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Homework 11
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Due date: April. 24, 2020

Extra Problem 1. Recall the heat equationut(x, t) = uxx(x, t) x ∈ R, t > 0

u(x, 0) = ϕ(x) x ∈ R

whose solution is given by
u(x, t) =

ˆ ∞

−∞
Γ(x− y, t)ϕ(y) dy

where Γ(x, t) is the fundamental solution of heat equation given by

Γ(x, t) =
1√
4πt

e−
x2

4t , x ∈ R, t > 0

which is the solution of heat equation with ϕ(x) equal to delta function δ(x).

(i) Prove for any fixed y ∈ R,

∂

∂t
Γ(x− y, t) =

∂2

∂x2
Γ(x− y, t), ∀x ∈ R, ∀ t > 0

For each fixed y ∈ R, we have

∂

∂t
Γ(x− y, t) = − 1

2
√
4π

t−3/2e−
(x−y)2

4t +
1√
4π

t−1/2e−
(x−y)2

4t
(x− y)2

4t2

=
1√
4π

t−1/2e−
(x−y)2

4t

[
− 1

2t
+

(x− y)2

4t2

]
Also, we have

∂

∂x
Γ(x− y, t) = − 1√

4π
t−1/2e−

(x−y)2

4t
x− y

2t

∂2

∂x2
Γ(x− y, t) =

1√
4π

t−1/2e−
(x−y)2

4t
(x− y)2

4t2
− 1√

4π
t−1/2e−

(x−y)2

4t
1

2t

=
1√
4π

t−1/2e−
(x−y)2

4t

[
− 1

2t
+

(x− y)2

4t2

]
Therefore, we can see the desired equality holds.

(ii) Suppose ϕ ∈ L1(R) from now on, and prove u(x, t) satisfies the equation ut(x, t) = uxx(x, t)

for x ∈ R, t > 0.
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By part (i), we have knownˆ
R
Γt(x− y, t)ϕ(y) dy =

ˆ
R
Γxx(x− y, t)ϕ(y) dy

Thus, it suffices to show that

ut(x, t) =
∂

∂t

ˆ
R
Γ(x− y, t)ϕ(y) dy =

ˆ
R
Γt(x− y, t)ϕ(y) dy (1)

uxx(x, t) =
∂2

∂x2

ˆ
R
Γ(x− y, t)ϕ(y) dy =

ˆ
R
Γxx(x− y, t)ϕ(y) dy (2)

For ut(x, t), we can fixed each x, then denote f(y, t) = Γ(x − y, t)ϕ(y), which is define on
R×R+. First, for each fixed t, f(y, t) = C1e

−C2(y−C3)
2

ϕ(y) is in L1(R), where C1 > 0, C3 ∈ R
and C2 ≥ 0 are independent of y. This is because |f(y, t)| ≤ C1|ϕ(y)| and ϕ(y) ∈ L1(R).
Second, for each fixed y, f

∂t
obviously exists for t > 0. Finally, for a fixed t0 > 0, for all

t ∈ (t0/2, 3t0/2),∣∣∣∣∂f∂t
∣∣∣∣ ≤ e−

(x−y)2

6t0

[
C1t

−3/2
0 + C2t

−5/2
0 (x− y)2

]
|ϕ(y)| = g(y)|ϕ(y)|

for some constant C1, C2 > 0. Notice that g(y) ∈ L∞(R) because xne−x2 ∈ L∞(R) for any
n ∈ N. Also, since ϕ(y) ∈ L1(R), g(y)|ϕ(y)| ∈ L1(R). Therefore, by differentiation across
integral sign, (1) is proved.

For uxx(x, t), we need to use differentiation across integral sign twice. This time we fixed each
t, then denote f(y, x) = Γ(x − y, t)ϕ(y), which is defined on R × R. First, for each fixed x,
f(y, x) = C1e

−C2(y−C3)
2

ϕ(y) is in L1(R), which is exactly the same as the ut(x, t) case. Second,
for each fixed y, f

∂x
obviously exists for x ∈ R. Finally, for a fixed x0 ∈ R, if x0 = y, then for

all x ∈ (x0 − δ, x0 + δ),

−(x− y)2 = −(x− x0 + x0 − y)2

≤ −(x− x0)
2 − (x0 − y)2 + 2|x− x0||x0 − y|

≤ −(x0 − y)2 + 2δ|x0 − y|

Therefore, we can find a dominating function (C1, C2 > 0),∣∣∣∣∂f∂x
∣∣∣∣ ≤ C1e

−C2(x−y)2 |x− y||ϕ(y)|

≤ C1e
−C2(x−y)2(δ + |x0 − y|)|ϕ(y)|

≤ C1e
−C2(x0−y)2+2C2δ|x0−y|(δ + |x0 − y|)|ϕ(y)|

= h(y)|ϕ(y)| ∈ L1
y(R)

because h(y) ∈ L∞(R). This is enough to show that

uxx(x, t) =
∂

∂x

ˆ
R
Γx(x− y, t)ϕ(y) dy

Again, denote f(y, x) = Γx(x−y, t)ϕ(y), then for fixed x, f(y, x) = C1(x−y)e−C2(x−y)2ϕ(y), so
f(y, x) ∈ L1(R). Second, for each fixed y, ∂f

∂x
obviously exists. Finally, for all x ∈ (x0−δ, x0+δ),∣∣∣∣∂f∂x

∣∣∣∣ ≤ e−C1(x0−y)2+2C1δ|x0−y|[C2 + C3(|x0 − y|+ δ)2]|ϕ(y)| = h(y)|ϕ(y)| ∈ L1
y(R)
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because h(y) ∈ L∞(R). Therefore, we have shown that

uxx(x, t) =

ˆ
R
Γxx(x− y, t)ϕ(y) dy

This finishes the proof of u(x, t) satisfying heat equation (without initial condition).

(iii) Prove ∥u(·, t)− ϕ(·)∥L1(R) → 0 as t → 0+.

Notice that we have already known Γ(x − y, t)ϕ(y) is in L1(R), by change of variable with
y = x+

√
4tz eliminating y, we obtain

u(x, t) =

ˆ
R

1√
4πt

e−
(x−y)2

4t ϕ(y) dy =

ˆ
R

1√
π
e−z2

ϕ(x+
√
4tz) dz

Therefore, by generalized Minkowski inequality, we have

∥u(x, t)− ϕ(x)∥L1
x(R) ≤

ˆ
R

1√
π
e−z2

∥ϕ(x+
√
4tz)− ϕ(x)∥L1

x(R) dz

Notice that ∥ϕ(x+
√
4tz)− ϕ(x)∥L1

x(R) ≤ 2∥ϕ(x)∥L1
x(R), so we can see

∥u(x, t)− ϕ(x)∥L1
x(R) ≤ 2∥ϕ(x)∥L1

x(R)

ˆ
R

1√
π
e−z2

dz = 2∥ϕ(x)∥L1
x(R) < ∞

By continuity of L1-norm, ∥ϕ(x +
√
4tkz) − ϕ(x))∥L1(R) → 0 as k → ∞ for any sequence

tk → 0+ as k → ∞. Notice that the dominant function is given by

2√
π
e−z2

∥ϕ(x)∥L1(R) ∈ L1(R)

Therefore, by DCT, we have

lim
k→∞

∥u(·, tk)− ϕ(·)∥L1(R) ≤ lim
k→∞

ˆ
R

1√
π
e−z2

∥ϕ(x+
√
4tkz)− ϕ(x))∥L1(R) dz = 0

This is enough to show ∥u(·, t)− ϕ(·)∥L1(R) → 0 as t → 0+.

(iv) Prove that |u(x, t)| ≤ 1√
4πt

∥ϕ∥L1(R), for all x ∈ R, all t > 0. Give physical intepretation of
this result.

Since e−
(x−y)2

4t ≤ 1 for any x, y and t > 0, we obtain

|u(x, t)| =
∣∣∣∣ˆ

R

1√
4πt

e−
(x−y)2

4t ϕ(y) dy

∣∣∣∣ ≤ 1√
4πt

ˆ
R
e−

(x−y)2

4t |ϕ(y)| dy =
1√
4πt

ˆ
R
|ϕ(y)| dy

Thus, |u(x, t)| ≤ 1√
4πt

∥ϕ∥L1(R), for all x ∈ R, all t > 0. The physical intepretation is that if the
initial energy ∥ϕ∥L1(R) is finite, then as time tends to infinity, the temperature will decrease to
zero uniformly over different position with speed no slower than O

(
1√
t

)
.

Extra Problem 2. Prove that step functions are not dense in L∞(0, 1).

Consider f(x) =
∑∞

i=1 I( 1
2n , 1

2n−1 )
(x), where I( 1

2n , 1
2n−1 )

(x) is the indicator function on interval
( 1
2n
, 1
2n−1

). Then it is obvious that f(x) ∈ L∞(0, 1) because 0 ≤ f(x) ≤ 1. Suppose there exists a
sequence of step functions fk(x) =

∑Nk

i=1 c
(k)
i I(a(k)

i ,b
(k)
i )(x) s.t. all

(
a
(k)
i , b

(k)
i

)
are pairwise disjoint,
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c
(k)
i ̸= 0 and fk → f in L∞(0, 1) as k → ∞. However, consider for each fixed k, we can find
Lk = minNk

i=1 a
(k)
i .

If Lk = 0, and WLOG, suppose the minimum is attained at i = 1, then |fk(x)| = |c(k)1 | >
0 on

(
0, b

(k)
1

)
where b

(k)
1 > 0. In this way we can find large enough n s.t. 1

2n−1
< b

(k)
1 , then

|fk(x) − f(x)| = |c(k)1 | on ( 1
2n+1

, 1
2n
). However, on interval ( 1

2n+2
, 1
2n+1

), |fk(x) − f(x)| = |c(k)1 − 1|.
Therefore, ∥fk − f∥∞ ≥ max{|c(k)1 |, |c(k)1 − 1|} ≥ 1

2
.

If Lk > 0, and WLOG, suppose the minimum is attained at i = 1, then fk(x) = 0 on (0, ak1).
Similarly, we can find n large s.t. 1

2n−1
< ak1 , then f(x) = 1 on ( 1

2n
, 1
2n−1

). This implies that
∥fk − f∥∞ ≥ 1.

Thus, for all k, for whatever Lk, we always have ∥fk − f∥∞ ≥ 1
2
, then fk cannot converge to f

in L∞(0, 1).

Extra Problem 3. Let f(x) be measurable and bounded on R and periodic with period T > 0.
Let g ∈ L1(0, a), where 0 < a < ∞. Prove that as ϵ → 0+,

ˆ a

0

f(x/ϵ)g(x) dx → ⟨f⟩
ˆ a

0

g(x) dx, ⟨f⟩ = 1

T

ˆ T

0

f(y) dy

First consider g = I(b,c) where 0 ≤ b < c ≤ a, we have
ˆ a

0

f(x/ϵ)g(x) dx =

ˆ c

b

f(x/ϵ) dx

= ϵ

ˆ (c−b)/ϵ

0

f(z) dz (z = (x− b)/ϵ)

= (c− b)
1

m

ˆ m

0

f(z) dz (m = (c− b)/ϵ)

Since m = nT + r where 0 ≤ r < T , and
∣∣∣´ nT+r

nT
f(z) dz

∣∣∣ ≤ M for some constant M and for all r,
we have ˆ a

0

f(x/ϵ)g(x) dx = (c− b)

[
n

m

ˆ T

0

f(z) dz +
1

m

ˆ nT+r

nT

f(z) dz

]
Note that n

m
= m−r

Tm
= 1−r/m

T
→ 1

T
as m → ∞. Thus, as ϵ → 0+, m → ∞, and

ˆ a

0

f(x/ϵ)g(x) dx → (c− b)
1

T

ˆ T

0

f(z) dz = ⟨f⟩
ˆ a

0

I(b,c)(x) dx = ⟨f⟩
ˆ a

0

g(x) dx

Thus, by linearity, it is easy to see if g is a step function on (0, a), the desired result holds as well.
Now consider general g ∈ L1(0, a), since step function is dense in L1(0, a), there exists gn(x) → g(x)

in L1(0, a). For arbitrary fixed δ, there exists N1 s.t. for all n ≥ N1,∣∣∣∣⟨f⟩ ˆ a

0

gn(x) dx− ⟨f⟩
ˆ a

0

g(x) dx

∣∣∣∣ < δ

3

Since f(x) is bounded on (0, a), we can find N2 s.t. for all n ≥ N2,∣∣∣∣ˆ a

0

f(x/ϵ)gn(x) dx−
ˆ a

0

f(x/ϵ)g(x) dx

∣∣∣∣ < δ

3
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Take N = max{N1, N2}, we have proved∣∣∣∣ˆ a

0

f(x/ϵ)gN (x) dx− ⟨f⟩
ˆ a

0

gN (x) dx

∣∣∣∣ < δ

3

By triangular inequality, ∣∣∣∣ˆ a

0

f(x/ϵ)g(x) dx− ⟨f⟩
ˆ a

0

g(x) dx

∣∣∣∣ < δ

Since this is true for arbitrary δ > 0, this is enough to prove the desired result.

Extra Problem 4.

(i) For all measurable subset A ⊂ [0, 2π], prove that

lim
t→∞

ˆ
A

cos(tx) dx = 0

Consider any sequence tk s.t. tk → ∞ as k → ∞, then it suffices to show that

lim
k→∞

ˆ
A

cos(tkx) dx = 0

Note that ˆ
A

cos(tkx) dx =

ˆ 2π

0

cos(tkx)IA(x) dx

Since A is a bounded set, IA(x) ∈ L1(0, 2π). Also, | cos(tkx)| ≤ 1 for all x ∈ [0, 2π] and for
any c ∈ [0, 2π], ˆ c

0

cos(tkx) dx =
1

tk
sin(tkx)

∣∣∣c
0
=

sin(ctk)
tk

→ 0

as k → ∞. Thus, by generalized Riemann-Lebesgue theorem,
´ 2π

0
cos(tkx)IA(x) dx → 0.

(ii) Let tk → ∞ as k → ∞. Define E = {x ∈ [0, 2π] | sin(tkx) converges as k → ∞}. Prove
m(E) = 0.

Similar to the proof of Egorov’s theorem, let fk(x) = sin(tkx) and f(x) = limk→∞ fk(x).
Denote

Ei
k,l = {x ∈ [0, 2π] | |fk+l(x)− fk(x)| < 1/i}

Then we can write E =
∩∞

i=1

∪∞
k=1

∩∞
l=1 E

i
k,l. It is easy to see Ei

k,l is measurable because fk is
continuous function. Thus, E is also measurable. Notice that

ˆ
E

sin2(tkx) dx =

ˆ
E

1− cos(2tkx)
2

dx

For LHS, since | sin2(tkx)| ≤ 1 and m(E) ≤ 2π, we can use DCT to obtain

lim
k→∞

ˆ
E

sin2(tkx) dx =

ˆ
E

f2(x) dx

Similarly, since |f(x) sin(tkx)| ≤ 1, by DCT again,

lim
k→∞

ˆ
E

f(x) sin(tkx) dx =

ˆ
E

f2(x) dx
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Now we need to prove limk→∞
´
E
f(x) sin(tkx) dx = 0 by Riemann-Lebesgue theorem. We

know |f(x)| ∈ L1(E) and sin(tkx) is uniformly bounded by 1. Thus, it suffices to show
limk→∞

´ c

0
sin(tkx) dx = 0 for all c ∈ [0, 2π]. This is trivial by using the same argument in

part (i). Therefore, we obtain
lim
k→∞

ˆ
E

sin2(tkx) dx = 0

Now consider RHS, by part (i),

lim
k→∞

ˆ
E

1− cos(2tkx)
2

dx =
m(E)

2
− lim

k→∞

1

2

ˆ
E

cos(2tkx) dx =
m(E)

2

This shows that m(E)
2

= 0, i.e., m(E) = 0.

Extra Problem 5. Suppose f ∈ L1(0, 1). Let g(x) =
´ 1

x
f(t)
t

dt, 0 < x ≤ 1. Prove that g ∈ L1(0, 1),
limx→0+ xg(x) = 0 and

´ 1

0
g(x) dx =

´ 1

0
f(t) dt.

Notice that g(x) =
´ 1

0
f(t)
t
IE(t, x) dt for E = {(t, x) ∈ R2 | 0 ≤ x ≤ t ≤ 1}. Apply nonnegative

version of Fubini’s theorem to |f(t)|
t

IE(t, x) on (t, x) ∈ [0, 1]× [0, 1], we obtain
ˆ 1

0

|g(x)| dx ≤
ˆ 1

0

ˆ 1

0

|f(t)|
t

IE(t, x) dt dx =

ˆ 1

0

|f(t)|
t

ˆ 1

0

IE(t, x) dx dt =

ˆ 1

0

|f(t)| dt < ∞

This implies that g ∈ L1(0, 1). The above result also implies that |f(t)|
t

IE(t, x) is in L1([0, 1]× [0, 1]).
Then, f(t)

t
IE(t, x) is in L1([0, 1]× [0, 1]) and we can apply L1-version of Fubini’s theorem to it, i.e.,
ˆ 1

0

g(x) dx =

ˆ 1

0

ˆ 1

0

f(t)

t
IE(t, x) dt dx =

ˆ 1

0

f(t)

t

ˆ 1

0

IE(t, x) dx dt =

ˆ 1

0

f(t) dt

Now take arbitrary sequence an > 0 s.t. an → 0 as n → ∞. Also, let gn(t) = an

t
IE(an, t), then

for each fixed c ∈ [0, 1], |gn(t)| ≤ 1 for all t ≥ an. Since gn(t) → 0 a.e. on [0, 1], by DCT,´ c

0
gn(t) dt → 0 as n → ∞. Since f(t) ∈ L1(0, 1), by generalized Riemann-Lebesgue theorem, we

have
´ 1

0
f(t)gn(t) dx → 0 as n → ∞, i.e. ang(an) → 0 as n → ∞. This shows that lim

x→0+
xg(x) = 0.

Extra Problem 6. Let f ∈ L1(Rn), g ∈ L∞(Rn). Prove that

(i) (f ∗ g)(x) is uniformly continuous in x on Rn.

Let F = (f ∗ g)(x), consider

|F (x+ h)− F (x)| =
∣∣∣∣ˆ

Rn

[f(x+ h− y)− f(x− y)]g(y) dy

∣∣∣∣ ≤ ∥g∥L∞∥f(u+ h)− f(u)∥L1
u
→ 0

as |h| → 0 by continuity of L1-norm and finiteness of ∥g∥L∞ . Thus, for any fixed ϵ > 0, there
exists δ > 0 s.t. when |h| < δ, ∥f(u+h)− f(u)∥L1

u
< ϵ

∥g∥L∞ , so |F (x+h)−F (x)| < ϵ and this
proves the uniform continuity of F .

(ii) If g ∈ L1(Rn), then (f ∗ g)(x) → 0 as |x| → ∞.

Since simple function with bounded support is dense in L1(R), there exists fk → f in L1,
where fk is simple function with bounded support. This shows

|(f ∗ g)(x)| ≤ ∥f − fk∥L1∥g∥L∞ +

∣∣∣∣ˆ
Rn

fk(x− y)g(y) dy

∣∣∣∣
6



Similarly, we can find a sequence of simple function gk with bounded support and gn → g in
L1. Then, ∣∣∣∣ˆ

Rn

fk(x− y)g(y) dy

∣∣∣∣ ≤ ∥fk∥L∞∥g − gn∥L1 +

∣∣∣∣ˆ
Rn

fk(x− y)gn(y) dy

∣∣∣∣
Since fk is simple function, it must be in L∞ space, and fk(x− y)gn(y) = 0 for large enough
|x|. This is because if the radius of the support of fk is rk and the radius of support of gn is
Rn, then if |x| > rk +Rn, either |y| > Rn or |x− y| > rk, so either fk(x− y) = 0 or gn(y) = 0.
This implies that

|(f ∗ g)(x)| ≤ ∥f − fk∥L1∥g∥L∞ + ∥fk∥L∞∥g − gn∥L1 +

∣∣∣∣ˆ
Rn

fk(x− y)gn(y) dy

∣∣∣∣
First take |x| → ∞ on both sides, we have

lim
|x|→∞

|(f ∗ g)(x)| ≤ ∥f − fk∥L1∥g∥L∞ + ∥fk∥L∞∥g − gn∥L1

Then take n → ∞ on both sides, since LHS is independent of n, we have

lim
|x|→∞

|(f ∗ g)(x)| ≤ ∥f − fk∥L1∥g∥L∞

Finally, take k → ∞ on both sides, since LHS is independent of k, we obtain lim|x|→∞ |(f ∗
g)(x)| ≤ 0, i.e., (f ∗ g)(x) → 0 as |x| → ∞.

Extra Problem 7. Consider Fourier transform:

f̂(ξ) =

ˆ ∞

−∞
f(x)e−2πixξ dx

Prove that if f ∈ L1(R), then f̂(ξ) → 0 as |ξ| → ∞.

Since step function is dense in L1(R), and a step function is a linear combination of characteristic
functions of bounded intervals in R, there exists fk(x) =

∑Nk

j=1 c
k
j I(ak

j ,b
k
j )

s.t. fk → f in L1(R).
Therefore, as k → ∞, ∣∣∣f̂(ξ)− f̂k(ξ)

∣∣∣ ≤ ˆ
R
|f(x)− fk(x)| dx → 0

Also notice that as |ξ| → ∞,∣∣∣f̂k(ξ)∣∣∣ ≤ Nk∑
j=1

|ckj |

∣∣∣∣∣
ˆ bkj

ak
j

e−2πixξ dx

∣∣∣∣∣ ≤
Nk∑
j=1

|ckj |
1

π|ξ|
→ 0

Thus, for any fixed ϵ > 0, we can find a large enough K s.t. |f̂(ξ)− f̂K(ξ)| < ϵ
2

and then find a large
M , s.t. for all |ξ| > M , |f̂K(ξ)| < ϵ/2. Then by triangular inequality, for all |ξ| > M , |f̂(ξ)| < ϵ.
Since for each ϵ we can find such M , f̂(ξ) → 0 as |ξ| → ∞.

Extra Problem 8. Let f(x) be nonnegative measurable on [0, 1]. Prove that if there exists constant
A < ∞ s.t.

´ 1

0
fk(x) dx = A for all k ≥ 1, then f(x) = IE(x) a.e. on [0, 1] for some E ⊂ [0, 1].

Let g(x) = f(x)(1− f(x)), then we have
ˆ 1

0

g2(x) dx =

ˆ 1

0

f2 dx− 2

ˆ 1

0

f3 dx+

ˆ 1

0

f4 dx = A− 2A+A = 0
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Thus, g(x) = 0 a.e. on [0, 1]. Denote F = {x ∈ [0, 1] | g(x) = 0}, then m(F ) = 1, and over the set
F , f(x) = 1 or f(x) = 0. Thus, let E = {x ∈ [0, 1] | f(x) = 1}, and we can see that f(x) = IE(x)

on set F . Thus, f(x) = IE(x) a.e. on [0, 1].

Extra Problem 9. Suppose f ∈ L1(R), f(0) = 0, f ′(0) exists. Prove that f(x)
x

∈ L1(R).

By definition of derivative and assumption,

f ′(0) = lim
h→0

f(h)− f(0)

h
= lim

x→0

f(x)

x
= c

for some finite constant c. Thus, there exists δ > 0 s.t. for all |x| < δ, |f(x)/x − c| < 1, so
|f(x)/x| < 1 + |c|. This shows

ˆ
R

∣∣∣∣f(x)x

∣∣∣∣ dx =

ˆ δ

−δ

∣∣∣∣f(x)x

∣∣∣∣ dx+

ˆ −δ

−∞

∣∣∣∣f(x)x

∣∣∣∣ dx+

ˆ ∞

δ

∣∣∣∣f(x)x

∣∣∣∣ dx

≤ 2δ(1 + |c|) + 1

δ

ˆ −δ

−∞
|f(x)| dx+

1

δ

ˆ ∞

δ

|f(x)| dx

≤ 2δ(1 + |c|) + 2

δ

ˆ
R
|f(x)| dx < ∞

Therefore, f(x)
x

∈ L1(R).

Extra Problem 10. Let f ∈ L1(R), and a > 0. Define F (x) =
∑∞

n=−∞ f(x/a + n). Prove the
series converges absolutely for almost all x ∈ R, F ∈ L1([0, a]) and F is periodic with period a.

Let G(x) =
∑∞

n=−∞ |f(x/a+ n)|, then consider
ˆ a

0

G(x) dx =

ˆ a

0

∞∑
n=−∞

|f(x/a+ n)| dx =
∞∑

n=−∞

ˆ a

0

|f(x/a+ n)| dx

where the last equality is due to integration term by term for nonnegative function. Since f ∈ L1(R),
by change of variable, let u = x/a+ n,

∞∑
n=−∞

ˆ a

0

|f(x/a+ n)| dx = a
∞∑

n=−∞

ˆ n+1

n

|f(u)| du = a

ˆ
R
|f(u)| du < ∞

This implies that G(x) ∈ L1(0, a), and since |F (x)| ≤ G(x), so F ∈ L1(0, a). Notice that

F (x+ a) =

∞∑
n=−∞

f(x/a+ n+ 1) =

∞∑
n=−∞

f(x/a+ n) = F (x)

so F (x) is periodic with period a. Similarly G(x) is also periodic with period a. Since G ∈ L1(0, a),
G is a.e. finite on (0, a). By periodicity and countable subadditivity, G is a.e. finite on R. This
implies that the series F (x) is convergent absolutely for almost all x ∈ R.
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