MAT3006^{*}: Real Analysis Homework 11

李肖鹏 (116010114)

Due date: April. 24, 2020

Extra Problem 1. Recall the heat equation

$$\begin{cases} u_t(x,t) = u_{xx}(x,t) & x \in \mathbb{R}, \ t > 0 \\ u(x,0) = \phi(x) & x \in \mathbb{R} \end{cases}$$

whose solution is given by

$$u(x,t) = \int_{-\infty}^{\infty} \Gamma(x-y,t)\phi(y) \, dy$$

where $\Gamma(x,t)$ is the fundamental solution of heat equation given by

$$\Gamma(x,t) = \frac{1}{\sqrt{4\pi t}} e^{-\frac{x^2}{4t}}, \quad x \in \mathbb{R}, \, t > 0$$

which is the solution of heat equation with $\phi(x)$ equal to delta function $\delta(x)$.

(i) Prove for any fixed $y \in \mathbb{R}$,

$$\frac{\partial}{\partial t}\Gamma(x-y,t)=\frac{\partial^2}{\partial x^2}\Gamma(x-y,t),\quad\forall\,x\in\mathbb{R},\;\forall\,t>0$$

For each fixed $y \in \mathbb{R}$, we have

$$\begin{split} \frac{\partial}{\partial t} \Gamma(x-y,t) &= -\frac{1}{2\sqrt{4\pi}} t^{-3/2} e^{-\frac{(x-y)^2}{4t}} + \frac{1}{\sqrt{4\pi}} t^{-1/2} e^{-\frac{(x-y)^2}{4t}} \frac{(x-y)^2}{4t^2} \\ &= \frac{1}{\sqrt{4\pi}} t^{-1/2} e^{-\frac{(x-y)^2}{4t}} \left[-\frac{1}{2t} + \frac{(x-y)^2}{4t^2} \right] \end{split}$$

Also, we have

$$\frac{\partial}{\partial x}\Gamma(x-y,t) = -\frac{1}{\sqrt{4\pi}}t^{-1/2}e^{-\frac{(x-y)^2}{4t}}\frac{x-y}{2t}$$

$$\begin{split} \frac{\partial^2}{\partial x^2} \Gamma(x-y,t) &= \frac{1}{\sqrt{4\pi}} t^{-1/2} e^{-\frac{(x-y)^2}{4t}} \frac{(x-y)^2}{4t^2} - \frac{1}{\sqrt{4\pi}} t^{-1/2} e^{-\frac{(x-y)^2}{4t}} \frac{1}{2t} \\ &= \frac{1}{\sqrt{4\pi}} t^{-1/2} e^{-\frac{(x-y)^2}{4t}} \left[-\frac{1}{2t} + \frac{(x-y)^2}{4t^2} \right] \end{split}$$

Therefore, we can see the desired equality holds.

(ii) Suppose $\phi \in L^1(\mathbb{R})$ from now on, and prove u(x,t) satisfies the equation $u_t(x,t) = u_{xx}(x,t)$ for $x \in \mathbb{R}, t > 0$. By part (i), we have known

$$\int_{\mathbb{R}} \Gamma_t(x-y,t)\phi(y) \, dy = \int_{\mathbb{R}} \Gamma_{xx}(x-y,t)\phi(y) \, dy$$

Thus, it suffices to show that

$$u_t(x,t) = \frac{\partial}{\partial t} \int_{\mathbb{R}} \Gamma(x-y,t)\phi(y) \, dy = \int_{\mathbb{R}} \Gamma_t(x-y,t)\phi(y) \, dy \tag{1}$$

$$u_{xx}(x,t) = \frac{\partial^2}{\partial x^2} \int_{\mathbb{R}} \Gamma(x-y,t)\phi(y) \, dy = \int_{\mathbb{R}} \Gamma_{xx}(x-y,t)\phi(y) \, dy \tag{2}$$

For $u_t(x,t)$, we can fixed each x, then denote $f(y,t) = \Gamma(x-y,t)\phi(y)$, which is define on $\mathbb{R} \times \mathbb{R}^+$. First, for each fixed t, $f(y,t) = C_1 e^{-C_2(y-C_3)^2} \phi(y)$ is in $L^1(\mathbb{R})$, where $C_1 > 0$, $C_3 \in \mathbb{R}$ and $C_2 \ge 0$ are independent of y. This is because $|f(y,t)| \le C_1 |\phi(y)|$ and $\phi(y) \in L^1(\mathbb{R})$. Second, for each fixed y, $\frac{f}{\partial t}$ obviously exists for t > 0. Finally, for a fixed $t_0 > 0$, for all $t \in (t_0/2, 3t_0/2)$,

$$\left|\frac{\partial f}{\partial t}\right| \le e^{-\frac{(x-y)^2}{6t_0}} \left[C_1 t_0^{-3/2} + C_2 t_0^{-5/2} (x-y)^2\right] |\phi(y)| = g(y) |\phi(y)|$$

for some constant $C_1, C_2 > 0$. Notice that $g(y) \in L^{\infty}(\mathbb{R})$ because $x^n e^{-x^2} \in L^{\infty}(\mathbb{R})$ for any $n \in \mathbb{N}$. Also, since $\phi(y) \in L^1(\mathbb{R}), g(y)|\phi(y)| \in L^1(\mathbb{R})$. Therefore, by differentiation across integral sign, (1) is proved.

For $u_{xx}(x,t)$, we need to use differentiation across integral sign twice. This time we fixed each t, then denote $f(y,x) = \Gamma(x-y,t)\phi(y)$, which is defined on $\mathbb{R} \times \mathbb{R}$. First, for each fixed x, $f(y,x) = C_1 e^{-C_2(y-C_3)^2} \phi(y)$ is in $L^1(\mathbb{R})$, which is exactly the same as the $u_t(x,t)$ case. Second, for each fixed y, $\frac{f}{\partial x}$ obviously exists for $x \in \mathbb{R}$. Finally, for a fixed $x_0 \in \mathbb{R}$, if $x_0 = y$, then for all $x \in (x_0 - \delta, x_0 + \delta)$,

$$\begin{aligned} -(x-y)^2 &= -(x-x_0+x_0-y)^2 \\ &\leq -(x-x_0)^2 - (x_0-y)^2 + 2|x-x_0||x_0-y| \\ &\leq -(x_0-y)^2 + 2\delta|x_0-y| \end{aligned}$$

Therefore, we can find a dominating function $(C_1, C_2 > 0)$,

$$\begin{aligned} \left| \frac{\partial f}{\partial x} \right| &\leq C_1 e^{-C_2 (x-y)^2} |x-y| |\phi(y)| \\ &\leq C_1 e^{-C_2 (x-y)^2} (\delta + |x_0 - y|) |\phi(y)| \\ &\leq C_1 e^{-C_2 (x_0 - y)^2 + 2C_2 \delta |x_0 - y|} (\delta + |x_0 - y|) |\phi(y)| \\ &= h(y) |\phi(y)| \in L^1_y(\mathbb{R}) \end{aligned}$$

because $h(y) \in L^{\infty}(\mathbb{R})$. This is enough to show that

$$u_{xx}(x,t) = \frac{\partial}{\partial x} \int_{\mathbb{R}} \Gamma_x(x-y,t)\phi(y) \, dy$$

Again, denote $f(y, x) = \Gamma_x(x-y, t)\phi(y)$, then for fixed x, $f(y, x) = C_1(x-y)e^{-C_2(x-y)^2}\phi(y)$, so $f(y, x) \in L^1(\mathbb{R})$. Second, for each fixed y, $\frac{\partial f}{\partial x}$ obviously exists. Finally, for all $x \in (x_0 - \delta, x_0 + \delta)$,

$$\left|\frac{\partial f}{\partial x}\right| \le e^{-C_1(x_0-y)^2 + 2C_1\delta|x_0-y|} [C_2 + C_3(|x_0-y|+\delta)^2] |\phi(y)| = h(y) |\phi(y)| \in L^1_y(\mathbb{R})$$

because $h(y) \in L^{\infty}(\mathbb{R})$. Therefore, we have shown that

$$u_{xx}(x,t) = \int_{\mathbb{R}} \Gamma_{xx}(x-y,t)\phi(y) \, dy$$

This finishes the proof of u(x,t) satisfying heat equation (without initial condition).

(iii) Prove $||u(\cdot,t) - \phi(\cdot)||_{L^1(\mathbb{R})} \to 0$ as $t \to 0+$.

Notice that we have already known $\Gamma(x - y, t)\phi(y)$ is in $L^1(\mathbb{R})$, by change of variable with $y = x + \sqrt{4t}z$ eliminating y, we obtain

$$u(x,t) = \int_{\mathbb{R}} \frac{1}{\sqrt{4\pi t}} e^{-\frac{(x-y)^2}{4t}} \phi(y) \ dy = \int_{\mathbb{R}} \frac{1}{\sqrt{\pi}} e^{-z^2} \phi(x + \sqrt{4t}z) \ dz$$

Therefore, by generalized Minkowski inequality, we have

$$\|u(x,t) - \phi(x)\|_{L^{1}_{x}(\mathbb{R})} \leq \int_{\mathbb{R}} \frac{1}{\sqrt{\pi}} e^{-z^{2}} \|\phi(x + \sqrt{4t}z) - \phi(x)\|_{L^{1}_{x}(\mathbb{R})} dz$$

Notice that $\|\phi(x+\sqrt{4t}z)-\phi(x)\|_{L^1_x(\mathbb{R})} \leq 2\|\phi(x)\|_{L^1_x(\mathbb{R})}$, so we can see

$$\|u(x,t) - \phi(x)\|_{L^{1}_{x}(\mathbb{R})} \leq 2\|\phi(x)\|_{L^{1}_{x}(\mathbb{R})} \int_{\mathbb{R}} \frac{1}{\sqrt{\pi}} e^{-z^{2}} dz = 2\|\phi(x)\|_{L^{1}_{x}(\mathbb{R})} < \infty$$

By continuity of L^1 -norm, $\|\phi(x + \sqrt{4t_k}z) - \phi(x)\|_{L^1(\mathbb{R})} \to 0$ as $k \to \infty$ for any sequence $t_k \to 0+$ as $k \to \infty$. Notice that the dominant function is given by

$$\frac{2}{\sqrt{\pi}}e^{-z^2} \|\phi(x)\|_{L^1(\mathbb{R})} \in L^1(\mathbb{R})$$

Therefore, by DCT, we have

$$\lim_{k \to \infty} \|u(\cdot, t_k) - \phi(\cdot)\|_{L^1(\mathbb{R})} \le \lim_{k \to \infty} \int_{\mathbb{R}} \frac{1}{\sqrt{\pi}} e^{-z^2} \|\phi(x + \sqrt{4t_k}z) - \phi(x))\|_{L^1(\mathbb{R})} \, dz = 0$$

This is enough to show $||u(\cdot,t) - \phi(\cdot)||_{L^1(\mathbb{R})} \to 0$ as $t \to 0+$.

(iv) Prove that $|u(x,t)| \leq \frac{1}{\sqrt{4\pi t}} \|\phi\|_{L^1(\mathbb{R})}$, for all $x \in \mathbb{R}$, all t > 0. Give physical interpretation of this result.

Since $e^{-\frac{(x-y)^2}{4t}} \leq 1$ for any x, y and t > 0, we obtain

$$|u(x,t)| = \left| \int_{\mathbb{R}} \frac{1}{\sqrt{4\pi t}} e^{-\frac{(x-y)^2}{4t}} \phi(y) \ dy \right| \le \frac{1}{\sqrt{4\pi t}} \int_{\mathbb{R}} e^{-\frac{(x-y)^2}{4t}} |\phi(y)| \ dy = \frac{1}{\sqrt{4\pi t}} \int_{\mathbb{R}} |\phi(y)| \ dy$$

Thus, $|u(x,t)| \leq \frac{1}{\sqrt{4\pi t}} \|\phi\|_{L^1(\mathbb{R})}$, for all $x \in \mathbb{R}$, all t > 0. The physical interpretation is that if the initial energy $\|\phi\|_{L^1(\mathbb{R})}$ is finite, then as time tends to infinity, the temperature will decrease to zero uniformly over different position with speed no slower than $O\left(\frac{1}{\sqrt{t}}\right)$.

Extra Problem 2. Prove that step functions are not dense in $L^{\infty}(0, 1)$.

Consider $f(x) = \sum_{i=1}^{\infty} I_{(\frac{1}{2n},\frac{1}{2n-1})}(x)$, where $I_{(\frac{1}{2n},\frac{1}{2n-1})}(x)$ is the indicator function on interval $(\frac{1}{2n},\frac{1}{2n-1})$. Then it is obvious that $f(x) \in L^{\infty}(0,1)$ because $0 \le f(x) \le 1$. Suppose there exists a sequence of step functions $f_k(x) = \sum_{i=1}^{N_k} c_i^{(k)} I_{(a_i^{(k)},b_i^{(k)})}(x)$ s.t. all $(a_i^{(k)},b_i^{(k)})$ are pairwise disjoint,

 $c_i^{(k)} \neq 0$ and $f_k \to f$ in $L^{\infty}(0,1)$ as $k \to \infty$. However, consider for each fixed k, we can find $L^k = \min_{i=1}^{N_k} a_i^{(k)}$.

If $L^k = 0$, and WLOG, suppose the minimum is attained at i = 1, then $|f_k(x)| = |c_1^{(k)}| > 0$ on $(0, b_1^{(k)})$ where $b_1^{(k)} > 0$. In this way we can find large enough n s.t. $\frac{1}{2n-1} < b_1^{(k)}$, then $|f_k(x) - f(x)| = |c_1^{(k)}|$ on $(\frac{1}{2n+1}, \frac{1}{2n})$. However, on interval $(\frac{1}{2n+2}, \frac{1}{2n+1})$, $|f_k(x) - f(x)| = |c_1^{(k)} - 1|$. Therefore, $||f_k - f||_{\infty} \ge \max\{|c_1^{(k)}|, |c_1^{(k)} - 1|\} \ge \frac{1}{2}$.

If $L^k > 0$, and WLOG, suppose the minimum is attained at i = 1, then $f_k(x) = 0$ on $(0, a_1^k)$. Similarly, we can find n large s.t. $\frac{1}{2n-1} < a_1^k$, then f(x) = 1 on $(\frac{1}{2n}, \frac{1}{2n-1})$. This implies that $||f_k - f||_{\infty} \ge 1$.

Thus, for all k, for whatever L^k , we always have $||f_k - f||_{\infty} \ge \frac{1}{2}$, then f_k cannot converge to f in $L^{\infty}(0, 1)$.

Extra Problem 3. Let f(x) be measurable and bounded on \mathbb{R} and periodic with period T > 0. Let $g \in L^1(0, a)$, where $0 < a < \infty$. Prove that as $\epsilon \to 0+$,

$$\int_0^a f(x/\epsilon)g(x) \, dx \to \langle f \rangle \int_0^a g(x) \, dx, \quad \langle f \rangle = \frac{1}{T} \int_0^T f(y) \, dy$$

First consider $g = I_{(b,c)}$ where $0 \le b < c \le a$, we have

$$\int_0^a f(x/\epsilon)g(x) dx = \int_b^c f(x/\epsilon) dx$$

= $\epsilon \int_0^{(c-b)/\epsilon} f(z) dz$ $(z = (x-b)/\epsilon)$
= $(c-b)\frac{1}{m} \int_0^m f(z) dz$ $(m = (c-b)/\epsilon)$

Since m = nT + r where $0 \le r < T$, and $\left| \int_{nT}^{nT+r} f(z) dz \right| \le M$ for some constant M and for all r, we have

$$\int_{0}^{a} f(x/\epsilon)g(x) \, dx = (c-b) \left[\frac{n}{m} \int_{0}^{T} f(z) \, dz + \frac{1}{m} \int_{nT}^{nT+r} f(z) \, dz\right]$$

Note that $\frac{n}{m} = \frac{m-r}{Tm} = \frac{1-r/m}{T} \to \frac{1}{T}$ as $m \to \infty$. Thus, as $\epsilon \to 0+, m \to \infty$, and

$$\int_0^a f(x/\epsilon)g(x) \, dx \to (c-b)\frac{1}{T} \int_0^T f(z) \, dz = \langle f \rangle \int_0^a I_{(b,c)}(x) \, dx = \langle f \rangle \int_0^a g(x) \, dx$$

Thus, by linearity, it is easy to see if g is a step function on (0, a), the desired result holds as well. Now consider general $g \in L^1(0, a)$, since step function is dense in $L^1(0, a)$, there exists $g_n(x) \to g(x)$ in $L^1(0, a)$. For arbitrary fixed δ , there exists N_1 s.t. for all $n \ge N_1$,

$$\left|\langle f \rangle \int_{0}^{a} g_{n}(x) \, dx - \langle f \rangle \int_{0}^{a} g(x) \, dx \right| < \frac{\delta}{3}$$

Since f(x) is bounded on (0, a), we can find N_2 s.t. for all $n \ge N_2$,

$$\left|\int_0^a f(x/\epsilon)g_n(x) \, dx - \int_0^a f(x/\epsilon)g(x) \, dx\right| < \frac{\delta}{3}$$

Take $N = \max\{N_1, N_2\}$, we have proved

$$\left|\int_0^a f(x/\epsilon)g_N(x) \, dx - \langle f \rangle \int_0^a g_N(x) \, dx\right| < \frac{\delta}{3}$$

By triangular inequality,

$$\left|\int_0^a f(x/\epsilon)g(x)\ dx - \langle f \rangle \int_0^a g(x)\ dx\right| < \delta$$

Since this is true for arbitrary $\delta > 0$, this is enough to prove the desired result.

Extra Problem 4.

(i) For all measurable subset $A \subset [0, 2\pi]$, prove that

$$\lim_{t \to \infty} \int_A \cos(tx) \, dx = 0$$

Consider any sequence t_k s.t. $t_k \to \infty$ as $k \to \infty$, then it suffices to show that

$$\lim_{k \to \infty} \int_A \cos(t_k x) \, dx = 0$$

Note that

$$\int_{A} \cos(t_k x) \, dx = \int_0^{2\pi} \cos(t_k x) I_A(x) \, dx$$

Since A is a bounded set, $I_A(x) \in L^1(0, 2\pi)$. Also, $|\cos(t_k x)| \leq 1$ for all $x \in [0, 2\pi]$ and for any $c \in [0, 2\pi]$,

$$\int_0^c \cos(t_k x) \, dx = \frac{1}{t_k} \sin(t_k x) \Big|_0^c = \frac{\sin(ct_k)}{t_k} \to 0$$

as $k \to \infty$. Thus, by generalized Riemann-Lebesgue theorem, $\int_0^{2\pi} \cos(t_k x) I_A(x) dx \to 0$.

(ii) Let $t_k \to \infty$ as $k \to \infty$. Define $E = \{x \in [0, 2\pi] \mid \sin(t_k x) \text{ converges as } k \to \infty\}$. Prove m(E) = 0.

Similar to the proof of Egorov's theorem, let $f_k(x) = \sin(t_k x)$ and $f(x) = \lim_{k \to \infty} f_k(x)$. Denote

$$E_{k,l}^{i} = \{x \in [0, 2\pi] \mid |f_{k+l}(x) - f_k(x)| < 1/i\}$$

Then we can write $E = \bigcap_{i=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{l=1}^{\infty} E_{k,l}^{i}$. It is easy to see $E_{k,l}^{i}$ is measurable because f_k is continuous function. Thus, E is also measurable. Notice that

$$\int_E \sin^2(t_k x) \, dx = \int_E \frac{1 - \cos(2t_k x)}{2} \, dx$$

For LHS, since $|\sin^2(t_k x)| \leq 1$ and $m(E) \leq 2\pi$, we can use DCT to obtain

$$\lim_{k \to \infty} \int_E \sin^2(t_k x) \, dx = \int_E f^2(x) \, dx$$

Similarly, since $|f(x)\sin(t_k x)| \leq 1$, by DCT again,

$$\lim_{k \to \infty} \int_E f(x) \sin(t_k x) \, dx = \int_E f^2(x) \, dx$$

Now we need to prove $\lim_{k\to\infty} \int_E f(x) \sin(t_k x) dx = 0$ by Riemann-Lebesgue theorem. We know $|f(x)| \in L^1(E)$ and $\sin(t_k x)$ is uniformly bounded by 1. Thus, it suffices to show $\lim_{k\to\infty} \int_0^c \sin(t_k x) dx = 0$ for all $c \in [0, 2\pi]$. This is trivial by using the same argument in part (i). Therefore, we obtain

$$\lim_{k \to \infty} \int_E \sin^2(t_k x) \, dx = 0$$

Now consider RHS, by part (i),

$$\lim_{k \to \infty} \int_E \frac{1 - \cos(2t_k x)}{2} \, dx = \frac{m(E)}{2} - \lim_{k \to \infty} \frac{1}{2} \int_E \cos(2t_k x) \, dx = \frac{m(E)}{2}$$

This shows that $\frac{m(E)}{2} = 0$, i.e., m(E) = 0.

Extra Problem 5. Suppose $f \in L^1(0, 1)$. Let $g(x) = \int_x^1 \frac{f(t)}{t} dt$, $0 < x \le 1$. Prove that $g \in L^1(0, 1)$, $\lim_{x \to 0+} xg(x) = 0$ and $\int_0^1 g(x) dx = \int_0^1 f(t) dt$.

Notice that $g(x) = \int_0^1 \frac{f(t)}{t} I_E(t,x) dt$ for $E = \{(t,x) \in \mathbb{R}^2 \mid 0 \le x \le t \le 1\}$. Apply nonnegative version of Fubini's theorem to $\frac{|f(t)|}{t} I_E(t,x)$ on $(t,x) \in [0,1] \times [0,1]$, we obtain

$$\int_{0}^{1} |g(x)| \, dx \le \int_{0}^{1} \int_{0}^{1} \frac{|f(t)|}{t} I_{E}(t,x) \, dt \, dx = \int_{0}^{1} \frac{|f(t)|}{t} \int_{0}^{1} I_{E}(t,x) \, dx \, dt = \int_{0}^{1} |f(t)| \, dt < \infty$$

This implies that $g \in L^1(0,1)$. The above result also implies that $\frac{|f(t)|}{t}I_E(t,x)$ is in $L^1([0,1]\times[0,1])$. Then, $\frac{f(t)}{t}I_E(t,x)$ is in $L^1([0,1]\times[0,1])$ and we can apply L^1 -version of Fubini's theorem to it, i.e.,

$$\int_0^1 g(x) \, dx = \int_0^1 \int_0^1 \frac{f(t)}{t} I_E(t,x) \, dt \, dx = \int_0^1 \frac{f(t)}{t} \int_0^1 I_E(t,x) \, dx \, dt = \int_0^1 f(t) \, dt$$

Now take arbitrary sequence $a_n > 0$ s.t. $a_n \to 0$ as $n \to \infty$. Also, let $g_n(t) = \frac{a_n}{t} I_E(a_n, t)$, then for each fixed $c \in [0,1], |g_n(t)| \leq 1$ for all $t \geq a_n$. Since $g_n(t) \to 0$ a.e. on [0,1], by DCT, $\int_0^c g_n(t) dt \to 0$ as $n \to \infty$. Since $f(t) \in L^1(0,1)$, by generalized Riemann-Lebesgue theorem, we have $\int_0^1 f(t)g_n(t) dx \to 0$ as $n \to \infty$, i.e. $a_ng(a_n) \to 0$ as $n \to \infty$. This shows that $\lim_{x\to 0+} xg(x) = 0$.

Extra Problem 6. Let $f \in L^1(\mathbb{R}^n)$, $g \in L^{\infty}(\mathbb{R}^n)$. Prove that

(i) (f * g)(x) is uniformly continuous in x on \mathbb{R}^n .

Let F = (f * g)(x), consider

$$|F(x+h) - F(x)| = \left| \int_{\mathbb{R}^n} [f(x+h-y) - f(x-y)]g(y) \, dy \right| \le \|g\|_{L^\infty} \|f(u+h) - f(u)\|_{L^1_u} \to 0$$

as $|h| \to 0$ by continuity of L^1 -norm and finiteness of $||g||_{L^{\infty}}$. Thus, for any fixed $\epsilon > 0$, there exists $\delta > 0$ s.t. when $|h| < \delta$, $||f(u+h) - f(u)||_{L^1_u} < \frac{\epsilon}{||g||_{L^{\infty}}}$, so $|F(x+h) - F(x)| < \epsilon$ and this proves the uniform continuity of F.

(ii) If $g \in L^1(\mathbb{R}^n)$, then $(f * g)(x) \to 0$ as $|x| \to \infty$.

Since simple function with bounded support is dense in $L^1(\mathbb{R})$, there exists $f_k \to f$ in L^1 , where f_k is simple function with bounded support. This shows

$$|(f * g)(x)| \le ||f - f_k||_{L^1} ||g||_{L^\infty} + \left| \int_{\mathbb{R}^n} f_k(x - y)g(y) \, dy \right|$$

Similarly, we can find a sequence of simple function g_k with bounded support and $g_n \to g$ in L^1 . Then,

$$\left| \int_{\mathbb{R}^n} f_k(x-y) g(y) \, dy \right| \le \|f_k\|_{L^{\infty}} \|g - g_n\|_{L^1} + \left| \int_{\mathbb{R}^n} f_k(x-y) g_n(y) \, dy \right|$$

Since f_k is simple function, it must be in L^{∞} space, and $f_k(x-y)g_n(y) = 0$ for large enough |x|. This is because if the radius of the support of f_k is r_k and the radius of support of g_n is R_n , then if $|x| > r_k + R_n$, either $|y| > R_n$ or $|x-y| > r_k$, so either $f_k(x-y) = 0$ or $g_n(y) = 0$. This implies that

$$|(f * g)(x)| \le ||f - f_k||_{L^1} ||g||_{L^{\infty}} + ||f_k||_{L^{\infty}} ||g - g_n||_{L^1} + \left| \int_{\mathbb{R}^n} f_k(x - y)g_n(y) \, dy \right|$$

First take $|x| \to \infty$ on both sides, we have

$$\lim_{|x|\to\infty} |(f*g)(x)| \le ||f - f_k||_{L^1} ||g||_{L^\infty} + ||f_k||_{L^\infty} ||g - g_n||_{L^1}$$

Then take $n \to \infty$ on both sides, since LHS is independent of n, we have

$$\lim_{|x| \to \infty} |(f * g)(x)| \le ||f - f_k||_{L^1} ||g||_{L^{\infty}}$$

Finally, take $k \to \infty$ on both sides, since LHS is independent of k, we obtain $\lim_{|x|\to\infty} |(f * g)(x)| \le 0$, i.e., $(f * g)(x) \to 0$ as $|x| \to \infty$.

Extra Problem 7. Consider Fourier transform:

$$\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x\xi} dx$$

Prove that if $f \in L^1(\mathbb{R})$, then $\hat{f}(\xi) \to 0$ as $|\xi| \to \infty$.

Since step function is dense in $L^1(\mathbb{R})$, and a step function is a linear combination of characteristic functions of bounded intervals in \mathbb{R} , there exists $f_k(x) = \sum_{j=1}^{N_k} c_j^k I_{(a_j^k, b_j^k)}$ s.t. $f_k \to f$ in $L^1(\mathbb{R})$. Therefore, as $k \to \infty$,

$$\left|\hat{f}(\xi) - \hat{f}_k(\xi)\right| \le \int_{\mathbb{R}} |f(x) - f_k(x)| \ dx \to 0$$

Also notice that as $|\xi| \to \infty$,

$$\left|\hat{f}_{k}(\xi)\right| \leq \sum_{j=1}^{N_{k}} |c_{j}^{k}| \left| \int_{a_{j}^{k}}^{b_{j}^{k}} e^{-2\pi i x \xi} dx \right| \leq \sum_{j=1}^{N_{k}} |c_{j}^{k}| \frac{1}{\pi |\xi|} \to 0$$

Thus, for any fixed $\epsilon > 0$, we can find a large enough K s.t. $|\hat{f}(\xi) - \hat{f}_K(\xi)| < \frac{\epsilon}{2}$ and then find a large M, s.t. for all $|\xi| > M$, $|\hat{f}_K(\xi)| < \epsilon/2$. Then by triangular inequality, for all $|\xi| > M$, $|\hat{f}(\xi)| < \epsilon$. Since for each ϵ we can find such M, $\hat{f}(\xi) \to 0$ as $|\xi| \to \infty$.

Extra Problem 8. Let f(x) be nonnegative measurable on [0, 1]. Prove that if there exists constant $A < \infty$ s.t. $\int_0^1 f^k(x) dx = A$ for all $k \ge 1$, then $f(x) = I_E(x)$ a.e. on [0, 1] for some $E \subset [0, 1]$.

Let g(x) = f(x)(1 - f(x)), then we have

$$\int_0^1 g^2(x) \, dx = \int_0^1 f^2 \, dx - 2 \int_0^1 f^3 \, dx + \int_0^1 f^4 \, dx = A - 2A + A = 0$$

Thus, g(x) = 0 a.e. on [0, 1]. Denote $F = \{x \in [0, 1] | g(x) = 0\}$, then m(F) = 1, and over the set F, f(x) = 1 or f(x) = 0. Thus, let $E = \{x \in [0, 1] | f(x) = 1\}$, and we can see that $f(x) = I_E(x)$ on set F. Thus, $f(x) = I_E(x)$ a.e. on [0, 1].

Extra Problem 9. Suppose $f \in L^1(\mathbb{R})$, f(0) = 0, f'(0) exists. Prove that $\frac{f(x)}{x} \in L^1(\mathbb{R})$.

By definition of derivative and assumption,

$$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{x \to 0} \frac{f(x)}{x} = c$$

for some finite constant c. Thus, there exists $\delta > 0$ s.t. for all $|x| < \delta$, |f(x)/x - c| < 1, so |f(x)/x| < 1 + |c|. This shows

$$\begin{split} \int_{\mathbb{R}} \left| \frac{f(x)}{x} \right| \, dx &= \int_{-\delta}^{\delta} \left| \frac{f(x)}{x} \right| \, dx + \int_{-\infty}^{-\delta} \left| \frac{f(x)}{x} \right| \, dx + \int_{\delta}^{\infty} \left| \frac{f(x)}{x} \right| \, dx \\ &\leq 2\delta(1+|c|) + \frac{1}{\delta} \int_{-\infty}^{-\delta} |f(x)| \, dx + \frac{1}{\delta} \int_{\delta}^{\infty} |f(x)| \, dx \\ &\leq 2\delta(1+|c|) + \frac{2}{\delta} \int_{\mathbb{R}} |f(x)| \, dx < \infty \end{split}$$

Therefore, $\frac{f(x)}{x} \in L^1(\mathbb{R})$.

Extra Problem 10. Let $f \in L^1(\mathbb{R})$, and a > 0. Define $F(x) = \sum_{n=-\infty}^{\infty} f(x/a+n)$. Prove the series converges absolutely for almost all $x \in \mathbb{R}$, $F \in L^1([0, a])$ and F is periodic with period a.

Let
$$G(x) = \sum_{n=-\infty}^{\infty} |f(x/a+n)|$$
, then consider
$$\int_{0}^{a} G(x) \, dx = \int_{0}^{a} \sum_{n=-\infty}^{\infty} |f(x/a+n)| \, dx = \sum_{n=-\infty}^{\infty} \int_{0}^{a} |f(x/a+n)| \, dx$$

where the last equality is due to integration term by term for nonnegative function. Since $f \in L^1(\mathbb{R})$, by change of variable, let u = x/a + n,

$$\sum_{n=-\infty}^{\infty} \int_{0}^{a} |f(x/a+n)| \, dx = a \sum_{n=-\infty}^{\infty} \int_{n}^{n+1} |f(u)| \, du = a \int_{\mathbb{R}} |f(u)| \, du < \infty$$

This implies that $G(x) \in L^1(0, a)$, and since $|F(x)| \leq G(x)$, so $F \in L^1(0, a)$. Notice that

$$F(x+a) = \sum_{n=-\infty}^{\infty} f(x/a+n+1) = \sum_{n=-\infty}^{\infty} f(x/a+n) = F(x)$$

so F(x) is periodic with period a. Similarly G(x) is also periodic with period a. Since $G \in L^1(0, a)$, G is a.e. finite on (0, a). By periodicity and countable subadditivity, G is a.e. finite on \mathbb{R} . This implies that the series F(x) is convergent absolutely for almost all $x \in \mathbb{R}$.