MAT2006：Elementary Real Analysis

Quiz 2

李肖鹏（116010114）

Question 1．Let $f(x, y)=e^{x} \cos y,(x, y) \in \mathbb{R}^{2}$ ．
（i）Compute the differential $\mathrm{D} f(x, y)$ ．

It is easy to compute the partial derivatives $f_{x}=e^{x} \cos y$ and $f_{y}=-e^{x} \sin y$ ．Thus，

$$
\mathrm{D} f(x, y)=\left[\begin{array}{ll}
f_{x} & f_{y}
\end{array}\right]=\left[\begin{array}{ll}
e^{x} \cos y & -e^{x} \sin y
\end{array}\right]
$$

（ii）Compute the Hessian $\mathrm{D}^{2} f(x, y)$ ．

Also compute the second order partial derivatives $f_{x x}=e^{x} \cos y$ and $f_{x y}=f_{y x}=-e^{x} \sin y$ and $f_{y y}=-e^{x} \cos y$ ．Thus，

$$
\mathrm{D}^{2} f(x, y)=\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right]=\left[\begin{array}{cc}
e^{x} \cos y & -e^{x} \sin y \\
-e^{x} \sin y & -e^{x} \cos y
\end{array}\right]
$$

（iii）Compute the Taylor＇s formula for f around $(0,0)$ to the second order．

The Taylor＇s formula for f around $(0,0)$ to the second order is

$$
\begin{aligned}
f\left(h_{1}, h_{2}\right) & =f(0,0)+f_{x}(0,0) h_{1}+f_{y}(0,0) h_{2} \\
& +\frac{1}{2!}\left[f_{x x}(0,0) h_{1}^{2}+f_{x y}(0,0) h_{1} h_{2}+f_{y x}(0,0) h_{2} h_{1}+f_{y y}(0,0) h_{2}^{2}\right]+o\left(h_{1}^{2}+h_{2}^{2}\right) \\
& =1+h_{1}+\frac{1}{2}\left(h_{1}^{2}-h_{2}^{2}\right)+o\left(h_{1}^{2}+h_{2}^{2}\right)
\end{aligned}
$$

Therefore，the Taylor＇s formula for f around $(0,0)$ is $f(x, y)=1+x+\frac{1}{2}\left(x^{2}-y^{2}\right)+o\left(x^{2}+y^{2}\right)$ ．

Question 2．Find all critical points of $f(x, y)=\left(y-x^{2}\right)\left(y-3 x^{2}\right)$ and determine whether f has a （local）maximum，（local）minimum，or saddle at each of these critical points．

Notice that $f(x, y)=3 x^{4}-4 x^{2} y+y^{2}$ ，so consider the first order conditions，we have

$$
\left\{\begin{array} { l }
{ f _ { x } = 1 2 x ^ { 3 } - 8 x y = 0 } \\
{ f _ { y } = - 4 x ^ { 2 } + 2 y = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
x=0 \\
y=0
\end{array}\right.\right.
$$

Therefore, $(0,0)$ is the only critical points of f. However, $(0,0)$ is not local maximum or minimum because on the curve $y=2 x^{2}, f\left(x, 2 x^{2}\right)=-x^{4}$, where $x=0$ is a strict local maximum. On the curve $y=4 x^{2}, f\left(x, 4 x^{2}\right)=3 x^{4}$, where $x=0$ is a strict local minimum.

This shows that on any neighborhood of $(0,0)$, there are some points on $y=2 x^{2}$ which have smaller function value than $f(0,0)$; there are also some points on $y=4 x^{2}$ which have larger function value than $f(0,0)$. Therefore, $f(0,0)$ is neither local minimum nor maximum, and $(0,0)$ is a saddle point.

Question 3. Let $F(r, \theta)=f(g(r, \theta))$, where $g(r, \theta)=(x, y)$ with $x=r \cos \theta, y=r \sin \theta$, and $f(x, y)=e^{x y}$. Compute $\mathrm{D} F(r, \theta)$.

By chain rule,

$$
\mathrm{D} F(r, \theta)=\mathrm{D}_{(r, \theta)} f(g(r, \theta))=\mathrm{D}_{(x, y)} f(g(r, \theta)) \cdot \mathrm{D}_{(r, \theta)} g(r, \theta)=\mathrm{D}_{(x, y)} f(x, y) \cdot \mathrm{D}_{(r, \theta)} g(r, \theta)
$$

Compute the differential,

$$
\begin{gathered}
\mathrm{D}_{(x, y)} f(x, y)=\left[\begin{array}{ll}
f_{x} & f_{y}
\end{array}\right]=\left[\begin{array}{ll}
y e^{x y} & x e^{x y}
\end{array}\right] \\
\mathrm{D}_{(r, \theta)} g(r, \theta)=\left[\begin{array}{ll}
x_{r} & x_{\theta} \\
y_{r} & y_{\theta}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right]
\end{gathered}
$$

Therefore, we can compute

$$
\mathrm{D} F(r, \theta)=\left[\begin{array}{ll}
y e^{x y} & x e^{x y}
\end{array}\right] \cdot\left[\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right]=e^{r^{2} \sin \theta \cos \theta}\left[\begin{array}{ll}
r \sin 2 \theta & r^{2} \cos 2 \theta
\end{array}\right]
$$

Question 4. Let $f(x, y) \in \mathcal{C}^{1}(D ; \mathbb{R})$ where D is a (connected) domain in \mathbb{R}^{2}. Suppose that $\frac{\partial f}{\partial y} \equiv 0$ in D.
(i) Is f independent of the variable y in D if D is a convex domain?

Yes, if D is convex domain, then the set $E=\left\{(x, y) \mid x=x_{0}\right\} \cap D$ is connected for any fixed x_{0}. Suppose f is dependent on y in D, then there exists $\left(x_{1}, y_{1}\right)$ and $\left(x_{1}, y_{2}\right)$ where $y_{1} \neq y_{2}$ such that $f\left(x_{1}, y_{1}\right) \neq f\left(x_{1}, y_{2}\right)$. Since E is one dimensional and connected, it is an interval, so we can apply MVT

$$
f\left(x_{1}, y_{1}\right)-f\left(x_{1}, y_{2}\right)=f_{y}\left(x_{1}, \xi\right)\left(\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]-\left[\begin{array}{l}
x_{1} \\
y_{2}
\end{array}\right]\right)
$$

where ξ lies between y_{1}, y_{2}. We know LHS $\neq 0$ but $f_{y}(x, \xi)=0$, so RHS $=0$. This is a contradiction, and hence f is independent on y in D.
(ii) Does the answer in (i) change if D is an arbitrary domain?

Yes. Suppose D is a domain drawn (blue region) in the graph below:

and the function f is defined by

$$
f(x, y)= \begin{cases}-e^{-1 / x^{2}} & \text { if } x>0 \text { and } y>0 \\ 0 & \text { otherwise }\end{cases}
$$

For such a function $f(x, y), f(x, y) \in \mathcal{C}^{1}(D ; \mathbb{R})$, and $f_{y} \equiv 0$. However, for all $x>0$, there exists $y_{1}<0$ and $y_{2}>0$ such that $f\left(x, y_{1}\right) \neq f\left(x, y_{2}\right)$. Therefore, the answer in (i) changes if D is nonconvex.

Question 5. Let $f: \mathbb{R}^{2} \mapsto \mathbb{R}^{3}$ be given by $f(x, y)=\left(x+y^{3}, x y, y+y^{2}\right)$. Can the range of f be "straightened out" or "flattened out" near $(0,0)$?

First compute the differential

$$
\mathrm{D} f(x, y)=\left[\begin{array}{cc}
1 & 3 y^{2} \\
y & x \\
0 & 1+2 y
\end{array}\right], \quad \mathrm{D} f(0,0)=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]
$$

It is trivial that rank of $\mathrm{D} f(0,0)$ is 2 . Since $\operatorname{det}\left(M_{2}\right)=1+2 y$, where M_{2} is the matrix obtained by removing the second row of $\mathrm{D} f(x, y)$, we can see that in a small neighborhood of $(0,0), \operatorname{det}\left(M_{2}\right) \neq 0$, so $\mathrm{D} f(x, y)$ will have at least rank 2 inside this neighborhood. However, $\mathrm{D} f(x, y)$ has at most rank 2 , so it will have constant rank 2 inside this neighborhood of $(0,0)$. Given that f is a function such that $f(0,0)=(0,0,0), f \in \mathcal{C}^{\infty}\left(\mathbb{R}^{2} ; \mathbb{R}^{3}\right)$, and f has constant rank 2 near $(0,0)$, by Rank Theorem, there exists two diffeomorphisms $u=\phi(x, y)$ near $(0,0)$ amd $v=\psi(a, b, c)$ near $(0,0,0)$ such that $v=\psi \circ f \circ \phi^{-1}\left(u_{1}, u_{2}\right)$ has the representation $\left(u_{1}, u_{2}\right) \mapsto\left(u_{1}, u_{2}, 0\right)$ in the neighborhood of $\phi(0,0)$. Therefore, the range of f can be "straightened out" near $(0,0)$.

