
MAT2006: Elementary Real Analysis
Diagnostic Test

W. L.

Question 1. Set xn = sin 1
2

+ sin 2
22

+ · · ·+ sinn
2n

for n = 1, 2, · · · . Prove that {xn} converges.

Let ak = sin k and bk = 1/2k, then xn can be regarded as a partial sum of
∑

akbk. Since bk

is obviously decreasing to zero as k → ∞, we need to prove
∑n

k=1 ak is bounded for all n so as to
apply Dirichlet’s Test.

n∑
k=1

ak =
n∑

k=1

sin k

=
sin 1

2
sin 1 + sin 1

2
sin 2 + · · ·+ sin 1

2
sinn

sin 1
2

=

(
cos 1

2
− cos 3

2

)
+
(
cos 3

2
− cos 5

2

)
+ · · ·+

(
cos 2n−1

2
− cos 2n+1

2

)
2 sin 1

2

=
cos 1

2
− cos 2n+1

2

2 sin 1
2

Thus we can see for all n it is bounded. Apply Dirichlet’s Test, i.e.,
∑

akbk converges, which finishes
the proof.

Question 2. Evaluate each of the following limits, showing all reasoning.

(a) limx→0

( sin x
x

) 1
1−cos x

The procedure is as follows

lim
x→0

(
sinx

x

) 1
1−cos x

= exp
{

lim
x→0

(
1

1− cosx ln sinx

x

)}
(1)

= exp
{

lim
x→0

(
1

2 sin2(x/2)
ln sinx

x

)}
(2)

= exp
{

lim
x→0

(
1

2(x/2)2
ln sinx

x

)}
(3)

= exp
{

lim
x→0

(
2

x2
ln sinx

x

)}
(4)

= exp
{

lim
x→0

2

x2

(
sinx

x
− 1

)}
(5)

= exp
{
2 lim

x→0

sinx− x

x3

}
(6)

= exp
{
2 lim

x→0

− sinx

6x

}
(7)

= e−1/3 (8)
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Note that for (2) → (3) and (4) → (5) we apply Equivalent Infinitesimal, as x → 0,

sin x

2
∼ x

2
ln sinx

x
∼ (

sinx

x
− 1)

For (6) → (7) we apply L’Hôpital’s rule twice.

(b) limx→0

´ 1

0
xn

1+
√
x
dx

Since x ∈ [0, 1], we have
0 ≤ xn

1 +
√
x
≤ xn

1 +
√
0
= xn

which means
0 ≤
ˆ 1

0

xn

1 +
√
x
dx ≤

ˆ 1

0

xn dx =
1

n+ 1

By Squeeze Theorem, the integral will tend to zero since both sides has limit zero when n → ∞,
thus,

lim
x→0

ˆ 1

0

xn

1 +
√
x
dx = 0

Question 3. Justify that e is an irrational number.

Suppose e is rational, then e = p/q, where p, q ∈ Z, q > 0 and gcd(p, q) = 1. We have

e =
p

q
= 1 +

1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

q!
+ ϵq

which implies
p(q − 1)! = q!

(
1 +

1

1!
+ · · ·+ 1

q!

)
+ q!ϵq

It’s obvious that q!ϵq is integer, because the other two terms above are both integers.

Now we prove that
1

(n+ 1)!
< ϵn <

1

n!n

Since
ϵn =

1

(n+ 1)!
+

1

(n+ 2)!
+ · · ·

The L.H.S. of the inequality is true.

For R.H.S.,

ϵn ≤ 1

(n+ 1)!

[
1 +

1

n+ 2
+

1

(n+ 2)2
+ · · ·

]
=

1

(n+ 1)!

1− 1/(n+ 2)n

1− 1/(n+ 2)
≤ n+ 2

(n+ 1)!(n+ 1)
<

1

n!n

Let n = q, we have
1

(q + 1)!
< ϵq <

1

q!q
=⇒ 0 <

1

q + 1
< q!ϵq <

1

q

which means q!ϵq /∈ Z. Thus, contradiction leads to the result that e is irrational.

Question 4. Every rational number x can be written in the form x = p/q, where q > 0, and p and
q are integers without any common divisors. When x = 0, we take q = 1.
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Define a function f : R → R to be f(x) = 1/q, when x is rational and x = p/q (p and q are in
the previous defined written form of rational number); f(x) = 0, when x is irrational.

Find out all points of continuity and discontinuity of the function f(x). Prove your result.

We claim that continuous points are all irrational number, and discontinuous points are all
rational number.

∀a ∈ R, let k be the closest integer to a, and then a ∈ (k − 1, k + 1).
∀ϵ > 0, take N , s.t., 1

N
< ϵ. In (k − 1, k + 1), the number of p/q s.t., 0 < q ≤ N is finite.

For 0 < q ≤ N , denote the closest p/q (not equal to a) to a as b, then let δ = |b− a|. Then ∀x
s.t. 0 < |x− a| < δ, we have |f(x)| < 1

N
< ϵ, which means limx→a f(x) = 0.

Therefore, the limit of every points is zero for funciton f . If a ∈ Q, f(a = p/q) = 1/q ̸= 0 or
f(0) = 1 ̸= 0, which means a is a removable discontinuous point. If a /∈ Q, then f(a) = 0, which
means a is a continuous point.
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