MAT2006：Elementary Real Analysis

Quiz 1

李肖鹏（116010114）
Question 1．Let $A=(-1,1)$ and $B=[-1,1]$ ．Define $f(x)=x$ and $g(x)=\frac{x}{2}$ ．Then $f: A \mapsto B$ and $g: B \mapsto A$ are both one－to－one．Construct an one－to－one onto mapping between A and B from f and g ．

Consider $f: A \mapsto B$ where $A=(-1,1), B=[-1,1], D=f(A)=(-1,1)$ ，and $B \backslash D=\{-1,1\}$. Apply Schröder－Bernstein，

$$
\begin{gathered}
S=g \circ f(B \backslash D) \cup g \circ f \circ g \circ f(B \backslash D) \cup \cdots=\left\{-\frac{1}{2}, \frac{1}{2}\right\} \cup\left\{-\frac{1}{4}, \frac{1}{4}\right\} \cup \cdots= \pm \frac{1}{2^{n}}, n \in \mathbb{N}^{+} \\
F(x)= \begin{cases}f(x) & x \in A \backslash S \\
g^{-1}(x) & x \in S\end{cases}
\end{gathered}
$$

Therefore，the bijective mapping is

$$
F(x)= \begin{cases}x & x \in(-1,1) \backslash\left\{ \pm 2^{-n}: n \in \mathbb{N}^{+}\right\} \\ 2 x & x= \pm 2^{-n}\left(n \in \mathbb{N}^{+}\right)\end{cases}
$$

Question 2．Evaluate the following limits
（a） $\lim _{x \rightarrow 0+} x^{x}$
See Assignment 1 Question 3．2－3 a）．
（b） $\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{\frac{1}{1-\cos x}}$
See Diagnostic Test Question 2（a）．

Question 3．Suppose that $a_{n} \geq 0$ for all n ，and $\sum_{n=1}^{\infty} a_{n}$ converges．Then the series $\sum_{n=1}^{\infty} A_{n}$ ， where $A_{n}=\sqrt{\sum_{k=n}^{\infty} a_{k}}-\sqrt{\sum_{k=n+1}^{\infty} a_{k}}$ ，also converges，and $a_{n}=o\left(A_{n}\right)$ as $n \rightarrow \infty$ ．

See Assignment 1 Question 3．2－6 c）．

Question 4．Prove that the subset Q of all rational numbers in \mathbb{R} is not the countable intersection of open sets．（Hint：Use Baire Category Theorem．）

Suppose Q is the countable intersection of open sets E_{k}＇s，then E_{k}^{c} is closed and

$$
Q=\bigcap_{k=1}^{\infty} E_{k}=\left(\bigcup_{k=1}^{\infty} E_{k}^{c}\right)^{c} \Longrightarrow Q^{c}=\bigcup_{k=1}^{\infty} E_{k}^{c}
$$

Notice that E_{k}^{c} is no where dense because if not, then $\overline{E_{k}^{c}}=E_{k}^{c}$ will contain an open set, in which there exists a neighborhood containing both rationals and irrationals. This is impossible because E_{k}^{c} only contains irrational numbers, so E_{k}^{c} is nowhere dense. This shows that Q^{c} is of first category. It is easy to show that Q, as a countable subset of \mathbb{R}, is of first category. Thus, $\mathbb{R}=Q \cup Q^{c}$ is of first category, which is a contradiction to the fact that \mathbb{R} is of second category. Therefore, we can conclude that Q is not the countable intersection of open sets.

Question 5. Suppose that $f: \mathbb{R} \mapsto \mathbb{R}$ is uniformly continuous. Is $\lim _{x \rightarrow \infty} \frac{f(x)}{x^{2}}=0$? Justify your answer.

Since $f: \mathbb{R} \mapsto \mathbb{R}$ is uniformly continuous, for all $\epsilon>0$, there exists $\delta>0$ such that for all $x, y \in \mathbb{R},|x-y|<\delta$, and $|f(x)-f(y)|<\epsilon$. Take $\epsilon=1$, there exists $\delta_{0}>0$ such that for all x, y satisfying $|x-y|<\delta_{0},|f(x)-f(y)|<1$.

Let $y=0$, we have for all $|x|<\delta_{0},|f(x)-f(0)|<1$, which means $|f(x)|<1+|f(0)|$. Let $y=\frac{1}{2} \delta_{0}$, for all $\left|x-\frac{1}{2} \delta_{0}\right|<\delta_{0},\left|f(x)-f\left(\frac{1}{2} \delta_{0}\right)\right|<1$. Therefore, for all $x \in\left(-\frac{1}{2} \delta_{0}, \frac{3}{2} \delta_{0}\right)$,

$$
|f(x)|<1+\left|f\left(\frac{1}{2} \delta_{0}\right)\right|<1+1+|f(0)|=2+|f(0)|
$$

Similarly, let $y=\delta_{0}$, for all $x \in\left(0,2 \delta_{0}\right)$, we can obtain $|f(x)|<3+|f(0)|$. By induction, let $y=\frac{n-1}{2} \delta_{0}$, for all $x \in\left(\frac{n-3}{2} \delta_{0}, \frac{n+1}{2} \delta_{0}\right)$, we have $|f(x)|<n+|f(0)|$. Since $x>\frac{n-3}{2} \delta_{0}, n<\frac{2 x}{\delta_{0}}+3$. Therefore,

$$
\lim _{x \rightarrow \infty} \frac{|f(x)|}{x^{2}} \leq \lim _{x \rightarrow \infty} \frac{n+|f(0)|}{x^{2}} \leq \lim _{x \rightarrow \infty}\left(\frac{2}{\delta_{0} x}+\frac{3+|f(0)|}{x^{2}}\right) \rightarrow 0
$$

In conclusion, $\lim _{x \rightarrow \infty} \frac{f(x)}{x^{2}}=0$.

