
MAT3006∗: Real Analysis
Homework 1

李肖鹏 (116010114)

Due date: Jan. 17, 2020
Page 24, Problem 44. Let p be a natural number greater than 1, and x a real umber, 0 < x < 1.
Show that there is a sequence {an} of integers with 0 ≤ an < p for each n such that x =

∑∞
n=1

an

pn

and that this sequence is unique except when x is of the form q/pn, in which case there are exactly
two such sequences. Show that, conversely, if {an} is any sequence of integers with 0 ≤ an < p, the
series

∑∞
n=1

an

pn converges to a real number x with 0 ≤ x ≤ 1.

Notice that p is integer at least 2, so given any x ∈ (0, 1), in the first step, we divide (0, 1)

into p disjoint subintervals I1,i, i = 1, . . . , p with equal length 1/p. Notice that each I1,i is open
and if x is equal to one of two end points of I1,i, then x must be of the form q/p for some integer
1 ≤ q ≤ p− 1. In this case we can either set a1 = q and set all other an = 0 or set a1 = q − 1 and
set all other an = p− 1. If x is none of the end points of those subintervals, then x must lie in I1,i

for some i, and we let a1 = i− 1.
In the second step, we divide I1,a1+1 into p disjoint subintervals I2,i, i = 1, . . . , p with equal

length 1/p. Then we repeat exactly the same thing as in step one, if x is one of end points of I2,i,
then it has a form of q/p2 and all an will be defined in two different ways, so we can stop. If not,
then we obtain a2 and continue. Therefore, in the end, if x is the end point of any subinterval Ik,i
for k = 1, 2, . . . and i = 1, 2, . . . , p, we can obtain two different sequences {an}. If not, then we can
still obtain {an} which satisfies

a1
p

+ · · ·+ an
pn

< x <
a1
p

+ · · ·+ an
pn

+
1

pn

Since LHS and RHS are both nondecreasing and bounded by a geometric series, so they are both
convergent and if we take the limit n → ∞ on both sides, we can obtain x =

∑∞
n=1

an

pn .

Now it suffices to show that if we do not consider the case when there exists some n0 such that
an = p − 1 for all n ≥ n0, which only appears when x = q/pn, for each x ∈ (0, 1), the an we can
obtain is unique. Suppose

x =
∞∑

n=1

an
pn

=
∞∑

n=1

bn
pn

but a1 ≥ b1 + 1, then
∞∑

n=1

bn
pn

=
∞∑

n=1

an
pn

≥ 1

p
+

b1
p

+
∞∑

n=2

an
pn

=⇒
∞∑

n=2

bn − an
pn

≥ 1

p

However, we also have
∞∑

n=2

bn − an
pn

≤
∞∑

n=2

p− 1

pn
=

1

p
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Therefore, bn−an = p−1 for all n ≥ 2, which shows bn = p−1 and an = 0 for all n ≥ 2. This means
there exists some n0 such that an = p− 1 for all n ≥ n0, which is excluded by us. Similarly we can
derive the same contradiction for a1 ≤ b1 − 1. Thus, a1 = b1. Similarly, we can obtain an = bn for
all n ≥ 1.

Conversely, since 0 ≤ an ≤ p− 1, we have

0 =
∞∑

n=1

0

pn
≤

∞∑
n=1

an
pn

≤
∞∑

n=1

p− 1

pn
= 1

where the last equality is because
k∑

n=1

p− 1

pn
=

k∑
n=1

1

pn−1
−

k∑
n=1

1

pn
=

k−1∑
n=0

1

pn
−

k∑
n=1

1

pn
= 1− 1

pk
→ 1

as k → ∞. Thus,
∑∞

n=1
an

pn is bounded by [0, 1]. Notice that an is nonnegative, so the partial sum
of this series is nondecreasing, which means the series converges to some number in [0, 1].

Extra Problem 1. Let A and B be sets. Suppose there exists injective mappings f : A 7→ B and
g : B 7→ A. Prove that A ∼ B.

Denote C = g(B) and D = f(A). Let E = B \D, and

S = g(E) ∪ g[f ◦ g(E)] ∪ g[f ◦ g ◦ f ◦ g(E)] ∪ · · ·

Define F : A 7→ B by

F (a) =

f(a) a ∈ A \ S

g−1(a) a ∈ S

Now we claim that F is bijective. First, we prove that F is surjective. Given b ∈ B, g(b) is either
in S or not in S. If g(b) ∈ S, then F (g(b)) = g−1(g(b)) = b, which means such b can be attained by
g(b) ∈ A. If g(b) /∈ S, then b ∈ D. This means there exists a ∈ A such that f(a) = b. Furthermore,
a /∈ S, because if yes, then g ◦ f(a) ∈ S, which means g(b) ∈ S, contradiction. Thus, a ∈ A \S, and
F (a) = f(a) = b. This implies that F is surjective.

To prove it is injective, suppose not, then there exists a1 ∈ A \S and a2 ∈ S such that F (a1) =

F (a2), i.e., f(a1) = g−1(a2), i.e., g ◦ f(a1) = a2. Since a2 ∈ S, g ◦ f(a1) ∈ S, and S =
∪∞

i=1 Ai,
where Ai denotes the i-th subset in the definition of S, e.g., A1 = g(E), and A2 = g[f ◦ g(E)]. It
is obvious that g ◦ f(a1) is not in A1 because f(a1) ∈ D and g(D) and g(E) are disjoint. Then if
g ◦ f(a1) is in A2, a1 ∈ g(E) ⊂ S, which is contradiction to a1 ∈ A \ S. Similarly, by induction, if
g ◦ f(a1) is in Ak, we will obtain a1 ∈ Ak−1 ⊂ S for all k ≥ 2, which is contradiction. Therefore,
such a1 and a2 does not exist, which proves the injectivity of F .

Extra Problem 2. Let Gk (k ∈ N+) be open and dense in R. Prove that
∩∞

k=1 Gk is uncountable.

Since Gk is open and dense, its complement Gc
k is closed and nowhere dense. This is because Gc

k

contains no open interval. Notice that if it contains an open interval I, then Gk is disjoint with I,
then Gk cannot be dense because the middle point of I is not a limit point of Gk, which contradicts
to the definition of dense set. Notice that G =

∪∞
k=1 G

c
k is of first category because it is countable
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union of nowhere dense set. Since R is of second category, so Gc is of second category. However, by
De Morgan’s Law,

Gc =

(
∞∪
k=1

Gc
k

)c

=
∞∩
k=1

(Gc
k)

c =
∞∩
k=1

Gk

Therefore,
∩∞

k=1 Gk is of second category, but countable set must be of first category, so
∩∞

k=1 Gk is
uncountable.

Extra Problem 3. Let 3 ≤ p < ∞. The Cantor-like set is constructed as follows: On the
interval [0, 1], first pick the middle point 1/2 and remove the 1/p neighborhood of it. Denote the
remaining part of [0, 1] by F1. Now in the second stage, from each subterval in F1, remove the 1/p2

neighborhood of its middle point. Denote the remaining part as F2. Repeat this process we get Fn,
which consists of 2n closed subintervals of equal length. Define Cp =

∩∞
n=1 Fn. Prove that

(i) Cp is nowhere dense;

For any x ∈ Cp, we want to show for all δ > 0, (x − δ, x + δ) ̸⊂ Cp. Since x ∈ Cp, for all
n, x ∈ Fn. Since Fn consists of closed and disjoint interval In,i for i = 1, . . . 2n, we assume
x ∈ In,in . Then we obtain a sequence of closed interval In,in whose length is decreasing to zero.
Therefore, we can take n large such that In,in ⊂ (x− δ, x+ δ). However, when construct Fn+1,
1/pn+1-neighborhood of x in In,in is removed, so (x−δ, x+δ) ̸⊂ Fn+1, hence (x−δ, x+δ) ̸⊂ Cp.

(ii) Cp is a perfect set;

Since Cp is closed, we have C ′
p ⊂ Cp. For all x ∈ Cp, x ∈ Fn for all n ≥ 1, so x ∈ In,in which

has length
1−

∑n
k=1

1
pk

2n
=

p− 2 + p−n

2n(p− 1)
→ 0

Therefore, if we denote xn ∈ Cp be an end point of In,in , d(xn, x) → 0 as n → ∞. This shows
x is a limit point of Cp, so x ∈ C ′

p, i.e., Cp ⊂ C ′
p. Thus, Cp = C ′

p and Cp is a perfect set.

(iii) the total length of all open inverals removed is equal to 1
p−2

.

The total length of open inverals removed until step n is equal to

1

p
+

21

p2
+

22

p3
+ · · · = 1

p

(
1 +

(
2

p

)
+

(
2

p

)2

+ · · ·

)
= lim

n→∞

1 ·
(
1−

(
2
p

)n)
p− 2

=
1

p− 2

Thus, the total length of all open inverals removed is equal to 1
p−2

.

Extra Problem 4. Let {En}∞n=1 be a sequence of sets. Define

lim
n→∞

En =
∞∩
k=1

∞∪
n=k

En, lim
n→∞

En =
∞∪
k=1

∞∩
n=k

En

(i) Prove limn→∞ En is equal to the set of points who belong to infinitely many En’s, and

lim
n→∞

En = {x | ∃ integer nx ≥ 1, s.t. x ∈ En whenever n ≥ nx}
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If x belongs to infinitely many En’s, then there exists a subsequence nk such that x ∈ Enk

for all k ≥ 1 and nk → ∞ as k → ∞. Therefore, x ∈
∪∞

n=nk
En for all k. Since nk ≥ k, so

for all k ≥ 1, x ∈
∪∞

n=nk
En ⊂

∪∞
n=k En. This is sufficient to show that x ∈

∩∞
k=1

∪∞
n=k En.

Conversely if x belongs to only finitely many En’s, then denote the maximum n as n0, for all
k ≥ n0+1, x /∈

∪∞
n=k En, so x /∈

∩∞
k=1

∪∞
n=k En. This proves that the set of points who belong

to infinitely many En’s is equal to limn→∞ En.

If there exists nx ≥ 1 such that x ∈ En for all n ≥ nx, then x ∈
∩∞

n=nx
En, and thus

x ∈
∪∞

k=1

∩∞
n=k En. Conversely, if x ∈ limn→∞ En, then there must exists a k0 such that

x ∈
∩∞

n=k0
En, which further means for all n ≥ k0, x ∈ En. Thus, we prove the required

statement.

(ii) Suppose E1 ⊂ E2 ⊂ E3 ⊂ · · · ⊂ En ⊂ En+1 ⊂ · · · , find limn→∞ En and limn→∞ En.

For each k ≥ 1,
∩∞

n=k En = Ek, therefore, limn→∞ En =
∪∞

k=1 Ek. For each k ≥ 2,
∪∞

n=k En =

Ek =
∪∞

n=k−1 En, therefore, limn→∞ En =
∪∞

n=1 En. This shows that limn→∞ En = limn→∞ En.

(iii) Suppose En ∩ Em = ∅, if n ̸= m. Find limn→∞ En and limn→∞ En.

Since each En is pairwise disjoint, for all k ≥ 1,
∩∞

n=k En = ∅, thus limn→∞ En =
∪∞

k=1 ∅ = ∅.
We claim that limn→∞ En = ∅. Suppose there exists x ∈ limn→∞ En, then for all k ≥ 1,
x ∈

∪∞
n=k En. This implies that there exists a unique nk ≥ k such that x ∈ Enk

for all k ≥ 1.
However, if k = 1, there exists unique n1 ≥ 1 such that x ∈ En1

, but if we take k = n1 + 1,
then there exists unique n2 > n1 such that x ∈ En2

, which contradicts to the uniqueness of
n1. Therefore, there is no such x, that is to say limn→∞ En = ∅.

(iv) Let all En ⊂ RN . Prove that(
lim
n→∞

En

)c
= lim

n→∞
(En)

c,

(
lim
n→∞

En

)c

= lim
n→∞

(En)
c

Notice that De Morgan’s Law can be generalized into infinite number of sets, so

(
lim
n→∞

En

)c
=

(
∞∩
k=1

∞∪
n=k

En

)c

=
∞∪
k=1

(
∞∪

n=k

En

)c

=
∞∪
k=1

∞∩
n=k

Ec
n = lim

n→∞
(En)

c

(
lim
n→∞

En

)c

=

(
∞∪
k=1

∞∩
n=k

En

)c

=
∞∩
k=1

(
∞∩

n=k

En

)c

=
∞∩
k=1

∞∪
n=k

Ec
n = lim

n→∞
Ec

n

(v) Let f(x), {fn(x)}∞n=1 be defined on a set E ⊂ RN . Prove that

Z ≜ {x ∈ E | fn(x) ̸→ f(x) as n → ∞} =
∞∪
l=1

(
lim
k→∞

Ek
l

)
where Ek

l =
{
x ∈ E | |fk(x)− f(x)| ≥ 1

l

}
.
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Given x ∈ E, fn(x) ̸→ f(x) is equivalent to say there exists l ∈ N+ such that for all N ∈ N+,
there exists k ≥ N , such that |fk(x) − f(x)| ≥ 1

l
. In other words, it means that there exists

l ∈ N+ such that x ∈ Ek
l for infinitely many k, which by part (i), is equivalent to that

x ∈ limk→∞ Ek
l . The existence of l is equivalent to x ∈

∪∞
l=1 limk→∞ Ek

l , so we prove the
desired statement.

Extra Problem 5. Let E be a bounded closed subset of Rn. Suppose {fk}∞k=1 are continuous on
E and fk → f uniformly for some f as k → ∞. Prove that

f(E) =
∞∩
j=1

(∪∞

k=j
fk(E)

)

For y ∈ f(E), there exists x ∈ E such that f(x) = y. Since fk is uniformly convergent to
f , so fk(x) → f(x) = y, which means y is a limit point of

∪
k=j fk(E) for all j ≥ 1. Therefore,

y ∈
∩∞

j=1

(∪∞
k=j fk(E)

)
.

For the other direction, if y ∈
∩∞

j=1

(∪∞
k=j fk(E)

)
, then there exists a sequence ak ⊂ N+

such that fak
(xak

) → y as k → ∞, where xak
∈ E. Since E is bounded subset of Rn, by Bolzano-

Weierstrass, there exists a subsequence of xak
which converges in Rn and by closedness of E, xakp

→
x ∈ E. We claim that f(x) = y, and then y ∈ f(E). Since fk is continuous and uniformly convergent
to f , so f is continuous. Also, by the definition of uniform convergence, supx∈E |fk(x)− f(x)| → 0

as k → ∞. Consider

|fakp
(xakp

)− f(x)| ≤ |fakp
(xakp

)− f(xakp
)|+ |f(xakp

)− f(x)|

≤ sup
x∈E

|fakp
(x)− f(x)|+ |f(xakp

)− f(x)|

Since akp
→ ∞ and xakp

→ x as p → ∞, with the continuity of f , we conclude that the above two
terms both converge to zero, i.e., fakp

(xakp
) → f(x). However, since fakp

(xakp
) is a subsequence of

fak
(ak) and fak

(ak) → y, these two limits must be equal, that is, f(x) = y.
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