MAT3006*: Real Analysis

Homework 14

24 i (116010114)

Due date: May. 15, 2020

In this assignment, whenever (a,b) and [a,b] are assumed, they are meant to be finite intervals.

Extra Problem 1. Let f(z) be continuous and increasing on [a,b]. Prove f € AC([a,b]) if and
only if for all € > 0, there exists § > 0 s.t. whenever E C (a,b), E € M, m(E) < §, we have
m*(f(E)) < e.

For “if” part, for any € > 0, consider any finite number of disjoint open interval (x1,y1), ..., (Zn, Yn)-
Take E = [J,_, (24, yx). By assumption, there exists § > 0s.t. m*(f(E)) < e if m(E) < ¢. However,

since (z,yx) are disjoint, f is increasing and continuous,

f(E) = U [k yw)) = U(f(xk)af(yk))

Thus, m(f(E)) = >._,(f(yx) — f(zx)) < € as long as m(E) = Y, _ (yx — xx) < 6. This shows
f € AC([a,b]).

For “only if” part, in fact we don’t need f to be increasing. Since f € AC([a,b]), for all € > 0,
there exists d s.t. for any disjoint open intervals (@1,y1), ..., (Tn,yn) With >0 (yr — xx) < 20, we
have >, _, |f(yx) — f(zx)| < €/2. For any E C (a,b), E € M, and m(E) < §, there exists an open
G C (a,b) s.t. G D E with m(G) < 24. Since G is open, we can write G = |J,_, (ax, by) with (ag, by,)
pairwise disjoint. Since f is continuous, it attains its maximum and minimum on each [ay,by]| at

M, and m,, respectively. Note that

m*(f(E)) <m(f(G)) =m (U f((ak;bk))) < ) _(f(My) = f(mi))

k=1
Observe that >~ (My, — my,) < D07, (b — ax) < 26, so for any finite n, we have Y ;_ (f(My) —
f(my)) < €/2. Take n — oo, we obtain

(oo}

ST(F(My) = fmi)) < ef2<e

k=1
This implies that m*(f(E)) < e.

Extra Problem 2. Let f € L'(a,b) and f: z" f(z) dz = 0 for all n > 0. Prove that f(z) =0 a.e.
on [a,b)].

First we prove if f(x) is continuous on [a,b], then the desired property holds. By Weierstrass

approximation theorem, there exists polynomials p, (z) s.t. p,(xz) — f(x) uniformly on [a,b]. Since



f(x) is continuous on compact set [a, b], it is bounded, and hence p,, f converges to f? uniformly on
[a,b]. Therefore,

b b
/ f*(z) dz = lim / pn(z)f(z) de =0

a n—oo a
where the last equality is due to linearity of integral and ff 2" f(z) dx = 0 for all n > 0. This
implies that f%(z) = 0 on [a,b], so f(z) = 0 everywhere on [a, b].

By Fact 4 of absolute continuity, F f f(t) dt is absolutely continuous because f(z) is

in L'(a,b). Obviously z" on a compact 1nterval [a,b] is Lipschitz, hence absolutely continuous.
Therefore, using integration by parts, we have

/bF( ) n 1 /bF( )d n+1 1 F( ) n+1 b 1
xT)x xr = x)ax = — xT)x —
a n+1/, n+1 a n+1

b
/ " f(2) do

By assumption, the second term is zero, and consider the first term,

1 F(x)xn+1 b — LF(b)bn+1 _ LF(a)an+1
n+1

a n+1 n+1
It is obvious that F(a) = 0, and also,

1 F(b)anrl _ pntl / f

n+1

by assumption. We can conclude that fab F(z)x™ dx =0 for n > 0.

Since F'(x) is continuous, by what we proved at the very beginning, F(x) = 0 everywhere on
[a,b]. This shows [ ¢ f(t) dt = 0 for any subinterval [c, d] of [a, b] because

/f ) dt = /f dt—/ft)dt F(d)—F(c)=0—-0=0

Now suppose f >0 on E C |[a, b} where m(E) > 0. Then we can always find a closed subset F' C E
s.t. m(F) > 0. This means [, f(t) dt > 0. Now let U = [a,b] \ F, since U is open in [a,b], it can

be written as disjoint union of open intervals in [a, b], i.e., U = |, (ax, b). Since f € L'(a,b), we

o:/a f(t)dt:;/akkf(t)dt+/Ff(t)dt:/Ff(t)dt>0

This leads to contradiction. Similarly, suppose f < 0 on F, we can obtain nearly the same contra-
diction. This shows f(t) = 0 a.e. on [a.b].

have

Extra Problem 3. Let f be increasing on [a, b], satisfying fab f'(z) de = f(b) — f(a). Prove that

f is absolutely continuous on [a, b].

Since f(x) is increasing, by Lebesgue’s differentiation theorem for monotone function, f’(x)
exists a.e. in (a,b) and for all a < x <y < b, [? f(t) dt < f(y) — f(z). Now suppose there exists

a < ' <y <bs.t. fy ) dt < f(y') — f(z). Slnce f is increasing on [a, '] and [y'b], we have
I f Ydt < f(a') — andf f/(t)dt < f(b) — f(y'). This implies
/ft)dt / it dt—f—/ ft)dt-i—/f
< f@) = fla) + f(y) — fl= - 1)
= /() - f(a)



This contradicts our assumption that fab f'(z) de = f(b) — f(a). Therefore, for all a < z < y < b,
[ f(t) dt = f(y) — f(z). For any finite number of disjoint open intervals (z1, 1), ..., (Zy, Yn)

contained in [a, b], we have
S 1) = Flaon)l = Y Fwn) = Flon) = [ 7 dt
k=1 k=1 Un=1(zx,yx)

Since f'(xz) > 0 a.e. on [a,b], we can see f' € L'(a,b), and so by absolute continuity of integral,
for any € > 0, there exists § > 0 s.t. fUZzl(fvmyk) f(t) dt < e when m(U}_,(xy,yx)) < 0. This is
equivalent to say > ,_, |f(yr)— f(xx)| < €if > p_ (yx—2%) < 0, and by definition, f(x) is absolutely

continuous on [a, b].

Extra Problem 4. Suppose f is differentiable on R and f, " € L'(R). Prove that [, f'(z) dz = 0.

We claim that there exists a sequence a,, — oo as n — oo s.t. |f(a,)| — 0. If such a,, does not

exist, then there exists K > 0 s.t. for any x > K, |f(z)| > C' > 0 for some constant C'. This implies

o

/R (@) dx > /K (@) dz = Om((K, )

which contradicts f € L'(R). Therefore, such sequence of a,, exists. Similarly, we can prove there

exists b, — —oco as n — oo s.t. |f(b,)] — 0. WLOG, assume a,, > b, for all n > 1.
Since f € L'(R) and |Ij, q,)(x) f'(z)] < |f(z)]; also Iy, a,1(x) f'(x) = f'(x) pointwisely on R
as n — 0o, we can apply DCT to obtain

@) do = Tim [ Ty, o) (@) (@) de= Tim [ f'(z)d
[ e = tm [ D@ @ e = i [ @) de

Since f is differentiable on R, we can see f is continuous on any closed bounded interval [a, b],
differentiable on (a, b), and f’ € L'(a,b). By Corollary 3, f € AC([a,b]) and f(z) = f(a)+ [, f'(t) dt
for all = € [a,b]. This implies that

lim f(z) de = lim (f(a,) — f(b,))=0—-0=0

n—r 00 n—oo
bn

This shows [, f'(x) dz = 0.

Extra Problem 5. Let f;(z) be increasing and absolutely continuous on [a, b] for all & > 1. Suppose

> ney fr(x) converges pointwise on [a, b]. Prove that Y ;- | fi(z) is absolutely continuous on [a, b].

Let f(z) = Y ;o fu(z), then f(z) is finite on [a,b]. Since each fj is increasing, f is also
increasing. To prove f € AC([a,b]), by Extra Problem 3, we only need to prove f: fl(x) de =
f(b)— f(a). By Fubini’s differentiation theorem, f’(z) = Y, f/.(z) a.e. on [a,b]. Take integration
on both sides,

b b oo
[ r@de= 3 i@ ds
@ ¢ k=1

Notice that f,(x) > 0 for all k& > 1, so using integration term by term (nonnegative version), we

[ nw dw=§;Lbfz<x> dr

@ k=1

have



Since fi(z) € AC([a,b]), by Fundamental Theorem of Calculus II,

Moo filw)de =D (fuld) = fla) =D fud) =D fula) = £(b) — f(a)

Thus, we proved that fab f'(x) de = f(b) — f(a), and so f € AC(]a,b]).

Extra Problem 6. Let £ € M be a subset of [0,1] s.t. there exists constant o > 0 satisfying
m(E N [a,b]) > a(b—a) for all 0 <a < b < 1. Prove that m(E) = 1.

Suppose m(E) < 1, then m(E¢) > 0 where E¢ = [0,1] \ E. For any = € (0,1), there exists
ho > 0 s.t. for all 0 < h < hg, (x — h,z+ h) C (0,1). By assumption, let a = x — h and b =z + h,

m(EN[z—h,z+h])
2h

>a>0, Vhe(0h)

Thus, by taking limit as A — 0+ on both sides,

m(E N[z — h,x+ h))
2h = M)

lim
h—0+

By Lebesgue density theorem,

. m(EnN(z—nh,x+h)) . m(EN(x—nh,z+h))
lim = lim
h—0+  m((z —h,x + h)) h—0+ 2h

=0 (2)

for almost all x € E°, so let A = {x € E°|(2) holds}, we have m(A) > 0. This implies we can find
x € AN (0,1), and for such z, (1) and (2) both holds, which is contradiction. Thus, m(FE) = 1.

Extra Problem 7. Let f be continuous on [a,b] and differentiable at every xz € (a,b) \ S, where S
is at most countable. Suppose f’(z) € L*(a,b). Prove that

f@ﬂzf@%+/xf@du Ve € [0, 1)

Recall the Theorem which says if f is continuous on [a,b] and f’ exists a.e. on (a,b) s.t.
[ € L'(a,b) and m(f(E)) =0 for any E C [a,b] with m(E) = 0, then (1) holds. In this question,
it suffices to show m(f(E)) = 0 for any E C [a,b] with m(E) = 0. Take any E with m(E) = 0,
since F = (F\ S)U(ENJS), we have f(E) = f(E\ S)U f(ENS). Notice that £ NS is at most
countable, f(ENYS) is also countable, so m(f(ENS)) = 0. By Lemma 1 in lecture, f is measurable
on [a,b] and f'(x) exists for all x € (E N (a,b)) \ S, then
m*(f((EN(a;0)\5)) S/ ()] d

(ENn(a,b))\S

Since f’ € L*(a,b) and m((EN(a,0))\S) =0, [ g @pns [/ (@) dz =0, so m(f((EN(a,b))\S)) = 0.
This shows m(f(F \ S)) = 0. Combined with m(f(EN.S)) =0, we have m(f(E)) = 0.

Extra Problem 8. Suppose f € AC([a,b]) and f(0) = 0. Prove that
[1r@r@la < 5 [ e e

4



Since f € AC([0,1]), by Fundamental Theorem of Calculus I, f’ € L'(0,1) and

+/Ox f(t) dt = /Ox f(t) dt

If (f'(z))? isnot in L'(0,1), i.e., || f'|lr2(0,1) = 00, then the desireed inequality holds trivially, because

f € AC([0,1]) implies f is bounded by some constant M on [0, 1], so

/|f z>|d:c<M/ e dx—M||f||Llol><oo—f/ dr

If f'(x) € L*(0,1), then by Cauchy Schwarz inequality,

wal<([re)”([rora) <t

Apply Cauchy Schwarz inequality again,

f@)] =

/f |dw<||f||Lz<01>/ Valf (@) da

< </01(ﬁ)2 dw)1/2
-5/ (@) da

Thus, we obtain the desired inequality.

1/2

(f (@) &) 1z

Extra Problem 9. Let {g;}7>; C AC([a,b]). Assume
e |g9i(x)| < F(z) a.e. on (a,b) for all k > 1, where F' € L'(a,b).
o there exists ¢ € [a, b] s.t. limy_, o gr(c) exists as a finite number.
o limy o g5 () exists and equal to some finite f(x) a.e. on (a,b).

Prove

(i) limg_ o0 gr(x) exists and equal to some finite g(z) for every = € [a,b].

For all x € [a,c], since g € AC([a,c]), by Fundamental Theorem of Calculus IT (FTC2), we

have

gr(c) — gr(x) = / 9, (t) dt

Take limit as k — oo on both sides, since |g,.(t)| < F(t) € L'(a,b), and g; — f a.e. on (a,b),

we can use DCT to obtain

lim [ g (t) dt = / F(t) dt

k—oc0 -

Since g, € AC([a,c]), g, € L'(a,c) and so f € L'(a, c) because DCT implies g, — f in L'(a,c)

and L' space is Banach. Since by assumption (ii), limy_,. gr(c) exists as finite number,

§(2) = lim gy(2) = lim gi(c) /f = lim gi(c /f ) di — /f

is a finite number.



Similarly, for € [, b], since g, € AC(]c, b]), by FTC2, we have
a@) - gu(c) = [ g0 de
Take limit as £ — oo on both sides, for the same reason we can use DCT to obtain
i (gu(e) — () = [ £(0)
— 00 c

By the same reason, limy_, .. gx(z) exists and

i) = Jim gu(a) = fim aute) + [ 10
is a finite number. Therefore, for every z € [a, b,

g(x) ifz € la, (|
g(x) ifx € e, b

g(x) = lim gx(x) =

where g(x) is well-defined because §(c) = g(c¢) = limy,_,o gr(c).

(ii) Show g € AC([a,b]) and ¢’ = f a.e. on (a,b).

Notice that limy_,o gx(c) and f f(t) dt is a finite constant, so it must be in AC([a, c]). Since
f e LYa,c), fa f(t) dt is in AC([a, c]) by using Fact 4 of absolute continuity, hence g(z) is in
AC([a,¢]). Similarly, g(z) € AC([c,b]). Furthermore, by FTC1, we can see §'(z) = f(z) a.e.
on [a,c] and §'(z) = f(z) a.e. on [c,b]. This shows that ¢'(x) = f(z) a.e. on [a,b].

To see g(z) is in AC([a, b]), for any disjoint open intervals (x1,41), ..., (2, y,) (in ascending
order), if some intervals contains ¢, then there exists unqiue interval, (zf,yx) that contains ¢
and (xy, yx) on left hand side of ¢ for k < K, on the right hand side of ¢ for k > K. Note that

Z l9(yr) — g(zi)| < Z 19(yk) — g(zi)| + |9(yx) — g(c)|
k=1

n

+1lg(c) —gle )+ > lalys) — glax)]

k=K+1

=D 19(k) = 9(@i)| + [9(yx) — 9(c)]

n

+19(e) = glzr)l + D 13(u) — 3lan)]

k=K+1
Since g € AC([a, c]), there exists a small §; s.t. for any finite number of disjoint open intervals
with total length less than d;, the total variation of § on them is less than €/2. Similarly, since
g € AC(]c,b]), for any finite number of disjoint open intervals with total length less than ds,
the total variation of § on them is less than €/2. Let § = min{d;,d}. Consider any disjoint
open intervals (z1,91), - .., (Tn,y,) (in ascending order) containing ¢, if -r_, (yx — 1) < 9,
then on [a, ¢], the total length of disjoint open intervals (z1,41),..., (Tx_1,Yrx_1), (T, ) is

obviously less than >";'_, (yx — %), hence less than §;, so we have

Z|g<yk 9(@n) + 19(yic) = 3(0)] < 5



Similarly, on [c, b], the total length of disjoint open intervals (¢, yx ), (Tx41, Y1) -+ (Tns Yn)

is less than Y, _, (yx — @), hence less than d,. This shows

n

9(e) = gler)l + Y 190n) — glen)] < 5
E=K+1

The above argument shows that >, _, [g(yx) — g(z)| < e.

If (z1,91), -, (%0, yn) (in ascending order) does not contain ¢, then there exists K s.t. (z1,¥1),

(T, yK) lies on LHS of ¢ and (Tx11,Yr+1),- -+ (Tn, yn) lies on RHS of ¢, then

n K n
> alue) = g(zi)l = latys) — d@e)l+ D 13(ys) — dla)]
k=1 k=1 k=K+1
Similarly, on [a,c]|, the total length of (z1,v1),...,(zk,yx) is obviously less than d;, so

S 19(u) — G| < £; on [c,b], the total length of (#x11,Yx41),-- -, (Tn, Yn) is less than
02, 50 D i1 19(yk) — glz)| < §. This shows >, [g(yx) — g(x)| < e. In conclusion, for
any € > 0, no matter (z1,41),...,(2,,y,) contains ¢ or not, we can find § s.t. as long as
S (g — 1) < 6, we have 327 |g(yx) — g()] < e. This shows g € AC([a, b]).

Extra Problem 10. Let f € BV([a,b]). Define v(z) = V.*(f). Prove that f € AC([a,b]) if and
only if v € AC({a, b)).

For “only if” part, if f € AC([a, b]), then by Fundamental Theorem of Calculus II, f' € L*(a,b)
and f(u) = f(a) —&—f; f(t) dt = f(a)+ g(u). Notice that v(z) = V*(f) =V (g) = fz |f/(t)] dt by a
theorem in lecture. However, since | f'| € L'(a,b), by Fact 4 of absolute continuity, v(z) € AC([a, b]).

For “if” part, given v € AC([a, b]), then for all € > 0, there exists § > 0 s.t. for all disjoint open
intervals (z1,y1), ..., (Tn, Yn) With Y7 (g — 2x) < 8, Yop_; [v(yk) — v(xk)| < e. However,

n

S 1Fk) = Fla) <D VI =D (VI = V) = foye) — v(ay)]

k=1

This implies that >, _, [f(yx) — f(zx)| <€, so f € AC([a,b)]).



