MAT3006*: Real Analysis

Homework 11

ZEHE IS (116010114)
Due date: April. 24, 2020
Extra Problem 1. Recall the heat equation
up(z,t) = Ugy(x, 1) reR, t>0
u(z,0) = ¢(x) reR
whose solution is given by
u(e.t) = [T y.00) dy

where I'(z,t) is the fundamental solution of heat equation given by

1 22
I(z,t) = e, zeR t>0

VAt

which is the solution of heat equation with ¢(x) equal to delta function d(x).

(i) Prove for any fixed y € R,
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For each fixed y € R, we have
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Therefore, we can see the desired equality holds.

(ii) Suppose ¢ € L'(R) from now on, and prove u(z, t) satisfies the equation u;(z,t) = u,.(z,t)

forz eR,t>0.



By part (i), we have known

/RFt(a: —y,t)o(y) dy = / Low(r —y,t)d(y) dy

R
Thus, it suffices to show that

wie.t) =5 [ T =000 dy = [ Tl - y.0000) dy (1)
teit) = 2 [ D= .0000) dy = [ Tale = .00000) dy )

For u;(x,t), we can fixed each x, then denote f(y,t) = I'(x — y,t)¢(y), which is define on
R x R*. First, for each fixed ¢, f(y,t) = C’le’CZ(y’Cg’)Qq&(y) is in L'(R), where C; > 0, C5 € R
and Cy > 0 are independent of y. This is because |f(y,t)| < Ci|o(y)| and ¢(y) € L'(R).
Second, for each fixed y, % obviously exists for ¢ > 0. Finally, for a fixed ¢, > 0, for all
t € (to/2,3t0/2),

(z—y)?

‘?9{ <e o [Cltaza/z 4 Coty Pz — y)Q} 6(»)] = 9(v)|(y)]

for some constant Cy,Cy > 0. Notice that g(y) € L>(R) because z"e~*" € L>*(R) for any
n € N. Also, since ¢(y) € L'(R), g(y)|¢(y)| € L*(R). Therefore, by differentiation across

integral sign, (1) is proved.

For wu,,(z,t), we need to use differentiation across integral sign twice. This time we fixed each
t, then denote f(y,z) = I'(x — y,t)é(y), which is defined on R x R. First, for each fixed z,
f(y,z) = Cre=C2=03%¢(y) is in L*(R), which is exactly the same as the u,(z,t) case. Second,
for each fixed y, a—fz obviously exists for x € R. Finally, for a fixed zy € R, if ¢y = y, then for
all z € (g — 6,20 + 0),

—(z—y)? = —(x —xo+ 20— ¥)

< —(z —20)* — (20 — ¥)* + 2|7 — 20|70 — Y|
< —(z0 — y)* + 20|z — y|
Therefore, we can find a dominating function (Cy,Cy > 0),
o] < Cie e e = oty
< Crem @G + |mo — y)) ()]
< C’le*CQ(m*y)%zCﬁIm*y‘(5 + |20 — yl)|o(y)]
= h(y)|¢(y)| € L,(R)

because h(y) € L>(R). This is enough to show that
uns(.0) = o [ Tulir = .000(0) dy

Again, denote f(y, ) = To(z—y,1)$(y), then for fixed z, f(y,z) = C1(x—y)e~ = ¢(y), so
f(y,z) € L'(R). Second, for each fixed y, % obviously exists. Finally, for all x € (29—4d, xq+9),

aof

5| < e, 4 Cullay ~ ol + 6P10(0)| = )l € LY(R)




because h(y) € L>(R). Therefore, we have shown that

taslzst) = [ Tualie = 9, )0(0) dy
R
This finishes the proof of u(x,t) satisfying heat equation (without initial condition).

(iii) Prove |lu(-,t) — &(-)|[zrm) — 0 as t — O+.

Notice that we have already known T'(z — y,t)¢(y) is in L'(R), by change of variable with
y = x + \/4tz eliminating y, we obtain

S () dy—/ (e + Viiz) dz

1
RV 47’1’
Therefore, by generalized Minkowski inequality, we have
) = 6@)siw) < | Sze 0w + VL) = 9(o)l1age 0=

Notice that [|¢(z + v4tz) — ¢(z)|| @) < 2[|¢(x)||z1(®), SO We can see
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(e, t) — o)z < 206z / T dx = 200(a) iy < o0

By continuity of L'-norm, |¢(z + /4trz) — ¢(z))||rr ) — 0 as k — oo for any sequence
ty — 04 as k — oco. Notice that the dominant function is given by
—e 6@ € LHR)
—=€ xT 1
ﬁ L (]R)
Therefore, by DCT, we have
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klgloloHu('atk) — ()l < klin;o/R ﬁe [¢(z + VAtrz) — ¢(z))||Lrw) dz2 =0

This is enough to show [|u(-,t) — ¢(-)|| L (r) — 0 as t — 0+.

(iv) Prove that |u(z,t)| < \/EHQSHU ), for all z € R, all t > 0. Give physical intepretation of

this result.

T —1 2 .
Since e~ <1 for any z,y and t > 0, we obtain

1 w2
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u(x, t)| =

y)l dy = —— /|¢ )| dy

|l L1 (r), for all z € R, all t > 0. The physical intepretation is that if the

Thus, |u(z,t)| < \/i?
initial energy ||¢[|z1(r) is finite, then as time tends to infinity, the temperature will decrease to

zero uniformly over different position with speed no slower than O (%)

Extra Problem 2. Prove that step functions are not dense in L>°(0, 1).

Consider f(z) = >.° [+ 1 (), where I+ 1 (z) is the indicator function on interval
2n72n—1 21L 2n—1

(5, 5—)- Then it is obvious that f(z) € L>(0,1) because 0 < f(z) < 1. Suppose there exists a

sequence of step functions fy(z) = Zﬁl cgk)l(a@ b(_k>>(x) s.t. all (az(-k), bgk)) are pairwise disjoint,
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) # 0 and fy — f in L*>(0,1) as k — oo. However, consider for each fixed k, we can find

Lk = min; 1a( )

If L* = 0, and WLOG, suppose the minimum is attained at i = 1, then |f(z)| = [¢*| >

0 on (O,bgk)) where b(lk) > 0. In this way we can find large enough n s.t. in 7 < b(lk), then

k k
|fu(2) = f(z)] = || on (3r1s 37)- However, on interval (525, 57 )» [fr(2) — f(2)] = P — 1.
Therefore, || fy — f|lee > max{[el®|, [¢" — 1]} > 1.

If L¥ > 0, and WLOG, suppose the minimum is attained at i = 1, then fi(x) = 0 on (0, a¥).
Similarly, we can find n large s.t. 2n171 < a¥, then f(z) = 1 on (i, 2n171). This implies that

Thus, for all k, for whatever L*, we always have || f; — f|l~ > %, then f; cannot converge to f
in L*>(0,1).

Extra Problem 3. Let f(x) be measurable and bounded on R and periodic with period 7" > 0.
Let g € L'(0,a), where 0 < a < co. Prove that as € — 0+,

[ sran@rass o) [Cow e =1 [ swa

First consider g = I3 ) where 0 < b < ¢ < a, we have

| tatagta) do= [ sofe) da
e / f(2) dz (2 = (z - b)/e)

(c—b)— / flz)d (m=(c—0)/e)

Since m = nT + r where 0 <r < T, and

nT“ f(2) dz‘ < M for some constant M and for all r,

/f:z:/e ) dx = ( c—b{ /f dz+/nT+rf(z ]

Note that 2 = z=r = 1=r/m _, 1

| stesergte ds s / 1) de =) [ Toota) do=f) [ o(o) da

Thus, by linearity, it is easy to see if g is a step function on (0, a), the desired result holds as well.

we have

as m — oo. Thus, as € — 04+, m — oo, and

Now consider general g € L' (0, a), since step function is dense in L'(0, a), there exists g,(z) — g(z)
in L'(0,a). For arbitrary fixed 4, there exists Ny s.t. for all n > Ny,

0
< -

'<f> [ oy ao— ) [ oty as] < §

Since f(x) is bounded on (0,a), we can find Ny s.t. for all n > No,

fac/egn :U)d:t—/ f(z/e)g

<7




Take N = max{Ny, N2}, we have proved

0
< =

[ rwta o= ) [oxte) | < 5

By triangular inequality,

<4

| taraste) o= 1) [ o) da

Since this is true for arbitrary ¢ > 0, this is enough to prove the desired result.

Extra Problem 4.

(i) For all measurable subset A C [0, 27], prove that

lim [ cos(tz) de =0
t—o0 A

Consider any sequence t; s.t. tp — 00 as k — oo, then it suffices to show that

lim [ cos(tyx) dx =0
k—oo | 5

Note that )
/ cos(tyz) de = / cos(tpz)la(x) dz
A 0

Since A is a bounded set, I4(z) € L*(0,2nm). Also, |cos(tyz)| < 1 for all z € [0,27] and for

any ¢ € [0, 2], '
_ sin(cty,) 0
0 tk.

¢ 1
/ cos(tyx) doz = — sin(tgz)
0 Lk

as k — oo. Thus, by generalized Riemann-Lebesgue theorem, fo% cos(trpz)l4(x) dz — 0.

(i) Let ¢t — oo as k — oo. Define E = {x € [0,2n]| sin(t,x) converges as k — oo}. Prove
m(E) = 0.

Similar to the proof of Egorov’s theorem, let fi(z) = sin(tpz) and f(x) = limy o fr(2).
Denote

By = {z €[0,27]| | feri(z) — fu(z)| < 1/i}

Then we can write E = (oo, | ;. ", £t ,. It is easy to see F! , is measurable because f is
i=1 Uk=1[ li=1 &1 k.l

continuous function. Thus, F is also measurable. Notice that

1-— 2
/SiHQ(th) dx :/ M dx
E

E

For LHS, since |sin®(tx)| < 1 and m(F) < 2r, we can use DCT to obtain

lim [ sin®(tpz) doe = / () da
B B

k—o0

Similarly, since |f(x)sin(txz)| < 1, by DCT again,

k—o0

lim /E F(@) sin(tyz) do = /E P(z) da
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Now we need to prove limy_,o [, f(x)sin(tyz) dz = 0 by Riemann-Lebesgue theorem. We
know |f(z)] € L*(E) and sin(tyz) is uniformly bounded by 1. Thus, it suffices to show
limy oo foc sin(tgz) dz = 0 for all ¢ € [0,2x]. This is trivial by using the same argument in
part (i). Therefore, we obtain

lim [ sin®(tyz) doz =0

k—oco E
Now consider RHS, by part (i),
1 — cos(2t E 1 E
lim cos(2t,) dr = m(E) lim = [ cos(2txx) doe = m(E)
k—oo 1o 2 2 k—oco E 2

This shows that @ =0, i.e., m(E)=0.

Extra Problem 5. Suppose f € L(0, 1) Let g(z) = f; @ dt,0 < x < 1. Prove that g € L'(0, 1),
lim, o4 zg(z) = 0 and fo g(x) de = fo ) dt.

Notice that g(z fol IO 10(t, @) dt for E = {(t,z) € R2|0 < & < ¢t < 1}. Apply nonnegative
version of Fubini’s theorem to mIE(t x) on (t,x) € [0,1] x [0, 1], we obtain

/|g |daz<//|f ) dt da /'f |/IE ) da dt = /|f )| dt < oo

This implies that g € L'(0,1). The above result also implies that ”t—t)lIE(t, x) is in L'([0, 1] x [0, 1]).
Then, Y8 7p(¢,2) is in L*([0,1] x [0,1]) and we can apply L'-version of Fubini’s theorem to it, i.e.,

/ d;v—//f In(t, z) dt do /01f(tt)ff,;(t,x)dxdt:/olf(t)dt

Now take arbitrary sequence a,, > 0 s.t. a, — 0 as n — oo. Also, let g,(t) = “*Ig(an,t), then
for each fixed ¢ € [0,1], |g.(¢)] < 1 for all ¢ > a,. Since g,(t) — 0 a.e. on [0,1], by DCT,
Jy gn(t) dt — 0 as n — oo. Since f(t) € L*(0,1), by generalized Riemann-Lebesgue theorem, we
have f01 f@®)gn(t) dz — 0 as n — oo, i.e. apg(a,) — 0 as n — oo. This shows that wlir& zg(z) = 0.

Extra Problem 6. Let f € L'(R"), g € L>°(R"). Prove that
(i) (f * ¢)(x) is uniformly continuous in z on R™.

Let F = (f * g)(x), consider

|F(z +h) = F(z)| =

[ 1t h=y) = o= )lo(w) dy| < gl Fu+ ) = F@)]as, 0

as |h| — 0 by continuity of L'-norm and finiteness of ||g||p~. Thus, for any fixed € > 0, there
exists § > 0 s.t. when [h] <0, |[f(u+h) = f(u)llLy < 5=, so [F(z+h) - F(z)| < e and this

proves the uniform continuity of F'.
(ii) If g € L*(R™), then (f * g)(z) — 0 as |z| — oo.

Since simple function with bounded support is dense in L'(R), there exists f;, — f in L,

where f is simple function with bounded support. This shows

(2@ <17 = Fllalle= + | [ Ao = sdato) dy

6



Similarly, we can find a sequence of simple function g, with bounded support and g, — ¢ in
L'. Then,

fe(z —y)g(y) dy| < ||fk||L°°|g_gn||Ll+‘/ fe(z —y)gn(y) dy‘
R R~

Since f, is simple function, it must be in L*™ space, and fi(x — y)gn(y) = 0 for large enough
|z|. This is because if the radius of the support of fj is r, and the radius of support of g, is
R, then if |x| > r + R, either |y| > R,, or |x —y| > 7y, so either fi(x —y) =0 or g,(y) = 0.
This implies that

[(Fxg) @) <N = felleallgllizoe + 1 fullz<llg = gnllzr + . fe(@ = y)gn(y) dy‘

First take |z| — oo on both sides, we have

i |(f#g) (@) < 1F = fellellgllze + 1 fell=llg = gnllz:

Then take n — oo on both sides, since LHS is independent of n, we have

Jim 1(fx g) (@) < IIf = fellzallgllz=

Finally, take k& — oo on both sides, since LHS is independent of k, we obtain lim,_q [(f *

g)(z)] <0, ie., (fxg)(x) =0 as |z| = oco.

Extra Problem 7. Consider Fourier transform:
—/ f(z)e ™ dg
Prove that if f € L'(R), then f(£) — 0 as |¢] — oc.

Since step function is dense in L*(R), and a step function is a linear combination of characteristic

functions of bounded intervals in R, there exists fi(z) = I(ak by St fe = f in L'(R).

Jj= 1 €
Therefore, as k — oo,

O - f / |f (x z)| dz —0
Also notice that as || — oo,

Ny J
’fk(g)’ SZlCﬂ / e —2mizé dax <Z|Ck|m*>0
Jj=1

Thus, for any fixed € > 0, we can find a large enough K s.t. |f(§) — fK(£)| < 5 and then find a large
M, s.t. for all || > M, |fx(€)| < €/2. Then by triangular inequality, for all [¢| > M, |f(£)] < .
Since for each e we can find such M, f(€) — 0 as |€] — occ.

Extra Problem 8. Let f(z) be nonnegative measurable on [0, 1]. Prove that if there exists constant
A < 0 s.t. fo fF(z) dz = A for all k > 1, then f(z) = Ig(z) a.e. on [0, 1] for some E C [0, 1].

Let g(z) = f(z)(1 — f(x)), then we have

1 1 1 1
/92(J:)dx:/f2dm—2/ fgda;—f—/ fldr=A—-244+A=0
0 0 0 0
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Thus, g(z) = 0 a.e. on [0,1]. Denote F = {z € [0,1] | g(x) = 0}, then m(F) = 1, and over the set
F, f(x) =1or f(z) =0. Thus, let E = {z € [0,1] | f(z) = 1}, and we can see that f(z) = Ig(x)
on set F. Thus, f(z) = Ig(x) a.e. on [0,1].

Extra Problem 9. Suppose f € L*(R), f(0) =0, f’(0) exists. Prove that % € L'(R).

By definition of derivative and assumption,

10 =t T IO )

h—0 h =0

for some finite constant c¢. Thus, there exists 6 > 0 s.t. for all |x| < ¢, |f(z)/z — | < 1, so

|f(x)/xz| <1+ |c|. This shows
_s o
d:r+/ f(;)‘dwr/

e .

X
<
28(1+ |e|) + 5/ |dx~|—6/ 2)| dz
<20(1+4 |e]) + /|f )| dx < 0o

(=)

xT

@)‘ s

Therefore, @ e L'(R).

Extra Problem 10. Let f € L'(R), and a > 0. Define F(z) = >>° _ f(z/a +n). Prove the

series converges absolutely for almost all z € R, F' € L'([0,a]) and F is periodic with period a.

Let G(z) = >.0" __|f(z/a+ n)|, then consider

/OaG(x) dx:/ Z Lf( x/a+n)|dx—n_oc/ |f(z/a+n)| dz

n—=—oo

where the last equality is due to integration term by term for nonnegative function. Since f € L'(R),

by change of variable, let u = z/a + n,

> | |fx/a+n|da:—az/ ldu=a [ 1560)]du < o0

n=—oo n=—oo

This implies that G(x) € L'(0,a), and since |F(z)| < G(x), so F € L'(0,a). Notice that

F(x+a)= Z flz/a+n+1)= Z f(z/a+mn) = F(x)

n=—oo n=—oo

so F(x) is periodic with period a. Similarly G(x) is also periodic with period a. Since G € L(0,a),
G is a.e. finite on (0,a). By periodicity and countable subadditivity, G is a.e. finite on R. This

implies that the series F'(z) is convergent absolutely for almost all x € R.



