# MAT3006＊：Real Analysis <br> Homework 11 

李肖鹏（116010114）
Due date：April．24， 2020
Extra Problem 1．Recall the heat equation

$$
\left\{\begin{array}{l}
u_{t}(x, t)=u_{x x}(x, t) \quad x \in \mathbb{R}, t>0 \\
u(x, 0)=\phi(x) \quad x \in \mathbb{R}
\end{array}\right.
$$

whose solution is given by

$$
u(x, t)=\int_{-\infty}^{\infty} \Gamma(x-y, t) \phi(y) d y
$$

where $\Gamma(x, t)$ is the fundamental solution of heat equation given by

$$
\Gamma(x, t)=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^{2}}{4 t}}, \quad x \in \mathbb{R}, t>0
$$

which is the solution of heat equation with $\phi(x)$ equal to delta function $\delta(x)$ ．
（i）Prove for any fixed $y \in \mathbb{R}$ ，

$$
\frac{\partial}{\partial t} \Gamma(x-y, t)=\frac{\partial^{2}}{\partial x^{2}} \Gamma(x-y, t), \quad \forall x \in \mathbb{R}, \forall t>0
$$

For each fixed $y \in \mathbb{R}$ ，we have

$$
\begin{aligned}
\frac{\partial}{\partial t} \Gamma(x-y, t) & =-\frac{1}{2 \sqrt{4 \pi}} t^{-3 / 2} e^{-\frac{(x-y)^{2}}{4 t}}+\frac{1}{\sqrt{4 \pi}} t^{-1 / 2} e^{-\frac{(x-y)^{2}}{4 t}} \frac{(x-y)^{2}}{4 t^{2}} \\
& =\frac{1}{\sqrt{4 \pi}} t^{-1 / 2} e^{-\frac{(x-y)^{2}}{4 t}}\left[-\frac{1}{2 t}+\frac{(x-y)^{2}}{4 t^{2}}\right]
\end{aligned}
$$

Also，we have

$$
\begin{gathered}
\frac{\partial}{\partial x} \Gamma(x-y, t)=-\frac{1}{\sqrt{4 \pi}} t^{-1 / 2} e^{-\frac{(x-y)^{2}}{4 t}} \frac{x-y}{2 t} \\
\frac{\partial^{2}}{\partial x^{2}} \Gamma(x-y, t)=\frac{1}{\sqrt{4 \pi}} t^{-1 / 2} e^{-\frac{(x-y)^{2}}{4 t}} \frac{(x-y)^{2}}{4 t^{2}}-\frac{1}{\sqrt{4 \pi}} t^{-1 / 2} e^{-\frac{(x-y)^{2}}{4 t}} \frac{1}{2 t} \\
\\
=\frac{1}{\sqrt{4 \pi}} t^{-1 / 2} e^{-\frac{(x-y)^{2}}{4 t}}\left[-\frac{1}{2 t}+\frac{(x-y)^{2}}{4 t^{2}}\right]
\end{gathered}
$$

Therefore，we can see the desired equality holds．
（ii）Suppose $\phi \in L^{1}(\mathbb{R})$ from now on，and prove $u(x, t)$ satisfies the equation $u_{t}(x, t)=u_{x x}(x, t)$ for $x \in \mathbb{R}, t>0$ ．

By part (i), we have known

$$
\int_{\mathbb{R}} \Gamma_{t}(x-y, t) \phi(y) d y=\int_{\mathbb{R}} \Gamma_{x x}(x-y, t) \phi(y) d y
$$

Thus, it suffices to show that

$$
\begin{align*}
u_{t}(x, t) & =\frac{\partial}{\partial t} \int_{\mathbb{R}} \Gamma(x-y, t) \phi(y) d y=\int_{\mathbb{R}} \Gamma_{t}(x-y, t) \phi(y) d y  \tag{1}\\
u_{x x}(x, t) & =\frac{\partial^{2}}{\partial x^{2}} \int_{\mathbb{R}} \Gamma(x-y, t) \phi(y) d y=\int_{\mathbb{R}} \Gamma_{x x}(x-y, t) \phi(y) d y \tag{2}
\end{align*}
$$

For $u_{t}(x, t)$, we can fixed each $x$, then denote $f(y, t)=\Gamma(x-y, t) \phi(y)$, which is define on $\mathbb{R} \times \mathbb{R}^{+}$. First, for each fixed $t, f(y, t)=C_{1} e^{-C_{2}\left(y-C_{3}\right)^{2}} \phi(y)$ is in $L^{1}(\mathbb{R})$, where $C_{1}>0, C_{3} \in \mathbb{R}$ and $C_{2} \geq 0$ are independent of $y$. This is because $|f(y, t)| \leq C_{1}|\phi(y)|$ and $\phi(y) \in L^{1}(\mathbb{R})$. Second, for each fixed $y, \frac{f}{\partial t}$ obviously exists for $t>0$. Finally, for a fixed $t_{0}>0$, for all $t \in\left(t_{0} / 2,3 t_{0} / 2\right)$,

$$
\left|\frac{\partial f}{\partial t}\right| \leq e^{-\frac{(x-y)^{2}}{6 t_{0}}}\left[C_{1} t_{0}^{-3 / 2}+C_{2} t_{0}^{-5 / 2}(x-y)^{2}\right]|\phi(y)|=g(y)|\phi(y)|
$$

for some constant $C_{1}, C_{2}>0$. Notice that $g(y) \in L^{\infty}(\mathbb{R})$ because $x^{n} e^{-x^{2}} \in L^{\infty}(\mathbb{R})$ for any $n \in \mathbb{N}$. Also, since $\phi(y) \in L^{1}(\mathbb{R}), g(y)|\phi(y)| \in L^{1}(\mathbb{R})$. Therefore, by differentiation across integral sign, (1) is proved.

For $u_{x x}(x, t)$, we need to use differentiation across integral sign twice. This time we fixed each $t$, then denote $f(y, x)=\Gamma(x-y, t) \phi(y)$, which is defined on $\mathbb{R} \times \mathbb{R}$. First, for each fixed $x$, $f(y, x)=C_{1} e^{-C_{2}\left(y-C_{3}\right)^{2}} \phi(y)$ is in $L^{1}(\mathbb{R})$, which is exactly the same as the $u_{t}(x, t)$ case. Second, for each fixed $y, \frac{f}{\partial x}$ obviously exists for $x \in \mathbb{R}$. Finally, for a fixed $x_{0} \in \mathbb{R}$, if $x_{0}=y$, then for all $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$,

$$
\begin{aligned}
-(x-y)^{2} & =-\left(x-x_{0}+x_{0}-y\right)^{2} \\
& \leq-\left(x-x_{0}\right)^{2}-\left(x_{0}-y\right)^{2}+2\left|x-x_{0}\right|\left|x_{0}-y\right| \\
& \leq-\left(x_{0}-y\right)^{2}+2 \delta\left|x_{0}-y\right|
\end{aligned}
$$

Therefore, we can find a dominating function $\left(C_{1}, C_{2}>0\right)$,

$$
\begin{aligned}
\left|\frac{\partial f}{\partial x}\right| & \leq C_{1} e^{-C_{2}(x-y)^{2}}|x-y||\phi(y)| \\
& \leq C_{1} e^{-C_{2}(x-y)^{2}}\left(\delta+\left|x_{0}-y\right|\right)|\phi(y)| \\
& \leq C_{1} e^{-C_{2}\left(x_{0}-y\right)^{2}+2 C_{2} \delta\left|x_{0}-y\right|}\left(\delta+\left|x_{0}-y\right|\right)|\phi(y)| \\
& =h(y)|\phi(y)| \in L_{y}^{1}(\mathbb{R})
\end{aligned}
$$

because $h(y) \in L^{\infty}(\mathbb{R})$. This is enough to show that

$$
u_{x x}(x, t)=\frac{\partial}{\partial x} \int_{\mathbb{R}} \Gamma_{x}(x-y, t) \phi(y) d y
$$

Again, denote $f(y, x)=\Gamma_{x}(x-y, t) \phi(y)$, then for fixed $x, f(y, x)=C_{1}(x-y) e^{-C_{2}(x-y)^{2}} \phi(y)$, so $f(y, x) \in L^{1}(\mathbb{R})$. Second, for each fixed $y, \frac{\partial f}{\partial x}$ obviously exists. Finally, for all $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$,

$$
\left|\frac{\partial f}{\partial x}\right| \leq e^{-C_{1}\left(x_{0}-y\right)^{2}+2 C_{1} \delta\left|x_{0}-y\right|}\left[C_{2}+C_{3}\left(\left|x_{0}-y\right|+\delta\right)^{2}\right]|\phi(y)|=h(y)|\phi(y)| \in L_{y}^{1}(\mathbb{R})
$$

because $h(y) \in L^{\infty}(\mathbb{R})$. Therefore, we have shown that

$$
u_{x x}(x, t)=\int_{\mathbb{R}} \Gamma_{x x}(x-y, t) \phi(y) d y
$$

This finishes the proof of $u(x, t)$ satisfying heat equation (without initial condition).
(iii) Prove $\|u(\cdot, t)-\phi(\cdot)\|_{L^{1}(\mathbb{R})} \rightarrow 0$ as $t \rightarrow 0+$.

Notice that we have already known $\Gamma(x-y, t) \phi(y)$ is in $L^{1}(\mathbb{R})$, by change of variable with $y=x+\sqrt{4 t} z$ eliminating $y$, we obtain

$$
u(x, t)=\int_{\mathbb{R}} \frac{1}{\sqrt{4 \pi t}} e^{-\frac{(x-y)^{2}}{4 t}} \phi(y) d y=\int_{\mathbb{R}} \frac{1}{\sqrt{\pi}} e^{-z^{2}} \phi(x+\sqrt{4 t} z) d z
$$

Therefore, by generalized Minkowski inequality, we have

$$
\|u(x, t)-\phi(x)\|_{L_{x}^{1}(\mathbb{R})} \leq \int_{\mathbb{R}} \frac{1}{\sqrt{\pi}} e^{-z^{2}}\|\phi(x+\sqrt{4 t} z)-\phi(x)\|_{L_{x}^{1}(\mathbb{R})} d z
$$

Notice that $\|\phi(x+\sqrt{4 t} z)-\phi(x)\|_{L_{x}^{1}(\mathbb{R})} \leq 2\|\phi(x)\|_{L_{x}^{1}(\mathbb{R})}$, so we can see

$$
\|u(x, t)-\phi(x)\|_{L_{x}^{1}(\mathbb{R})} \leq 2\|\phi(x)\|_{L_{x}^{1}(\mathbb{R})} \int_{\mathbb{R}} \frac{1}{\sqrt{\pi}} e^{-z^{2}} d z=2\|\phi(x)\|_{L_{x}^{1}(\mathbb{R})}<\infty
$$

By continuity of $L^{1}$-norm, $\left.\| \phi\left(x+\sqrt{4 t_{k}} z\right)-\phi(x)\right) \|_{L^{1}(\mathbb{R})} \rightarrow 0$ as $k \rightarrow \infty$ for any sequence $t_{k} \rightarrow 0+$ as $k \rightarrow \infty$. Notice that the dominant function is given by

$$
\frac{2}{\sqrt{\pi}} e^{-z^{2}}\|\phi(x)\|_{L^{1}(\mathbb{R})} \in L^{1}(\mathbb{R})
$$

Therefore, by DCT, we have

$$
\left.\lim _{k \rightarrow \infty}\left\|u\left(\cdot, t_{k}\right)-\phi(\cdot)\right\|_{L^{1}(\mathbb{R})} \leq \lim _{k \rightarrow \infty} \int_{\mathbb{R}} \frac{1}{\sqrt{\pi}} e^{-z^{2}} \| \phi\left(x+\sqrt{4 t_{k}} z\right)-\phi(x)\right) \|_{L^{1}(\mathbb{R})} d z=0
$$

This is enough to show $\|u(\cdot, t)-\phi(\cdot)\|_{L^{1}(\mathbb{R})} \rightarrow 0$ as $t \rightarrow 0+$.
(iv) Prove that $|u(x, t)| \leq \frac{1}{\sqrt{4 \pi t}}\|\phi\|_{L^{1}(\mathbb{R})}$, for all $x \in \mathbb{R}$, all $t>0$. Give physical intepretation of this result.

Since $e^{-\frac{(x-y)^{2}}{4 t}} \leq 1$ for any $x, y$ and $t>0$, we obtain

$$
|u(x, t)|=\left|\int_{\mathbb{R}} \frac{1}{\sqrt{4 \pi t}} e^{-\frac{(x-y)^{2}}{4 t}} \phi(y) d y\right| \leq \frac{1}{\sqrt{4 \pi t}} \int_{\mathbb{R}} e^{-\frac{(x-y)^{2}}{4 t}}|\phi(y)| d y=\frac{1}{\sqrt{4 \pi t}} \int_{\mathbb{R}}|\phi(y)| d y
$$

Thus, $|u(x, t)| \leq \frac{1}{\sqrt{4 \pi t}}\|\phi\|_{L^{1}(\mathbb{R})}$, for all $x \in \mathbb{R}$, all $t>0$. The physical intepretation is that if the initial energy $\|\phi\|_{L^{1}(\mathbb{R})}$ is finite, then as time tends to infinity, the temperature will decrease to zero uniformly over different position with speed no slower than $O\left(\frac{1}{\sqrt{t}}\right)$.

Extra Problem 2. Prove that step functions are not dense in $L^{\infty}(0,1)$.
Consider $f(x)=\sum_{i=1}^{\infty} I_{\left(\frac{1}{2 n}, \frac{1}{2 n-1}\right)}(x)$, where $I_{\left(\frac{1}{2 n}, \frac{1}{2 n-1}\right)}(x)$ is the indicator function on interval $\left(\frac{1}{2 n}, \frac{1}{2 n-1}\right)$. Then it is obvious that $f(x) \in L^{\infty}(0,1)$ because $0 \leq f(x) \leq 1$. Suppose there exists a sequence of step functions $f_{k}(x)=\sum_{i=1}^{N_{k}} c_{i}^{(k)} I_{\left(a_{i}^{(k)}, b_{i}^{(k)}\right)}(x)$ s.t. all $\left(a_{i}^{(k)}, b_{i}^{(k)}\right)$ are pairwise disjoint,
$c_{i}^{(k)} \neq 0$ and $f_{k} \rightarrow f$ in $L^{\infty}(0,1)$ as $k \rightarrow \infty$. However, consider for each fixed $k$, we can find $L^{k}=\min _{i=1}^{N_{k}} a_{i}^{(k)}$.

If $L^{k}=0$, and WLOG, suppose the minimum is attained at $i=1$, then $\left|f_{k}(x)\right|=\left|c_{1}^{(k)}\right|>$ 0 on $\left(0, b_{1}^{(k)}\right)$ where $b_{1}^{(k)}>0$. In this way we can find large enough $n$ s.t. $\frac{1}{2 n-1}<b_{1}^{(k)}$, then $\left|f_{k}(x)-f(x)\right|=\left|c_{1}^{(k)}\right|$ on $\left(\frac{1}{2 n+1}, \frac{1}{2 n}\right)$. However, on interval $\left(\frac{1}{2 n+2}, \frac{1}{2 n+1}\right),\left|f_{k}(x)-f(x)\right|=\left|c_{1}^{(k)}-1\right|$. Therefore, $\left\|f_{k}-f\right\|_{\infty} \geq \max \left\{\left|c_{1}^{(k)}\right|,\left|c_{1}^{(k)}-1\right|\right\} \geq \frac{1}{2}$.

If $L^{k}>0$, and WLOG, suppose the minimum is attained at $i=1$, then $f_{k}(x)=0$ on $\left(0, a_{1}^{k}\right)$. Similarly, we can find $n$ large s.t. $\frac{1}{2 n-1}<a_{1}^{k}$, then $f(x)=1$ on $\left(\frac{1}{2 n}, \frac{1}{2 n-1}\right)$. This implies that $\left\|f_{k}-f\right\|_{\infty} \geq 1$.

Thus, for all $k$, for whatever $L^{k}$, we always have $\left\|f_{k}-f\right\|_{\infty} \geq \frac{1}{2}$, then $f_{k}$ cannot converge to $f$ in $L^{\infty}(0,1)$.

Extra Problem 3. Let $f(x)$ be measurable and bounded on $\mathbb{R}$ and periodic with period $T>0$. Let $g \in L^{1}(0, a)$, where $0<a<\infty$. Prove that as $\epsilon \rightarrow 0+$,

$$
\int_{0}^{a} f(x / \epsilon) g(x) d x \rightarrow\langle f\rangle \int_{0}^{a} g(x) d x, \quad\langle f\rangle=\frac{1}{T} \int_{0}^{T} f(y) d y
$$

First consider $g=I_{(b, c)}$ where $0 \leq b<c \leq a$, we have

$$
\begin{aligned}
\int_{0}^{a} f(x / \epsilon) g(x) d x & =\int_{b}^{c} f(x / \epsilon) d x & & \\
& =\epsilon \int_{0}^{(c-b) / \epsilon} f(z) d z & & (z=(x-b) / \epsilon) \\
& =(c-b) \frac{1}{m} \int_{0}^{m} f(z) d z & & (m=(c-b) / \epsilon)
\end{aligned}
$$

Since $m=n T+r$ where $0 \leq r<T$, and $\left|\int_{n T}^{n T+r} f(z) d z\right| \leq M$ for some constant $M$ and for all $r$, we have

$$
\int_{0}^{a} f(x / \epsilon) g(x) d x=(c-b)\left[\frac{n}{m} \int_{0}^{T} f(z) d z+\frac{1}{m} \int_{n T}^{n T+r} f(z) d z\right]
$$

Note that $\frac{n}{m}=\frac{m-r}{T m}=\frac{1-r / m}{T} \rightarrow \frac{1}{T}$ as $m \rightarrow \infty$. Thus, as $\epsilon \rightarrow 0+, m \rightarrow \infty$, and

$$
\int_{0}^{a} f(x / \epsilon) g(x) d x \rightarrow(c-b) \frac{1}{T} \int_{0}^{T} f(z) d z=\langle f\rangle \int_{0}^{a} I_{(b, c)}(x) d x=\langle f\rangle \int_{0}^{a} g(x) d x
$$

Thus, by linearity, it is easy to see if $g$ is a step function on $(0, a)$, the desired result holds as well. Now consider general $g \in L^{1}(0, a)$, since step function is dense in $L^{1}(0, a)$, there exists $g_{n}(x) \rightarrow g(x)$ in $L^{1}(0, a)$. For arbitrary fixed $\delta$, there exists $N_{1}$ s.t. for all $n \geq N_{1}$,

$$
\left|\langle f\rangle \int_{0}^{a} g_{n}(x) d x-\langle f\rangle \int_{0}^{a} g(x) d x\right|<\frac{\delta}{3}
$$

Since $f(x)$ is bounded on $(0, a)$, we can find $N_{2}$ s.t. for all $n \geq N_{2}$,

$$
\left|\int_{0}^{a} f(x / \epsilon) g_{n}(x) d x-\int_{0}^{a} f(x / \epsilon) g(x) d x\right|<\frac{\delta}{3}
$$

Take $N=\max \left\{N_{1}, N_{2}\right\}$, we have proved

$$
\left|\int_{0}^{a} f(x / \epsilon) g_{N}(x) d x-\langle f\rangle \int_{0}^{a} g_{N}(x) d x\right|<\frac{\delta}{3}
$$

By triangular inequality,

$$
\left|\int_{0}^{a} f(x / \epsilon) g(x) d x-\langle f\rangle \int_{0}^{a} g(x) d x\right|<\delta
$$

Since this is true for arbitrary $\delta>0$, this is enough to prove the desired result.

## Extra Problem 4.

(i) For all measurable subset $A \subset[0,2 \pi]$, prove that

$$
\lim _{t \rightarrow \infty} \int_{A} \cos (t x) d x=0
$$

Consider any sequence $t_{k}$ s.t. $t_{k} \rightarrow \infty$ as $k \rightarrow \infty$, then it suffices to show that

$$
\lim _{k \rightarrow \infty} \int_{A} \cos \left(t_{k} x\right) d x=0
$$

Note that

$$
\int_{A} \cos \left(t_{k} x\right) d x=\int_{0}^{2 \pi} \cos \left(t_{k} x\right) I_{A}(x) d x
$$

Since $A$ is a bounded set, $I_{A}(x) \in L^{1}(0,2 \pi)$. Also, $\left|\cos \left(t_{k} x\right)\right| \leq 1$ for all $x \in[0,2 \pi]$ and for any $c \in[0,2 \pi]$,

$$
\int_{0}^{c} \cos \left(t_{k} x\right) d x=\left.\frac{1}{t_{k}} \sin \left(t_{k} x\right)\right|_{0} ^{c}=\frac{\sin \left(c t_{k}\right)}{t_{k}} \rightarrow 0
$$

as $k \rightarrow \infty$. Thus, by generalized Riemann-Lebesgue theorem, $\int_{0}^{2 \pi} \cos \left(t_{k} x\right) I_{A}(x) d x \rightarrow 0$.
(ii) Let $t_{k} \rightarrow \infty$ as $k \rightarrow \infty$. Define $E=\left\{x \in[0,2 \pi] \mid \sin \left(t_{k} x\right)\right.$ converges as $\left.k \rightarrow \infty\right\}$. Prove $m(E)=0$.

Similar to the proof of Egorov's theorem, let $f_{k}(x)=\sin \left(t_{k} x\right)$ and $f(x)=\lim _{k \rightarrow \infty} f_{k}(x)$. Denote

$$
E_{k, l}^{i}=\left\{x \in[0,2 \pi]| | f_{k+l}(x)-f_{k}(x) \mid<1 / i\right\}
$$

Then we can write $E=\bigcap_{i=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{l=1}^{\infty} E_{k, l}^{i}$. It is easy to see $E_{k, l}^{i}$ is measurable because $f_{k}$ is continuous function. Thus, $E$ is also measurable. Notice that

$$
\int_{E} \sin ^{2}\left(t_{k} x\right) d x=\int_{E} \frac{1-\cos \left(2 t_{k} x\right)}{2} d x
$$

For LHS, since $\left|\sin ^{2}\left(t_{k} x\right)\right| \leq 1$ and $m(E) \leq 2 \pi$, we can use DCT to obtain

$$
\lim _{k \rightarrow \infty} \int_{E} \sin ^{2}\left(t_{k} x\right) d x=\int_{E} f^{2}(x) d x
$$

Similarly, since $\left|f(x) \sin \left(t_{k} x\right)\right| \leq 1$, by DCT again,

$$
\lim _{k \rightarrow \infty} \int_{E} f(x) \sin \left(t_{k} x\right) d x=\int_{E} f^{2}(x) d x
$$

Now we need to prove $\lim _{k \rightarrow \infty} \int_{E} f(x) \sin \left(t_{k} x\right) d x=0$ by Riemann-Lebesgue theorem. We know $|f(x)| \in L^{1}(E)$ and $\sin \left(t_{k} x\right)$ is uniformly bounded by 1 . Thus, it suffices to show $\lim _{k \rightarrow \infty} \int_{0}^{c} \sin \left(t_{k} x\right) d x=0$ for all $c \in[0,2 \pi]$. This is trivial by using the same argument in part (i). Therefore, we obtain

$$
\lim _{k \rightarrow \infty} \int_{E} \sin ^{2}\left(t_{k} x\right) d x=0
$$

Now consider RHS, by part (i),

$$
\lim _{k \rightarrow \infty} \int_{E} \frac{1-\cos \left(2 t_{k} x\right)}{2} d x=\frac{m(E)}{2}-\lim _{k \rightarrow \infty} \frac{1}{2} \int_{E} \cos \left(2 t_{k} x\right) d x=\frac{m(E)}{2}
$$

This shows that $\frac{m(E)}{2}=0$, i.e., $m(E)=0$.

Extra Problem 5. Suppose $f \in L^{1}(0,1)$. Let $g(x)=\int_{x}^{1} \frac{f(t)}{t} d t, 0<x \leq 1$. Prove that $g \in L^{1}(0,1)$, $\lim _{x \rightarrow 0+} x g(x)=0$ and $\int_{0}^{1} g(x) d x=\int_{0}^{1} f(t) d t$.

Notice that $g(x)=\int_{0}^{1} \frac{f(t)}{t} I_{E}(t, x) d t$ for $E=\left\{(t, x) \in \mathbb{R}^{2} \mid 0 \leq x \leq t \leq 1\right\}$. Apply nonnegative version of Fubini's theorem to $\frac{|f(t)|}{t} I_{E}(t, x)$ on $(t, x) \in[0,1] \times[0,1]$, we obtain

$$
\int_{0}^{1}|g(x)| d x \leq \int_{0}^{1} \int_{0}^{1} \frac{|f(t)|}{t} I_{E}(t, x) d t d x=\int_{0}^{1} \frac{|f(t)|}{t} \int_{0}^{1} I_{E}(t, x) d x d t=\int_{0}^{1}|f(t)| d t<\infty
$$

This implies that $g \in L^{1}(0,1)$. The above result also implies that $\frac{|f(t)|}{t} I_{E}(t, x)$ is in $L^{1}([0,1] \times[0,1])$. Then, $\frac{f(t)}{t} I_{E}(t, x)$ is in $L^{1}([0,1] \times[0,1])$ and we can apply $L^{1}$-version of Fubini's theorem to it, i.e.,

$$
\int_{0}^{1} g(x) d x=\int_{0}^{1} \int_{0}^{1} \frac{f(t)}{t} I_{E}(t, x) d t d x=\int_{0}^{1} \frac{f(t)}{t} \int_{0}^{1} I_{E}(t, x) d x d t=\int_{0}^{1} f(t) d t
$$

Now take arbitrary sequence $a_{n}>0$ s.t. $a_{n} \rightarrow 0$ as $n \rightarrow \infty$. Also, let $g_{n}(t)=\frac{a_{n}}{t} I_{E}\left(a_{n}, t\right)$, then for each fixed $c \in[0,1],\left|g_{n}(t)\right| \leq 1$ for all $t \geq a_{n}$. Since $g_{n}(t) \rightarrow 0$ a.e. on $[0,1]$, by DCT, $\int_{0}^{c} g_{n}(t) d t \rightarrow 0$ as $n \rightarrow \infty$. Since $f(t) \in L^{1}(0,1)$, by generalized Riemann-Lebesgue theorem, we have $\int_{0}^{1} f(t) g_{n}(t) d x \rightarrow 0$ as $n \rightarrow \infty$, i.e. $a_{n} g\left(a_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. This shows that $\lim _{x \rightarrow 0+} x g(x)=0$.

Extra Problem 6. Let $f \in L^{1}\left(\mathbb{R}^{n}\right), g \in L^{\infty}\left(\mathbb{R}^{n}\right)$. Prove that
(i) $(f * g)(x)$ is uniformly continuous in $x$ on $\mathbb{R}^{n}$.

Let $F=(f * g)(x)$, consider

$$
|F(x+h)-F(x)|=\left|\int_{\mathbb{R}^{n}}[f(x+h-y)-f(x-y)] g(y) d y\right| \leq\|g\|_{L^{\infty}}\|f(u+h)-f(u)\|_{L_{u}^{1}} \rightarrow 0
$$

as $|h| \rightarrow 0$ by continuity of $L^{1}$-norm and finiteness of $\|g\|_{L^{\infty}}$. Thus, for any fixed $\epsilon>0$, there exists $\delta>0$ s.t. when $|h|<\delta,\|f(u+h)-f(u)\|_{L_{u}^{1}}<\frac{\epsilon}{\|g\|_{L^{\infty}}}$, so $|F(x+h)-F(x)|<\epsilon$ and this proves the uniform continuity of $F$.
(ii) If $g \in L^{1}\left(\mathbb{R}^{n}\right)$, then $(f * g)(x) \rightarrow 0$ as $|x| \rightarrow \infty$.

Since simple function with bounded support is dense in $L^{1}(\mathbb{R})$, there exists $f_{k} \rightarrow f$ in $L^{1}$, where $f_{k}$ is simple function with bounded support. This shows

$$
|(f * g)(x)| \leq\left\|f-f_{k}\right\|_{L^{1}}\|g\|_{L^{\infty}}+\left|\int_{\mathbb{R}^{n}} f_{k}(x-y) g(y) d y\right|
$$

Similarly, we can find a sequence of simple function $g_{k}$ with bounded support and $g_{n} \rightarrow g$ in $L^{1}$. Then,

$$
\left|\int_{\mathbb{R}^{n}} f_{k}(x-y) g(y) d y\right| \leq\left\|f_{k}\right\|_{L^{\infty}}\left\|g-g_{n}\right\|_{L^{1}}+\left|\int_{\mathbb{R}^{n}} f_{k}(x-y) g_{n}(y) d y\right|
$$

Since $f_{k}$ is simple function, it must be in $L^{\infty}$ space, and $f_{k}(x-y) g_{n}(y)=0$ for large enough $|x|$. This is because if the radius of the support of $f_{k}$ is $r_{k}$ and the radius of support of $g_{n}$ is $R_{n}$, then if $|x|>r_{k}+R_{n}$, either $|y|>R_{n}$ or $|x-y|>r_{k}$, so either $f_{k}(x-y)=0$ or $g_{n}(y)=0$. This implies that

$$
|(f * g)(x)| \leq\left\|f-f_{k}\right\|_{L^{1}}\|g\|_{L^{\infty}}+\left\|f_{k}\right\|_{L^{\infty}}\left\|g-g_{n}\right\|_{L^{1}}+\left|\int_{\mathbb{R}^{n}} f_{k}(x-y) g_{n}(y) d y\right|
$$

First take $|x| \rightarrow \infty$ on both sides, we have

$$
\lim _{|x| \rightarrow \infty}|(f * g)(x)| \leq\left\|f-f_{k}\right\|_{L^{1}}\|g\|_{L^{\infty}}+\left\|f_{k}\right\|_{L^{\infty}}\left\|g-g_{n}\right\|_{L^{1}}
$$

Then take $n \rightarrow \infty$ on both sides, since LHS is independent of $n$, we have

$$
\lim _{|x| \rightarrow \infty}|(f * g)(x)| \leq\left\|f-f_{k}\right\|_{L^{1}}\|g\|_{L^{\infty}}
$$

Finally, take $k \rightarrow \infty$ on both sides, since LHS is independent of $k$, we obtain $\lim _{|x| \rightarrow \infty} \mid(f *$ $g)(x) \mid \leq 0$, i.e., $(f * g)(x) \rightarrow 0$ as $|x| \rightarrow \infty$.

Extra Problem 7. Consider Fourier transform:

$$
\hat{f}(\xi)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i x \xi} d x
$$

Prove that if $f \in L^{1}(\mathbb{R})$, then $\hat{f}(\xi) \rightarrow 0$ as $|\xi| \rightarrow \infty$.
Since step function is dense in $L^{1}(\mathbb{R})$, and a step function is a linear combination of characteristic functions of bounded intervals in $\mathbb{R}$, there exists $f_{k}(x)=\sum_{j=1}^{N_{k}} c_{j}^{k} I_{\left(a_{j}^{k}, b_{j}^{k}\right)}$ s.t. $f_{k} \rightarrow f$ in $L^{1}(\mathbb{R})$. Therefore, as $k \rightarrow \infty$,

$$
\left|\hat{f}(\xi)-\hat{f}_{k}(\xi)\right| \leq \int_{\mathbb{R}}\left|f(x)-f_{k}(x)\right| d x \rightarrow 0
$$

Also notice that as $|\xi| \rightarrow \infty$,

$$
\left|\hat{f}_{k}(\xi)\right| \leq \sum_{j=1}^{N_{k}}\left|c_{j}^{k}\right|\left|\int_{a_{j}^{k}}^{b_{j}^{k}} e^{-2 \pi i x \xi} d x\right| \leq \sum_{j=1}^{N_{k}}\left|c_{j}^{k}\right| \frac{1}{\pi|\xi|} \rightarrow 0
$$

Thus, for any fixed $\epsilon>0$, we can find a large enough $K$ s.t. $\left|\hat{f}(\xi)-\hat{f}_{K}(\xi)\right|<\frac{\epsilon}{2}$ and then find a large $M$, s.t. for all $|\xi|>M,\left|\hat{f}_{K}(\xi)\right|<\epsilon / 2$. Then by triangular inequality, for all $|\xi|>M,|\hat{f}(\xi)|<\epsilon$. Since for each $\epsilon$ we can find such $M, \hat{f}(\xi) \rightarrow 0$ as $|\xi| \rightarrow \infty$.

Extra Problem 8. Let $f(x)$ be nonnegative measurable on $[0,1]$. Prove that if there exists constant $A<\infty$ s.t. $\int_{0}^{1} f^{k}(x) d x=A$ for all $k \geq 1$, then $f(x)=I_{E}(x)$ a.e. on $[0,1]$ for some $E \subset[0,1]$.

Let $g(x)=f(x)(1-f(x))$, then we have

$$
\int_{0}^{1} g^{2}(x) d x=\int_{0}^{1} f^{2} d x-2 \int_{0}^{1} f^{3} d x+\int_{0}^{1} f^{4} d x=A-2 A+A=0
$$

Thus, $g(x)=0$ a.e. on $[0,1]$. Denote $F=\{x \in[0,1] \mid g(x)=0\}$, then $m(F)=1$, and over the set $F, f(x)=1$ or $f(x)=0$. Thus, let $E=\{x \in[0,1] \mid f(x)=1\}$, and we can see that $f(x)=I_{E}(x)$ on set $F$. Thus, $f(x)=I_{E}(x)$ a.e. on $[0,1]$.

Extra Problem 9. Suppose $f \in L^{1}(\mathbb{R}), f(0)=0, f^{\prime}(0)$ exists. Prove that $\frac{f(x)}{x} \in L^{1}(\mathbb{R})$.
By definition of derivative and assumption,

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{x \rightarrow 0} \frac{f(x)}{x}=c
$$

for some finite constant $c$. Thus, there exists $\delta>0$ s.t. for all $|x|<\delta,|f(x) / x-c|<1$, so $|f(x) / x|<1+|c|$. This shows

$$
\begin{aligned}
\int_{\mathbb{R}}\left|\frac{f(x)}{x}\right| d x & =\int_{-\delta}^{\delta}\left|\frac{f(x)}{x}\right| d x+\int_{-\infty}^{-\delta}\left|\frac{f(x)}{x}\right| d x+\int_{\delta}^{\infty}\left|\frac{f(x)}{x}\right| d x \\
& \leq 2 \delta(1+|c|)+\frac{1}{\delta} \int_{-\infty}^{-\delta}|f(x)| d x+\frac{1}{\delta} \int_{\delta}^{\infty}|f(x)| d x \\
& \leq 2 \delta(1+|c|)+\frac{2}{\delta} \int_{\mathbb{R}}|f(x)| d x<\infty
\end{aligned}
$$

Therefore, $\frac{f(x)}{x} \in L^{1}(\mathbb{R})$.

Extra Problem 10. Let $f \in L^{1}(\mathbb{R})$, and $a>0$. Define $F(x)=\sum_{n=-\infty}^{\infty} f(x / a+n)$. Prove the series converges absolutely for almost all $x \in \mathbb{R}, F \in L^{1}([0, a])$ and $F$ is periodic with period $a$.

Let $G(x)=\sum_{n=-\infty}^{\infty}|f(x / a+n)|$, then consider

$$
\int_{0}^{a} G(x) d x=\int_{0}^{a} \sum_{n=-\infty}^{\infty}|f(x / a+n)| d x=\sum_{n=-\infty}^{\infty} \int_{0}^{a}|f(x / a+n)| d x
$$

where the last equality is due to integration term by term for nonnegative function. Since $f \in L^{1}(\mathbb{R})$, by change of variable, let $u=x / a+n$,

$$
\sum_{n=-\infty}^{\infty} \int_{0}^{a}|f(x / a+n)| d x=a \sum_{n=-\infty}^{\infty} \int_{n}^{n+1}|f(u)| d u=a \int_{\mathbb{R}}|f(u)| d u<\infty
$$

This implies that $G(x) \in L^{1}(0, a)$, and since $|F(x)| \leq G(x)$, so $F \in L^{1}(0, a)$. Notice that

$$
F(x+a)=\sum_{n=-\infty}^{\infty} f(x / a+n+1)=\sum_{n=-\infty}^{\infty} f(x / a+n)=F(x)
$$

so $F(x)$ is periodic with period $a$. Similarly $G(x)$ is also periodic with period $a$. Since $G \in L^{1}(0, a)$, $G$ is a.e. finite on $(0, a)$. By periodicity and countable subadditivity, $G$ is a.e. finite on $\mathbb{R}$. This implies that the series $F(x)$ is convergent absolutely for almost all $x \in \mathbb{R}$.

