
MAT3006∗: Real Analysis
Homework 14

李肖鹏 (116010114)

Due date: May. 15, 2020
In this assignment, whenever (a, b) and [a, b] are assumed, they are meant to be finite intervals.

Extra Problem 1. Let f(x) be continuous and increasing on [a, b]. Prove f ∈ AC([a, b]) if and
only if for all ϵ > 0, there exists δ > 0 s.t. whenever E ⊂ (a, b), E ∈ M, m(E) < δ, we have
m∗(f(E)) < ϵ.

For “if” part, for any ϵ > 0, consider any finite number of disjoint open interval (x1, y1), . . . , (xn, yn).
Take E =

∪n
k=1(xk, yk). By assumption, there exists δ > 0 s.t. m∗(f(E)) < ϵ if m(E) < δ. However,

since (xk, yk) are disjoint, f is increasing and continuous,

f(E) =
n∪

k=1

f((xk, yk)) =
n∪

k=1

(f(xk), f(yk))

Thus, m(f(E)) =
∑n

k=1(f(yk) − f(xk)) < ϵ as long as m(E) =
∑n

k=1(yk − xk) < δ. This shows
f ∈ AC([a, b]).

For “only if” part, in fact we don’t need f to be increasing. Since f ∈ AC([a, b]), for all ϵ > 0,
there exists δ s.t. for any disjoint open intervals (x1, y1), . . . , (xn, yn) with

∑n
k=1(yk − xk) < 2δ, we

have
∑n

k=1 |f(yk)− f(xk)| < ϵ/2. For any E ⊂ (a, b), E ∈ M, and m(E) < δ, there exists an open
G ⊂ (a, b) s.t. G ⊃ E with m(G) < 2δ. Since G is open, we can write G =

∪∞
k=1(ak, bk) with (ak, bk)

pairwise disjoint. Since f is continuous, it attains its maximum and minimum on each [ak, bk] at
Mk and mk respectively. Note that

m∗(f(E)) ≤ m(f(G)) = m

(
∞∪
k=1

f((ak, bk))

)
≤

∞∑
k=1

(f(Mi)− f(mi))

Observe that
∑∞

k=1(Mk −mk) ≤
∑∞

k=1(bk − ak) < 2δ, so for any finite n, we have
∑n

k=1(f(Mk) −
f(mk)) < ϵ/2. Take n → ∞, we obtain

∞∑
k=1

(f(Mk)− f(mk)) ≤ ϵ/2 < ϵ

This implies that m∗(f(E)) < ϵ.

Extra Problem 2. Let f ∈ L1(a, b) and
´ b

a
xnf(x) dx = 0 for all n ≥ 0. Prove that f(x) = 0 a.e.

on [a, b].

First we prove if f(x) is continuous on [a, b], then the desired property holds. By Weierstrass
approximation theorem, there exists polynomials pn(x) s.t. pn(x) → f(x) uniformly on [a, b]. Since
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f(x) is continuous on compact set [a, b], it is bounded, and hence pnf converges to f2 uniformly on
[a, b]. Therefore, ˆ b

a

f2(x) dx = lim
n→∞

ˆ b

a

pn(x)f(x) dx = 0

where the last equality is due to linearity of integral and
´ b

a
xnf(x) dx = 0 for all n ≥ 0. This

implies that f2(x) = 0 on [a, b], so f(x) = 0 everywhere on [a, b].

By Fact 4 of absolute continuity, F (x) =
´ x

a
f(t) dt is absolutely continuous because f(x) is

in L1(a, b). Obviously xn on a compact interval [a, b] is Lipschitz, hence absolutely continuous.
Therefore, using integration by parts, we haveˆ b

a

F (x)xn dx =
1

n+ 1

ˆ b

a

F (x)dxn+1 =
1

n+ 1
F (x)xn+1

∣∣∣b
a
− 1

n+ 1

ˆ b

a

xn+1f(x) dx

By assumption, the second term is zero, and consider the first term,
1

n+ 1
F (x)xn+1

∣∣∣b
a
=

1

n+ 1
F (b)bn+1 − 1

n+ 1
F (a)an+1

It is obvious that F (a) = 0, and also,

1

n+ 1
F (b)bn+1 =

bn+1

n+ 1

ˆ b

a

f(t) dt = 0

by assumption. We can conclude that
´ b

a
F (x)xn dx = 0 for n ≥ 0.

Since F (x) is continuous, by what we proved at the very beginning, F (x) = 0 everywhere on
[a, b]. This shows

´ d

c
f(t) dt = 0 for any subinterval [c, d] of [a, b] because

ˆ d

c

f(t) dt =

ˆ d

a

f(t) dt−
ˆ c

a

f(t) dt = F (d)− F (c) = 0− 0 = 0

Now suppose f > 0 on E ⊂ [a, b] where m(E) > 0. Then we can always find a closed subset F ⊂ E

s.t. m(F ) > 0. This means
´
F
f(t) dt > 0. Now let U = [a, b] \ F , since U is open in [a, b], it can

be written as disjoint union of open intervals in [a, b], i.e., U =
∪∞

k=1(ak, bk). Since f ∈ L1(a, b), we
have

0 =

ˆ b

a

f(t) dt =
∞∑
k=1

ˆ bk

ak

f(t) dt+

ˆ
F

f(t) dt =

ˆ
F

f(t) dt > 0

This leads to contradiction. Similarly, suppose f < 0 on E, we can obtain nearly the same contra-
diction. This shows f(t) = 0 a.e. on [a.b].

Extra Problem 3. Let f be increasing on [a, b], satisfying
´ b

a
f ′(x) dx = f(b) − f(a). Prove that

f is absolutely continuous on [a, b].

Since f(x) is increasing, by Lebesgue’s differentiation theorem for monotone function, f ′(x)

exists a.e. in (a, b) and for all a ≤ x < y ≤ b,
´ y

x
f(t) dt ≤ f(y) − f(x). Now suppose there exists

a ≤ x′ < y′ ≤ b s.t.
´ y′

x′ f(t) dt < f(y′) − f(x′). Since f is increasing on [a, x′] and [y′b], we have´ x′

a
f ′(t)dt ≤ f(x′)− f(a) and

´ b

y′ f
′(t)dt ≤ f(b)− f(y′). This implies

ˆ b

a

f ′(t) dt =

ˆ x′

a

f ′(t)dt+

ˆ y′

x′
f(t) dt+

ˆ b

y′
f ′(t)dt

< f(x′)− f(a) + f(y′)− f(x′) + f(b)− f(y′)

= f(b)− f(a)
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This contradicts our assumption that
´ b

a
f ′(x) dx = f(b) − f(a). Therefore, for all a ≤ x < y ≤ b,´ y

x
f(t) dt = f(y) − f(x). For any finite number of disjoint open intervals (x1, y1), . . . , (xn, yn)

contained in [a, b], we have
n∑

k=1

|f(yk)− f(xk)| =
n∑

k=1

f(yk)− f(xk) =

ˆ
∪n

k=1(xk,yk)

f ′(t) dt

Since f ′(x) ≥ 0 a.e. on [a, b], we can see f ′ ∈ L1(a, b), and so by absolute continuity of integral,
for any ϵ > 0, there exists δ > 0 s.t.

´∪n
k=1(xk,yk)

f ′(t) dt < ϵ when m(∪n
k=1(xk, yk)) < δ. This is

equivalent to say
∑n

k=1 |f(yk)−f(xk)| < ϵ if
∑n

k=1(yk−xk) < δ, and by definition, f(x) is absolutely
continuous on [a, b].

Extra Problem 4. Suppose f is differentiable on R and f, f ′ ∈ L1(R). Prove that
´
R f

′(x) dx = 0.

We claim that there exists a sequence an → ∞ as n → ∞ s.t. |f(an)| → 0. If such an does not
exist, then there exists K > 0 s.t. for any x > K, |f(x)| ≥ C > 0 for some constant C. This implies

ˆ
R
|f(x)| dx ≥

ˆ ∞

K

|f(x)| dx ≥ Cm([K,∞)) = ∞

which contradicts f ∈ L1(R). Therefore, such sequence of an exists. Similarly, we can prove there
exists bn → −∞ as n → ∞ s.t. |f(bn)| → 0. WLOG, assume an ≥ bn for all n ≥ 1.

Since f ′ ∈ L1(R) and |I[bn,an](x)f
′(x)| ≤ |f ′(x)|; also I[bn,an](x)f

′(x) → f ′(x) pointwisely on R
as n → ∞, we can apply DCT to obtain

ˆ
R
f ′(x) dx = lim

n→∞

ˆ
R
I[bn,an](x)f

′(x) dx = lim
n→∞

ˆ an

bn

f ′(x) dx

Since f is differentiable on R, we can see f is continuous on any closed bounded interval [a, b],
differentiable on (a, b), and f ′ ∈ L1(a, b). By Corollary 3, f ∈ AC([a, b]) and f(x) = f(a)+

´ x

a
f ′(t) dt

for all x ∈ [a, b]. This implies that

lim
n→∞

ˆ an

bn

f ′(x) dx = lim
n→∞

(f(an)− f(bn)) = 0− 0 = 0

This shows
´
R f

′(x) dx = 0.

Extra Problem 5. Let fk(x) be increasing and absolutely continuous on [a, b] for all k ≥ 1. Suppose∑∞
k=1 fk(x) converges pointwise on [a, b]. Prove that

∑∞
k=1 fk(x) is absolutely continuous on [a, b].

Let f(x) =
∑∞

k=1 fk(x), then f(x) is finite on [a, b]. Since each fk is increasing, f is also
increasing. To prove f ∈ AC([a, b]), by Extra Problem 3, we only need to prove

´ b

a
f ′(x) dx =

f(b)−f(a). By Fubini’s differentiation theorem, f ′(x) =
∑∞

k=1 f
′
k(x) a.e. on [a, b]. Take integration

on both sides, ˆ b

a

f ′(x) dx =

ˆ b

a

∞∑
k=1

f ′
k(x) dx

Notice that f ′
k(x) ≥ 0 for all k ≥ 1, so using integration term by term (nonnegative version), we

have ˆ b

a

∞∑
k=1

f ′
k(x) dx =

∞∑
k=1

ˆ b

a

f ′
k(x) dx
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Since fk(x) ∈ AC([a, b]), by Fundamental Theorem of Calculus II,
∞∑
k=1

ˆ b

a

f ′
k(x) dx =

∞∑
k=1

(fk(b)− fk(a)) =
∞∑
k=1

fk(b)−
∞∑
k=1

fk(a) = f(b)− f(a)

Thus, we proved that
´ b

a
f ′(x) dx = f(b)− f(a), and so f ∈ AC([a, b]).

Extra Problem 6. Let E ∈ M be a subset of [0, 1] s.t. there exists constant α > 0 satisfying
m(E ∩ [a, b]) ≥ α(b− a) for all 0 ≤ a < b ≤ 1. Prove that m(E) = 1.

Suppose m(E) < 1, then m(Ec) > 0 where Ec = [0, 1] \ E. For any x ∈ (0, 1), there exists
h0 > 0 s.t. for all 0 < h < h0, (x− h, x+ h) ⊂ (0, 1). By assumption, let a = x− h and b = x+ h,

m(E ∩ [x− h, x+ h])

2h
≥ α > 0, ∀h ∈ (0, h0)

Thus, by taking limit as h → 0+ on both sides,

lim
h→0+

m(E ∩ [x− h, x+ h])

2h
≥ α (1)

By Lebesgue density theorem,

lim
h→0+

m(E ∩ (x− h, x+ h))

m((x− h, x+ h))
= lim

h→0+

m(E ∩ (x− h, x+ h))

2h
= 0 (2)

for almost all x ∈ Ec, so let A = {x ∈ Ec | (2) holds}, we have m(A) > 0. This implies we can find
x ∈ A ∩ (0, 1), and for such x, (1) and (2) both holds, which is contradiction. Thus, m(E) = 1.

Extra Problem 7. Let f be continuous on [a, b] and differentiable at every x ∈ (a, b) \ S, where S

is at most countable. Suppose f ′(x) ∈ L1(a, b). Prove that

f(x) = f(a) +

ˆ x

a

f ′(t) dt, ∀x ∈ [a, b] (1)

Recall the Theorem which says if f is continuous on [a, b] and f ′ exists a.e. on (a, b) s.t.
f ′ ∈ L1(a, b) and m(f(E)) = 0 for any E ⊂ [a, b] with m(E) = 0, then (1) holds. In this question,
it suffices to show m(f(E)) = 0 for any E ⊂ [a, b] with m(E) = 0. Take any E with m(E) = 0,
since E = (E \ S) ∪ (E ∩ S), we have f(E) = f(E \ S) ∪ f(E ∩ S). Notice that E ∩ S is at most
countable, f(E ∩S) is also countable, so m(f(E ∩S)) = 0. By Lemma 1 in lecture, f is measurable
on [a, b] and f ′(x) exists for all x ∈ (E ∩ (a, b)) \ S, then

m∗(f((E ∩ (a, b)) \ S)) ≤
ˆ
(E∩(a,b))\S

|f ′(x)| dx

Since f ′ ∈ L1(a, b) and m((E∩(a, b))\S) = 0,
´
(E∩(a,b))\S |f ′(x)| dx = 0, so m(f((E∩(a, b))\S)) = 0.

This shows m(f(E \ S)) = 0. Combined with m(f(E ∩ S)) = 0, we have m(f(E)) = 0.

Extra Problem 8. Suppose f ∈ AC([a, b]) and f(0) = 0. Prove that
ˆ 1

0

|f(x)f ′(x)| dx ≤ 1√
2

ˆ 1

0

(f ′(x))2 dx
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Since f ∈ AC([0, 1]), by Fundamental Theorem of Calculus II, f ′ ∈ L1(0, 1) and

f(x) = f(0) +

ˆ x

0

f ′(t) dt =

ˆ x

0

f ′(t) dt

If (f ′(x))2 is not in L1(0, 1), i.e., ∥f ′∥L2(0,1) = ∞, then the desireed inequality holds trivially, because
f ∈ AC([0, 1]) implies f is bounded by some constant M on [0, 1], so

ˆ 1

0

|f(x)f ′(x)| dx ≤ M

ˆ 1

0

|f ′(x)| dx = M∥f ′∥L1(0,1) < ∞ =
1√
2

ˆ 1

0

(f ′(x))2 dx

If f ′(x) ∈ L2(0, 1), then by Cauchy Schwarz inequality,

|f(x)| =
∣∣∣∣ˆ x

0

f ′(t) dt

∣∣∣∣ ≤ (ˆ x

0

12 dt

)1/2(ˆ x

0

(f ′(t))2 dt

)1/2

≤
√
x∥f ′∥L2(0,1)

Apply Cauchy Schwarz inequality again,
ˆ 1

0

|f(x)f ′(x)| dx ≤ ∥f ′∥L2(0,1)

ˆ 1

0

√
x|f ′(x)| dx

≤
(ˆ 1

0

(
√
x)2 dx

)1/2(ˆ 1

0

(f ′(x))2 dx

)1/2

∥f ′∥L2(0,1)

=
1√
2

ˆ 1

0

(f ′(x))2 dx

Thus, we obtain the desired inequality.

Extra Problem 9. Let {gk}∞k=1 ⊂ AC([a, b]). Assume

• |g′k(x)| ≤ F (x) a.e. on (a, b) for all k ≥ 1, where F ∈ L1(a, b).

• there exists c ∈ [a, b] s.t. limk→∞ gk(c) exists as a finite number.

• limk→∞ g′k(x) exists and equal to some finite f(x) a.e. on (a, b).

Prove

(i) limk→∞ gk(x) exists and equal to some finite g(x) for every x ∈ [a, b].

For all x ∈ [a, c], since gk ∈ AC([a, c]), by Fundamental Theorem of Calculus II (FTC2), we
have

gk(c)− gk(x) =

ˆ c

x

g′k(t) dt

Take limit as k → ∞ on both sides, since |g′k(t)| ≤ F (t) ∈ L1(a, b), and gk → f a.e. on (a, b),
we can use DCT to obtain

lim
k→∞

ˆ c

x

g′k(t) dt =

ˆ c

x

f(t) dt

Since gk ∈ AC([a, c]), g′k ∈ L1(a, c) and so f ∈ L1(a, c) because DCT implies g′k → f in L1(a, c)

and L1 space is Banach. Since by assumption (ii), limk→∞ gk(c) exists as finite number,

ĝ(x) = lim
k→∞

gk(x) = lim
k→∞

gk(c)−
ˆ c

x

f(t) dt = lim
k→∞

gk(c) +

ˆ x

a

f(t) dt−
ˆ c

a

f(t) dt

is a finite number.
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Similarly, for x ∈ [c, b], since gk ∈ AC([c, b]), by FTC2, we have

gk(x)− gk(c) =

ˆ x

c

g′k(t) dt

Take limit as k → ∞ on both sides, for the same reason we can use DCT to obtain

lim
k→∞

(gk(x)− gk(c)) =

ˆ x

c

f(t) dt

By the same reason, limk→∞ gk(x) exists and

g̃(x) = lim
k→∞

gk(x) = lim
k→∞

gk(c) +

ˆ x

c

f(t) dt

is a finite number. Therefore, for every x ∈ [a, b],

g(x) = lim
k→∞

gk(x) =

ĝ(x) if x ∈ [a, c]

g̃(x) if x ∈ [c, b]

where g(x) is well-defined because ĝ(c) = g̃(c) = limk→∞ gk(c).

(ii) Show g ∈ AC([a, b]) and g′ = f a.e. on (a, b).

Notice that limk→∞ gk(c) and
´ c

a
f(t) dt is a finite constant, so it must be in AC([a, c]). Since

f ∈ L1(a, c),
´ x

a
f(t) dt is in AC([a, c]) by using Fact 4 of absolute continuity, hence ĝ(x) is in

AC([a, c]). Similarly, g̃(x) ∈ AC([c, b]). Furthermore, by FTC1, we can see ĝ′(x) = f(x) a.e.
on [a, c] and g̃′(x) = f(x) a.e. on [c, b]. This shows that g′(x) = f(x) a.e. on [a, b].

To see g(x) is in AC([a, b]), for any disjoint open intervals (x1, y1), . . . , (xn, yn) (in ascending
order), if some intervals contains c, then there exists unqiue interval, (xK , yK) that contains c

and (xk, yk) on left hand side of c for k < K, on the right hand side of c for k > K. Note that
n∑

k=1

|g(yk)− g(xk)| ≤
K−1∑
k=1

|g(yk)− g(xk)|+ |g(yK)− g(c)|

+ |g(c)− g(xK)|+
n∑

k=K+1

|g(yk)− g(xk)|

=
K−1∑
k=1

|ĝ(yk)− ĝ(xk)|+ |ĝ(yK)− ĝ(c)|

+ |g̃(c)− g̃(xK)|+
n∑

k=K+1

|g̃(yk)− g̃(xk)|

Since ĝ ∈ AC([a, c]), there exists a small δ1 s.t. for any finite number of disjoint open intervals
with total length less than δ1, the total variation of ĝ on them is less than ϵ/2. Similarly, since
g̃ ∈ AC([c, b]), for any finite number of disjoint open intervals with total length less than δ2,
the total variation of g̃ on them is less than ϵ/2. Let δ̂ = min{δ1, δ2}. Consider any disjoint
open intervals (x1, y1), . . . , (xn, yn) (in ascending order) containing c, if

∑n
k=1(yk − xk) < δ̂,

then on [a, c], the total length of disjoint open intervals (x1, y1), . . . , (xK−1, yK−1), (xK , c) is
obviously less than

∑n
k=1(yk − xk), hence less than δ1, so we have

K−1∑
k=1

|ĝ(yk)− ĝ(xk)|+ |ĝ(yK)− ĝ(c)| < ϵ

2
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Similarly, on [c, b], the total length of disjoint open intervals (c, yK), (xK+1, yK+1), . . . , (xn, yn)

is less than
∑n

k=1(yk − xk), hence less than δ2. This shows

|g̃(c)− g̃(xK)|+
n∑

k=K+1

|g̃(yk)− g̃(xk)| <
ϵ

2

The above argument shows that
∑n

k=1 |g(yk)− g(xk)| < ϵ.

If (x1, y1), . . . , (xn, yn) (in ascending order) does not contain c, then there exists K s.t. (x1, y1),
. . .,(xK , yK) lies on LHS of c and (xK+1, yK+1), . . . , (xn, yn) lies on RHS of c, then

n∑
k=1

|g(yk)− g(xk)| =
K∑

k=1

|ĝ(yk)− ĝ(xk)|+
n∑

k=K+1

|g̃(yk)− g̃(xk)|

Similarly, on [a, c], the total length of (x1, y1), . . . , (xK , yK) is obviously less than δ1, so∑K
k=1 |ĝ(yk) − ĝ(xk)| < ϵ

2
; on [c, b], the total length of (xK+1, yK+1), . . . , (xn, yn) is less than

δ2, so
∑n

k=K+1 |g̃(yk) − g̃(xk)| < ϵ
2
. This shows

∑n
k=1 |g(yk) − g(xk)| < ϵ. In conclusion, for

any ϵ > 0, no matter (x1, y1), . . . , (xn, yn) contains c or not, we can find δ̂ s.t. as long as∑n
k=1(yk − xk) < δ̂, we have

∑n
k=1 |g(yk)− g(xk)| < ϵ. This shows g ∈ AC([a, b]).

Extra Problem 10. Let f ∈ BV([a, b]). Define v(x) = V x
a (f). Prove that f ∈ AC([a, b]) if and

only if v ∈ AC([a, b]).

For “only if” part, if f ∈ AC([a, b]), then by Fundamental Theorem of Calculus II, f ′ ∈ L1(a, b)

and f(u) = f(a)+
´ u

a
f ′(t) dt = f(a)+ g(u). Notice that v(x) = V x

a (f) = V x
a (g) =

´ x

a
|f ′(t)| dt by a

theorem in lecture. However, since |f ′| ∈ L1(a, b), by Fact 4 of absolute continuity, v(x) ∈ AC([a, b]).

For “if” part, given v ∈ AC([a, b]), then for all ϵ > 0, there exists δ > 0 s.t. for all disjoint open
intervals (x1, y1), . . . , (xn, yn) with

∑n
k=1(yk − xk) < δ,

∑n
k=1 |v(yk)− v(xk)| < ϵ. However,

n∑
k=1

|f(yk)− f(xk)| ≤
n∑

k=1

V yk
xk

(f) =
n∑

k=1

(V yk
a − V xk

a ) =
n∑

k=1

|v(yk)− v(xk)|

This implies that
∑n

k=1 |f(yk)− f(xk)| < ϵ, so f ∈ AC([a, b]).
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