MAT3006*: Real Analysis

Homework 10

24 i (116010114)

Due date: April. 17, 2020
Extra Problem 1. Let 0 < p <1 and g = ﬁ. Assume that if g = 0 on E then ||g||z«(z) = 0.
(i) Proved for f,g measurable on £ € M and m(E) > 0, we have the reversed Holder’s
inequality, i.e., |[fgllL1z) = [ fllLe ) llgllLacm)-

If g =0 a.e. on F, then it is trivial to prove the inequality because both left and right sides are
zero. Assume |g| > 0 on a subset of E with positive measure, and let ¢ = 1/p, ¢ = q/(q — 1),

and u = |fg|’ and v = |g|~P. Since ¢ > 1, from Holder’s inequality, we have
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where the last step is valid because |g| > 0 on a subset of E with positive measure, so the inte-
gral of |g|?”" is positive. Therefore, we obtain the reversed Hélder inequality || f|| » () |9l L' () <
1£gllti () for all f € LP(E) and g € L¥ (E).

(ii) Prove reversed Minkowski inequality, i.e., for measurable f,g s.t. f >0, g > 0 on E, we

have [| fll o ey + [lgllo ) < (1f + gllLe(m)-

Notice that for f > 0,g9 > 0, we have |f + g| = |f| + |g|, and then we have
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where the inequality follows from reversed Hélder inequality. If f+ ¢ > 0 on a subset with
positive measure, then ||f + g||’£;1 > 0 and by cancelling that factor, we obtain the reversed
Minkowski inequality. If f +¢g =0 a.e., since f >0and g >0, f =0 a.e. and g =0 a.e.. In
this case || f|lr» = |lgllz» = 0 and ||f + g||» = 0, so the both sides are equal. In conclusion,
the reversed Minkowski inequality holds for all f,g € LP(E), f > 0,9 > 0.



(iii) Construct f and g s.t. ||fllzr(e) + 19/l2em) < [If + 9llLr(B)-

We first prove there exists subsets of E, e, e, such that e; Ney = & and m(e;) = m(ez) > 0.
Note that we have proved that f(r) = m(B,(0)NE) is a continuous function on [0, cc). WLOG,
suppose m(F) < oo (if m(F) = oo then take FF = E'N B1(0) and use F' as F). Then there
exists r s.t. f(r) = @ Let ey = B.(0)NE and e; = FE \ e5.

Let f = x., be the characteristic function of e;, and g = x.,. Since 0 < p < 1, 21/P > 2. Let
1/p

m(e1) = m(ez) =1 > 0. Therefore, || f||L» = <fe1 17 dx) = [Y/P | and similarly, ||g||z» = I'/7.

Also, since e; and ey are disjoint, ||f + g||z» = (21)}/P. Therefore, 21*/P < 2L/P[1/P = (21)'/P,

meaning that the reversed strict Minkowski inequality holds.

Extra Problem 2. Let X be a normed space. Prove that if ||z, — 2| — 0 as K — oo, then

|zl = |Tooll- In L(—1,1), construct a counterexample s.t. || fillz: — || foollzr but fi 4 foo in L.

By definition of norm, ||zx|| = [|[Zeo + (x — Zoo)|| < [|Zoo|| + |k — Zool|, thus we have ||zx| —
|Too|l < ||k — Zool|. Similarly, we will obtain ||za || — [|zk|| < |2k — Zool|- Thus, |||zk| — [|[zoll] <
|k — 2| = 0, s0 ||z = [[2]. Consider fi(x) = I;_1(x) and fo(x) = Ijp,1)(x), then || fil|zr =
1= |feollzr, so || fellzr = || foollz. However, ||fx — foollzr =2 for all k> 1, so fx /4 foo in L.

Extra Problem 3. Let £ C R™, F C R", and f(z,y) be measurable on E x F, where z € F,
y € F. For 1< p < oo,if [y|f(x.9)l12qs) dy < oo, prove

(i) For a.e. fixed x € E, f(x,y) € Ly(F).

Notice that [, |f(z,y)| dy is well defined (possibly infinity),
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Since f(z,y) is measurable on E X F', |f(x,y)| is nonnegative measurable, so we can apply Fu-
bini’s theorem to | f(z,y)|, [5 | f(z, 2)| dz is measurable on E and thus | f(z, )| ([, |f(z, 2)]| dz)pi1
is nonegative measurable on E. Again, apply Fubini’s theorem to |f(z,y) ( Jo | f(z, 2)] dz) ,
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we obtain,

(z,y)| dy

dy  (Hoélder’s ineq.)
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Note that if || [, [f(z, 2)] dz||L,;(E) = 0, then || [, [f( y < Jellf @ y)lle e dy
is trivial. If 0 < HfF |f(x,2)] dzHLP(E) < o0, we can cancel out it on both sides, and the
same result is obtained. If || [, |f(z,z)] dz||Lg(E) = 00, then denote Ey = E N By(0) and

Fj, = F N By(0). Also define

k if | fu(z,y)| >k
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Then |f(x,y)| = |f(z,y)| pointwisely. It is obvious that | fx(x, y)| is also nonnegative measur-
able on E x F. Therefore, by Lemma 2 in lecture, gx(x,y) = |fx(z,y)|IE, ()1, (y) is also non-
negative measurable on E x F' and increases pointwisely to g(z,vy) = |f(z,y)|Ir(z)Ir(y). Note
that || [, gx(x, 2) dz||L§(E) < 00, so we always have || [, (2, y) dyHLg(E) < Jpllge(@, )l Lz k) dy.
Take limit on both sides, for LHS,
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For RHS, since [|gx(, y)| 1z (k) is also nonnegative increasing in k,
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Therefore, we still obtain the desired inequality, i.e., for any measurable f(x,y) on E x F, we
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Since [, [f(z,y)| dy is in LP(E), it must be fintie a.e. on E, so f(x,y) € L, (F) for almost all
re k.

always have
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(ii) [ f(z,y) dy is a measurable function of x € E and [, f(z,y) dy € LE(E).

Since we proved f(z,y) € L1 ), J& f(x,y) dy is well-defined and a.e. finite on E. Notice that
by definition, [, f(z,y) dy = [, f(z,y) dy — [, [~ (2, y) dy. Since f*(x,y) and f~(x,y) are
both nonnegative measurable function on F x F, by Fubini’s theorem (nonnegatlve version),
Jw T (z,y) dy and [,, f~(z,y) dy are both measurable on E. Therefore, [, f(z,y) dy is also
measurable on E. To prove [, f(z,y) dy € L?(E), notice that
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where the first inequality is because | [, f(z,y) dy| < [ |f(z,y)| dy. Thus, [, f(z,y) dy €

(iii) [|f5 f (2, y)

f(z,y) dy
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Actually, in part (ii), when we prove [, f(z,y) dy € LE(E) in equation (), we have already
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so we are done.



Extra Problem 4. Let 1 < p < co. For all f € LP(0,00), define Tf = 2 [ f(y) dy for z € (0, 00).

Prove that [|Tf| £r(0,00) < 1%1||f||Lp(o7oo).

Let z = £, then by change of variable (since for each fixed z, f € L'(0,z)), we obtain

Ty = [ ) a:

We claim that f(zz) : (0,00) % (0,1) is measurable, and since f € L2(0, 00), f01||f(xz)||Lg(E) dz < o0,

so we can apply Extra Problem 3,
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Let y = zz, since for each fixed z, |f(x)[P € L' implies |f(z2)|P € L', by change of variable,
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Substitute it into the equation above it, we obtain
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To prove the measurablity of f(zz) on (0,00) x (0,1), define S : (0,00) x (0,1) — Im(S) to be
S(z,z) = (zz,x). It is easy to check S is a diffeomorphism, so S~ is well-defined and continuously
differentiable. Notice that we can write f(xz) = g(S(z,z)) where g(x,y) = f(x) is the projection-
type function and its domain is Im(S). Since Im(S) = {(z,y) | > 0,y > 0,z < y}, it is an open set.
It is easy to show g(z,y) is measurable because for any Borel set B C R, g~ *(B) = (f~'(B) x R) N
Im(S). Since f~*(B) is measurable and the product of two measurable sets is measurable, g~*(B)
is measurable, hence ¢ is a measurable function. Now we need to prove for any Borel set B C R,
S=1(g~1(B)) is measurable. Let E, = g~'(B) N N, where Ny = {(z,y) | k=2 < 2% +y* < k?} is the
annulus in R?. Since S~! is continuously differentiable, it is Lipschitz on each E (can be proved by
writing out the gradient of S™! and using mean value theorem). Since Fj is measurable, S~ (E})
is also measurable. Therefore, S™(¢7*(B)) = U,—, S™*(E}) is also measurable. This is enough to

show that f(zz) is measurable on (0,00) x (0,1).

Extra Problem 5. Let f(z) be measurable on R™. Prove that f(x — y) as a function of (z,y) €
R"™ x R™ is measurable. Also, prove that for all f € L'(R"), g € LP(R"), 1 < p < o0, f*g € LP(R")
where f+g = [;. f(z —y)g(y) dy. Furthermore, prove || f * gllzs@n) < [Ifllz1@n)llgllzr @n)-

Similar to Extra Problem 4, define S : R” x R” — R"™ x R™ by S(x,y) = (z —y, z). It is trivial
that S is a diffeomorphism, so S~! is well-defined and Lipschitz on R™ x R™. Notice that we can
write f(x —y) = g(S(x,y)) where g(z,y) = f(z) is defined the same as in Extra Problem 4, so
g(z,y) is measurable on R" x R™. For any Borel set B C R", S~!(¢g~'(B)) is measurable because
g~ (B) is measurable and S~! is Lipschitz. Thus, f(x — y) is measurable on R™ x R™.

For p = oo, since g is essentially bounded by some constant ||g|| e &),

g flx—=y)g(y) dy < |lgllLe=@n / If(x —y)| dy = ||g|l L= @n)
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where the last equality is given by change of variable for each fixed x. Therefore, f x g is also

essentially bounded.

For 1 <p < oo, let h(z,y) = f(z —y)g(y) and ¢(z,y) = f(y)g(z —y), then h(z,y) and ¢(z,y)
(2, y) |y dy = /

are measurable. Consider
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Note that here we can use change of variable because g(z) € L? implies |g(z)[P € L'. Then by Extra

R

Problem 3(i), for a.e. fixed z € E, ¢(z,y) € L;. Therefore, for a.e. x, we can apply change of

variable as below,
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Therefore, we have
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This shows f * g is in LP(R™).

Extra Problem 6. Let f be continuous on the interval (0, 1). Prove that || f[|(0,1) = sup,e( 1) [f(@)]-

It is obvious that || f[|Le(0,1) < sup,e(o 1) |f ()], since {z | f(x) > sup,c(o 1) |f(z)[} is empty set.
If [|fllLee(o,1) = oo, then sup ¢ 1y [f(x)] > oo implies that sup,¢ g1y |f(z)| = oo and the desired
equality holds.

If [[f[lzo(0,1) < oo, and suppose M = ||f|lL<,1) < SUP,e(0,1) [f(x)], then there exists small
€>0,st. M +e<sup,cqq|f(z)] and m({z € (0,1)] f(z) > M +€}) = 0. Since f is continuous,
{z € (0,1)| f(z) > M + €} is open set. Note that by definition of supremum, there must exists
xo s.t. f(xzg) > M + €, so it is nonempty open set, whose measure must be positive. Therefore,

contradiction shows that || f|L~(0,1) = sup,eo 1) [f(2)]-

Extra Problem 7. Let f be measurable on E and there exists r > 0 s.t. f € L"(E). Prove that

lim,HoonHLp(E) = ||f||L°°(E)'

If | fllL(py = 0, then f(x) =0 a.e. on E, so | f|/zr(z) = 0 and the desired conclusion follows
immediately. If ||f||ze(z) > 0, define Eyy = {x € E||f(z)] > M} for 0 < M < ||f||z>(r), then

m(Ey) > 0. Since || f||L ) < 00, m(Ey) < oo. Thus, we can consider

1Fllzocey 2 1Fl|zn(zar) = M(m(Ear)) /"



which implies lim, , || fllzr(z) > M. Since M is arbitrary, we have lim, , || fllzoz) > [|f]l=(e)-

If ||f||Loc(E) = 00, then lim

psooll fllLe () > 0o implies that limy, .| fl|Lr () = 00.

If || f|| o (5) < 00, then for any p > r, we have

p 1/p
-r T - r 1—r r
||f||LP(E) = </E |f|p |f| d.’,U) S (/E|f ioo(E)|f| dl') S HfHLoo(/g)HfHL/fEE)

which 1mpheb mp%oo”f”LP(E) < ||f||Loo(E) Therefore, we have hmpﬁochHLp(E) = HfHLoo(E)

Extra Problem 8. Let f € L?(0,1) and fol f(z)z™ de =0,V n € N. Prove f(z) =0 a.e. on (0,1).

If we can prove fol f?dx =0, then f?(x) =0 a.e. on [0,1], and f(z) = 0 a.e. on [0, 1]. Recall we
have proved polynomials are dense in L?(0,1), so there exists polynomial pi(x) s.t. ||px— f|l£2(0,1) —

0 as k — oo. By Cauchy Schwarz,

ok f — f2||L1(0,1) < flle2onllee — flle2,1) = 0
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but for all k, fol prf dz is a finite linear combination of fol fx™ dx, so fol prf dz is always zero. This
shows exactly fol f2dx=0.

since f € L?(0,1). This implies that

Extra Problem 9. Let f be positive and measurable on (0, 1). Prove that 1 < (fol f(x) dx) (fol ﬁ da:).
Let g(z) = v/ f(x) > 0, then g(z) and 1/g(z) are both measurable. By Cauchy Schwarz,

1=1%=llg- (1/9)Lr01) < NlgllZ0)l11/9ll7200.)

Notice that
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Therefore, the desired inequality holds.

Extra Problem 10. Suppose f; — f a.e. on (0,1) and for some r € (0, 00), fol | fre(x)|" de < M
for constant M and for all k£ > 1. Prove that for all 0 < p < r, fol |fr(x) — f(2)|P dez — 0 as k — oo.

By Egorov’s theorem, f, — f a.u., so for all § > 0, there exists Fs s.t. m(Fs) < d and fr, — f
uniformly on (0, 1) \ Es. Therefore,

/ |fx — fIP dx — 0
(0,D)\E;5

It suffices to show that [, [fy — f|? dz — 0. By Holder’s inequality,

I1fx = FPlerces) < MMk = fIP]
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This implies that



By Fatou’s lemma,
1 1
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Therefore, we obtain

/E |fe — f|" dx < /E 2" (| ful” 4 |fI7) dz < 271 M

This implies that [, |fi — f[7 dz — 0.



