MAT3006*: Real Analysis

Homework 1

24 i (116010114)

Due date: Jan. 17, 2020

Page 24, Problem 44. Let p be a natural number greater than 1, and x a real umber, 0 < z < 1.
et g

and that this sequence is unique except when x is of the form ¢/p™, in which case there are exactly

Show that there is a sequence {a, } of integers with 0 < a,, < p for each n such that z = )

two such sequences. Show that, conversely, if {a,} is any sequence of integers with 0 < a,, < p, the

n

series Y 7, i converges to a real number z with 0 <z < 1.

Notice that p is integer at least 2, so given any = € (0, 1), in the first step, we divide (0, 1)
into p disjoint subintervals Iy ;, ¢ = 1,...,p with equal length 1/p. Notice that each I ; is open
and if = is equal to one of two end points of I; ;, then x must be of the form ¢/p for some integer
1 < g <p-—1. In this case we can either set a; = ¢ and set all other a,, = 0 or set a; = ¢ — 1 and
set all other a,, = p — 1. If  is none of the end points of those subintervals, then x must lie in I ;
for some 7, and we let a; =i — 1.

In the second step, we divide Iy 4,41 into p disjoint subintervals I ;, ¢ = 1,...,p with equal
length 1/p. Then we repeat exactly the same thing as in step one, if x is one of end points of I ;,
then it has a form of ¢/p? and all a,, will be defined in two different ways, so we can stop. If not,
then we obtain a, and continue. Therefore, in the end, if « is the end point of any subinterval I ;
for k=1,2,...and i = 1,2,...,p, we can obtain two different sequences {a, }. If not, then we can
still obtain {a, } which satisfies
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Since LHS and RHS are both nondecreasing and bounded by a geometric series, so they are both

oo an

convergent and if we take the limit n — oo on both sides, we can obtain z =, o

Now it suffices to show that if we do not consider the case when there exists some ng such that
a, = p— 1 for all n > ng, which only appears when z = ¢/p™, for each z € (0, 1), the a,, we can

obtain is unique. Suppose

but aq Z b1 + 1, then

However, we also have




Therefore, b,, —a,, = p—1 for all n > 2, which shows b, = p—1 and a,, = 0 for all n > 2. This means
there exists some ng such that a,, = p — 1 for all n > ng, which is excluded by us. Similarly we can
derive the same contradiction for a; < b; — 1. Thus, a; = b;. Similarly, we can obtain a, = b, for
alln > 1.

Conversely, since 0 < a,, < p — 1, we have

n=1 n=1

p

Qn, Oop_]-
— < =1
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where the last equality is because

as k — oo. Thus, .77, %= is bounded by [0,1]. Notice that a,, is nonnegative, so the partial sum

n=1 pn

— 1
pn pnfl
of this series is nondecreasing, which means the series converges to some number in [0, 1].

Extra Problem 1. Let A and B be sets. Suppose there exists injective mappings f : A — B and
g: B~ A. Prove that A ~ B.

Denote C' = g(B) and D = f(A). Let E = B\ D, and

S=g(E)Ug[fog(E)Ug[fogofog(E)]U---

Define F': A — B by
Fla) = f(a) a€ A\S
g a) a€es

Now we claim that F' is bijective. First, we prove that F' is surjective. Given b € B, g(b) is either
in S or not in S. If g(b) € S, then F(g(b)) = g~'(g(b)) = b, which means such b can be attained by
g(b) € A. If g(b) ¢ S, then b € D. This means there exists a € A such that f(a) = b. Furthermore,
a ¢ S, because if yes, then g o f(a) € S, which means g(b) € S, contradiction. Thus, a € A\ S, and
F(a) = f(a) = b. This implies that F' is surjective.

To prove it is injective, suppose not, then there exists a; € A\ S and as € S such that F(ay) =
F(ay), i.e., f(a1) = g~ (az), ie., g o f(a1) = ay. Since ay € S, g o f(a;) € S, and S = UfilAq;7
where A; denotes the i-th subset in the definition of S, e.g., A1 = ¢g(E), and Ay = g[f o g(E)]. It
is obvious that g o f(a;) is not in A; because f(a;) € D and g(D) and g(F) are disjoint. Then if
g o f(ay) is in Az, a1 € g(F) C S, which is contradiction to a; € A\ S. Similarly, by induction, if
g o f(ay) is in Ay, we will obtain a; € A,_1 C S for all k¥ > 2, which is contradiction. Therefore,

such a; and as does not exist, which proves the injectivity of F.

Extra Problem 2. Let G, (k € NT) be open and dense in R. Prove that (,—; Gj is uncountable.

Since G, is open and dense, its complement G, is closed and nowhere dense. This is because G,
contains no open interval. Notice that if it contains an open interval I, then G}, is disjoint with I,
then G, cannot be dense because the middle point of I is not a limit point of Gy, which contradicts

to the definition of dense set. Notice that G = |J,-, G§ is of first category because it is countable



union of nowhere dense set. Since R is of second category, so G¢ is of second category. However, by
De Morgan’s Law,
v (U G?) - NG =N 6
k=1 k=1 k=1
Therefore, ﬂgozl Gy, is of second category, but countable set must be of first category, so ﬂgozl Gy is

uncountable.

Extra Problem 3. Let 3 < p < oo. The Cantor-like set is constructed as follows: On the
interval [0, 1], first pick the middle point 1/2 and remove the 1/p neighborhood of it. Denote the
remaining part of [0, 1] by F;. Now in the second stage, from each subterval in Fy, remove the 1/p?
neighborhood of its middle point. Denote the remaining part as F5. Repeat this process we get F;,,

which consists of 2" closed subintervals of equal length. Define C, = (.2, F,. Prove that

(i) C, is nowhere dense;

For any = € C,, we want to show for all 6 > 0, (z — 6,2+ J) ¢ C,. Since z € C,, for all
n, v € F,. Since F), consists of closed and disjoint interval I,,; for ¢ = 1,...2", we assume
x € I, ;,. Then we obtain a sequence of closed interval I,, ;, whose length is decreasing to zero.
Therefore, we can take n large such that I,, ; C (x —d,x+ ). However, when construct F, 1,

1/p"*tt-neighborhood of z in I,, ;, is removed, so (z—3J,2+38) ¢ F,+1, hence (x—08,2+46) ¢ C,,.

in

(ii) C, is a perfect set;

Since C,, is closed, we have C’I’) CcC, Forallz € C,, x € F, for alln > 1, so « € I, ;,, which
has length
L= pr _p—2+p"
2" 2(p— 1)
Therefore, if we denote x,, € C}, be an end point of I,, ;, d(z,,x) — 0 as n — oo. This shows

— 0

x is a limit point of €, so z € (), i.e., C, C C}. Thus, C}, = C], and C,, is a perfect set.

. . 1
(iii) the total length of all open inverals removed is equal to PR

The total length of open inverals removed until step n is equal to

2 (2 (2) ) - D

p pT P P D D n—00 p—2 p—2

Thus, the total length of all open inverals removed is equal to %2
p

Extra Problem 4. Let {E,}2°, be a sequence of sets. Define
N I

(i) Prove lim,_,o E, is equal to the set of points who belong to infinitely many F,’s, and

lim F, = {z|3 integer n, > 1, s.t. x € F,, whenever n > n,}
n—o0



If = belongs to infinitely many E,’s, then there exists a subsequence n; such that x € E,,
for all kK > 1 and np — oo as k — oo. Therefore, x € Un - FE, for all k. Since n, > k, so
forall k > 1,z € .2, E, C ., E,. This is sufficient to show that z € (N, U,—, F

Conversely if x belongs to only finitely many F,,’s, then denote the maximum n as ng, for all
k>no+1,2¢ U, ) En,s0ox ¢ (e, Un—, E,. This proves that the set of points who belong

to infinitely many E,,’s is equal to lim,_,. E,.

n=ng

If there exists n, > 1 such that + € E, for all n > n,, then = € ﬂzo:m E,,, and thus

z € Upey Ny En. Conversely, if z € lim E,,, then there must exists a ko such that

———n—00

T € ﬂzo:ko FE,,, which further means for all n > ko, x € E,. Thus, we prove the required

statement.

(ii) Suppose By C B CE3C -+ CE, C B,y C -+, find lim,, ,  F, and lim,_,., E,.

For each k > 1, (._, E, = E}, therefore, lim, . E, =J;_, Ex. Foreach k > 2, |J_, E, =
Ey =", | E, therefore, lim, oo E, = J,—, E,. This shows that lim E, =1lim, s E,.

—=———n—00

(iii) Suppose E, N E,, = @, if n # m. Find lim, , £, and lim,,_,, E,.

Since each E,, is pairwise disjoint, for all k > 1, (", B, = &, thus lim, ., E, = J,-, 9 = @.
We claim that lim,_,. F, = @. Suppose there exists z € lim,_,,, F,, then for all £ > 1,
T € Uzozk E,,. This implies that there exists a unique n; > k such that x € £, for all £ > 1.
However, if k£ = 1, there exists unique n; > 1 such that x € E,,, but if we take k = ny + 1,
then there exists unique ny > mny such that x € E,,, which contradicts to the uniqueness of

ni. Therefore, there is no such z, that is to say lim,,_,. F, = @.

(iv) Let all E,, C RY. Prove that

(Fm £.) = tim (5,)" (hm E) — Tm (B,)°

n—oo n—oo

Notice that De Morgan’s Law can be generalized into infinite number of sets, so

(@E’l> (ﬂU ) U(G ) UﬂEg lim (E,)°

k=1 \n=k k=1n=k "‘“’O

() = (0=) A (A=) -A0m-Es

nreo k=1n=k k=1 \n=k k=1n=k

(v) Let f(x), {fu(2)}52, be defined on a set E C RY. Prove that

Z 2z € E|fu(x) A fl) asn%oo}:U(k@Elk)

=1

where B = {z € E||fu(z) — f(z)| > }}.



Given z € E, f,(z) /4 f(z) is equivalent to say there exists [ € NT such that for all N € NT,
there exists k > N, such that |fz(z) — f(z)| > 7. In other words, it means that there exists
| € NT such that # € Ef for infinitely many k, which by part (i), is equivalent to that
x € limy_o EF. The existence of [ is equivalent to x € |J,°, limj_,o Ef, so we prove the

desired statement.

Extra Problem 5. Let E be a bounded closed subset of R". Suppose {f}32, are continuous on

FE and f;, — f uniformly for some f as k — oco. Prove that

e = (UL #2)

=1

For y € f(E), there exists € E such that f(z) = y. Since fj is uniformly convergent to
f, so fi(x) — f(z) = y, which means y is a limit point of J,_; fi(E) for all j > 1. Therefore,

yen: (U 7).

For the other direction, if y € ﬂ;il (m), then there exists a sequence ap C N*
such that f,, (z,.,) — y as k — oo, where z,, € E. Since F is bounded subset of R™, by Bolzano-
Weierstrass, there exists a subsequence of x,, which converges in R™ and by closedness of E, Loy, =
x € E. We claim that f(z) =y, and then y € f(F). Since f} is continuous and uniformly convergent
to f, so f is continuous. Also, by the definition of uniform convergence, sup,cp |fi(z) — f(z)| = 0

as k — o0o. Consider

far, (ar,) = F(@)| < |far, (Tar,) = f2a,, )| + |f(2a,,) — f(2)]
< sup | far, (@) = f(@)] + | f(2a,,) — ()]
Since ay, — oo and Tq,, — T asp—> 00, with the continuity of f, we conclude that the above two

terms both converge to zero, i.e., fs, (makp) — f(x). However, since far, (xakp) is a subsequence of

fa,. (ar) and f,, (ax) — y, these two limits must be equal, that is, f(x) = y.



