
MAT3006∗: Real Analysis
Homework 13

李肖鹏 (116010114)

Due date: May. 8, 2020

Extra Problem 1. Let ∆0 = {a = x0, x1, x2, x3, b = x4}. Then if a continuous function f(x) defined
on [a, b] is increasing on [a, x1] and [x2, x3], decreasing on [x1, x2] and [x3, b], then V b

a (f) = v∆0
.

Notice that by definition V b
a (f) ≥ v∆0

, where

v∆0
= f(x1)− f(a) + f(x1)− f(x2) + f(x3)− f(x2) + f(x3)− f(b)

It suffices to show V b
a (f) ≤ v∆0

. For any partition ∆ = {a, y1, . . . , yn, b}, we can construct a new
partition ∆1 s.t. ∆1 = ∆ ∪∆0. Then

∆1 = {a, y1, . . . , yi, x1, yi+1, . . . , yj , x2, yj+1, . . . , yk, x3, yk+1, . . . , yn, b}

Since f(x) is increasing on [a, x1] and [x2, x3],

|f(y1)− f(a)|+
i−1∑
m=1

|f(ym+1)− f(ym)|+ |f(x1)− f(yi)| = f(x1)− f(a)

|f(yj+1)− f(x2)|+
k−1∑

m=j+1

|f(ym+1)− f(ym)|+ |f(x3)− f(yk)| = f(x3)− f(x2)

Similarly, since f(x) is decreasing on [x1, x2] and [x3, b],

|f(yi+1)− f(x1)|+
j−1∑

m=i+1

|f(ym+1)− f(ym)|+ |f(x2)− f(yj)| = −(f(x2)− f(x1))

|f(yk+1)− f(x3)|+
n−1∑

m=k+1

|f(ym+1)− f(ym)|+ |f(b)− f(yn)| = −(f(b)− f(x3))

This implies that v∆1
= v∆0

for any ∆. However, it is easy to see by triangle inequality that
v∆ ≤ v∆1

, so v∆ ≤ v∆0
. Take supremum over all ∆ on both sides, V b

a (f) = sup∆ v∆ ≤ v∆0
.

Extra Problem 2. Observe that v∆ ≤ v∆1
if ∆1 is a finer partition of [a, b] than ∆. Use this

observation to prove if f is real-valued on [a, b] and c ∈ (a, b), then V b
a (f) = V c

a (f) + V b
c (f).

Take arbitrary partition of [a, c] and [c, b], denoted as ∆1 and ∆2 respectively. Then ∆ = ∆1∪∆2

is a partition of [a, b]. Furthermore, v∆1
+ v∆2

= v∆ ≤ V b
a (f). Take supremum over ∆1 on both

sides, V c
a (f) + v∆2

≤ V b
a (f). Again, take supremum over ∆2 on both sides, V c

a (f) + V b
c (f) ≤ V b

a (f).
Conversely, for any partition of [a, b], denoted as ∆ = {a, x1, . . . , xn−1, b} of [a, b]. Let ∆0 = {a, c, b}

1



and ∆′ = ∆ ∪ ∆0. Then ∆′ can be decomposed into ∆1 and ∆2, where ∆1 is a partition of [a, c]
and ∆2 is a partition of [c, b]. Furthermore, v∆′ = v∆1

+ v∆2
≤ V c

a (f) + V b
c (f). Since ∆′ is finer

than ∆, v∆ ≤ v∆′ ≤ V c
a (f)+V b

c (f). Take supremum over ∆ on both sides, V b
a (f) ≤ V c

a (f)+V b
c (f).

This shows that V b
a (f) = V c

a (f) + V b
c (f).

Extra Problem 3. Find V 2π
0 (sin 2x) by using Extra Problem 2.

By a slightly generalized version of Extra Problem 2,

V 2π
0 (sin 2x) = V

π/4
0 (sin 2x) + V

3π/4
π/4 (sin 2x) + V

5π/4
3π/4 (sin 2x) + V

7π/4
5π/4 (sin 2x) + V 2π

7π/4(sin 2x)

By Example 1 in lecture, if f is monotone on [a, b], then V b
a (f) = |f(b)− f(a)|. Thus, we have

V 2π
0 (sin 2x) = |1− 0|+ | − 1− 1|+ |1− (−1)|+ | − 1− 1|+ |0− (−1)| = 8

Therefore, V 2π
0 (sin 2x) = 8.

Extra Problem 4. Let fk(x) ∈ BV([a, b]) for all k ≥ 1. Suppose V b
a (fk) ≤ M for all k ≥ 1, and

fk → f pointwise on [a, b] as k → ∞. Prove f ∈ BV([a, b]) and V b
a (f) ≤ M .

First fixed any partition ∆ = {a = x0, x1, . . . , xn, xn+1 = b} of [a, b]. Since fk → f pointwise,
for any ϵ > 0, there exists Ki s.t. |fk(xi) − f(xi)| < ϵ

2n+2
for all k ≥ Ki. Take K = maxn+1

i=0 Ki,
then for all i = 1, . . . , n+ 1, we have

|f(xi)− f(xi−1)| ≤ |f(xi)− fK(xi)|+ |fK(xi)− fK(xi−1)|+ |fK(xi−1)− f(xi−1)|

≤ |fK(xi)− fK(xi−1)|+
ϵ

n+ 1

Sum both sides up from i = 1 to i = n+ 1, we have
n+1∑
i=1

|f(xi)− f(xi−1)| ≤
n+1∑
i=1

|fK(xi)− fK(xi−1)|+ ϵ

which implies
v∆(f) ≤ v∆(fK) + ϵ ≤ V b

a (fK) + ϵ ≤ M + ϵ

Take ϵ → 0, we have v∆(f) ≤ M . Take supremum over all ∆ on both sides, V b
a (f) ≤ M . This shows

f ∈ BV([a, b]).

Extra Problem 5. Denote γ : [0, 1] 7→ C by γ(t) = x(t)+ iy(t), where x(t) and y(t) are real-valued
continuous functions on [0, 1]. A curve γ is rectifiable if V 1

0 (γ) < ∞. In this case, the length of
γ is defined to be V 1

0 (γ). Prove that if x(t) and y(t) are continuously differentiable on [0, 1], then
V 1
0 (γ) =

´ 1

0

√
(x′(t))2 + (y′(t))2 dt.

Take any partition ∆ = {0 = t0, t1, . . . , tn, tn+1 = 1}, then

v∆ =
n+1∑
i=1

|γ(ti)− γ(ti−1)| =
n+1∑
i=1

∣∣∣∣∣
ˆ ti

ti−1

γ′(t) dt

∣∣∣∣∣
≤

n+1∑
i=1

ˆ ti

ti−1

|γ′(t)| dt =
ˆ 1

0

√
(x′(t))2 + (y′(t))2 dt
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Take supremum over ∆ on both sides, we obtain V 1
0 (γ) ≤

´ 1

0

√
(x′(t))2 + (y′(t))2 dt.

Conversely, since γ′(t) is continuous on [0, 1], it is uniformly continuous on [0, 1]. Thus, for
any ϵ > 0, there exists δ > 0 s.t. if |t1 − t2| < δ, |γ(t1) − γ(t2)| < ϵ for all t1, t2 ∈ [0, 1]. Let
∆ = {0 = t0, t1, . . . , tn, tn+1 = 1} be a partition of [0, 1] with ∥∆∥ < δ. Thus, if t ∈ [ti−1, ti], we
have |γ′(t)| ≤ |γ′(ti)|+ ϵ. Hence,

ˆ b

a

|γ′(t)| dt =
n+1∑
i=1

ˆ ti

ti−1

|γ′(t)| dt ≤
n+1∑
i=1

(|γ′(ti)|(ti − ti−1) + ϵ(ti − ti−1))

=
n+1∑
i=1

∣∣∣∣∣
ˆ ti

ti−1

(γ′(t) + γ′(ti)− γ′(t)) dt

∣∣∣∣∣+ ϵ(b− a)

≤
n+1∑
i=1

∣∣∣∣∣
ˆ ti

ti−1

γ′(t) dt

∣∣∣∣∣+
n+1∑
i=1

∣∣∣∣∣
ˆ ti

ti−1

(γ′(ti)− γ′(t)) dt

∣∣∣∣∣+ ϵ(b− a)

<
n+1∑
i=1

|γ(ti)− γ(ti−1)|+ 2ϵ(b− a) = v∆ + 2ϵ(b− a)

Take ϵ → 0, we can obtain
´ b

a
|γ′(t)| dt ≤ v∆, i.e., v∆ ≥

´ 1

0

√
(x′(t))2 + (y′(t))2 dt. Take supre-

mum over all ∆ on both sides, we conclude V 1
0 (γ) ≥

´ 1

0

√
(x′(t))2 + (y′(t))2 dt. Combine the two

inequalities, we can see V 1
0 (γ) =

´ 1

0

√
(x′(t))2 + (y′(t))2 dt.

Extra Problem 6. Suppose f ∈ BV([0, 1]). Define F (x) = 1
x

´ x

0
f(t) dt for x ∈ (0, 1] and F (0) =

2020. Prove that F ∈ BV([0, 1]) and limx→0+ F (x) exists as a finite number.

By Jordan decomposition theorem, f = g−h where g, h are two increasing real-valued function
on [0, 1]. Then, f, g, h are all bounded function, so

F (x) =
1

x

ˆ x

0

f(t) dt =
1

x

ˆ x

0

g(t) dt− 1

x

ˆ x

0

h(t) dt = G(x)−H(x)

for x ∈ (0, 1]. We claim that G(x) and H(x) are increasing on (0, 1]. If so, then consider any
partition of [0, 1], denoted as ∆ = {0 = x0, x1, . . . , xn, xn+1 = 1}, we can compute

v∆(F ) = |F (x1)− F (x0)|+
n+1∑
i=2

|F (xi)− F (xi−1)|

≤ |F (x1)− 2020|+
n+1∑
i=1

|G(xi)−G(xi−1)|+
n+1∑
i=2

|H(xi)−H(xi−1)|

= |F (x1)− 2020|+G(1)−G(x1) +H(1)−H(x1)

Notice that G,H are both bounded on (0, 1] and F is bounded on [0, 1], so v∆(F ) ≤ M for some
constant M . Take supremum over all ∆ on both sides, we have V 1

0 (f) ≤ M , so F ∈ BV([0, 1]).

To see our claim is true, we take G(x) for example, and H(x) is exactly the same.

G(x2) =
1

x2

ˆ x2

0

g(t) dt ≥ 1

x2

(ˆ x1

0

g(t) dt+ (x2 − x1)g(x1)

)
=

1

x2

(ˆ x1

0

g(t) dt+
x2 − x1

x1

x1g(x1)

)
≥ 1

x2

(ˆ x1

0

g(t) dt+
x2 − x1

x1

ˆ x1

0

g(t) dt

)
= G(x1)
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for any 0 < x1 < x2 ≤ 1. Therefore, our claim is true.

Since g, h are increasing on [0, 1] and they are real-valued, g(0+) = limx→0+ g(x) and h(0+) =

limx→0+ h(x) exists as a finite number. Notice that

G(x) =
1

x

ˆ x

0

g(t) dt ≥ 1

x

ˆ x

0

g(0+) dt = g(0+)

This implies G(0+) = limx→0+ G(x) ≥ g(0+). However,

xg(x) ≥
ˆ x

0

g(t) dt =⇒ g(x) ≥ G(x) =⇒ lim
x→0+

g(x) ≥ lim
x→0+

G(x) =⇒ g(0+) ≥ G(0+)

Therefore, G(0+) = g(0+). Similarly, we can prove H(0+) = h(0+). Therefore,

lim
x→0+

F (x) = G(0+)−H(0+) = g(0+)− h(0+) = f(0+)

This implies F (0+) = limx→0+ F (x) exists as a finite number.

Extra Problem 7. Let f(x) be real-valued on [a, b], satisfying that for all ϵ > 0, V b
a+ϵ(f) ≤ M ,

where M is a constant. Prove that f ∈ BV([a, b]).

First we prove f(x) is bounded on [a, b]. We claim that there exists small ϵ0 > 0 s.t. f is
bounded on [a, a + ϵ0]. If not, then there exists an → a as n → ∞ where an > a is a sequence s.t.
f(an) → ∞. Since for all n,

∞∑
k=2

|f(ak)− f(ak−1)| ≥ f(an)− f(a1) → ∞

there exists K s.t.
∑K

k=2 |f(ak)−f(ak−1)| > M . There exists ϵ0 > 0 s.t. a1, . . . , aK ∈ [a+ϵ0, b]. Then
consider the partition ∆ = {a1, . . . , aK}∪{a+ϵ0, b} of [a+ϵ0, b], v∆ ≥

∑K
k=2 |f(ak)−f(ak−1)| > M .

This shows V b
a+ϵ0

≥ v∆ > M , which is a contradiction. Thus, there exists some ϵ0 > 0 s.t.
|f(x)| ≤ N1 for x ∈ [a, a+ ϵ0].

Note that V b
a+ϵ0

≤ M , so by a basic fact in lecture, f(x) is bounded on [a + ϵ0, b], so denote
|f(x)| ≤ N2. Then let N = max{N1, N2}, |f(x)| ≤ N for all x ∈ [a, b]. Then for any partition
∆ = {a, x1, . . . , xn, b} of [a, b], take ϵ = x1 − a, we have

v∆ = |f(a)− f(x1)|+
n∑

i=1

|f(xi)− f(xi−1)| ≤ 2N + V b
a+ϵ(f) < 2N +M

Hence, by taking supremum over ∆ on both sides, V b
a (f) ≤ 2N +M , so f ∈ BV([a, b]).
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