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Extra Problem 1. Let f(x) be increasing on [a, b]. Prove that the set of discontinuous points of
f is at most countable.

Let A be the set of discontinuous points of f , then for any x ∈ A, f(x+) > f(x−) because f

is increasing. Thus, there exists g(x) ∈ Q s.t. f(x+) > g(x) > f(x−). Notice that for x1 < x2,
f(x1+) ≤ f(x2−) because f is increasing. Thus, g(x1) ̸= g(x2) if x1 ̸= x2. This shows that g defines
an injective function from A to Q. Therefore, A is at most countable.

Extra Problem 2. Let f(x) = x sin 1
x

for x ̸= 0 and f(x) = 0 for x = 0. Find Dini’s derivative
D±f(0) and D±f(0).

By definition,
D+f(0) = lim

x→0+

f(x)− f(0)

x− 0
= lim

x→0+
sin 1

x

Since we can find a sequence xk = (2kπ + π/2)−1 s.t. xk → 0+ as k → ∞,

1 ≥ lim
x→0+

sin 1

x
≥ lim

k→∞
sin 1

xk

= 1

We can conclude that D+f(0) = 1. Similarly,

D−f(0) = lim
x→0−

f(x)− f(0)

x− 0
= lim

x→0−
sin 1

x

and we can also find xk = (−2kπ + π/2)−1 s.t. xk → 0− as k → ∞, thus,

1 ≥ lim
x→0−

sin 1

x
≥ lim

k→∞
sin 1

xk

= 1

We can conclude that D−f(0) = 1. Similarly,

D+f(0) = lim
x→0+

f(x)− f(0)

x− 0
= lim

x→0+
sin 1

x

and we can find xk = (2kπ − π/2)−1 s.t. xk → 0+ as k → ∞, thus,

−1 ≤ lim
x→0+

sin 1

x
≤ lim

k→∞
sin 1

xk

= −1

We can conclude that D+f(0) = −1. Similarly,

D−f(0) = lim
x→0−

f(x)− f(0)

x− 0
= lim

x→0−
sin 1

x
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and we can find xk = (−2kπ − π/2)−1 s.t. xk → 0− as k → ∞, thus,

−1 ≤ lim
x→0−

sin 1

x
≤ lim

k→∞
sin 1

xk

= −1

We can conclude that D−f(0) = −1.

Extra Problem 3. Let f(x) be real-valued on (a, b). Define E = {x ∈ (a, b) |D+f(x) < D−f(x)}.
Prove that E is at most countable.

For x ∈ E, take rx ∈ Q s.t. D+f(x) < rx < D−f(x). Since

D+f(x) = lim
h→0+

f(x+ h)− f(x)

h
< rx

There must exist tx > x s.t. for all y ∈ (x, tx), f(y)−f(x)
y−x

< rx. If such tx does not exist, then
there exists a sequence tn s.t. tn → x+ and f(tn)−f(x)

tn−x
≥ rx. This implies D+f(x) ≥ rx, which is a

contradiction. Similar arguments show that there exists sx < x s.t. for all y ∈ (sx, x), f(y)−f(x)
y−x

> rx.
Therefore, we can define a map T : E 7→ Q3 by Tx = (rx, sx, tx).

Suppose there exists sx < x1 < x2 < tx s.t. f(y)−f(x1)
y−x1

< rx for all y ∈ (sx, x1), f(y)−f(x1)
y−x1

> rx

for all y ∈ (x1, tx); f(y)−f(x2)
y−x2

< rx for all y ∈ (sx, x2), f(y)−f(x2)
y−x2

> rx for all y ∈ (x2, tx). Then since
x2 ∈ (x1, tx), we obtain

f(x2)− f(x1)

x2 − x1

> rx

Since x1 ∈ (sx, x2), we obtain
f(x1)− f(x2)

x1 − x2

< rx

This is a contradiction. Hence, for given (rx, sx, tx), we cannot find two different x1, x2 s.t. Tx1 =

Tx2 = (rx, sx, tx), i.e. T is injective. Since Q3 is countable, E is at most countable.

Extra Problem 4. Let f(x) be increasing on (a, b). Let E ⊂ (a, b) s.t. E ∈ M and for all ϵ > 0,
there exists open G ⊂ (a, b), G ⊃ E s.t.

∑
i(f(bi) − f(ai)) < ϵ, where G =

∪
i(ai, bi). Prove that

f ′(x) = 0 for a.e. x ∈ E.

Since f(x) is increasing on (a, b), by Lebesgue differentiation theorem, f ′(x) ≥ 0 a.e. on (a, b).
Fix any ϵ > 0, we have

ˆ
E

f ′(x) dx ≤
ˆ
G

f ′(x) dx ≤
∑
i

ˆ bi

ai

f ′(x) dx ≤
∑
i

(f(bi)− f(ai)) < ϵ

where the third inequality is due to Lebesgue differentiation theorem. Take ϵ → 0, we obtain´
E
f ′(x) dx = 0. Since f ′(x) ≥ 0 a.e. on E, f ′(x) = 0 a.e. on E.

Extra Problem 5. Suppose f(x) is continuous on I. Prove that it is impossible that D+f(x) >

c > D−f(x) for all x ∈ I, where c is a constant and I is an interval.

Suppose D+f(x) > c > D−f(x), then since cx is differentiable, we have D+(f(x) − cx) > 0.
Since f(x)− cx is a continuous function on I, f(x)− cx is increasing by Example 3 in lecture note.
Similarly, D−(f(x) − cx) < 0 implies f(x) − cx is decreasing function on I. Thus, f(x) − cx = C
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for some constant C on I. Then, f(x) = cx + C is a linear function on I. However, we know
f ′(x) = c, so f(x) is differentiable and D+f(x) = D−f(x) = c, which is a contradiction. Therefore,
it is impossible that D+f(x) > c > D−f(x) for all x ∈ I.

Extra Problem 6. Find a function f(x) that is strictly increasing on R, discontinuous at and only
at every q ∈ Q, and f ′(x) = 0 a.e. on R.

List all rational number as {qn}∞n=1, and let fn(x) =
1
2n
Ix≥qn(x). Define f(x) =

∑∞
n=1 fn(x),

then we claim that f(x) is the desired function. First, f(x) is increasing because each fn(x) is
increasing. Also, for each x1 < x2, there exists a rational number qn s.t. x1 < qn < x2, so

f(x2)− f(x1) ≥ fn(x2)− fn(x1) =
1

2n
> 0

This implies that f(x) is strictly increasing. Note that f(x) is discontinuous at each qn because

f(qn+)− f(qn−) ≥ fn(qn+)− fn(qn−) =
1

2n
> 0

Thus, each qn is a jump discontinuous point. To see f(x) is continuous at each irrational point,
consider each fn, it is trivial that fn(x) is continuous at x. Furthermore,

|f(x)| ≤
∞∑

n=1

|fn(x)| ≤
∞∑

n=1

1

2n
< 1

By M-test, it implies that the partial sum Sk(x) =
∑k

n=1 fn(x) converges to f(x) uniformly. How-
ever, Sk(x) is continuous at x, so f(x) is continuous at x. Finally, since fn is increasing on any
bounded closed interval [a, b] and

∑∞
n=1 fn(x) is convergent for all x ∈ [a, b], by Fubini’s differen-

tiation theorem, f(x) is differentiable a.e. on (a, b) and f ′(x) =
∑∞

n=1 f
′
n(x). Since on irrational

number set, f ′
n(x) = 0, f ′(x) = 0 on irrational number set. This shows f ′(x) = 0 a.e. on (a, b).

Since (a, b) is arbitrary and differentiation is a local property, f ′(x) = 0 a.e. on R.
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