MAT3006＊：Real Analysis
 Homework 14

李肖鹏（116010114）

Due date：May．15， 2020
In this assignment，whenever (a, b) and $[a, b]$ are assumed，they are meant to be finite intervals．

Extra Problem 1．Let $f(x)$ be continuous and increasing on $[a, b]$ ．Prove $f \in \mathrm{AC}([a, b])$ if and only if for all $\epsilon>0$ ，there exists $\delta>0$ s．t．whenever $E \subset(a, b), E \in \mathcal{M}, m(E)<\delta$ ，we have $m^{*}(f(E))<\epsilon$ ．

For＂if＂part，for any $\epsilon>0$ ，consider any finite number of disjoint open interval $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ ． Take $E=\bigcup_{k=1}^{n}\left(x_{k}, y_{k}\right)$ ．By assumption，there exists $\delta>0$ s．t．$m^{*}(f(E))<\epsilon$ if $m(E)<\delta$ ．However， since $\left(x_{k}, y_{k}\right)$ are disjoint，f is increasing and continuous，

$$
f(E)=\bigcup_{k=1}^{n} f\left(\left(x_{k}, y_{k}\right)\right)=\bigcup_{k=1}^{n}\left(f\left(x_{k}\right), f\left(y_{k}\right)\right)
$$

Thus，$m(f(E))=\sum_{k=1}^{n}\left(f\left(y_{k}\right)-f\left(x_{k}\right)\right)<\epsilon$ as long as $m(E)=\sum_{k=1}^{n}\left(y_{k}-x_{k}\right)<\delta$ ．This shows $f \in \operatorname{AC}([a, b])$ ．

For＂only if＂part，in fact we don＇t need f to be increasing．Since $f \in \mathrm{AC}([a, b])$ ，for all $\epsilon>0$ ， there exists δ s．t．for any disjoint open intervals $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ with $\sum_{k=1}^{n}\left(y_{k}-x_{k}\right)<2 \delta$ ，we have $\sum_{k=1}^{n}\left|f\left(y_{k}\right)-f\left(x_{k}\right)\right|<\epsilon / 2$ ．For any $E \subset(a, b), E \in \mathcal{M}$ ，and $m(E)<\delta$ ，there exists an open $G \subset(a, b)$ s．t．$G \supset E$ with $m(G)<2 \delta$ ．Since G is open，we can write $G=\bigcup_{k=1}^{\infty}\left(a_{k}, b_{k}\right)$ with $\left(a_{k}, b_{k}\right)$ pairwise disjoint．Since f is continuous，it attains its maximum and minimum on each $\left[a_{k}, b_{k}\right]$ at M_{k} and m_{k} respectively．Note that

$$
m^{*}(f(E)) \leq m(f(G))=m\left(\bigcup_{k=1}^{\infty} f\left(\left(a_{k}, b_{k}\right)\right)\right) \leq \sum_{k=1}^{\infty}\left(f\left(M_{i}\right)-f\left(m_{i}\right)\right)
$$

Observe that $\sum_{k=1}^{\infty}\left(M_{k}-m_{k}\right) \leq \sum_{k=1}^{\infty}\left(b_{k}-a_{k}\right)<2 \delta$ ，so for any finite n ，we have $\sum_{k=1}^{n}\left(f\left(M_{k}\right)-\right.$ $\left.f\left(m_{k}\right)\right)<\epsilon / 2$ ．Take $n \rightarrow \infty$ ，we obtain

$$
\sum_{k=1}^{\infty}\left(f\left(M_{k}\right)-f\left(m_{k}\right)\right) \leq \epsilon / 2<\epsilon
$$

This implies that $m^{*}(f(E))<\epsilon$ ．
Extra Problem 2．Let $f \in L^{1}(a, b)$ and $\int_{a}^{b} x^{n} f(x) d x=0$ for all $n \geq 0$ ．Prove that $f(x)=0$ a．e． on $[a, b]$ ．

First we prove if $f(x)$ is continuous on $[a, b]$ ，then the desired property holds．By Weierstrass approximation theorem，there exists polynomials $p_{n}(x)$ s．t．$p_{n}(x) \rightarrow f(x)$ uniformly on $[a, b]$ ．Since
$f(x)$ is continuous on compact set $[a, b]$, it is bounded, and hence $p_{n} f$ converges to f^{2} uniformly on $[a, b]$. Therefore,

$$
\int_{a}^{b} f^{2}(x) d x=\lim _{n \rightarrow \infty} \int_{a}^{b} p_{n}(x) f(x) d x=0
$$

where the last equality is due to linearity of integral and $\int_{a}^{b} x^{n} f(x) d x=0$ for all $n \geq 0$. This implies that $f^{2}(x)=0$ on $[a, b]$, so $f(x)=0$ everywhere on $[a, b]$.

By Fact 4 of absolute continuity, $F(x)=\int_{a}^{x} f(t) d t$ is absolutely continuous because $f(x)$ is in $L^{1}(a, b)$. Obviously x^{n} on a compact interval $[a, b]$ is Lipschitz, hence absolutely continuous. Therefore, using integration by parts, we have

$$
\int_{a}^{b} F(x) x^{n} d x=\frac{1}{n+1} \int_{a}^{b} F(x) d x^{n+1}=\left.\frac{1}{n+1} F(x) x^{n+1}\right|_{a} ^{b}-\frac{1}{n+1} \int_{a}^{b} x^{n+1} f(x) d x
$$

By assumption, the second term is zero, and consider the first term,

$$
\left.\frac{1}{n+1} F(x) x^{n+1}\right|_{a} ^{b}=\frac{1}{n+1} F(b) b^{n+1}-\frac{1}{n+1} F(a) a^{n+1}
$$

It is obvious that $F(a)=0$, and also,

$$
\frac{1}{n+1} F(b) b^{n+1}=\frac{b^{n+1}}{n+1} \int_{a}^{b} f(t) d t=0
$$

by assumption. We can conclude that $\int_{a}^{b} F(x) x^{n} d x=0$ for $n \geq 0$.
Since $F(x)$ is continuous, by what we proved at the very beginning, $F(x)=0$ everywhere on $[a, b]$. This shows $\int_{c}^{d} f(t) d t=0$ for any subinterval $[c, d]$ of $[a, b]$ because

$$
\int_{c}^{d} f(t) d t=\int_{a}^{d} f(t) d t-\int_{a}^{c} f(t) d t=F(d)-F(c)=0-0=0
$$

Now suppose $f>0$ on $E \subset[a, b]$ where $m(E)>0$. Then we can always find a closed subset $F \subset E$ s.t. $m(F)>0$. This means $\int_{F} f(t) d t>0$. Now let $U=[a, b] \backslash F$, since U is open in $[a, b]$, it can be written as disjoint union of open intervals in $[a, b]$, i.e., $U=\bigcup_{k=1}^{\infty}\left(a_{k}, b_{k}\right)$. Since $f \in L^{1}(a, b)$, we have

$$
0=\int_{a}^{b} f(t) d t=\sum_{k=1}^{\infty} \int_{a_{k}}^{b_{k}} f(t) d t+\int_{F} f(t) d t=\int_{F} f(t) d t>0
$$

This leads to contradiction. Similarly, suppose $f<0$ on E, we can obtain nearly the same contradiction. This shows $f(t)=0$ a.e. on [a.b].

Extra Problem 3. Let f be increasing on $[a, b]$, satisfying $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Prove that f is absolutely continuous on $[a, b]$.

Since $f(x)$ is increasing, by Lebesgue's differentiation theorem for monotone function, $f^{\prime}(x)$ exists a.e. in (a, b) and for all $a \leq x<y \leq b, \int_{x}^{y} f(t) d t \leq f(y)-f(x)$. Now suppose there exists $a \leq x^{\prime}<y^{\prime} \leq b$ s.t. $\int_{x^{\prime}}^{y^{\prime}} f(t) d t<f\left(y^{\prime}\right)-f\left(x^{\prime}\right)$. Since f is increasing on $\left[a, x^{\prime}\right]$ and $\left[y^{\prime} b\right]$, we have $\int_{a}^{x^{\prime}} f^{\prime}(t) d t \leq f\left(x^{\prime}\right)-f(a)$ and $\int_{y^{\prime}}^{b} f^{\prime}(t) d t \leq f(b)-f\left(y^{\prime}\right)$. This implies

$$
\begin{aligned}
\int_{a}^{b} f^{\prime}(t) d t & =\int_{a}^{x^{\prime}} f^{\prime}(t) d t+\int_{x^{\prime}}^{y^{\prime}} f(t) d t+\int_{y^{\prime}}^{b} f^{\prime}(t) d t \\
& <f\left(x^{\prime}\right)-f(a)+f\left(y^{\prime}\right)-f\left(x^{\prime}\right)+f(b)-f\left(y^{\prime}\right) \\
& =f(b)-f(a)
\end{aligned}
$$

This contradicts our assumption that $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Therefore, for all $a \leq x<y \leq b$, $\int_{x}^{y} f(t) d t=f(y)-f(x)$. For any finite number of disjoint open intervals $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ contained in $[a, b]$, we have

$$
\sum_{k=1}^{n}\left|f\left(y_{k}\right)-f\left(x_{k}\right)\right|=\sum_{k=1}^{n} f\left(y_{k}\right)-f\left(x_{k}\right)=\int_{\bigcup_{k=1}^{n}\left(x_{k}, y_{k}\right)} f^{\prime}(t) d t
$$

Since $f^{\prime}(x) \geq 0$ a.e. on $[a, b]$, we can see $f^{\prime} \in L^{1}(a, b)$, and so by absolute continuity of integral, for any $\epsilon>0$, there exists $\delta>0$ s.t. $\int_{\bigcup_{k=1}^{n}\left(x_{k}, y_{k}\right)} f^{\prime}(t) d t<\epsilon$ when $m\left(\cup_{k=1}^{n}\left(x_{k}, y_{k}\right)\right)<\delta$. This is equivalent to say $\sum_{k=1}^{n}\left|f\left(y_{k}\right)-f\left(x_{k}\right)\right|<\epsilon$ if $\sum_{k=1}^{n}\left(y_{k}-x_{k}\right)<\delta$, and by definition, $f(x)$ is absolutely continuous on $[a, b]$.

Extra Problem 4. Suppose f is differentiable on \mathbb{R} and $f, f^{\prime} \in L^{1}(\mathbb{R})$. Prove that $\int_{\mathbb{R}} f^{\prime}(x) d x=0$.
We claim that there exists a sequence $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$ s.t. $\left|f\left(a_{n}\right)\right| \rightarrow 0$. If such a_{n} does not exist, then there exists $K>0$ s.t. for any $x>K,|f(x)| \geq C>0$ for some constant C. This implies

$$
\int_{\mathbb{R}}|f(x)| d x \geq \int_{K}^{\infty}|f(x)| d x \geq C m([K, \infty))=\infty
$$

which contradicts $f \in L^{1}(\mathbb{R})$. Therefore, such sequence of a_{n} exists. Similarly, we can prove there exists $b_{n} \rightarrow-\infty$ as $n \rightarrow \infty$ s.t. $\left|f\left(b_{n}\right)\right| \rightarrow 0$. WLOG, assume $a_{n} \geq b_{n}$ for all $n \geq 1$.

Since $f^{\prime} \in L^{1}(\mathbb{R})$ and $\left|I_{\left[b_{n}, a_{n}\right]}(x) f^{\prime}(x)\right| \leq\left|f^{\prime}(x)\right|$; also $I_{\left[b_{n}, a_{n}\right]}(x) f^{\prime}(x) \rightarrow f^{\prime}(x)$ pointwisely on \mathbb{R} as $n \rightarrow \infty$, we can apply DCT to obtain

$$
\int_{\mathbb{R}} f^{\prime}(x) d x=\lim _{n \rightarrow \infty} \int_{\mathbb{R}} I_{\left[b_{n}, a_{n}\right]}(x) f^{\prime}(x) d x=\lim _{n \rightarrow \infty} \int_{b_{n}}^{a_{n}} f^{\prime}(x) d x
$$

Since f is differentiable on \mathbb{R}, we can see f is continuous on any closed bounded interval $[a, b]$, differentiable on (a, b), and $f^{\prime} \in L^{1}(a, b)$. By Corollary $3, f \in \mathrm{AC}([a, b])$ and $f(x)=f(a)+\int_{a}^{x} f^{\prime}(t) d t$ for all $x \in[a, b]$. This implies that

$$
\lim _{n \rightarrow \infty} \int_{b_{n}}^{a_{n}} f^{\prime}(x) d x=\lim _{n \rightarrow \infty}\left(f\left(a_{n}\right)-f\left(b_{n}\right)\right)=0-0=0
$$

This shows $\int_{\mathbb{R}} f^{\prime}(x) d x=0$.

Extra Problem 5. Let $f_{k}(x)$ be increasing and absolutely continuous on $[a, b]$ for all $k \geq 1$. Suppose $\sum_{k=1}^{\infty} f_{k}(x)$ converges pointwise on $[a, b]$. Prove that $\sum_{k=1}^{\infty} f_{k}(x)$ is absolutely continuous on $[a, b]$.

Let $f(x)=\sum_{k=1}^{\infty} f_{k}(x)$, then $f(x)$ is finite on $[a, b]$. Since each f_{k} is increasing, f is also increasing. To prove $f \in \mathrm{AC}([a, b])$, by Extra Problem 3, we only need to prove $\int_{a}^{b} f^{\prime}(x) d x=$ $f(b)-f(a)$. By Fubini's differentiation theorem, $f^{\prime}(x)=\sum_{k=1}^{\infty} f_{k}^{\prime}(x)$ a.e. on $[a, b]$. Take integration on both sides,

$$
\int_{a}^{b} f^{\prime}(x) d x=\int_{a}^{b} \sum_{k=1}^{\infty} f_{k}^{\prime}(x) d x
$$

Notice that $f_{k}^{\prime}(x) \geq 0$ for all $k \geq 1$, so using integration term by term (nonnegative version), we have

$$
\int_{a}^{b} \sum_{k=1}^{\infty} f_{k}^{\prime}(x) d x=\sum_{k=1}^{\infty} \int_{a}^{b} f_{k}^{\prime}(x) d x
$$

Since $f_{k}(x) \in \mathrm{AC}([a, b])$, by Fundamental Theorem of Calculus II,

$$
\sum_{k=1}^{\infty} \int_{a}^{b} f_{k}^{\prime}(x) d x=\sum_{k=1}^{\infty}\left(f_{k}(b)-f_{k}(a)\right)=\sum_{k=1}^{\infty} f_{k}(b)-\sum_{k=1}^{\infty} f_{k}(a)=f(b)-f(a)
$$

Thus, we proved that $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$, and so $f \in \mathrm{AC}([a, b])$.

Extra Problem 6. Let $E \in \mathcal{M}$ be a subset of $[0,1]$ s.t. there exists constant $\alpha>0$ satisfying $m(E \cap[a, b]) \geq \alpha(b-a)$ for all $0 \leq a<b \leq 1$. Prove that $m(E)=1$.

Suppose $m(E)<1$, then $m\left(E^{c}\right)>0$ where $E^{c}=[0,1] \backslash E$. For any $x \in(0,1)$, there exists $h_{0}>0$ s.t. for all $0<h<h_{0},(x-h, x+h) \subset(0,1)$. By assumption, let $a=x-h$ and $b=x+h$,

$$
\frac{m(E \cap[x-h, x+h])}{2 h} \geq \alpha>0, \quad \forall h \in\left(0, h_{0}\right)
$$

Thus, by taking limit as $h \rightarrow 0+$ on both sides,

$$
\begin{equation*}
\lim _{h \rightarrow 0+} \frac{m(E \cap[x-h, x+h])}{2 h} \geq \alpha \tag{1}
\end{equation*}
$$

By Lebesgue density theorem,

$$
\begin{equation*}
\lim _{h \rightarrow 0+} \frac{m(E \cap(x-h, x+h))}{m((x-h, x+h))}=\lim _{h \rightarrow 0+} \frac{m(E \cap(x-h, x+h))}{2 h}=0 \tag{2}
\end{equation*}
$$

for almost all $x \in E^{c}$, so let $A=\left\{x \in E^{c} \mid(2)\right.$ holds $\}$, we have $m(A)>0$. This implies we can find $x \in A \cap(0,1)$, and for such $x,(1)$ and (2) both holds, which is contradiction. Thus, $m(E)=1$.

Extra Problem 7. Let f be continuous on $[a, b]$ and differentiable at every $x \in(a, b) \backslash S$, where S is at most countable. Suppose $f^{\prime}(x) \in L^{1}(a, b)$. Prove that

$$
\begin{equation*}
f(x)=f(a)+\int_{a}^{x} f^{\prime}(t) d t, \quad \forall x \in[a, b] \tag{1}
\end{equation*}
$$

Recall the Theorem which says if f is continuous on $[a, b]$ and f^{\prime} exists a.e. on (a, b) s.t. $f^{\prime} \in L^{1}(a, b)$ and $m(f(E))=0$ for any $E \subset[a, b]$ with $m(E)=0$, then (1) holds. In this question, it suffices to show $m(f(E))=0$ for any $E \subset[a, b]$ with $m(E)=0$. Take any E with $m(E)=0$, since $E=(E \backslash S) \cup(E \cap S)$, we have $f(E)=f(E \backslash S) \cup f(E \cap S)$. Notice that $E \cap S$ is at most countable, $f(E \cap S)$ is also countable, so $m(f(E \cap S))=0$. By Lemma 1 in lecture, f is measurable on $[a, b]$ and $f^{\prime}(x)$ exists for all $x \in(E \cap(a, b)) \backslash S$, then

$$
m^{*}(f((E \cap(a, b)) \backslash S)) \leq \int_{(E \cap(a, b)) \backslash S}\left|f^{\prime}(x)\right| d x
$$

Since $f^{\prime} \in L^{1}(a, b)$ and $m((E \cap(a, b)) \backslash S)=0, \int_{(E \cap(a, b)) \backslash S}\left|f^{\prime}(x)\right| d x=0$, so $m(f((E \cap(a, b)) \backslash S))=0$. This shows $m(f(E \backslash S))=0$. Combined with $m(f(E \cap S))=0$, we have $m(f(E))=0$.

Extra Problem 8. Suppose $f \in \mathrm{AC}([a, b])$ and $f(0)=0$. Prove that

$$
\int_{0}^{1}\left|f(x) f^{\prime}(x)\right| d x \leq \frac{1}{\sqrt{2}} \int_{0}^{1}\left(f^{\prime}(x)\right)^{2} d x
$$

Since $f \in \operatorname{AC}([0,1])$, by Fundamental Theorem of Calculus II, $f^{\prime} \in L^{1}(0,1)$ and

$$
f(x)=f(0)+\int_{0}^{x} f^{\prime}(t) d t=\int_{0}^{x} f^{\prime}(t) d t
$$

If $\left(f^{\prime}(x)\right)^{2}$ is not in $L^{1}(0,1)$, i.e., $\left\|f^{\prime}\right\|_{L^{2}(0,1)}=\infty$, then the desireed inequality holds trivially, because $f \in \mathrm{AC}([0,1])$ implies f is bounded by some constant M on $[0,1]$, so

$$
\int_{0}^{1}\left|f(x) f^{\prime}(x)\right| d x \leq M \int_{0}^{1}\left|f^{\prime}(x)\right| d x=M\left\|f^{\prime}\right\|_{L^{1}(0,1)}<\infty=\frac{1}{\sqrt{2}} \int_{0}^{1}\left(f^{\prime}(x)\right)^{2} d x
$$

If $f^{\prime}(x) \in L^{2}(0,1)$, then by Cauchy Schwarz inequality,

$$
|f(x)|=\left|\int_{0}^{x} f^{\prime}(t) d t\right| \leq\left(\int_{0}^{x} 1^{2} d t\right)^{1 / 2}\left(\int_{0}^{x}\left(f^{\prime}(t)\right)^{2} d t\right)^{1 / 2} \leq \sqrt{x}\left\|f^{\prime}\right\|_{L^{2}(0,1)}
$$

Apply Cauchy Schwarz inequality again,

$$
\begin{aligned}
\int_{0}^{1}\left|f(x) f^{\prime}(x)\right| d x & \leq\left\|f^{\prime}\right\|_{L^{2}(0,1)} \int_{0}^{1} \sqrt{x}\left|f^{\prime}(x)\right| d x \\
& \leq\left(\int_{0}^{1}(\sqrt{x})^{2} d x\right)^{1 / 2}\left(\int_{0}^{1}\left(f^{\prime}(x)\right)^{2} d x\right)^{1 / 2}\left\|f^{\prime}\right\|_{L^{2}(0,1)} \\
& =\frac{1}{\sqrt{2}} \int_{0}^{1}\left(f^{\prime}(x)\right)^{2} d x
\end{aligned}
$$

Thus, we obtain the desired inequality.

Extra Problem 9. Let $\left\{g_{k}\right\}_{k=1}^{\infty} \subset \mathrm{AC}([a, b])$. Assume

- $\left|g_{k}^{\prime}(x)\right| \leq F(x)$ a.e. on (a, b) for all $k \geq 1$, where $F \in L^{1}(a, b)$.
- there exists $c \in[a, b]$ s.t. $\lim _{k \rightarrow \infty} g_{k}(c)$ exists as a finite number.
- $\lim _{k \rightarrow \infty} g_{k}^{\prime}(x)$ exists and equal to some finite $f(x)$ a.e. on (a, b).

Prove

(i) $\lim _{k \rightarrow \infty} g_{k}(x)$ exists and equal to some finite $g(x)$ for every $x \in[a, b]$.

For all $x \in[a, c]$, since $g_{k} \in \mathrm{AC}([a, c])$, by Fundamental Theorem of Calculus II (FTC2), we have

$$
g_{k}(c)-g_{k}(x)=\int_{x}^{c} g_{k}^{\prime}(t) d t
$$

Take limit as $k \rightarrow \infty$ on both sides, since $\left|g_{k}^{\prime}(t)\right| \leq F(t) \in L^{1}(a, b)$, and $g_{k} \rightarrow f$ a.e. on (a, b), we can use DCT to obtain

$$
\lim _{k \rightarrow \infty} \int_{x}^{c} g_{k}^{\prime}(t) d t=\int_{x}^{c} f(t) d t
$$

Since $g_{k} \in \operatorname{AC}([a, c]), g_{k}^{\prime} \in L^{1}(a, c)$ and so $f \in L^{1}(a, c)$ because DCT implies $g_{k}^{\prime} \rightarrow f$ in $L^{1}(a, c)$ and L^{1} space is Banach. Since by assumption (ii), $\lim _{k \rightarrow \infty} g_{k}(c)$ exists as finite number,

$$
\hat{g}(x)=\lim _{k \rightarrow \infty} g_{k}(x)=\lim _{k \rightarrow \infty} g_{k}(c)-\int_{x}^{c} f(t) d t=\lim _{k \rightarrow \infty} g_{k}(c)+\int_{a}^{x} f(t) d t-\int_{a}^{c} f(t) d t
$$

is a finite number.

Similarly, for $x \in[c, b]$, since $g_{k} \in \mathrm{AC}([c, b])$, by FTC2, we have

$$
g_{k}(x)-g_{k}(c)=\int_{c}^{x} g_{k}^{\prime}(t) d t
$$

Take limit as $k \rightarrow \infty$ on both sides, for the same reason we can use DCT to obtain

$$
\lim _{k \rightarrow \infty}\left(g_{k}(x)-g_{k}(c)\right)=\int_{c}^{x} f(t) d t
$$

By the same reason, $\lim _{k \rightarrow \infty} g_{k}(x)$ exists and

$$
\tilde{g}(x)=\lim _{k \rightarrow \infty} g_{k}(x)=\lim _{k \rightarrow \infty} g_{k}(c)+\int_{c}^{x} f(t) d t
$$

is a finite number. Therefore, for every $x \in[a, b]$,

$$
g(x)=\lim _{k \rightarrow \infty} g_{k}(x)= \begin{cases}\hat{g}(x) & \text { if } x \in[a, c] \\ \tilde{g}(x) & \text { if } x \in[c, b]\end{cases}
$$

where $g(x)$ is well-defined because $\hat{g}(c)=\tilde{g}(c)=\lim _{k \rightarrow \infty} g_{k}(c)$.
(ii) Show $g \in \mathrm{AC}([a, b])$ and $g^{\prime}=f$ a.e. on (a, b).

Notice that $\lim _{k \rightarrow \infty} g_{k}(c)$ and $\int_{a}^{c} f(t) d t$ is a finite constant, so it must be in $\mathrm{AC}([a, c])$. Since $f \in L^{1}(a, c), \int_{a}^{x} f(t) d t$ is in $\mathrm{AC}([a, c])$ by using Fact 4 of absolute continuity, hence $\hat{g}(x)$ is in $\mathrm{AC}([a, c])$. Similarly, $\tilde{g}(x) \in \mathrm{AC}([c, b])$. Furthermore, by FTC1, we can see $\hat{g}^{\prime}(x)=f(x)$ a.e. on $[a, c]$ and $\tilde{g}^{\prime}(x)=f(x)$ a.e. on $[c, b]$. This shows that $g^{\prime}(x)=f(x)$ a.e. on $[a, b]$.

To see $g(x)$ is in $\mathrm{AC}([a, b])$, for any disjoint open intervals $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ (in ascending order), if some intervals contains c, then there exists unqiue interval, $\left(x_{K}, y_{K}\right)$ that contains c and $\left(x_{k}, y_{k}\right)$ on left hand side of c for $k<K$, on the right hand side of c for $k>K$. Note that

$$
\begin{aligned}
& \sum_{k=1}^{n}\left|g\left(y_{k}\right)-g\left(x_{k}\right)\right| \leq \sum_{k=1}^{K-1}\left|g\left(y_{k}\right)-g\left(x_{k}\right)\right|+\left|g\left(y_{K}\right)-g(c)\right| \\
& +\left|g(c)-g\left(x_{K}\right)\right|+\sum_{k=K+1}^{n}\left|g\left(y_{k}\right)-g\left(x_{k}\right)\right| \\
& =\sum_{k=1}^{K-1}\left|\hat{g}\left(y_{k}\right)-\hat{g}\left(x_{k}\right)\right|+\left|\hat{g}\left(y_{K}\right)-\hat{g}(c)\right| \\
& +\left|\tilde{g}(c)-\tilde{g}\left(x_{K}\right)\right|+\sum_{k=K+1}^{n}\left|\tilde{g}\left(y_{k}\right)-\tilde{g}\left(x_{k}\right)\right|
\end{aligned}
$$

Since $\hat{g} \in \mathrm{AC}([a, c])$, there exists a small δ_{1} s.t. for any finite number of disjoint open intervals with total length less than δ_{1}, the total variation of \hat{g} on them is less than $\epsilon / 2$. Similarly, since $\tilde{g} \in \mathrm{AC}([c, b])$, for any finite number of disjoint open intervals with total length less than δ_{2}, the total variation of \tilde{g} on them is less than $\epsilon / 2$. Let $\hat{\delta}=\min \left\{\delta_{1}, \delta_{2}\right\}$. Consider any disjoint open intervals $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ (in ascending order) containing c, if $\sum_{k=1}^{n}\left(y_{k}-x_{k}\right)<\hat{\delta}$, then on $[a, c]$, the total length of disjoint open intervals $\left(x_{1}, y_{1}\right), \ldots,\left(x_{K-1}, y_{K-1}\right),\left(x_{K}, c\right)$ is obviously less than $\sum_{k=1}^{n}\left(y_{k}-x_{k}\right)$, hence less than δ_{1}, so we have

$$
\sum_{k=1}^{K-1}\left|\hat{g}\left(y_{k}\right)-\hat{g}\left(x_{k}\right)\right|+\left|\hat{g}\left(y_{K}\right)-\hat{g}(c)\right|<\frac{\epsilon}{2}
$$

Similarly, on $[c, b]$, the total length of disjoint open intervals $\left(c, y_{K}\right),\left(x_{K+1}, y_{K+1}\right), \ldots,\left(x_{n}, y_{n}\right)$ is less than $\sum_{k=1}^{n}\left(y_{k}-x_{k}\right)$, hence less than δ_{2}. This shows

$$
\left|\tilde{g}(c)-\tilde{g}\left(x_{K}\right)\right|+\sum_{k=K+1}^{n}\left|\tilde{g}\left(y_{k}\right)-\tilde{g}\left(x_{k}\right)\right|<\frac{\epsilon}{2}
$$

The above argument shows that $\sum_{k=1}^{n}\left|g\left(y_{k}\right)-g\left(x_{k}\right)\right|<\epsilon$.
If $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ (in ascending order) does not contain c, then there exists K s.t. $\left(x_{1}, y_{1}\right)$, $\ldots,\left(x_{K}, y_{K}\right)$ lies on LHS of c and $\left(x_{K+1}, y_{K+1}\right), \ldots,\left(x_{n}, y_{n}\right)$ lies on RHS of c, then

$$
\sum_{k=1}^{n}\left|g\left(y_{k}\right)-g\left(x_{k}\right)\right|=\sum_{k=1}^{K}\left|\hat{g}\left(y_{k}\right)-\hat{g}\left(x_{k}\right)\right|+\sum_{k=K+1}^{n}\left|\tilde{g}\left(y_{k}\right)-\tilde{g}\left(x_{k}\right)\right|
$$

Similarly, on $[a, c]$, the total length of $\left(x_{1}, y_{1}\right), \ldots,\left(x_{K}, y_{K}\right)$ is obviously less than δ_{1}, so $\sum_{k=1}^{K}\left|\hat{g}\left(y_{k}\right)-\hat{g}\left(x_{k}\right)\right|<\frac{\epsilon}{2}$; on $[c, b]$, the total length of $\left(x_{K+1}, y_{K+1}\right), \ldots,\left(x_{n}, y_{n}\right)$ is less than δ_{2}, so $\sum_{k=K+1}^{n}\left|\tilde{g}\left(y_{k}\right)-\tilde{g}\left(x_{k}\right)\right|<\frac{\epsilon}{2}$. This shows $\sum_{k=1}^{n}\left|g\left(y_{k}\right)-g\left(x_{k}\right)\right|<\epsilon$. In conclusion, for any $\epsilon>0$, no matter $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ contains c or not, we can find $\hat{\delta}$ s.t. as long as $\sum_{k=1}^{n}\left(y_{k}-x_{k}\right)<\hat{\delta}$, we have $\sum_{k=1}^{n}\left|g\left(y_{k}\right)-g\left(x_{k}\right)\right|<\epsilon$. This shows $g \in \operatorname{AC}([a, b])$.

Extra Problem 10. Let $f \in \operatorname{BV}([a, b])$. Define $v(x)=V_{a}^{x}(f)$. Prove that $f \in \mathrm{AC}([a, b])$ if and only if $v \in \mathrm{AC}([a, b])$.

For "only if" part, if $f \in \mathrm{AC}([a, b])$, then by Fundamental Theorem of Calculus II, $f^{\prime} \in L^{1}(a, b)$ and $f(u)=f(a)+\int_{a}^{u} f^{\prime}(t) d t=f(a)+g(u)$. Notice that $v(x)=V_{a}^{x}(f)=V_{a}^{x}(g)=\int_{a}^{x}\left|f^{\prime}(t)\right| d t$ by a theorem in lecture. However, since $\left|f^{\prime}\right| \in L^{1}(a, b)$, by Fact 4 of absolute continuity, $v(x) \in \operatorname{AC}([a, b])$.

For "if" part, given $v \in \mathrm{AC}([a, b])$, then for all $\epsilon>0$, there exists $\delta>0$ s.t. for all disjoint open intervals $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ with $\sum_{k=1}^{n}\left(y_{k}-x_{k}\right)<\delta, \sum_{k=1}^{n}\left|v\left(y_{k}\right)-v\left(x_{k}\right)\right|<\epsilon$. However,

$$
\sum_{k=1}^{n}\left|f\left(y_{k}\right)-f\left(x_{k}\right)\right| \leq \sum_{k=1}^{n} V_{x_{k}}^{y_{k}}(f)=\sum_{k=1}^{n}\left(V_{a}^{y_{k}}-V_{a}^{x_{k}}\right)=\sum_{k=1}^{n}\left|v\left(y_{k}\right)-v\left(x_{k}\right)\right|
$$

This implies that $\sum_{k=1}^{n}\left|f\left(y_{k}\right)-f\left(x_{k}\right)\right|<\epsilon$, so $f \in \mathrm{AC}([a, b])$.

