# MAT3006＊：Real Analysis <br> Homework 13 

李肖鹏（116010114）

Due date：May．8， 2020
Extra Problem 1．Let $\Delta_{0}=\left\{a=x_{0}, x_{1}, x_{2}, x_{3}, b=x_{4}\right\}$ ．Then if a continuous function $f(x)$ defined on $[a, b]$ is increasing on $\left[a, x_{1}\right]$ and $\left[x_{2}, x_{3}\right]$ ，decreasing on $\left[x_{1}, x_{2}\right]$ and $\left[x_{3}, b\right]$ ，then $V_{a}^{b}(f)=v_{\Delta_{0}}$ ．

Notice that by definition $V_{a}^{b}(f) \geq v_{\Delta_{0}}$ ，where

$$
v_{\Delta_{0}}=f\left(x_{1}\right)-f(a)+f\left(x_{1}\right)-f\left(x_{2}\right)+f\left(x_{3}\right)-f\left(x_{2}\right)+f\left(x_{3}\right)-f(b)
$$

It suffices to show $V_{a}^{b}(f) \leq v_{\Delta_{0}}$ ．For any partition $\Delta=\left\{a, y_{1}, \ldots, y_{n}, b\right\}$ ，we can construct a new partition $\Delta_{1}$ s．t．$\Delta_{1}=\Delta \cup \Delta_{0}$ ．Then

$$
\Delta_{1}=\left\{a, y_{1}, \ldots, y_{i}, x_{1}, y_{i+1}, \ldots, y_{j}, x_{2}, y_{j+1}, \ldots, y_{k}, x_{3}, y_{k+1}, \ldots, y_{n}, b\right\}
$$

Since $f(x)$ is increasing on $\left[a, x_{1}\right]$ and $\left[x_{2}, x_{3}\right]$ ，

$$
\begin{gathered}
\left|f\left(y_{1}\right)-f(a)\right|+\sum_{m=1}^{i-1}\left|f\left(y_{m+1}\right)-f\left(y_{m}\right)\right|+\left|f\left(x_{1}\right)-f\left(y_{i}\right)\right|=f\left(x_{1}\right)-f(a) \\
\left|f\left(y_{j+1}\right)-f\left(x_{2}\right)\right|+\sum_{m=j+1}^{k-1}\left|f\left(y_{m+1}\right)-f\left(y_{m}\right)\right|+\left|f\left(x_{3}\right)-f\left(y_{k}\right)\right|=f\left(x_{3}\right)-f\left(x_{2}\right)
\end{gathered}
$$

Similarly，since $f(x)$ is decreasing on $\left[x_{1}, x_{2}\right]$ and $\left[x_{3}, b\right]$ ，

$$
\begin{aligned}
& \left|f\left(y_{i+1}\right)-f\left(x_{1}\right)\right|+\sum_{m=i+1}^{j-1}\left|f\left(y_{m+1}\right)-f\left(y_{m}\right)\right|+\left|f\left(x_{2}\right)-f\left(y_{j}\right)\right|=-\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right) \\
& \left|f\left(y_{k+1}\right)-f\left(x_{3}\right)\right|+\sum_{m=k+1}^{n-1}\left|f\left(y_{m+1}\right)-f\left(y_{m}\right)\right|+\left|f(b)-f\left(y_{n}\right)\right|=-\left(f(b)-f\left(x_{3}\right)\right)
\end{aligned}
$$

This implies that $v_{\Delta_{1}}=v_{\Delta_{0}}$ for any $\Delta$ ．However，it is easy to see by triangle inequality that $v_{\Delta} \leq v_{\Delta_{1}}$ ，so $v_{\Delta} \leq v_{\Delta_{0}}$ ．Take supremum over all $\Delta$ on both sides，$V_{a}^{b}(f)=\sup _{\Delta} v_{\Delta} \leq v_{\Delta_{0}}$ ．

Extra Problem 2．Observe that $v_{\Delta} \leq v_{\Delta_{1}}$ if $\Delta_{1}$ is a finer partition of $[a, b]$ than $\Delta$ ．Use this observation to prove if $f$ is real－valued on $[a, b]$ and $c \in(a, b)$ ，then $V_{a}^{b}(f)=V_{a}^{c}(f)+V_{c}^{b}(f)$ ．

Take arbitrary partition of $[a, c]$ and $[c, b]$ ，denoted as $\Delta_{1}$ and $\Delta_{2}$ respectively．Then $\Delta=\Delta_{1} \cup \Delta_{2}$ is a partition of $[a, b]$ ．Furthermore，$v_{\Delta_{1}}+v_{\Delta_{2}}=v_{\Delta} \leq V_{a}^{b}(f)$ ．Take supremum over $\Delta_{1}$ on both sides，$V_{a}^{c}(f)+v_{\Delta_{2}} \leq V_{a}^{b}(f)$ ．Again，take supremum over $\Delta_{2}$ on both sides，$V_{a}^{c}(f)+V_{c}^{b}(f) \leq V_{a}^{b}(f)$ ． Conversely，for any partition of $[a, b]$ ，denoted as $\Delta=\left\{a, x_{1}, \ldots, x_{n-1}, b\right\}$ of $[a, b]$ ．Let $\Delta_{0}=\{a, c, b\}$
and $\Delta^{\prime}=\Delta \cup \Delta_{0}$. Then $\Delta^{\prime}$ can be decomposed into $\Delta_{1}$ and $\Delta_{2}$, where $\Delta_{1}$ is a partition of $[a, c]$ and $\Delta_{2}$ is a partition of $[c, b]$. Furthermore, $v_{\Delta^{\prime}}=v_{\Delta_{1}}+v_{\Delta_{2}} \leq V_{a}^{c}(f)+V_{c}^{b}(f)$. Since $\Delta^{\prime}$ is finer than $\Delta, v_{\Delta} \leq v_{\Delta^{\prime}} \leq V_{a}^{c}(f)+V_{c}^{b}(f)$. Take supremum over $\Delta$ on both sides, $V_{a}^{b}(f) \leq V_{a}^{c}(f)+V_{c}^{b}(f)$. This shows that $V_{a}^{b}(f)=V_{a}^{c}(f)+V_{c}^{b}(f)$.

Extra Problem 3. Find $V_{0}^{2 \pi}(\sin 2 x)$ by using Extra Problem 2.
By a slightly generalized version of Extra Problem 2,

$$
V_{0}^{2 \pi}(\sin 2 x)=V_{0}^{\pi / 4}(\sin 2 x)+V_{\pi / 4}^{3 \pi / 4}(\sin 2 x)+V_{3 \pi / 4}^{5 \pi / 4}(\sin 2 x)+V_{5 \pi / 4}^{7 \pi / 4}(\sin 2 x)+V_{7 \pi / 4}^{2 \pi}(\sin 2 x)
$$

By Example 1 in lecture, if $f$ is monotone on $[a, b]$, then $V_{a}^{b}(f)=|f(b)-f(a)|$. Thus, we have

$$
V_{0}^{2 \pi}(\sin 2 x)=|1-0|+|-1-1|+|1-(-1)|+|-1-1|+|0-(-1)|=8
$$

Therefore, $V_{0}^{2 \pi}(\sin 2 x)=8$.

Extra Problem 4. Let $f_{k}(x) \in \mathrm{BV}([a, b])$ for all $k \geq 1$. Suppose $V_{a}^{b}\left(f_{k}\right) \leq M$ for all $k \geq 1$, and $f_{k} \rightarrow f$ pointwise on $[a, b]$ as $k \rightarrow \infty$. Prove $f \in \mathrm{BV}([a, b])$ and $V_{a}^{b}(f) \leq M$.

First fixed any partition $\Delta=\left\{a=x_{0}, x_{1}, \ldots, x_{n}, x_{n+1}=b\right\}$ of $[a, b]$. Since $f_{k} \rightarrow f$ pointwise, for any $\epsilon>0$, there exists $K_{i}$ s.t. $\left|f_{k}\left(x_{i}\right)-f\left(x_{i}\right)\right|<\frac{\epsilon}{2 n+2}$ for all $k \geq K_{i}$. Take $K=\max _{i=0}^{n+1} K_{i}$, then for all $i=1, \ldots, n+1$, we have

$$
\begin{aligned}
\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right| & \leq\left|f\left(x_{i}\right)-f_{K}\left(x_{i}\right)\right|+\left|f_{K}\left(x_{i}\right)-f_{K}\left(x_{i-1}\right)\right|+\left|f_{K}\left(x_{i-1}\right)-f\left(x_{i-1}\right)\right| \\
& \leq\left|f_{K}\left(x_{i}\right)-f_{K}\left(x_{i-1}\right)\right|+\frac{\epsilon}{n+1}
\end{aligned}
$$

Sum both sides up from $i=1$ to $i=n+1$, we have

$$
\sum_{i=1}^{n+1}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right| \leq \sum_{i=1}^{n+1}\left|f_{K}\left(x_{i}\right)-f_{K}\left(x_{i-1}\right)\right|+\epsilon
$$

which implies

$$
v_{\Delta}(f) \leq v_{\Delta}\left(f_{K}\right)+\epsilon \leq V_{a}^{b}\left(f_{K}\right)+\epsilon \leq M+\epsilon
$$

Take $\epsilon \rightarrow 0$, we have $v_{\Delta}(f) \leq M$. Take supremum over all $\Delta$ on both sides, $V_{a}^{b}(f) \leq M$. This shows $f \in \mathrm{BV}([a, b])$.

Extra Problem 5. Denote $\gamma:[0,1] \mapsto \mathbb{C}$ by $\gamma(t)=x(t)+i y(t)$, where $x(t)$ and $y(t)$ are real-valued continuous functions on $[0,1]$. A curve $\gamma$ is rectifiable if $V_{0}^{1}(\gamma)<\infty$. In this case, the length of $\gamma$ is defined to be $V_{0}^{1}(\gamma)$. Prove that if $x(t)$ and $y(t)$ are continuously differentiable on [0,1], then $V_{0}^{1}(\gamma)=\int_{0}^{1} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t$.

Take any partition $\Delta=\left\{0=t_{0}, t_{1}, \ldots, t_{n}, t_{n+1}=1\right\}$, then

$$
\begin{aligned}
v_{\Delta} & =\sum_{i=1}^{n+1}\left|\gamma\left(t_{i}\right)-\gamma\left(t_{i-1}\right)\right|=\sum_{i=1}^{n+1}\left|\int_{t_{i-1}}^{t_{i}} \gamma^{\prime}(t) d t\right| \\
& \leq \sum_{i=1}^{n+1} \int_{t_{i-1}}^{t_{i}}\left|\gamma^{\prime}(t)\right| d t=\int_{0}^{1} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
\end{aligned}
$$

Take supremum over $\Delta$ on both sides, we obtain $V_{0}^{1}(\gamma) \leq \int_{0}^{1} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t$.
Conversely, since $\gamma^{\prime}(t)$ is continuous on $[0,1]$, it is uniformly continuous on $[0,1]$. Thus, for any $\epsilon>0$, there exists $\delta>0$ s.t. if $\left|t_{1}-t_{2}\right|<\delta,\left|\gamma\left(t_{1}\right)-\gamma\left(t_{2}\right)\right|<\epsilon$ for all $t_{1}, t_{2} \in[0,1]$. Let $\Delta=\left\{0=t_{0}, t_{1}, \ldots, t_{n}, t_{n+1}=1\right\}$ be a partition of $[0,1]$ with $\|\Delta\|<\delta$. Thus, if $t \in\left[t_{i-1}, t_{i}\right]$, we have $\left|\gamma^{\prime}(t)\right| \leq\left|\gamma^{\prime}\left(t_{i}\right)\right|+\epsilon$. Hence,

$$
\begin{aligned}
\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t & =\sum_{i=1}^{n+1} \int_{t_{i-1}}^{t_{i}}\left|\gamma^{\prime}(t)\right| d t \leq \sum_{i=1}^{n+1}\left(\left|\gamma^{\prime}\left(t_{i}\right)\right|\left(t_{i}-t_{i-1}\right)+\epsilon\left(t_{i}-t_{i-1}\right)\right) \\
& =\sum_{i=1}^{n+1}\left|\int_{t_{i-1}}^{t_{i}}\left(\gamma^{\prime}(t)+\gamma^{\prime}\left(t_{i}\right)-\gamma^{\prime}(t)\right) d t\right|+\epsilon(b-a) \\
& \leq \sum_{i=1}^{n+1}\left|\int_{t_{i-1}}^{t_{i}} \gamma^{\prime}(t) d t\right|+\sum_{i=1}^{n+1}\left|\int_{t_{i-1}}^{t_{i}}\left(\gamma^{\prime}\left(t_{i}\right)-\gamma^{\prime}(t)\right) d t\right|+\epsilon(b-a) \\
& <\sum_{i=1}^{n+1}\left|\gamma\left(t_{i}\right)-\gamma\left(t_{i-1}\right)\right|+2 \epsilon(b-a)=v_{\Delta}+2 \epsilon(b-a)
\end{aligned}
$$

Take $\epsilon \rightarrow 0$, we can obtain $\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t \leq v_{\Delta}$, i.e., $v_{\Delta} \geq \int_{0}^{1} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t$. Take supremum over all $\Delta$ on both sides, we conclude $V_{0}^{1}(\gamma) \geq \int_{0}^{1} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t$. Combine the two inequalities, we can see $V_{0}^{1}(\gamma)=\int_{0}^{1} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t$.

Extra Problem 6. Suppose $f \in \mathrm{BV}([0,1])$. Define $F(x)=\frac{1}{x} \int_{0}^{x} f(t) d t$ for $x \in(0,1]$ and $F(0)=$ 2020. Prove that $F \in \mathrm{BV}([0,1])$ and $\lim _{x \rightarrow 0+} F(x)$ exists as a finite number.

By Jordan decomposition theorem, $f=g-h$ where $g, h$ are two increasing real-valued function on $[0,1]$. Then, $f, g, h$ are all bounded function, so

$$
F(x)=\frac{1}{x} \int_{0}^{x} f(t) d t=\frac{1}{x} \int_{0}^{x} g(t) d t-\frac{1}{x} \int_{0}^{x} h(t) d t=G(x)-H(x)
$$

for $x \in(0,1]$. We claim that $G(x)$ and $H(x)$ are increasing on $(0,1]$. If so, then consider any partition of $[0,1]$, denoted as $\Delta=\left\{0=x_{0}, x_{1}, \ldots, x_{n}, x_{n+1}=1\right\}$, we can compute

$$
\begin{aligned}
v_{\Delta}(F) & =\left|F\left(x_{1}\right)-F\left(x_{0}\right)\right|+\sum_{i=2}^{n+1}\left|F\left(x_{i}\right)-F\left(x_{i-1}\right)\right| \\
& \leq\left|F\left(x_{1}\right)-2020\right|+\sum_{i=1}^{n+1}\left|G\left(x_{i}\right)-G\left(x_{i-1}\right)\right|+\sum_{i=2}^{n+1}\left|H\left(x_{i}\right)-H\left(x_{i-1}\right)\right| \\
& =\left|F\left(x_{1}\right)-2020\right|+G(1)-G\left(x_{1}\right)+H(1)-H\left(x_{1}\right)
\end{aligned}
$$

Notice that $G, H$ are both bounded on $(0,1]$ and $F$ is bounded on $[0,1]$, so $v_{\Delta}(F) \leq M$ for some constant $M$. Take supremum over all $\Delta$ on both sides, we have $V_{0}^{1}(f) \leq M$, so $F \in \mathrm{BV}([0,1])$.

To see our claim is true, we take $G(x)$ for example, and $H(x)$ is exactly the same.

$$
\begin{aligned}
G\left(x_{2}\right) & =\frac{1}{x_{2}} \int_{0}^{x_{2}} g(t) d t \geq \frac{1}{x_{2}}\left(\int_{0}^{x_{1}} g(t) d t+\left(x_{2}-x_{1}\right) g\left(x_{1}\right)\right) \\
& =\frac{1}{x_{2}}\left(\int_{0}^{x_{1}} g(t) d t+\frac{x_{2}-x_{1}}{x_{1}} x_{1} g\left(x_{1}\right)\right) \\
& \geq \frac{1}{x_{2}}\left(\int_{0}^{x_{1}} g(t) d t+\frac{x_{2}-x_{1}}{x_{1}} \int_{0}^{x_{1}} g(t) d t\right)=G\left(x_{1}\right)
\end{aligned}
$$

for any $0<x_{1}<x_{2} \leq 1$. Therefore, our claim is true.
Since $g, h$ are increasing on $[0,1]$ and they are real-valued, $g(0+)=\lim _{x \rightarrow 0+} g(x)$ and $h(0+)=$ $\lim _{x \rightarrow 0+} h(x)$ exists as a finite number. Notice that

$$
G(x)=\frac{1}{x} \int_{0}^{x} g(t) d t \geq \frac{1}{x} \int_{0}^{x} g(0+) d t=g(0+)
$$

This implies $G(0+)=\lim _{x \rightarrow 0+} G(x) \geq g(0+)$. However,

$$
x g(x) \geq \int_{0}^{x} g(t) d t \Longrightarrow g(x) \geq G(x) \Longrightarrow \lim _{x \rightarrow 0+} g(x) \geq \lim _{x \rightarrow 0+} G(x) \Longrightarrow g(0+) \geq G(0+)
$$

Therefore, $G(0+)=g(0+)$. Similarly, we can prove $H(0+)=h(0+)$. Therefore,

$$
\lim _{x \rightarrow 0+} F(x)=G(0+)-H(0+)=g(0+)-h(0+)=f(0+)
$$

This implies $F(0+)=\lim _{x \rightarrow 0+} F(x)$ exists as a finite number.

Extra Problem 7. Let $f(x)$ be real-valued on $[a, b]$, satisfying that for all $\epsilon>0, V_{a+\epsilon}^{b}(f) \leq M$, where $M$ is a constant. Prove that $f \in \mathrm{BV}([a, b])$.

First we prove $f(x)$ is bounded on $[a, b]$. We claim that there exists small $\epsilon_{0}>0$ s.t. $f$ is bounded on $\left[a, a+\epsilon_{0}\right]$. If not, then there exists $a_{n} \rightarrow a$ as $n \rightarrow \infty$ where $a_{n}>a$ is a sequence s.t. $f\left(a_{n}\right) \rightarrow \infty$. Since for all $n$,

$$
\sum_{k=2}^{\infty}\left|f\left(a_{k}\right)-f\left(a_{k-1}\right)\right| \geq f\left(a_{n}\right)-f\left(a_{1}\right) \rightarrow \infty
$$

there exists $K$ s.t. $\sum_{k=2}^{K}\left|f\left(a_{k}\right)-f\left(a_{k-1}\right)\right|>M$. There exists $\epsilon_{0}>0$ s.t. $a_{1}, \ldots, a_{K} \in\left[a+\epsilon_{0}, b\right]$. Then consider the partition $\Delta=\left\{a_{1}, \ldots, a_{K}\right\} \cup\left\{a+\epsilon_{0}, b\right\}$ of $\left[a+\epsilon_{0}, b\right], v_{\Delta} \geq \sum_{k=2}^{K}\left|f\left(a_{k}\right)-f\left(a_{k-1}\right)\right|>M$. This shows $V_{a+\epsilon_{0}}^{b} \geq v_{\Delta}>M$, which is a contradiction. Thus, there exists some $\epsilon_{0}>0$ s.t. $|f(x)| \leq N_{1}$ for $x \in\left[a, a+\epsilon_{0}\right]$.

Note that $V_{a+\epsilon_{0}}^{b} \leq M$, so by a basic fact in lecture, $f(x)$ is bounded on $\left[a+\epsilon_{0}, b\right]$, so denote $|f(x)| \leq N_{2}$. Then let $N=\max \left\{N_{1}, N_{2}\right\},|f(x)| \leq N$ for all $x \in[a, b]$. Then for any partition $\Delta=\left\{a, x_{1}, \ldots, x_{n}, b\right\}$ of $[a, b]$, take $\epsilon=x_{1}-a$, we have

$$
v_{\Delta}=\left|f(a)-f\left(x_{1}\right)\right|+\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right| \leq 2 N+V_{a+\epsilon}^{b}(f)<2 N+M
$$

Hence, by taking supremum over $\Delta$ on both sides, $V_{a}^{b}(f) \leq 2 N+M$, so $f \in \mathrm{BV}([a, b])$.

