MAT3006＊：Real Analysis Homework 1

李肖鹏（116010114）

Due date：Jan．17， 2020
Page 24，Problem 44．Let p be a natural number greater than 1 ，and x a real umber， $0<x<1$ ． Show that there is a sequence $\left\{a_{n}\right\}$ of integers with $0 \leq a_{n}<p$ for each n such that $x=\sum_{n=1}^{\infty} \frac{a_{n}}{p^{n}}$ and that this sequence is unique except when x is of the form q / p^{n} ，in which case there are exactly two such sequences．Show that，conversely，if $\left\{a_{n}\right\}$ is any sequence of integers with $0 \leq a_{n}<p$ ，the series $\sum_{n=1}^{\infty} \frac{a_{n}}{p^{n}}$ converges to a real number x with $0 \leq x \leq 1$ ．

Notice that p is integer at least 2 ，so given any $x \in(0,1)$ ，in the first step，we divide $(0,1)$ into p disjoint subintervals $I_{1, i}, i=1, \ldots, p$ with equal length $1 / p$ ．Notice that each $I_{1, i}$ is open and if x is equal to one of two end points of $I_{1, i}$ ，then x must be of the form q / p for some integer $1 \leq q \leq p-1$ ．In this case we can either set $a_{1}=q$ and set all other $a_{n}=0$ or set $a_{1}=q-1$ and set all other $a_{n}=p-1$ ．If x is none of the end points of those subintervals，then x must lie in $I_{1, i}$ for some i ，and we let $a_{1}=i-1$ ．

In the second step，we divide $I_{1, a_{1}+1}$ into p disjoint subintervals $I_{2, i}, i=1, \ldots, p$ with equal length $1 / p$ ．Then we repeat exactly the same thing as in step one，if x is one of end points of $I_{2, i}$ ， then it has a form of q / p^{2} and all a_{n} will be defined in two different ways，so we can stop．If not， then we obtain a_{2} and continue．Therefore，in the end，if x is the end point of any subinterval $I_{k, i}$ for $k=1,2, \ldots$ and $i=1,2, \ldots, p$ ，we can obtain two different sequences $\left\{a_{n}\right\}$ ．If not，then we can still obtain $\left\{a_{n}\right\}$ which satisfies

$$
\frac{a_{1}}{p}+\cdots+\frac{a_{n}}{p^{n}}<x<\frac{a_{1}}{p}+\cdots+\frac{a_{n}}{p^{n}}+\frac{1}{p^{n}}
$$

Since LHS and RHS are both nondecreasing and bounded by a geometric series，so they are both convergent and if we take the limit $n \rightarrow \infty$ on both sides，we can obtain $x=\sum_{n=1}^{\infty} \frac{a_{n}}{p^{n}}$ ．

Now it suffices to show that if we do not consider the case when there exists some n_{0} such that $a_{n}=p-1$ for all $n \geq n_{0}$ ，which only appears when $x=q / p^{n}$ ，for each $x \in(0,1)$ ，the a_{n} we can obtain is unique．Suppose

$$
x=\sum_{n=1}^{\infty} \frac{a_{n}}{p^{n}}=\sum_{n=1}^{\infty} \frac{b_{n}}{p^{n}}
$$

but $a_{1} \geq b_{1}+1$ ，then

$$
\sum_{n=1}^{\infty} \frac{b_{n}}{p^{n}}=\sum_{n=1}^{\infty} \frac{a_{n}}{p^{n}} \geq \frac{1}{p}+\frac{b_{1}}{p}+\sum_{n=2}^{\infty} \frac{a_{n}}{p^{n}} \Longrightarrow \sum_{n=2}^{\infty} \frac{b_{n}-a_{n}}{p^{n}} \geq \frac{1}{p}
$$

However，we also have

$$
\sum_{n=2}^{\infty} \frac{b_{n}-a_{n}}{p^{n}} \leq \sum_{n=2}^{\infty} \frac{p-1}{p^{n}}=\frac{1}{p}
$$

Therefore, $b_{n}-a_{n}=p-1$ for all $n \geq 2$, which shows $b_{n}=p-1$ and $a_{n}=0$ for all $n \geq 2$. This means there exists some n_{0} such that $a_{n}=p-1$ for all $n \geq n_{0}$, which is excluded by us. Similarly we can derive the same contradiction for $a_{1} \leq b_{1}-1$. Thus, $a_{1}=b_{1}$. Similarly, we can obtain $a_{n}=b_{n}$ for all $n \geq 1$.

Conversely, since $0 \leq a_{n} \leq p-1$, we have

$$
0=\sum_{n=1}^{\infty} \frac{0}{p^{n}} \leq \sum_{n=1}^{\infty} \frac{a_{n}}{p^{n}} \leq \sum_{n=1}^{\infty} \frac{p-1}{p^{n}}=1
$$

where the last equality is because

$$
\sum_{n=1}^{k} \frac{p-1}{p^{n}}=\sum_{n=1}^{k} \frac{1}{p^{n-1}}-\sum_{n=1}^{k} \frac{1}{p^{n}}=\sum_{n=0}^{k-1} \frac{1}{p^{n}}-\sum_{n=1}^{k} \frac{1}{p^{n}}=1-\frac{1}{p^{k}} \rightarrow 1
$$

as $k \rightarrow \infty$. Thus, $\sum_{n=1}^{\infty} \frac{a_{n}}{p^{n}}$ is bounded by $[0,1]$. Notice that a_{n} is nonnegative, so the partial sum of this series is nondecreasing, which means the series converges to some number in $[0,1]$.

Extra Problem 1. Let A and B be sets. Suppose there exists injective mappings $f: A \mapsto B$ and $g: B \mapsto A$. Prove that $A \sim B$.

Denote $C=g(B)$ and $D=f(A)$. Let $E=B \backslash D$, and

$$
S=g(E) \cup g[f \circ g(E)] \cup g[f \circ g \circ f \circ g(E)] \cup \cdots
$$

Define $F: A \mapsto B$ by

$$
F(a)= \begin{cases}f(a) & a \in A \backslash S \\ g^{-1}(a) & a \in S\end{cases}
$$

Now we claim that F is bijective. First, we prove that F is surjective. Given $b \in B, g(b)$ is either in S or not in S. If $g(b) \in S$, then $F(g(b))=g^{-1}(g(b))=b$, which means such b can be attained by $g(b) \in A$. If $g(b) \notin S$, then $b \in D$. This means there exists $a \in A$ such that $f(a)=b$. Furthermore, $a \notin S$, because if yes, then $g \circ f(a) \in S$, which means $g(b) \in S$, contradiction. Thus, $a \in A \backslash S$, and $F(a)=f(a)=b$. This implies that F is surjective.

To prove it is injective, suppose not, then there exists $a_{1} \in A \backslash S$ and $a_{2} \in S$ such that $F\left(a_{1}\right)=$ $F\left(a_{2}\right)$, i.e., $f\left(a_{1}\right)=g^{-1}\left(a_{2}\right)$, i.e., $g \circ f\left(a_{1}\right)=a_{2}$. Since $a_{2} \in S, g \circ f\left(a_{1}\right) \in S$, and $S=\bigcup_{i=1}^{\infty} A_{i}$, where A_{i} denotes the i-th subset in the definition of S, e.g., $A_{1}=g(E)$, and $A_{2}=g[f \circ g(E)]$. It is obvious that $g \circ f\left(a_{1}\right)$ is not in A_{1} because $f\left(a_{1}\right) \in D$ and $g(D)$ and $g(E)$ are disjoint. Then if $g \circ f\left(a_{1}\right)$ is in $A_{2}, a_{1} \in g(E) \subset S$, which is contradiction to $a_{1} \in A \backslash S$. Similarly, by induction, if $g \circ f\left(a_{1}\right)$ is in A_{k}, we will obtain $a_{1} \in A_{k-1} \subset S$ for all $k \geq 2$, which is contradiction. Therefore, such a_{1} and a_{2} does not exist, which proves the injectivity of F.

Extra Problem 2. Let $G_{k}\left(k \in \mathbb{N}^{+}\right)$be open and dense in \mathbb{R}. Prove that $\bigcap_{k=1}^{\infty} G_{k}$ is uncountable.
Since G_{k} is open and dense, its complement G_{k}^{c} is closed and nowhere dense. This is because G_{k}^{c} contains no open interval. Notice that if it contains an open interval I, then G_{k} is disjoint with I, then G_{k} cannot be dense because the middle point of I is not a limit point of G_{k}, which contradicts to the definition of dense set. Notice that $G=\bigcup_{k=1}^{\infty} G_{k}^{c}$ is of first category because it is countable
union of nowhere dense set. Since \mathbb{R} is of second category, so G^{c} is of second category. However, by De Morgan's Law,

$$
G^{c}=\left(\bigcup_{k=1}^{\infty} G_{k}^{c}\right)^{c}=\bigcap_{k=1}^{\infty}\left(G_{k}^{c}\right)^{c}=\bigcap_{k=1}^{\infty} G_{k}
$$

Therefore, $\bigcap_{k=1}^{\infty} G_{k}$ is of second category, but countable set must be of first category, so $\bigcap_{k=1}^{\infty} G_{k}$ is uncountable.

Extra Problem 3. Let $3 \leq p<\infty$. The Cantor-like set is constructed as follows: On the interval $[0,1]$, first pick the middle point $1 / 2$ and remove the $1 / p$ neighborhood of it. Denote the remaining part of $[0,1]$ by F_{1}. Now in the second stage, from each subterval in F_{1}, remove the $1 / p^{2}$ neighborhood of its middle point. Denote the remaining part as F_{2}. Repeat this process we get F_{n}, which consists of 2^{n} closed subintervals of equal length. Define $C_{p}=\bigcap_{n=1}^{\infty} F_{n}$. Prove that
(i) C_{p} is nowhere dense;

For any $x \in C_{p}$, we want to show for all $\delta>0,(x-\delta, x+\delta) \not \subset C_{p}$. Since $x \in C_{p}$, for all $n, x \in F_{n}$. Since F_{n} consists of closed and disjoint interval $I_{n, i}$ for $i=1, \ldots 2^{n}$, we assume $x \in I_{n, i_{n}}$. Then we obtain a sequence of closed interval $I_{n, i_{n}}$ whose length is decreasing to zero. Therefore, we can take n large such that $I_{n, i_{n}} \subset(x-\delta, x+\delta)$. However, when construct F_{n+1}, $1 / p^{n+1}$-neighborhood of x in $I_{n, i_{n}}$ is removed, so $(x-\delta, x+\delta) \not \subset F_{n+1}$, hence $(x-\delta, x+\delta) \not \subset C_{p}$.
(ii) C_{p} is a perfect set;

Since C_{p} is closed, we have $C_{p}^{\prime} \subset C_{p}$. For all $x \in C_{p}, x \in F_{n}$ for all $n \geq 1$, so $x \in I_{n, i_{n}}$ which has length

$$
\frac{1-\sum_{k=1}^{n} \frac{1}{p^{k}}}{2^{n}}=\frac{p-2+p^{-n}}{2^{n}(p-1)} \rightarrow 0
$$

Therefore, if we denote $x_{n} \in C_{p}$ be an end point of $I_{n, i_{n}}, d\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$. This shows x is a limit point of C_{p}, so $x \in C_{p}^{\prime}$, i.e., $C_{p} \subset C_{p}^{\prime}$. Thus, $C_{p}=C_{p}^{\prime}$ and C_{p} is a perfect set.
(iii) the total length of all open inverals removed is equal to $\frac{1}{p-2}$.

The total length of open inverals removed until step n is equal to

$$
\frac{1}{p}+\frac{2^{1}}{p^{2}}+\frac{2^{2}}{p^{3}}+\cdots=\frac{1}{p}\left(1+\left(\frac{2}{p}\right)+\left(\frac{2}{p}\right)^{2}+\cdots\right)=\lim _{n \rightarrow \infty} \frac{1 \cdot\left(1-\left(\frac{2}{p}\right)^{n}\right)}{p-2}=\frac{1}{p-2}
$$

Thus, the total length of all open inverals removed is equal to $\frac{1}{p-2}$.

Extra Problem 4. Let $\left\{E_{n}\right\}_{n=1}^{\infty}$ be a sequence of sets. Define

$$
\varlimsup_{n \rightarrow \infty} E_{n}=\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_{n}, \quad \underline{\lim _{n \rightarrow \infty}} E_{n}=\bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} E_{n}
$$

(i) Prove $\varlimsup_{n \rightarrow \infty} E_{n}$ is equal to the set of points who belong to infinitely many E_{n} 's, and

$$
\underline{\lim }_{n \rightarrow \infty} E_{n}=\left\{x \mid \exists \text { integer } n_{x} \geq 1, \text { s.t. } x \in E_{n} \text { whenever } n \geq n_{x}\right\}
$$

If x belongs to infinitely many E_{n} 's, then there exists a subsequence n_{k} such that $x \in E_{n_{k}}$ for all $k \geq 1$ and $n_{k} \rightarrow \infty$ as $k \rightarrow \infty$. Therefore, $x \in \bigcup_{n=n_{k}}^{\infty} E_{n}$ for all k. Since $n_{k} \geq k$, so for all $k \geq 1, x \in \bigcup_{n=n_{k}}^{\infty} E_{n} \subset \bigcup_{n=k}^{\infty} E_{n}$. This is sufficient to show that $x \in \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_{n}$. Conversely if x belongs to only finitely many E_{n} 's, then denote the maximum n as n_{0}, for all $k \geq n_{0}+1, x \notin \bigcup_{n=k}^{\infty} E_{n}$, so $x \notin \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_{n}$. This proves that the set of points who belong to infinitely many E_{n} 's is equal to $\overline{\lim }_{n \rightarrow \infty} E_{n}$.

If there exists $n_{x} \geq 1$ such that $x \in E_{n}$ for all $n \geq n_{x}$, then $x \in \bigcap_{n=n_{x}}^{\infty} E_{n}$, and thus $x \in \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} E_{n}$. Conversely, if $x \in \varliminf_{n \rightarrow \infty} E_{n}$, then there must exists a k_{0} such that $x \in \bigcap_{n=k_{0}}^{\infty} E_{n}$, which further means for all $n \geq k_{0}, x \in E_{n}$. Thus, we prove the required statement.
(ii) Suppose $E_{1} \subset E_{2} \subset E_{3} \subset \cdots \subset E_{n} \subset E_{n+1} \subset \cdots$, find $\underline{\lim }_{n \rightarrow \infty} E_{n}$ and $\varlimsup_{n \rightarrow \infty} E_{n}$.

For each $k \geq 1, \bigcap_{n=k}^{\infty} E_{n}=E_{k}$, therefore, $\varliminf_{n \rightarrow \infty} E_{n}=\bigcup_{k=1}^{\infty} E_{k}$. For each $k \geq 2, \bigcup_{n=k}^{\infty} E_{n}=$ $E_{k}=\bigcup_{n=k-1}^{\infty} E_{n}$, therefore, $\varlimsup_{n \rightarrow \infty} E_{n}=\bigcup_{n=1}^{\infty} E_{n}$. This shows that $\underline{\lim }_{n \rightarrow \infty} E_{n}=\varlimsup_{n \rightarrow \infty} E_{n}$.
(iii) Suppose $E_{n} \cap E_{m}=\varnothing$, if $n \neq m$. Find $\underline{\lim }_{n \rightarrow \infty} E_{n}$ and $\overline{\lim }_{n \rightarrow \infty} E_{n}$.

Since each E_{n} is pairwise disjoint, for all $k \geq 1, \bigcap_{n=k}^{\infty} E_{n}=\varnothing$, thus $\underline{\lim }_{n \rightarrow \infty} E_{n}=\bigcup_{k=1}^{\infty} \varnothing=\varnothing$. We claim that $\overline{\lim }_{n \rightarrow \infty} E_{n}=\varnothing$. Suppose there exists $x \in \overline{\lim }_{n \rightarrow \infty} E_{n}$, then for all $k \geq 1$, $x \in \bigcup_{n=k}^{\infty} E_{n}$. This implies that there exists a unique $n_{k} \geq k$ such that $x \in E_{n_{k}}$ for all $k \geq 1$. However, if $k=1$, there exists unique $n_{1} \geq 1$ such that $x \in E_{n_{1}}$, but if we take $k=n_{1}+1$, then there exists unique $n_{2}>n_{1}$ such that $x \in E_{n_{2}}$, which contradicts to the uniqueness of n_{1}. Therefore, there is no such x, that is to say $\overline{\lim }_{n \rightarrow \infty} E_{n}=\varnothing$.
(iv) Let all $E_{n} \subset \mathbb{R}^{N}$. Prove that

$$
\left(\overline{\lim }_{n \rightarrow \infty} E_{n}\right)^{c}=\lim _{n \rightarrow \infty}\left(E_{n}\right)^{c}, \quad\left(\lim _{n \rightarrow \infty} E_{n}\right)^{c}=\overline{\lim }_{n \rightarrow \infty}\left(E_{n}\right)^{c}
$$

Notice that De Morgan's Law can be generalized into infinite number of sets, so

$$
\begin{aligned}
& \left(\overline{\lim }_{n \rightarrow \infty} E_{n}\right)^{c}=\left(\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_{n}\right)^{c}=\bigcup_{k=1}^{\infty}\left(\bigcup_{n=k}^{\infty} E_{n}\right)^{c}=\bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} E_{n}^{c}=\underline{\lim }_{n \rightarrow \infty}\left(E_{n}\right)^{c} \\
& \left(\varliminf_{n \rightarrow \infty} E_{n}\right)^{c}=\left(\bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} E_{n}\right)^{c}=\bigcap_{k=1}^{\infty}\left(\bigcap_{n=k}^{\infty} E_{n}\right)^{c}=\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_{n}^{c}=\varlimsup_{n \rightarrow \infty} E_{n}^{c}
\end{aligned}
$$

(v) Let $f(x),\left\{f_{n}(x)\right\}_{n=1}^{\infty}$ be defined on a set $E \subset \mathbb{R}^{N}$. Prove that

$$
Z \triangleq\left\{x \in E \mid f_{n}(x) \nrightarrow f(x) \text { as } n \rightarrow \infty\right\}=\bigcup_{l=1}^{\infty}\left(\varlimsup_{k \rightarrow \infty} E_{l}^{k}\right)
$$

where $E_{l}^{k}=\left\{x \in E| | f_{k}(x)-f(x) \left\lvert\, \geq \frac{1}{l}\right.\right\}$.

Given $x \in E, f_{n}(x) \nrightarrow f(x)$ is equivalent to say there exists $l \in \mathbb{N}^{+}$such that for all $N \in \mathbb{N}^{+}$, there exists $k \geq N$, such that $\left|f_{k}(x)-f(x)\right| \geq \frac{1}{l}$. In other words, it means that there exists $l \in \mathbb{N}^{+}$such that $x \in E_{l}^{k}$ for infinitely many k, which by part (i), is equivalent to that $x \in \varlimsup_{k \rightarrow \infty} E_{l}^{k}$. The existence of l is equivalent to $x \in \bigcup_{l=1}^{\infty} \varlimsup_{k \rightarrow \infty} E_{l}^{k}$, so we prove the desired statement.

Extra Problem 5. Let E be a bounded closed subset of \mathbb{R}^{n}. Suppose $\left\{f_{k}\right\}_{k=1}^{\infty}$ are continuous on E and $f_{k} \rightarrow f$ uniformly for some f as $k \rightarrow \infty$. Prove that

$$
f(E)=\bigcap_{j=1}^{\infty}\left(\overline{\bigcup_{k=j}^{\infty} f_{k}(E)}\right)
$$

For $y \in f(E)$, there exists $x \in E$ such that $f(x)=y$. Since f_{k} is uniformly convergent to f, so $f_{k}(x) \rightarrow f(x)=y$, which means y is a limit point of $\bigcup_{k=j} f_{k}(E)$ for all $j \geq 1$. Therefore, $y \in \bigcap_{j=1}^{\infty}\left(\overline{\bigcup_{k=j}^{\infty} f_{k}(E)}\right)$.

For the other direction, if $y \in \bigcap_{j=1}^{\infty}\left(\overline{\bigcup_{k=j}^{\infty} f_{k}(E)}\right)$, then there exists a sequence $a_{k} \subset \mathbb{N}^{+}$ such that $f_{a_{k}}\left(x_{a_{k}}\right) \rightarrow y$ as $k \rightarrow \infty$, where $x_{a_{k}} \in E$. Since E is bounded subset of \mathbb{R}^{n}, by BolzanoWeierstrass, there exists a subsequence of $x_{a_{k}}$ which converges in \mathbb{R}^{n} and by closedness of $E, x_{a_{k_{p}}} \rightarrow$ $x \in E$. We claim that $f(x)=y$, and then $y \in f(E)$. Since f_{k} is continuous and uniformly convergent to f, so f is continuous. Also, by the definition of uniform convergence, $\sup _{x \in E}\left|f_{k}(x)-f(x)\right| \rightarrow 0$ as $k \rightarrow \infty$. Consider

$$
\begin{aligned}
\left|f_{a_{k_{p}}}\left(x_{a_{k_{p}}}\right)-f(x)\right| & \leq\left|f_{a_{k_{p}}}\left(x_{a_{k_{p}}}\right)-f\left(x_{a_{k_{p}}}\right)\right|+\left|f\left(x_{a_{k_{p}}}\right)-f(x)\right| \\
& \leq \sup _{x \in E}\left|f_{a_{k_{p}}}(x)-f(x)\right|+\left|f\left(x_{a_{k_{p}}}\right)-f(x)\right|
\end{aligned}
$$

Since $a_{k_{p}} \rightarrow \infty$ and $x_{a_{k_{p}}} \rightarrow x$ as $p \rightarrow \infty$, with the continuity of f, we conclude that the above two terms both converge to zero, i.e., $f_{a_{k_{p}}}\left(x_{a_{k_{p}}}\right) \rightarrow f(x)$. However, since $f_{a_{k_{p}}}\left(x_{a_{k_{p}}}\right)$ is a subsequence of $f_{a_{k}}\left(a_{k}\right)$ and $f_{a_{k}}\left(a_{k}\right) \rightarrow y$, these two limits must be equal, that is, $f(x)=y$.

