
MAT2006: Elementary Real Analysis
Quiz 2

李肖鹏 (116010114)

Question 1. Let f(x, y) = ex cos y, (x, y) ∈ R2.

(i) Compute the differential Df(x, y).

It is easy to compute the partial derivatives fx = ex cos y and fy = −ex sin y. Thus,

Df(x, y) =
[
fx fy

]
=
[
ex cos y −ex sin y

]

(ii) Compute the Hessian D2f(x, y).

Also compute the second order partial derivatives fxx = ex cos y and fxy = fyx = −ex sin y
and fyy = −ex cos y. Thus,

D2f(x, y) =

[
fxx fxy

fyx fyy

]
=

[
ex cos y −ex sin y
−ex sin y −ex cos y

]

(iii) Compute the Taylor’s formula for f around (0, 0) to the second order.

The Taylor’s formula for f around (0, 0) to the second order is

f(h1, h2) = f(0, 0) + fx(0, 0)h1 + fy(0, 0)h2

+
1

2!
[fxx(0, 0)h

2
1 + fxy(0, 0)h1h2 + fyx(0, 0)h2h1 + fyy(0, 0)h

2
2] + o(h21 + h22)

= 1 + h1 +
1

2
(h21 − h22) + o(h21 + h22)

Therefore, the Taylor’s formula for f around (0, 0) is f(x, y) = 1+x+ 1
2
(x2 − y2)+ o(x2 + y2).

Question 2. Find all critical points of f(x, y) = (y − x2)(y − 3x2) and determine whether f has a
(local) maximum, (local) minimum, or saddle at each of these critical points.

Notice that f(x, y) = 3x4 − 4x2y + y2, so consider the first order conditions, we havefx = 12x3 − 8xy = 0

fy = −4x2 + 2y = 0
=⇒

x = 0

y = 0
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Therefore, (0, 0) is the only critical points of f . However, (0, 0) is not local maximum or minimum
because on the curve y = 2x2, f(x, 2x2) = −x4, where x = 0 is a strict local maximum. On the
curve y = 4x2, f(x, 4x2) = 3x4, where x = 0 is a strict local minimum.

This shows that on any neighborhood of (0, 0), there are some points on y = 2x2 which have
smaller function value than f(0, 0); there are also some points on y = 4x2 which have larger function
value than f(0, 0). Therefore, f(0, 0) is neither local minimum nor maximum, and (0, 0) is a saddle
point.

Question 3. Let F (r, θ) = f(g(r, θ)), where g(r, θ) = (x, y) with x = r cos θ, y = r sin θ, and
f(x, y) = exy. Compute DF (r, θ).

By chain rule,

DF (r, θ) = D(r,θ)f(g(r, θ)) = D(x,y)f(g(r, θ)) · D(r,θ)g(r, θ) = D(x,y)f(x, y) · D(r,θ)g(r, θ)

Compute the differential,

D(x,y)f(x, y) =
[
fx fy

]
=
[
yexy xexy

]
D(r,θ)g(r, θ) =

[
xr xθ

yr yθ

]
=

[
cos θ −r sin θ
sin θ r cos θ

]
Therefore, we can compute

DF (r, θ) =
[
yexy xexy

]
·

[
cos θ −r sin θ
sin θ r cos θ

]
= er

2 sin θ cos θ
[
r sin 2θ r2 cos 2θ

]

Question 4. Let f(x, y) ∈ C1(D;R) where D is a (connected) domain in R2. Suppose that ∂f
∂y

≡ 0

in D.

(i) Is f independent of the variable y in D if D is a convex domain?

Yes, if D is convex domain, then the set E = {(x, y) |x = x0} ∩D is connected for any fixed
x0. Suppose f is dependent on y in D, then there exists (x1, y1) and (x1, y2) where y1 ̸= y2

such that f(x1, y1) ̸= f(x1, y2). Since E is one dimensional and connected, it is an interval, so
we can apply MVT

f(x1, y1)− f(x1, y2) = fy(x1, ξ)

([
x1

y1

]
−

[
x1

y2

])

where ξ lies between y1, y2. We know LHS ̸= 0 but fy(x, ξ) = 0, so RHS = 0. This is a
contradiction, and hence f is independent on y in D.

(ii) Does the answer in (i) change if D is an arbitrary domain?

Yes. Suppose D is a domain drawn (blue region) in the graph below:
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x

y

and the function f is defined by

f(x, y) =

−e−1/x2 if x > 0 and y > 0

0 otherwise

For such a function f(x, y), f(x, y) ∈ C1(D;R), and fy ≡ 0. However, for all x > 0, there
exists y1 < 0 and y2 > 0 such that f(x, y1) ̸= f(x, y2). Therefore, the answer in (i) changes if
D is nonconvex.

Question 5. Let f : R2 7→ R3 be given by f(x, y) = (x + y3, xy, y + y2). Can the range of f be
“straightened out” or “flattened out” near (0, 0)?

First compute the differential

Df(x, y) =


1 3y2

y x

0 1 + 2y

 , Df(0, 0) =


1 0

0 0

0 1


It is trivial that rank of Df(0, 0) is 2. Since det(M2) = 1+ 2y, where M2 is the matrix obtained by
removing the second row of Df(x, y), we can see that in a small neighborhood of (0, 0), det(M2) ̸= 0,
so Df(x, y) will have at least rank 2 inside this neighborhood. However, Df(x, y) has at most rank
2, so it will have constant rank 2 inside this neighborhood of (0, 0). Given that f is a function such
that f(0, 0) = (0, 0, 0), f ∈ C∞(R2;R3), and f has constant rank 2 near (0, 0), by Rank Theorem,
there exists two diffeomorphisms u = ϕ(x, y) near (0, 0) amd v = ψ(a, b, c) near (0, 0, 0) such that
v = ψ ◦ f ◦ ϕ−1(u1, u2) has the representation (u1, u2) 7→ (u1, u2, 0) in the neighborhood of ϕ(0, 0).
Therefore, the range of f can be “straightened out” near (0, 0).
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