MAT3006＊：Real Analysis
 Homework 12

李肖鹏（116010114）
Due date：May．1， 2020
Extra Problem 1．Let $f(x)$ be increasing on $[a, b]$ ．Prove that the set of discontinuous points of f is at most countable．

Let A be the set of discontinuous points of f ，then for any $x \in A, f(x+)>f(x-)$ because f is increasing．Thus，there exists $g(x) \in \mathbb{Q}$ s．t．$f(x+)>g(x)>f(x-)$ ．Notice that for $x_{1}<x_{2}$ ， $f\left(x_{1}+\right) \leq f\left(x_{2}-\right)$ because f is increasing．Thus，$g\left(x_{1}\right) \neq g\left(x_{2}\right)$ if $x_{1} \neq x_{2}$ ．This shows that g defines an injective function from A to \mathbb{Q} ．Therefore，A is at most countable．

Extra Problem 2．Let $f(x)=x \sin \frac{1}{x}$ for $x \neq 0$ and $f(x)=0$ for $x=0$ ．Find Dini＇s derivative $D^{ \pm} f(0)$ and $D_{ \pm} f(0)$.

By definition，

$$
D^{+} f(0)=\varlimsup_{x \rightarrow 0+} \frac{f(x)-f(0)}{x-0}=\varlimsup_{x \rightarrow 0+} \sin \frac{1}{x}
$$

Since we can find a sequence $x_{k}=(2 k \pi+\pi / 2)^{-1}$ s．t．$x_{k} \rightarrow 0+$ as $k \rightarrow \infty$ ，

$$
1 \geq \varlimsup_{x \rightarrow 0+} \sin \frac{1}{x} \geq \lim _{k \rightarrow \infty} \sin \frac{1}{x_{k}}=1
$$

We can conclude that $D^{+} f(0)=1$ ．Similarly，

$$
D^{-} f(0)=\varlimsup_{x \rightarrow 0-} \frac{f(x)-f(0)}{x-0}=\varlimsup_{x \rightarrow 0-} \sin \frac{1}{x}
$$

and we can also find $x_{k}=(-2 k \pi+\pi / 2)^{-1}$ s．t．$x_{k} \rightarrow 0-$ as $k \rightarrow \infty$ ，thus，

$$
1 \geq \varlimsup_{x \rightarrow 0-} \sin \frac{1}{x} \geq \lim _{k \rightarrow \infty} \sin \frac{1}{x_{k}}=1
$$

We can conclude that $D^{-} f(0)=1$ ．Similarly，

$$
D_{+} f(0)=\varliminf_{x \rightarrow 0+} \frac{f(x)-f(0)}{x-0}=\varliminf_{x \rightarrow 0+} \sin \frac{1}{x}
$$

and we can find $x_{k}=(2 k \pi-\pi / 2)^{-1}$ s．t．$x_{k} \rightarrow 0+$ as $k \rightarrow \infty$ ，thus，

$$
-1 \leq \underline{\lim }_{x \rightarrow 0+} \sin \frac{1}{x} \leq \lim _{k \rightarrow \infty} \sin \frac{1}{x_{k}}=-1
$$

We can conclude that $D_{+} f(0)=-1$ ．Similarly，

$$
D_{-} f(0)=\varliminf_{x \rightarrow 0-} \frac{f(x)-f(0)}{x-0}=\varliminf_{x \rightarrow 0-} \sin \frac{1}{x}
$$

and we can find $x_{k}=(-2 k \pi-\pi / 2)^{-1}$ s.t. $x_{k} \rightarrow 0-$ as $k \rightarrow \infty$, thus,

$$
-1 \leq \lim _{x \rightarrow 0-} \sin \frac{1}{x} \leq \lim _{k \rightarrow \infty} \sin \frac{1}{x_{k}}=-1
$$

We can conclude that $D_{-} f(0)=-1$.

Extra Problem 3. Let $f(x)$ be real-valued on (a, b). Define $E=\left\{x \in(a, b) \mid D^{+} f(x)<D_{-} f(x)\right\}$. Prove that E is at most countable.

For $x \in E$, take $r_{x} \in \mathbb{Q}$ s.t. $D^{+} f(x)<r_{x}<D_{-} f(x)$. Since

$$
D^{+} f(x)=\varlimsup_{h \rightarrow 0+} \frac{f(x+h)-f(x)}{h}<r_{x}
$$

There must exist $t_{x}>x$ s.t. for all $y \in\left(x, t_{x}\right), \frac{f(y)-f(x)}{y-x}<r_{x}$. If such t_{x} does not exist, then there exists a sequence t_{n} s.t. $t_{n} \rightarrow x+$ and $\frac{f\left(t_{n}\right)-f(x)}{t_{n}-x} \geq r_{x}$. This implies $D^{+} f(x) \geq r_{x}$, which is a contradiction. Similar arguments show that there exists $s_{x}<x$ s.t. for all $y \in\left(s_{x}, x\right), \frac{f(y)-f(x)}{y-x}>r_{x}$. Therefore, we can define a map $T: E \mapsto \mathbb{Q}^{3}$ by $T x=\left(r_{x}, s_{x}, t_{x}\right)$.

Suppose there exists $s_{x}<x_{1}<x_{2}<t_{x}$ s.t. $\frac{f(y)-f\left(x_{1}\right)}{y-x_{1}}<r_{x}$ for all $y \in\left(s_{x}, x_{1}\right), \frac{f(y)-f\left(x_{1}\right)}{y-x_{1}}>r_{x}$ for all $y \in\left(x_{1}, t_{x}\right) ; \frac{f(y)-f\left(x_{2}\right)}{y-x_{2}}<r_{x}$ for all $y \in\left(s_{x}, x_{2}\right), \frac{f(y)-f\left(x_{2}\right)}{y-x_{2}}>r_{x}$ for all $y \in\left(x_{2}, t_{x}\right)$. Then since $x_{2} \in\left(x_{1}, t_{x}\right)$, we obtain

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}>r_{x}
$$

Since $x_{1} \in\left(s_{x}, x_{2}\right)$, we obtain

$$
\frac{f\left(x_{1}\right)-f\left(x_{2}\right)}{x_{1}-x_{2}}<r_{x}
$$

This is a contradiction. Hence, for given $\left(r_{x}, s_{x}, t_{x}\right)$, we cannot find two different x_{1}, x_{2} s.t. $T x_{1}=$ $T x_{2}=\left(r_{x}, s_{x}, t_{x}\right)$, i.e. T is injective. Since \mathbb{Q}^{3} is countable, E is at most countable.

Extra Problem 4. Let $f(x)$ be increasing on (a, b). Let $E \subset(a, b)$ s.t. $E \in \mathcal{M}$ and for all $\epsilon>0$, there exists open $G \subset(a, b), G \supset E$ s.t. $\sum_{i}\left(f\left(b_{i}\right)-f\left(a_{i}\right)\right)<\epsilon$, where $G=\bigcup_{i}\left(a_{i}, b_{i}\right)$. Prove that $f^{\prime}(x)=0$ for a.e. $x \in E$.

Since $f(x)$ is increasing on (a, b), by Lebesgue differentiation theorem, $f^{\prime}(x) \geq 0$ a.e. on (a, b). Fix any $\epsilon>0$, we have

$$
\int_{E} f^{\prime}(x) d x \leq \int_{G} f^{\prime}(x) d x \leq \sum_{i} \int_{a_{i}}^{b_{i}} f^{\prime}(x) d x \leq \sum_{i}\left(f\left(b_{i}\right)-f\left(a_{i}\right)\right)<\epsilon
$$

where the third inequality is due to Lebesgue differentiation theorem. Take $\epsilon \rightarrow 0$, we obtain $\int_{E} f^{\prime}(x) d x=0$. Since $f^{\prime}(x) \geq 0$ a.e. on $E, f^{\prime}(x)=0$ a.e. on E.

Extra Problem 5. Suppose $f(x)$ is continuous on I. Prove that it is impossible that $D^{+} f(x)>$ $c>D_{-} f(x)$ for all $x \in I$, where c is a constant and I is an interval.

Suppose $D^{+} f(x)>c>D_{-} f(x)$, then since $c x$ is differentiable, we have $D^{+}(f(x)-c x)>0$. Since $f(x)-c x$ is a continuous function on $I, f(x)-c x$ is increasing by Example 3 in lecture note. Similarly, $D_{-}(f(x)-c x)<0$ implies $f(x)-c x$ is decreasing function on I. Thus, $f(x)-c x=C$
for some constant C on I. Then, $f(x)=c x+C$ is a linear function on I. However, we know $f^{\prime}(x)=c$, so $f(x)$ is differentiable and $D^{+} f(x)=D_{-} f(x)=c$, which is a contradiction. Therefore, it is impossible that $D^{+} f(x)>c>D_{-} f(x)$ for all $x \in I$.

Extra Problem 6. Find a function $f(x)$ that is strictly increasing on \mathbb{R}, discontinuous at and only at every $q \in \mathbb{Q}$, and $f^{\prime}(x)=0$ a.e. on \mathbb{R}.

List all rational number as $\left\{q_{n}\right\}_{n=1}^{\infty}$, and let $f_{n}(x)=\frac{1}{2^{n}} I_{x \geq q_{n}}(x)$. Define $f(x)=\sum_{n=1}^{\infty} f_{n}(x)$, then we claim that $f(x)$ is the desired function. First, $f(x)$ is increasing because each $f_{n}(x)$ is increasing. Also, for each $x_{1}<x_{2}$, there exists a rational number q_{n} s.t. $x_{1}<q_{n}<x_{2}$, so

$$
f\left(x_{2}\right)-f\left(x_{1}\right) \geq f_{n}\left(x_{2}\right)-f_{n}\left(x_{1}\right)=\frac{1}{2^{n}}>0
$$

This implies that $f(x)$ is strictly increasing. Note that $f(x)$ is discontinuous at each q_{n} because

$$
f\left(q_{n}+\right)-f\left(q_{n}-\right) \geq f_{n}\left(q_{n}+\right)-f_{n}\left(q_{n}-\right)=\frac{1}{2^{n}}>0
$$

Thus, each q_{n} is a jump discontinuous point. To see $f(x)$ is continuous at each irrational point, consider each f_{n}, it is trivial that $f_{n}(x)$ is continuous at x. Furthermore,

$$
|f(x)| \leq \sum_{n=1}^{\infty}\left|f_{n}(x)\right| \leq \sum_{n=1}^{\infty} \frac{1}{2^{n}}<1
$$

By M-test, it implies that the partial sum $S_{k}(x)=\sum_{n=1}^{k} f_{n}(x)$ converges to $f(x)$ uniformly. However, $S_{k}(x)$ is continuous at x, so $f(x)$ is continuous at x. Finally, since f_{n} is increasing on any bounded closed interval $[a, b]$ and $\sum_{n=1}^{\infty} f_{n}(x)$ is convergent for all $x \in[a, b]$, by Fubini's differentiation theorem, $f(x)$ is differentiable a.e. on (a, b) and $f^{\prime}(x)=\sum_{n=1}^{\infty} f_{n}^{\prime}(x)$. Since on irrational number set, $f_{n}^{\prime}(x)=0, f^{\prime}(x)=0$ on irrational number set. This shows $f^{\prime}(x)=0$ a.e. on (a, b). Since (a, b) is arbitrary and differentiation is a local property, $f^{\prime}(x)=0$ a.e. on \mathbb{R}.

