MAT3006＊：Real Analysis
 Homework 10

李肖鹏（116010114）

Due date：April．17， 2020
Extra Problem 1．Let $0<p<1$ and $q=\frac{p}{p-1}$ ．Assume that if $g=0$ on E then $\|g\|_{L^{q}(E)}=0$ ．
（i）Proved for f, g measurable on $E \in \mathcal{M}$ and $m(E)>0$ ，we have the reversed Hölder＇s inequality，i．e．，$\|f g\|_{L^{1}(E)} \geq\|f\|_{L^{p}(E)}\|g\|_{L^{q}(E)}$ ．

If $g=0$ a．e．on E ，then it is trivial to prove the inequality because both left and right sides are zero．Assume $|g|>0$ on a subset of E with positive measure，and let $q=1 / p, q^{\prime}=q /(q-1)$ ， and $u=|f g|^{p}$ and $v=|g|^{-p}$ ．Since $q>1$ ，from Hölder＇s inequality，we have

$$
\begin{aligned}
\|u v\|_{L^{1}(E)} \leq\|u\|_{L^{q}(E)}\|v\|_{L^{q^{\prime}}(E)} & \Longleftrightarrow \int_{E} u v d x \leq\left(\int_{E} u^{q} d x\right)^{\frac{1}{q}}\left(\int_{E} v^{q^{\prime}} d x\right)^{\frac{1}{q^{\prime}}} \\
& \Longleftrightarrow \int_{E}|f|^{p} d x \leq\left(\int_{E}|f g| d x\right)^{p}\left(\int_{E}|g|^{p^{\prime}} d x\right)^{1-p} \\
& \Longleftrightarrow\left(\int_{E}|f|^{p} d x\right)^{\frac{1}{p}} \leq\left(\int_{E}|f g| d x\right)\left(\int_{E}|g|^{p^{\prime}} d x\right)^{-\frac{1}{p^{\prime}}} \\
& \Longleftrightarrow\left(\int_{E}|f|^{p} d x\right)^{\frac{1}{p}}\left(\int_{E}|g|^{p^{\prime}} d x\right)^{\frac{1}{p^{\prime}}} \leq \int_{E}|f g| d x
\end{aligned}
$$

where the last step is valid because $|g|>0$ on a subset of E with positive measure，so the inte－ gral of $|g|^{p^{\prime}}$ is positive．Therefore，we obtain the reversed Hölder inequality $\|f\|_{L^{p}(E)}\|g\|_{L^{p^{\prime}(E)}} \leq$ $\|f g\|_{L^{1}(E)}$ for all $f \in L^{p}(E)$ and $g \in L^{p^{\prime}}(E)$ ．
（ii）Prove reversed Minkowski inequality，i．e．，for measurable f, g s．t．$f \geq 0, g \geq 0$ on E ，we have $\|f\|_{L^{p}(E)}+\|g\|_{L^{p}(E)} \leq\|f+g\|_{L^{p}(E)}$ ．

Notice that for $f \geq 0, g \geq 0$ ，we have $|f+g|=|f|+|g|$ ，and then we have

$$
\begin{aligned}
\int_{E}|f+g|^{p} & =\int_{E}|f||f+g|^{p-1}+\int_{E}|g||f+g|^{p-1} \\
& \geq\left(\int_{E}|f|^{p} d x\right)^{\frac{1}{p}}\left(\int_{E}|f+g|^{p} d x\right)^{\frac{p-1}{p}}+\left(\int_{E}|g|^{p} d x\right)^{\frac{1}{p}}\left(\int_{E}|f+g|^{p} d x\right)^{\frac{p-1}{p}} \\
& =\|f\|_{L^{p}}\|f+g\|_{L^{p}}^{p-1}+\|g\|_{L^{p}}\|f+g\|_{L^{p}}^{p-1}
\end{aligned}
$$

where the inequality follows from reversed Hölder inequality．If $f+g>0$ on a subset with positive measure，then $\|f+g\|_{L^{p}}^{p-1}>0$ and by cancelling that factor，we obtain the reversed Minkowski inequality．If $f+g=0$ a．e．，since $f \geq 0$ and $g \geq 0, f=0$ a．e．and $g=0$ a．e．．In this case $\|f\|_{L^{p}}=\|g\|_{L^{p}}=0$ and $\|f+g\|_{L^{p}}=0$ ，so the both sides are equal．In conclusion， the reversed Minkowski inequality holds for all $f, g \in L^{p}(E), f \geq 0, g \geq 0$ ．
(iii) Construct f and g s.t. $\|f\|_{L^{p}(E)}+\|g\|_{L^{p}(E)}<\|f+g\|_{L^{p}(E)}$.

We first prove there exists subsets of E, e_{1}, e_{2}, such that $e_{1} \cap e_{2}=\varnothing$ and $m\left(e_{1}\right)=m\left(e_{2}\right)>0$. Note that we have proved that $f(r)=m\left(B_{r}(\mathbf{0}) \cap E\right)$ is a continuous function on $[0, \infty)$. WLOG, suppose $m(E)<\infty$ (if $m(E)=\infty$ then take $F=E \cap B_{1}(\mathbf{0})$ and use F as E). Then there exists r s.t. $f(r)=\frac{m(E)}{2}$. Let $e_{1}=B_{r}(\mathbf{0}) \cap E$ and $e_{2}=E \backslash e_{1}$.

Let $f=\chi_{e_{1}}$ be the characteristic function of e_{1}, and $g=\chi_{e_{2}}$. Since $0<p<1,2^{1 / p}>2$. Let $m\left(e_{1}\right)=m\left(e_{2}\right)=l>0$. Therefore, $\|f\|_{L^{p}}=\left(\int_{e_{1}} 1^{p} d x\right)^{1 / p}=l^{1 / p}$, and similarly, $\|g\|_{L^{p}}=l^{1 / p}$. Also, since e_{1} and e_{2} are disjoint, $\|f+g\|_{L^{p}}=(2 l)^{1 / p}$. Therefore, $2 l^{1 / p}<2^{1 / p} l^{1 / p}=(2 l)^{1 / p}$, meaning that the reversed strict Minkowski inequality holds.

Extra Problem 2. Let X be a normed space. Prove that if $\left\|x_{k}-x_{\infty}\right\| \rightarrow 0$ as $k \rightarrow \infty$, then $\left\|x_{k}\right\| \rightarrow\left\|x_{\infty}\right\|$. In $L^{1}(-1,1)$, construct a counterexample s.t. $\left\|f_{k}\right\|_{L^{1}} \rightarrow\left\|f_{\infty}\right\|_{L^{1}}$ but $f_{k} \nrightarrow f_{\infty}$ in L^{1}.

By definition of norm, $\left\|x_{k}\right\|=\left\|x_{\infty}+\left(x_{k}-x_{\infty}\right)\right\| \leq\left\|x_{\infty}\right\|+\left\|x_{k}-x_{\infty}\right\|$, thus we have $\left\|x_{k}\right\|-$ $\left\|x_{\infty}\right\| \leq\left\|x_{k}-x_{\infty}\right\|$. Similarly, we will obtain $\left\|x_{\infty}\right\|-\left\|x_{k}\right\| \leq\left\|x_{k}-x_{\infty}\right\|$. Thus, $\left|\left\|x_{k}\right\|-\left\|x_{\infty}\right\|\right| \leq$ $\left\|x_{k}-x_{\infty}\right\| \rightarrow 0$, so $\left\|x_{k}\right\| \rightarrow\left\|x_{\infty}\right\|$. Consider $f_{k}(x)=I_{[-1,0]}(x)$ and $f_{\infty}(x)=I_{[0,1]}(x)$, then $\left\|f_{k}\right\|_{L^{1}} \equiv$ $1=\left\|f_{\infty}\right\|_{L^{1}}$, so $\left\|f_{k}\right\|_{L^{1}} \rightarrow\left\|f_{\infty}\right\|_{L^{1}}$. However, $\left\|f_{k}-f_{\infty}\right\|_{L^{1}}=2$ for all $k \geq 1$, so $f_{k} \nrightarrow f_{\infty}$ in L^{1}.

Extra Problem 3. Let $E \subset \mathbb{R}^{m}, F \subset \mathbb{R}^{n}$, and $f(x, y)$ be measurable on $E \times F$, where $x \in E$, $y \in F$. For $1 \leq p<\infty$, if $\int_{F}\|f(x, y)\|_{L_{x}^{p}(E)} d y<\infty$, prove
(i) For a.e. fixed $x \in E, f(x, y) \in L_{y}^{1}(F)$.

Notice that $\int_{F}|f(x, y)| d y$ is well defined (possibly infinity),

$$
\begin{aligned}
\left\|\int_{F}|f(x, y)| d y\right\|_{L_{x}^{p}(E)}^{p} & =\int_{E}\left(\int_{F}|f(x, y)| d y\right)^{p} d x \\
& =\int_{E}\left(\int_{F}|f(x, z)| d z\right)^{p-1}\left(\int_{F}|f(x, y)| d y\right) d x \\
& =\int_{E}\left(\int_{F}|f(x, y)|\left(\int_{F}|f(x, z)| d z\right)^{p-1} d y\right) d x
\end{aligned}
$$

Since $f(x, y)$ is measurable on $E \times F,|f(x, y)|$ is nonnegative measurable, so we can apply Fubini's theorem to $|f(x, y)|, \int_{F}|f(x, z)| d z$ is measurable on E and thus $|f(x, y)|\left(\int_{F}|f(x, z)| d z\right)^{p-1}$ is nonegative measurable on E. Again, apply Fubini's theorem to $|f(x, y)|\left(\int_{F}|f(x, z)| d z\right)^{p-1}$, we obtain,

$$
\begin{aligned}
\left\|\int_{F}|f(x, y)| d y\right\|_{L_{x}^{p}(E)}^{p} & =\int_{E}\left(\int_{F}|f(x, y)|\left(\int_{F}|f(x, z)| d z\right)^{p-1} d y\right) d x \\
& =\int_{F}\left(\int_{E}|f(x, y)|\left(\int_{F}|f(x, z)| d z\right)^{p-1} d x\right) d y \\
& \leq \int_{F}\left(\|f(x, y)\|_{L_{x}^{p}(E)}\left\|\int_{F}|f(x, z)| d z\right\|_{L_{x}^{p}(E)}^{p-1}\right) d y \quad \text { (Hölder's ineq.) }
\end{aligned}
$$

Note that if $\left\|\int_{F}|f(x, z)| d z\right\|_{L_{x}^{p}(E)}=0$, then $\left\|\int_{F}|f(x, y)| d y\right\|_{L_{x}^{p}(E)} \leq \int_{F}\|f(x, y)\|_{L_{x}^{p}(E)} d y$ is trivial. If $0<\left\|\int_{F}|f(x, z)| d z\right\|_{L_{x}^{p}(E)}<\infty$, we can cancel out it on both sides, and the same result is obtained. If $\left\|\int_{F}|f(x, z)| d z\right\|_{L_{x}^{p}(E)}=\infty$, then denote $E_{k}=E \cap B_{k}(\mathbf{0})$ and $F_{k}=F \cap B_{k}(\mathbf{0})$. Also define

$$
f_{k}(x, y)= \begin{cases}f_{k}(x, y) & \text { if }\left|f_{k}(x, y)\right| \leq k \\ k & \text { if }\left|f_{k}(x, y)\right|>k\end{cases}
$$

Then $\left|f_{k}(x, y)\right| \rightarrow|f(x, y)|$ pointwisely. It is obvious that $\left|f_{k}(x, y)\right|$ is also nonnegative measurable on $E \times F$. Therefore, by Lemma 2 in lecture, $g_{k}(x, y)=\left|f_{k}(x, y)\right| I_{E_{k}}(x) I_{F_{k}}(y)$ is also nonnegative measurable on $E \times F$ and increases pointwisely to $g(x, y)=|f(x, y)| I_{E}(x) I_{F}(y)$. Note that $\left\|\int_{F} g_{k}(x, z) d z\right\|_{L_{x}^{p}(E)}<\infty$, so we always have $\left\|\int_{F} g_{k}(x, y) d y\right\|_{L_{x}^{p}(E)} \leq \int_{F}\left\|g_{k}(x, y)\right\|_{L_{x}^{p}(E)} d y$. Take limit on both sides, for LHS,

$$
\lim _{k \rightarrow \infty}\left\|\int_{F} g_{k}(x, y) d y\right\|_{L_{x}^{p}(E)}=\left\|\lim _{k \rightarrow \infty} \int_{F} g_{k}(x, y) d y\right\|_{L_{x}^{p}(E)}=\left\|\int_{F}|f(x, y)| d y\right\|_{L_{x}^{p}(E)}
$$

For RHS, since $\left\|g_{k}(x, y)\right\|_{L_{x}^{p}(E)}$ is also nonnegative increasing in k,

$$
\lim _{k \rightarrow \infty} \int_{F}\left\|g_{k}(x, y)\right\|_{L_{x}^{p}(E)} d y=\int_{F} \lim _{k \rightarrow \infty}\left\|g_{k}(x, y)\right\|_{L_{x}^{p}(E)} d y=\int_{F}\|f(x, y)\|_{L_{x}^{p}(E)} d y
$$

Therefore, we still obtain the desired inequality, i.e., for any measurable $f(x, y)$ on $E \times F$, we always have

$$
\begin{equation*}
\left\|\int_{F}|f(x, y)| d y\right\|_{L_{x}^{p}(E)} \leq \int_{F}\|f(x, y)\|_{L_{x}^{p}(E)} d y<\infty \tag{*}
\end{equation*}
$$

Since $\int_{F}|f(x, y)| d y$ is in $L^{p}(E)$, it must be fintie a.e. on E, so $f(x, y) \in L_{y}^{1}(F)$ for almost all $x \in E$.
(ii) $\int_{F} f(x, y) d y$ is a measurable function of $x \in E$ and $\int_{F} f(x, y) d y \in L_{x}^{p}(E)$.

Since we proved $f(x, y) \in L_{y}^{1}(F), \int_{F} f(x, y) d y$ is well-defined and a.e. finite on E. Notice that by definition, $\int_{F} f(x, y) d y=\int_{F} f^{+}(x, y) d y-\int_{F} f^{-}(x, y) d y$. Since $f^{+}(x, y)$ and $f^{-}(x, y)$ are both nonnegative measurable function on $E \times F$, by Fubini's theorem (nonnegative version), $\int_{F} f^{+}(x, y) d y$ and $\int_{F} f^{-}(x, y) d y$ are both measurable on E. Therefore, $\int_{F} f(x, y) d y$ is also measurable on E. To prove $\int_{F} f(x, y) d y \in L_{x}^{p}(E)$, notice that

$$
\begin{equation*}
\left\|\int_{F} f(x, y) d y\right\|_{L_{x}^{p}(E)} \leq\left\|\int_{F}|f(x, y)| d y\right\|_{L_{x}^{p}(E)} \leq \int_{F}\|f(x, y)\|_{L_{x}^{p}(E)} d y<\infty \tag{**}
\end{equation*}
$$

where the first inequality is because $\left|\int_{F} f(x, y) d y\right| \leq \int_{F}|f(x, y)| d y$. Thus, $\int_{F} f(x, y) d y \in$ $L_{x}^{p}(E)$.
(iii) $\left\|\int_{F} f(x, y) d y\right\|_{L_{x}^{p}(E)} \leq \int_{F}\|f(x, y)\|_{L_{x}^{p}(E)} d y$.

Actually, in part (ii), when we prove $\int_{F} f(x, y) d y \in L_{x}^{p}(E)$ in equation (**), we have already shown that

$$
\left\|\int_{F} f(x, y) d y\right\|_{L_{x}^{p}(E)} \leq \int_{F}\|f(x, y)\|_{L_{x}^{p}(E)} d y
$$

so we are done.

Extra Problem 4. Let $1<p<\infty$. For all $f \in L^{p}(0, \infty)$, define $T f=\frac{1}{x} \int_{0}^{x} f(y) d y$ for $x \in(0, \infty)$. Prove that $\|T f\|_{L^{p}(0, \infty)} \leq \frac{p}{p-1}\|f\|_{L^{p}(0, \infty)}$.

Let $z=\frac{y}{x}$, then by change of variable (since for each fixed $x, f \in L^{1}(0, x)$), we obtain

$$
T f(x)=\int_{0}^{1} f(x z) d z
$$

We claim that $f(x z):(0, \infty) \times(0,1)$ is measurable, and since $f \in L_{x}^{p}(0, \infty), \int_{0}^{1}\|f(x z)\|_{L_{x}^{p}(E)} d z<\infty$, so we can apply Extra Problem 3,

$$
\|T f\|_{L^{p}(0, \infty)} \leq \int_{0}^{1}\|f(x z)\|_{L_{x}^{p}(E)} d z=\int_{0}^{1}\left(\int_{0}^{\infty}|f(x z)|^{p} d x\right)^{1 / p} d z
$$

Let $y=z x$, since for each fixed $z,|f(x)|^{p} \in L^{1}$ implies $|f(x z)|^{p} \in L^{1}$, by change of variable,

$$
\int_{0}^{\infty}|f(x z)|^{p} d x=\frac{1}{z} \int_{0}^{\infty}|f(y)|^{p} d y=z^{-1}\|f\|_{L^{p}(0, \infty)}^{p}
$$

Substitute it into the equation above it, we obtain

$$
\|T f\|_{L^{p}(0, \infty)} \leq\|f\|_{L^{p}(0, \infty)} \int_{0}^{1} z^{-1 / p} d z=\frac{p}{p-1}\|f\|_{L^{p}(0, \infty)}
$$

To prove the measurablity of $f(x z)$ on $(0, \infty) \times(0,1)$, define $S:(0, \infty) \times(0,1) \mapsto \operatorname{Im}(S)$ to be $S(x, z)=(x z, x)$. It is easy to check S is a diffeomorphism, so S^{-1} is well-defined and continuously differentiable. Notice that we can write $f(x z)=g(S(x, z))$ where $g(x, y)=f(x)$ is the projectiontype function and its domain is $\operatorname{Im}(S)$. Since $\operatorname{Im}(S)=\{(x, y) \mid x>0, y>0, x<y\}$, it is an open set. It is easy to show $g(x, y)$ is measurable because for any Borel set $B \subset \mathbb{R}, g^{-1}(B)=\left(f^{-1}(B) \times \mathbb{R}\right) \cap$ $\operatorname{Im}(S)$. Since $f^{-1}(B)$ is measurable and the product of two measurable sets is measurable, $g^{-1}(B)$ is measurable, hence g is a measurable function. Now we need to prove for any Borel set $B \subset \mathbb{R}$, $S^{-1}\left(g^{-1}(B)\right)$ is measurable. Let $E_{k}=g^{-1}(B) \cap N_{k}$ where $N_{k}=\left\{(x, y) \mid k^{-2} \leq x^{2}+y^{2} \leq k^{2}\right\}$ is the annulus in \mathbb{R}^{2}. Since S^{-1} is continuously differentiable, it is Lipschitz on each E_{k} (can be proved by writing out the gradient of S^{-1} and using mean value theorem). Since E_{k} is measurable, $S^{-1}\left(E_{k}\right)$ is also measurable. Therefore, $S^{-1}\left(g^{-1}(B)\right)=\bigcup_{k=1}^{\infty} S^{-1}\left(E_{k}\right)$ is also measurable. This is enough to show that $f(x z)$ is measurable on $(0, \infty) \times(0,1)$.

Extra Problem 5. Let $f(x)$ be measurable on \mathbb{R}^{n}. Prove that $f(x-y)$ as a function of $(x, y) \in$ $\mathbb{R}^{n} \times \mathbb{R}^{n}$ is measurable. Also, prove that for all $f \in L^{1}\left(\mathbb{R}^{n}\right), g \in L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p \leq \infty, f * g \in L^{p}\left(\mathbb{R}^{n}\right)$ where $f * g=\int_{\mathbb{R}^{n}} f(x-y) g(y) d y$. Furthermore, prove $\|f * g\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}\|g\|_{L^{p}\left(\mathbb{R}^{n}\right)}$.

Similar to Extra Problem 4, define $S: \mathbb{R}^{n} \times \mathbb{R}^{n} \mapsto \mathbb{R}^{n} \times \mathbb{R}^{n}$ by $S(x, y)=(x-y, x)$. It is trivial that S is a diffeomorphism, so S^{-1} is well-defined and Lipschitz on $\mathbb{R}^{n} \times \mathbb{R}^{n}$. Notice that we can write $f(x-y)=g(S(x, y))$ where $g(x, y)=f(x)$ is defined the same as in Extra Problem 4, so $g(x, y)$ is measurable on $\mathbb{R}^{n} \times \mathbb{R}^{n}$. For any Borel set $B \subset \mathbb{R}^{n}, S^{-1}\left(g^{-1}(B)\right)$ is measurable because $g^{-1}(B)$ is measurable and S^{-1} is Lipschitz. Thus, $f(x-y)$ is measurable on $\mathbb{R}^{n} \times \mathbb{R}^{n}$.

For $p=\infty$, since g is essentially bounded by some constant $\|g\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}$,

$$
\int_{\mathbb{R}^{n}} f(x-y) g(y) d y \leq\|g\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \int_{\mathbb{R}^{n}}|f(x-y)| d y=\|g\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}
$$

where the last equality is given by change of variable for each fixed x. Therefore, $f * g$ is also essentially bounded.

For $1 \leq p<\infty$, let $h(x, y)=f(x-y) g(y)$ and $\phi(x, y)=f(y) g(x-y)$, then $h(x, y)$ and $\phi(x, y)$ are measurable. Consider

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\|\phi(x, y)\|_{L_{x}^{p}} d y & =\int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}}|f(y)|^{p}|g(x-y)|^{p} d x\right)^{1 / p} d y \\
& =\int_{\mathbb{R}^{n}}|f(y)|\left(\int_{\mathbb{R}^{n}}|g(x-y)|^{p} d x\right)^{1 / p} d y \\
& =\int_{\mathbb{R}^{n}}|f(y)|\left(\int_{\mathbb{R}^{n}}|g(z)|^{p} d z\right)^{1 / p} d y=\|g\|_{L^{p}}\|f\|_{L^{1}}<\infty
\end{aligned}
$$

Note that here we can use change of variable because $g(z) \in L^{p}$ implies $|g(z)|^{p} \in L^{1}$. Then by Extra Problem 3(i), for a.e. fixed $x \in E, \phi(x, y) \in L_{y}^{1}$. Therefore, for a.e. x, we can apply change of variable as below,

$$
\int_{\mathbb{R}^{n}}|f(y)||g(x-y)| d y=\int_{\mathbb{R}^{n}}|f(x-y)||g(y)| d y \quad y \rightarrow-y+x
$$

Therefore, we have

$$
\begin{aligned}
\left\|\int_{\mathbb{R}^{n}} h(x, y) d y\right\|_{L_{x}^{p}} & =\left\|\int _ { \mathbb { R } ^ { n } } \left|f(x-y)\|g(y) \mid d y\|_{L_{x}^{p}}\right.\right. \\
& =\left\|\int _ { \mathbb { R } ^ { n } } \left|f(y)\|g(x-y) \mid d y\|_{L_{x}^{p}}\right.\right. \\
& \leq \int_{\mathbb{R}^{n}}\|\phi(x, y)\|_{L_{x}^{p}} d y=\|g\|_{L^{p}}\|f\|_{L^{1}}<\infty
\end{aligned}
$$

This shows $f * g$ is in $L^{p}\left(\mathbb{R}^{n}\right)$.

Extra Problem 6. Let f be continuous on the interval (0,1). Prove that $\|f\|_{L^{\infty}(0,1)}=\sup _{x \in(0,1)}|f(x)|$.
It is obvious that $\|f\|_{L^{\infty}(0,1)} \leq \sup _{x \in(0,1)}|f(x)|$, since $\left\{x\left|f(x)>\sup _{x \in(0,1)}\right| f(x) \mid\right\}$ is empty set. If $\|f\|_{L^{\infty}(0,1)}=\infty$, then $\sup _{x \in(0,1)}|f(x)| \geq \infty$ implies that $\sup _{x \in(0,1)}|f(x)|=\infty$ and the desired equality holds.

If $\|f\|_{L^{\infty}(0,1)}<\infty$, and suppose $M=\|f\|_{L^{\infty}(0,1)}<\sup _{x \in(0,1)}|f(x)|$, then there exists small $\epsilon>0$, s.t. $M+\epsilon<\sup _{x \in(0,1)}|f(x)|$ and $m(\{x \in(0,1) \mid f(x)>M+\epsilon\})=0$. Since f is continuous, $\{x \in(0,1) \mid f(x)>M+\epsilon\}$ is open set. Note that by definition of supremum, there must exists x_{0} s.t. $f\left(x_{0}\right)>M+\epsilon$, so it is nonempty open set, whose measure must be positive. Therefore, contradiction shows that $\|f\|_{L^{\infty}(0,1)}=\sup _{x \in(0,1)}|f(x)|$.

Extra Problem 7. Let f be measurable on E and there exists $r>0$ s.t. $f \in L^{r}(E)$. Prove that $\lim _{p \rightarrow \infty}\|f\|_{L^{p}(E)}=\|f\|_{L^{\infty}(E)}$.

If $\|f\|_{L^{\infty}(E)}=0$, then $f(x)=0$ a.e. on E, so $\|f\|_{L^{p}(E)}=0$ and the desired conclusion follows immediately. If $\|f\|_{L^{\infty}(E)}>0$, define $E_{M}=\{x \in E| | f(x) \mid \geq M\}$ for $0<M<\|f\|_{L^{\infty}(E)}$, then $m\left(E_{M}\right)>0$. Since $\|f\|_{L^{r}(E)}<\infty, m\left(E_{M}\right)<\infty$. Thus, we can consider

$$
\|f\|_{L^{p}(E)} \geq\|f\|_{L^{p}\left(E_{M}\right)} \geq M\left(m\left(E_{M}\right)\right)^{1 / p}
$$

which implies $\underline{\varliminf ⿴}_{p \rightarrow \infty}\|f\|_{L^{p}(E)} \geq M$. Since M is arbitrary, we have ${\underline{\varliminf_{p}}}_{p \rightarrow \infty}\|f\|_{L^{p}(E)} \geq\|f\|_{L^{\infty}(E)}$. If $\|f\|_{L^{\infty}(E)}=\infty$, then $\varliminf_{p \rightarrow \infty}\|f\|_{L^{p}(E)} \geq \infty$ implies that $\lim _{p \rightarrow \infty}\|f\|_{L^{p}(E)}=\infty$.

If $\|f\|_{L^{\infty}(E)}<\infty$, then for any $p>r$, we have

$$
\|f\|_{L^{p}(E)}=\left(\int_{E}|f|^{p-r}|f|^{r} d x\right)^{1 / p} \leq\left(\int_{E}\|f\|_{L^{\infty}(E)}^{p-r}|f|^{r} d x\right)^{1 / p} \leq\|f\|_{L^{\infty}(E)}^{1-r / p}\|f\|_{L^{r}(E)}^{r / p}
$$

which implies $\varlimsup_{p \rightarrow \infty}\|f\|_{L^{p}(E)} \leq\|f\|_{L^{\infty}(E)}$. Therefore, we have $\lim _{p \rightarrow \infty}\|f\|_{L^{p}(E)}=\|f\|_{L^{\infty}(E)}$.
Extra Problem 8. Let $f \in L^{2}(0,1)$ and $\int_{0}^{1} f(x) x^{n} d x=0, \forall n \in \mathbb{N}$. Prove $f(x)=0$ a.e. on $(0,1)$.
If we can prove $\int_{0}^{1} f^{2} d x=0$, then $f^{2}(x)=0$ a.e. on $[0,1]$, and $f(x)=0$ a.e. on $[0,1]$. Recall we have proved polynomials are dense in $L^{2}(0,1)$, so there exists polynomial $p_{k}(x)$ s.t. $\left\|p_{k}-f\right\|_{L^{2}(0,1)} \rightarrow$ 0 as $k \rightarrow \infty$. By Cauchy Schwarz,

$$
\left\|p_{k} f-f^{2}\right\|_{L^{1}(0,1)} \leq\|f\|_{L^{2}(0,1)}\left\|p_{k}-f\right\|_{L^{2}(0,1)} \rightarrow 0
$$

since $f \in L^{2}(0,1)$. This implies that

$$
\int_{0}^{1} p_{k} f d x \rightarrow \int_{0}^{1} f^{2} d x
$$

but for all $k, \int_{0}^{1} p_{k} f d x$ is a finite linear combination of $\int_{0}^{1} f x^{n} d x$, so $\int_{0}^{1} p_{k} f d x$ is always zero. This shows exactly $\int_{0}^{1} f^{2} d x=0$.

Extra Problem 9. Let f be positive and measurable on $(0,1)$. Prove that $1 \leq\left(\int_{0}^{1} f(x) d x\right)\left(\int_{0}^{1} \frac{1}{f(x)} d x\right)$.
Let $g(x)=\sqrt{f(x)}>0$, then $g(x)$ and $1 / g(x)$ are both measurable. By Cauchy Schwarz,

$$
1=1^{2}=\|g \cdot(1 / g)\|_{L^{1}(0,1)}^{2} \leq\|g\|_{L^{2}(0,1)}^{2}\|1 / g\|_{L^{2}(0,1)}^{2}
$$

Notice that

$$
\|g\|_{L^{2}(0,1)}^{2}=\int_{0}^{1}|g|^{2} d x=\int_{0}^{1} f(x) d x, \quad\|1 / g\|_{L^{2}(0,1)}^{2}=\int_{0}^{1} \frac{1}{f(x)} d x
$$

Therefore, the desired inequality holds.
Extra Problem 10. Suppose $f_{k} \rightarrow f$ a.e. on $(0,1)$ and for some $r \in(0, \infty), \int_{0}^{1}\left|f_{k}(x)\right|^{r} d x \leq M$ for constant M and for all $k \geq 1$. Prove that for all $0<p<r, \int_{0}^{1}\left|f_{k}(x)-f(x)\right|^{p} d x \rightarrow 0$ as $k \rightarrow \infty$.

By Egorov's theorem, $f_{k} \rightarrow f$ a.u., so for all $\delta>0$, there exists E_{δ} s.t. $m\left(E_{\delta}\right)<\delta$ and $f_{k} \rightarrow f$ uniformly on $(0,1) \backslash E_{\delta}$. Therefore,

$$
\int_{(0,1) \backslash E_{\delta}}\left|f_{k}-f\right|^{p} d x \rightarrow 0
$$

It suffices to show that $\int_{E_{\delta}}\left|f_{k}-f\right|^{p} d x \rightarrow 0$. By Hölder's inequality,

$$
\left\|\left|f_{k}-f\right|^{p}\right\|_{L^{1}\left(E_{\delta}\right)} \leq\left\|\left|f_{k}-f\right|^{p}\right\|_{L^{r / p}\left(E_{\delta}\right)}\|1\|_{L^{r} /(r-p)\left(E_{\delta}\right)}
$$

This implies that

$$
\int_{E_{\delta}}\left|f_{k}-f\right|^{p} d x \leq \delta^{1-p / r}\left(\int_{E_{\delta}}\left|f_{k}-f\right|^{r} d x\right)^{p / r}
$$

By Fatou's lemma,

$$
\int_{0}^{1}|f(x)|^{r} d x \leq \lim _{k \rightarrow \infty} \int_{0}^{1}\left|f_{k}(x)\right|^{r} d x \leq M
$$

Therefore, we obtain

$$
\int_{E_{\delta}}\left|f_{k}-f\right|^{r} d x \leq \int_{E_{\delta}} 2^{r}\left(\left|f_{k}\right|^{r}+|f|^{r}\right) d x \leq 2^{r+1} M
$$

This implies that $\int_{E_{\delta}}\left|f_{k}-f\right|^{p} d x \rightarrow 0$.

