 in Rudin’s book, since f is continuous on B(0; r),
f
(
B(0; r)

)
is closed and bounded. Therefore, the maximum and minimum value of f must be

assumed in B(0; r). Suppose M is the maximum value and m is the minimum value, then we can
find p, q ∈ B(0; r) such that f(p) = m, f(q) = M . If neither p nor q is in B(0; r), then f(p) = f(q),
which indicates f is a constant function, hence any interior point of B(0; r) is a critical point.

Suppose at least one of p or q are in B(0; r), W.O.L.G., we assume p is in B(0; r). Then, since
f is differentiable at p and p is the global minimum point, so by the first order necessary condition,
the gradient of f at p must be zero, meaning that p is a critical point.

Question 8.4-7. Verify that the function

f(x, y) = (y − x2)(y − 3x2)

does not have an extremum at the origin, even though its restriction to each line passing through
the origin has a strict local minimum at that point.

Consider f on two curves C1, C2 going through the origin, where C1 : y = 2x2 and C2 : y = 4x2.
Any neighborhood of the origin contains infinite points on C1 and C2. On C1, f(x, y) = −x4, so
x = 0 is a strict local maximum. On C2, f(x, y) = 3x4, so x = 0 is a strict local minimum. However,
this just means in any neighborhood of the origin, there are some points whose function value is
strictly less than the value at the origin, and some other points whose function value is strictly
larger than the value at the origin. Thus it is not an extreme point.

If the line passing through the origin is x = 0, then f(x, y) = y2 on it. It is obvious that
(0, 0) is a strict local minimum. Otherwise, the line passing through the origin is y = kx, then
f(x, kx) = 3x4 − 4kx3 + k2x2. Compute the first derivative f ′(x, kx) = 12x3 − 12kx2 + 2k2x.
Then compute the second derivative, we have f ′′(x, kx) = 36x2 − 24kx + 2k2. If k ̸= 0, then
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f ′′(0, 0) = 2k2 > 0 and f ′(0, 0) = 0. Hence, (0, 0) must be a strict local minimum (since the
function is continuous at (0, 0)). If k = 0, f(x, kx) = 3x4, it is obvious that x = 0 is a local
minimum (also global minimum) point, which is exactly the point (0, 0). In conclusion, any line
passing through the origin has a strict local minimum at that point.
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