MAT2006: Elementary Real Analysis
 Diagnostic Test

W. L.

Question 1. Set $x_{n}=\frac{\sin 1}{2}+\frac{\sin 2}{2^{2}}+\cdots+\frac{\sin n}{2^{n}}$ for $n=1,2, \cdots$. Prove that $\left\{x_{n}\right\}$ converges.
Let $a_{k}=\sin k$ and $b_{k}=1 / 2^{k}$, then x_{n} can be regarded as a partial sum of $\sum a_{k} b_{k}$. Since b_{k} is obviously decreasing to zero as $k \rightarrow \infty$, we need to prove $\sum_{k=1}^{n} a_{k}$ is bounded for all n so as to apply Dirichlet's Test.

$$
\begin{aligned}
\sum_{k=1}^{n} a_{k} & =\sum_{k=1}^{n} \sin k \\
& =\frac{\sin \frac{1}{2} \sin 1+\sin \frac{1}{2} \sin 2+\cdots+\sin \frac{1}{2} \sin n}{\sin \frac{1}{2}} \\
& =\frac{\left(\cos \frac{1}{2}-\cos \frac{3}{2}\right)+\left(\cos \frac{3}{2}-\cos \frac{5}{2}\right)+\cdots+\left(\cos \frac{2 n-1}{2}-\cos \frac{2 n+1}{2}\right)}{2 \sin \frac{1}{2}} \\
& =\frac{\cos \frac{1}{2}-\cos \frac{2 n+1}{2}}{2 \sin \frac{1}{2}}
\end{aligned}
$$

Thus we can see for all n it is bounded. Apply Dirichlet's Test, i.e., $\sum a_{k} b_{k}$ converges, which finishes the proof.

Question 2. Evaluate each of the following limits, showing all reasoning.
(a) $\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{\frac{1}{1-\cos x}}$

The procedure is as follows

$$
\begin{align*}
\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{\frac{1}{1-\cos x}} & =\exp \left\{\lim _{x \rightarrow 0}\left(\frac{1}{1-\cos x} \ln \frac{\sin x}{x}\right)\right\} \tag{1}\\
& =\exp \left\{\lim _{x \rightarrow 0}\left(\frac{1}{2 \sin ^{2}(x / 2)} \ln \frac{\sin x}{x}\right)\right\} \tag{2}\\
& =\exp \left\{\lim _{x \rightarrow 0}\left(\frac{1}{2(x / 2)^{2}} \ln \frac{\sin x}{x}\right)\right\} \tag{3}\\
& =\exp \left\{\lim _{x \rightarrow 0}\left(\frac{2}{x^{2}} \ln \frac{\sin x}{x}\right)\right\} \tag{4}\\
& =\exp \left\{\lim _{x \rightarrow 0} \frac{2}{x^{2}}\left(\frac{\sin x}{x}-1\right)\right\} \tag{5}\\
& =\exp \left\{2 \lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}\right\} \tag{6}\\
& =\exp \left\{2 \lim _{x \rightarrow 0} \frac{-\sin x}{6 x}\right\} \tag{7}\\
& =e^{-1 / 3} \tag{8}
\end{align*}
$$

Note that for $(2) \rightarrow(3)$ and $(4) \rightarrow(5)$ we apply Equivalent Infinitesimal, as $x \rightarrow 0$,

$$
\sin \frac{x}{2} \sim \frac{x}{2} \quad \ln \frac{\sin x}{x} \sim\left(\frac{\sin x}{x}-1\right)
$$

For $(6) \rightarrow(7)$ we apply L'Hôpital's rule twice.
(b) $\lim _{x \rightarrow 0} \int_{0}^{1} \frac{x^{n}}{1+\sqrt{x}} d x$

Since $x \in[0,1]$, we have

$$
0 \leq \frac{x^{n}}{1+\sqrt{x}} \leq \frac{x^{n}}{1+\sqrt{0}}=x^{n}
$$

which means

$$
0 \leq \int_{0}^{1} \frac{x^{n}}{1+\sqrt{x}} d x \leq \int_{0}^{1} x^{n} d x=\frac{1}{n+1}
$$

By Squeeze Theorem, the integral will tend to zero since both sides has limit zero when $n \rightarrow \infty$, thus,

$$
\lim _{x \rightarrow 0} \int_{0}^{1} \frac{x^{n}}{1+\sqrt{x}} d x=0
$$

Question 3. Justify that e is an irrational number.
Suppose e is rational, then $e=p / q$, where $p, q \in \mathbb{Z}, q>0$ and $\operatorname{gcd}(p, q)=1$. We have

$$
e=\frac{p}{q}=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{q!}+\epsilon_{q}
$$

which implies

$$
p(q-1)!=q!\left(1+\frac{1}{1!}+\cdots+\frac{1}{q!}\right)+q!\epsilon_{q}
$$

It's obvious that $q!\epsilon_{q}$ is integer, because the other two terms above are both integers.
Now we prove that

$$
\frac{1}{(n+1)!}<\epsilon_{n}<\frac{1}{n!n}
$$

Since

$$
\epsilon_{n}=\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\cdots
$$

The L.H.S. of the inequality is true.
For R.H.S.,

$$
\epsilon_{n} \leq \frac{1}{(n+1)!}\left[1+\frac{1}{n+2}+\frac{1}{(n+2)^{2}}+\cdots\right]=\frac{1}{(n+1)!} \frac{1-1 /(n+2)^{n}}{1-1 /(n+2)} \leq \frac{n+2}{(n+1)!(n+1)}<\frac{1}{n!n}
$$

Let $n=q$, we have

$$
\frac{1}{(q+1)!}<\epsilon_{q}<\frac{1}{q!q} \Longrightarrow 0<\frac{1}{q+1}<q!\epsilon_{q}<\frac{1}{q}
$$

which means $q!\epsilon_{q} \notin \mathbb{Z}$. Thus, contradiction leads to the result that e is irrational.

Question 4. Every rational number x can be written in the form $x=p / q$, where $q>0$, and p and q are integers without any common divisors. When $x=0$, we take $q=1$.

Define a function $f: R \rightarrow R$ to be $f(x)=1 / q$, when x is rational and $x=p / q$ (p and q are in the previous defined written form of rational number); $f(x)=0$, when x is irrational.

Find out all points of continuity and discontinuity of the function $f(x)$. Prove your result.
We claim that continuous points are all irrational number, and discontinuous points are all rational number.
$\forall a \in \mathbb{R}$, let k be the closest integer to a, and then $a \in(k-1, k+1)$.
$\forall \epsilon>0$, take N, s.t., $\frac{1}{N}<\epsilon$. In $(k-1, k+1)$, the number of p / q s.t., $0<q \leq N$ is finite.
For $0<q \leq N$, denote the closest p / q (not equal to a) to a as b, then let $\delta=|b-a|$. Then $\forall x$ s.t. $0<|x-a|<\delta$, we have $|f(x)|<\frac{1}{N}<\epsilon$, which means $\lim _{x \rightarrow a} f(x)=0$.

Therefore, the limit of every points is zero for funciton f. If $a \in \mathbb{Q}, f(a=p / q)=1 / q \neq 0$ or $f(0)=1 \neq 0$, which means a is a removable discontinuous point. If $a \notin \mathbb{Q}$, then $f(a)=0$, which means a is a continuous point.

