MAT3006*: Real Analysis

Homework 2

ZEHE IS (116010114)
Due date: Feb. 14, 2020

Page 34, Problem 8. Let B be the set of rational numbers in the interval [0, 1], and let {I;}}_,

be a finite collection of open intervals that covers B. Prove that Y ;_ m*(I}) > 1.

We first prove a lemma, i.e., vazl E;, = U;N:l E; for any finite N > 1. Since Ufil E; is a closed
set (finite union of closd set is closed) containing | J~ , E;, by definition of closure, .~ , E; ¢ UL, Ei.
If x € Uf\il E;, then z is a limit point of some Fj, thus it is a limit point of Ufil E;, which shows
x € Uf\il E;. Therefore, Ufil E; > Uf\il E; and the claim is proved.

Take a sequence of I’s that covers B, then B C U,ivzl I, Take closure on both sides yields
[0,1] C ngl I, = Ugil I;.. Therefore, m*([0,1]) < m*(UN_,T;) < 25:1 m*(I;). Since I;’s are open
interval, so m*(I,) = m*(I,) for all k = 1,..., N. This is sufficient to show > ,_ m*(I;) > 1.

Page 34, Problem 9. Prove that if m*(A) = 0, then m*(A U B) = m*(B).

Since B C AU B, by property 2 of outer measure, m*(B) < m*(AU B). By property 3 of outer
measure, m* (AU B) < m*(A) + m*(B) = m*(B). Thus, m*(AU B) = m*(B).

Page 34, Problem 10. Let A and B be bounded sets for which there is an a > 0 such that
la —b] > «a for all a € A,b € B. Prove that m*(AU B) = m*(A) + m*(B).

Foralla € A, let N(a;a/3) be open ball centered at a with radius /3, then G =, , N(a;a/3)
is open set containing A. Similarly, denote H = (J,.5 N (b;a/3), and it is also an open set contain-
ing B. Now we claim that GN H = &. If there exists ¢ € G N H, then there exists ap € A and
by € B such that |ag — ¢| < /3 and |by — ¢| < a/3. Consider

acA

2
|(10—b0| < ‘GQ—C|+|C—b0| <§C¥<Oé
which contradicts to |a —b| > « for all a € A and b € B. Therefore, by property 6 of outer measure,
m*(AU B) =m*(A) + m*(B).
Extra Problem 1. Let M denote the collection of all Lebesgue measurable sets. Prove that if

E € M, then E°¢ € M.

Since E is measurable, for all n € NT, there exists open set G, such that m*(G, \ E) < +.
Since F,, = G¢ is closed, by property 4 of Lebesgue measure, F,, € M. Let H = UZO:1 F,, then H



is measurable by property 3 of Lebesgue measure. Note that H C E, so let A = E°\ H, we tend
to show m*(A) = 0. This is true because for all k € N*, A = F°\ H C E°\ F, = E°\ G = G\ E,
which shows m*(A) < m*(Gy, \ E) < . Take k — oo, we conclude that m*(A) = 0. Then by
property 2 of Lebesgue measure, A € M, and by property 3 of Lebesgue measure, £ = AU H is

measurable.

Extra Problem 2. If £ € M, prove that for all € > 0, there exists closed subset F' C E such that
m*(E\F) <e.

By Extra Problem 1, £ € M, so for all € > 0, there exists an open set G such that G D E¢ and
m*(G \ E°) < e. Consider F' = G° is a closed set, and F' C E. Note that E\ F = E\ G° =G\ E°,
som*(E\ F)=m*(G\ E°) < e.

Extra Problem 3. If Ej, € M for k =1,2,..., prove that (,—, E € M.

If E;, € M for all k € NT, then by Extra Problem 1, Ff € M. Since Ef € M for all k € N*,
then by property 3 of Lebesgue measure, |J,-, Ef € M. By Extra Problem 1, (U2, Ef)¢ € M.
Since (Up2, E5)¢ = M2, B, we proved that (),—, B, € M.

Extra Problem 4. Let E, € M for k = 1,2,..., such that E, N E; = @ if kK # j. Prove that
m(Upl, By) = > pe, m(Ey).

We first prove a lemma, that is, if Cy, k = 1,..., K, are pairwise disjoint compact subsets
of R™, then m(UX_,Cy) = Zszl m(Cy). Suppose dist(C;,C;) = 0, then there exists a, € C; and
b, € C; such that d(a,,b,) — 0, where d is the metric function. Since C; x Cj is also compact,
d(x,y) defined on R"™ x R" is a continuous function, and continuous function on compact set attains
its infimum, so there exists a € C; and b € C; such that d(a,b) = 0. However, d(a,b) = 0 implies
that a = b, so C; N C; # @, contradiction. Therefore, dist(C;,C;) > 0. By remark of property 6
of outer measure, there exists open set G;,G; such that G; D C; and G; D C; and G; NG; = @.
By property 6 of outer measure, m*(C; U C;) = m*(C;) + m*(C;). Using induction, it is easy
to see m*(UE_,Cx) = 2% m*(Cy). Since compact set must be Lebesgue measurable, we obtain
m(Ui, Ck) = ZkK:1 m(Cy).

Then we prove the desired statement is true when all F}’s are bounded. By property 3 of outer
measure, m(Uy, Ey) < 220:1 m(E})). By Extra Problem 2, for all € > 0, there exists closed F}, C E,
such that m(Ey \ F}) < 57. Then it is obvious that for all £ > 1,

Take summation on left, middle and right from k£ =1,2,... K, we have
K K
Zm(Ek gz (Fy) + m(Ex \ Fy)) <€+Zka
k=1 k=1 k=1

Since Fy C Fj, and F}’s are pairwise disjoint compact set, Zszl m(Fy) = m(UE_ F,) < m(Use, Ey).
Take K — oo, we have Y~ m(Ey) < e+ m(U2 Ey). Take € — oo, Y=, m(Ey) < m(Up2, Ey).

Therefore, we proved the desired statement for bounded FE}’s.



For general F}’s, define B; as the open ball in R" centered at the origin with radius j for all
j € N* and set By = @. For 4,j € N*, define Ey; = Ex N (B; \ Bj_1), then Ej;’s are measurable,

pairwise disjoint and bounded. Therefore,

m (U Ek> =m U Ekj = Z m(Ekj) = Zm(Ek)

k,jeNt k=1 j=1 k=1

because E}, = Ujoil Eyj and m(Ey) = Zj’;l m(E}y;) because Ej;’s are pairwise disjoint and bounded.

Therefore, the general case is also proved.

Extra Problem 5. For all £, F € M such that F' C E, prove that m(E \ F) + m(F) = m(E).
Furthermore, if m(F) < oo, then m(E \ F) = m(E) — m(F).

By Extra Problem 4, set Fy = E\ F, E; = F, and Fy, = & for k > 3, then it is obvious that
E}’s are pairwise disjoint measurable set, so m(E;) + m(E;) = m(E, U Ey) = m(E), which shows
m(E\ F)4+m(F) =m(E). If m(F) < oo, then we can deduce a finite number m(F) on both sides
of the equation, and the equation still holds, i.e., m(E \ F) = m(E) — m(F).

Extra Problem 6. Supose E, € M forall k =1,2,..., prove

(1) fELCE,C---CE,C Eyiq C -+, then limy o m(Ek) = m(hmk_)oo Ek)

Let Fy = Ey, and F, = Ej \ Fx_q for all k& > 2. Then F}’s are pairwise disjoint for all
k=1,2,.... Since all E}’s are measurable, by Extra Problem 1, E;’s are measurable, and by

Extra Problem 3, F},’s are measurable. By Extra Problem 4, we have
(U)o (07 ==t Somir = (U = s i

Therefore, m(limy_,o Ex) = m (U, Ex) = lim, 0o m(E,).

(ii) If By D By D -+ D Ey D Ey1 D -+ and there exists kp > 1 such that m(Ey,) < oo, then

hmk_mo m(Ek) = m(hmk_)oo Ek>

WLOG, we only consider the smallest one among such ky and denote it as kg. Let F) =
Ey \ Exyq for k > kg, and denote E = Mie ko B = NMpZ1 Bk Then E, F}, for all k > kg are all
pairwise disjoint, and E,, \ E = U F,, for n > k. Since m(E},) is finite, m(U;2, F},) is also

finite for all n > ky. Hence,

m(E,) = m(E) +m (U Fk> =m(E)+ Y m(Fy) =m(E)+ Y m(F;) - z_: m(Fy)

. —1 PO . . . .
Since Y~ m(Fy) is increasing in n and Y7, m(F}) is finite, take n — oo, we have

nlg{)lo m(E,) =m(E) + Z m(Fy) — Z m(Fy) = m(E) =m (ﬁ Ek>

k=ko k=kq k=1

Therefore, lim,, oo m(E,) = m(lim, oo NP, Ex) = m(lim,, o Ey,).



(iii) Find a counter-example of (ii) if such k¢ in (ii) does not exist.

Let Ej, = [k, 00), then m(Ey) = oo for all k > 1, so such ko does not exist. It is obvious that

00 k
kILIr;O m(Eg) =00 #0=m() =m <ﬂ Ek> =m (leIEO QEZ> =m (klirglo Ek)

k=1

Therefore, (ii) is not true if such kg does not exist.

Extra Problem 7. Prove the Cantor set C' is Lebesgue measurable and m(C) = 0.

Notice that C' = (2, F) where F}’s satisfy F; D Fy D --- and since all F}, C [0, 1] are closed
set, m(Fy) < 1. Therefore, we can apply Extra Problem 6 (ii), that is,

m(C) =m (ﬁ Fk> =m <kh—>noloFk) = lerr;Om(Fk)
k=1

Since F}, consists of 2% disjoint closed intervals where each of the closed interval is of length 3%, we

conclude that m(C) = limy_,o0 (%)k =0.

Extra Problem 8. Let C}, be the Cantor-like set in HW1, Extra Problem 3. Prove that C}, € M

and compute m(C,).

Notice that C, = (,—, F where F}’s consist of 2" closed subintervals of equal length, and
since closed set are measurable and finite union of measurable sets is measurable, I}, € M for all
k > 1. By Extra Problem 3, C, = ,—, F;, € M.

By HW1, Extra Problem 3, the total length of all open intervals removed is equal to p—iQ. Since

_ p=3

every removed open intervals are disjoint, by o-additivity, m([0, 1]\ C;) = -25. Thus, m(C,) = 7=

for all p > 3, p integer.

Extra Problem 9. A subset of R" is said to be of F,-type if it is the countable union of closed
subsets of R"”. Similarly, a subset of R is said to be of Gs-type if it is the countable intersection of

open subsets of R™.

(i) Let {f.(x)}22, be continuous on R. Prove that {x € R| lim, . f.(x) > 0} is F,-type.

It is casy to see that {z € R| lim, _,  fu(z) > 0} = Upense {z € R| sup,,>; infsn fu(x) > £}
Furthermore, we have {z € R sup,,>; infy>m fo(2) > 1} = Upst Nusm iz € R fu(z) > 1}
Since f,(z) is continuous, {z € R| f,(x) > 1} is a closed set because [1,+00) is closed for all
k € N*. Therefore, we have {z € R|lim,_, fu(®) > 0} = Upcnt ment Fnk, Where F, =
Nusmiz € R| fu(z) > 1} is closed because it is the intersection of closed set. Therefore,

{r e R| lim,,_,_ fn(x) > 0} is F,-type.
(ii) Let f(z) be defined on R. Prove that {z € R| lim,_,, f(y) < oo} is Gs-type.

Define a function W(zx) on R as

W(z) =inf sup [f(y) - f(z)

6>0 y,2ENQ ()

4



where N (z) is the deleting neighborhood of z with radius . Then we claim that W (z) =

is equivalent to say lim,_,, f(y) = L < oo. If this is true, then

{xeR

Furthermore, consider

{xeR‘W(m)<Tll}— U {Ng’(x)

z,6>0

;Ln;f(y) }—{xeR|W F_ﬁ{xeRlW (z) < 1}

n

wplﬂw—ﬂm<l}

y,2ENZ () n

Note that LHS C RHS is obvious, and for u € RHS, there exists x, §y such that u € Ng (o).
Since u is an interior point of Ny (z¢), there exists d; such that Ng (u) C Ny (x0). This shows

W= sw |fo)-fEIS sw |f@)- @IS sw o 1fm) - fG) <

0>0y,2eNg (u) y,2ENG, (u) y,2ENG (u)

Therefore, u € LHS, which verifies the equality above. Since {x eR ‘ W(z) < £ } is the union
of open set, it is open. Hence, {x € R| lim,_,, f(y) < oo} is Gs-type because it is the countable

intersection of those open sets.

To prove our first claim, i.e.,

{xER

Note that by definition of function limit, it is easy to see LHS € RHS. Now consider x € RHS,
W(z) = 0. For u € RHS, we have for all € > 0, there exists § > 0, such that sup,, .c o) [/ () —
f(2)] < e. Consider =, — = and z,, < z, there exists N such that for all n > m > N,

limn () < o0 } = 2 € B W(a) = 0)

|f(zn)— f(zm)] < e. This shows f(x,) is a Cauchy sequence, hence convergent to L. Similarly,
for x, — x but x,, >z, f(x,) — L. Tt is not hard to see L' = L, so the left limit of f at z is

equal to the right limit, meaning that lim,_,, f(y) exists.

Extra Problem 10. Let F}, for kK € N* be nonempty closed subsets of R™ s.t. dist(zg, Fi) — 0o as
k — oo for a fixed point ¢ € R™. Prove that |, Fy = Up—; Fi-

The fact that m D Ui, Fy is trivial, so we only need to prove m C U, Fy. For
arbitrary « € Uy, Fy, if © ¢ ;" Fi, then there exists a sequence {z,} C U;~, Fy such that
x, — x. If all x,,’s lie in finitely many F}’s then there exists ko such that Fj, contains infinitely
many x,’s, i.e., there exists a subsequence of x,, denoted as x,,; such that for all j € N+, Ty, € Fly-
Note that z,;, — x, so x is a limit point of Fy,, but Fj, is closed, so x € Fy, C UZO:1 F}, which is a
contradiction to x ¢ U;il F},. This means all x,,’s cannot lie in finitely many F},’s, so there exists a
subsequence F}, of F} such that there exists at least one x,,; € Fj,. Then since dist(zg, Fr) — oo,

dist(zo, Fy,) — oo and thus d(zg, z,,) > dist(x, F,) — co. This is impossible because
d(x07 xnj) S d(-TOa I‘) + d(xv :Z:nj) - d(x07 1,’)

as j — oo, and d(zg, x) is a finite constant which cannot tend to infinity. This implies if z € U;il Fy,

we must have z € |, | Fy. Therefore, ;| F\, C Uy, Fi and we are done.



Extra Problem 11. Prove that i is in Cantor set C.

Notice that

|
wlo
_I_

\
_I_

| o
_I_

\
+
+

(¢

k=1

which shows that in the ternary expression, i = 0.020202- - -(3y. Notice that any number in [0, 1]

that only contains digits 0 and 2 under ternary system are in Cantor set, so i eC.

Another way to prove i € C' is by using the formula

—[0,1] \Tpl U (3k+1 3k3:2)

Suppose + ¢ C, then there exists n € N and k € N, k& < 3"~" — 1 such that § € (%, % )

Therefore, we have 12k + 4 < 3" < 12k 4+ 8, which means there are only three possible cases:
3" =12k +5, 3" = 12k + 6 and 3" = 12k + 7. However, 3" is an odd integer but 12k + 6 is even for
all k, so 3" # 12k + 6. Also, 3" =0 (mod 3), but 12k +5 =2 (mod 3) and 12k +7 =1 (mod 3),
so 3" #£ 12k + 5 and 3™ #£ 12k 4+ 7. Therefore, such n and k does not exist, which means i eC.

Extra Problem 12. Let £ C R with finite m*(E) > 0. Prove that Ya € (0, m*(FE)), there exists
A C E such that m*(A) = a.

Define f(r) = m*(EN(—r,r)), then we claim that f(0) =0, f(r) = m*(F) as r — oo and f(r)
is continuous on [0,00). If all of these claims are true, then by intermediate value theorem, for all
a € (0,m*(E)) there exists r > 0 such that f(r) = a and we can take A = EN(—r,r). Then A C E
and m*(A) = a.

Let us prove all those claims. First, it is trivial that f(0) = 0 because m*(@) = 0.
Second, by corollary of property 5 of outer measure, there exists a G5 set GG such that G D FE
and m(G) = m*(E), so

fry=m*(En(-r,r)) >m*(E) —m*(EN(—r,r))
>m*(E) —m*(GN(=r,r)) =m"(E)—m(GnN(—rr))

By Extra Problem 6 (ii), since m(G) = m*(E) < oo, m(G N (—n,n)) < oo for all n € Nt
ILm flr)= ILm f(n) > ILm [m*(E) —m(G N (—n,n))]
=m*(E)—m (G N lim (—n,n)c) =m*(E) —m(GNo)=m"(F)

n— o0

Since f(r) < m*(E) is trivial, we can conclude that f(r) — m*(E) as r — oc.
To prove the continuity, first it is obvious that f(ry) > f(rq) if 71 > ro. For all € > 0, fix any
ro € [0,00), take 0 = ¢/2, for all 0 < r — ry < §, we have

f(r) = fro) = m*(E 0 (=r,7)) = m"(EN (=70, 70))

<m*(EN(=r,—rg)) + m (EN(=ro,r9)) + m*(EN(ro,r)) —m*(E N (=ro,70))
=m*(EN(=r,—r)) + m*"(EN(ro,7)) <2(r—rg) <2§ <e



Combined with f(r) — f(r9) > 0, we can conclude that f(r) is right continuous at any point
ro € [0,00). Similarly, for all 0 < ro — r < §, we can prove 0 < f(rg) — f(r) < €, which means f(r)

is left continuous at any point ry € (0,00). Therefore, f(r) is continuous at [0, 00).

Extra Problem 13. Let Ay, A, C R™, A; C Ay, A1 € M, m(A;) = m*(As) < oo. Prove that
Ay e M.

By definition of outer measure, for all € > 0, there exists a collection of open rectangles {1,,}7°
such that m*(Az) +e > > 7 m*(I,). Since m(A;) = m*(A,) and I,,’s are measurable, we have
m(Ay)+e> > m(l,). Consider G =J._, I, D Ay D A, we have

m (G\ Ay)) <m(G\ A1) =m (U In> —m(4;) < Zm([n) - (Zm([n) —6) =€

where the first equality is because G' (open set) and A; are both measurable and the last equality is
because Y~ m(I,) is bounded above by m*(As) + € < oo. Therefore, we proved that for all € > 0,
there exists an open set G covering A, and m*(G \ As) < ¢, which means Ay € M.

Extra Problem 14. Prove that £ € M if and only if VI' C R, m*(T) = m*(T'NE)+m*(T'N E°).

We first prove the “only if” part. It is obvious that m*(T) < m*(TNE)+m*(TNE*). Again, by
corollary of property 5 of outer measure, there exists G5 set G such that G D T and m(G) = m*(T).
Notice that G = (GN E)U (G \ E), since G and E are measurable,

m*(T) =m(G) =m(GNE)+m(G\ E)>m"(TNE)+m"(T\E)
Therefore, m*(T) = m*(T' N E) + m*(T N E°).

Then we prove the “if” part. Note that £ = |J,-, E} where E, = E N B(0;k) for k € NT,
so we only need to prove Ej, € M. For each k € N and all ¢ > 0, there exists sequence of open
rectangles {I£}22 | such that m*(Ey) 4+ ¢ > > 0" m*(IF) > m* (U, I¥). Denote U, = |, I*
and Vi, = Uy N By, where By, = B(0; k). Note that Vj, is bounded and since Uy and By, are open, so is
Vi.. Now Vj, is open and Uy D Vi, D Ey, so we only need to prove m*(Vj \ Ej) < e. By assumption,

take T' = Vi, m*(Vi,) = m*(Vpx \ E) + m* (V. N E) < oc.
Notice that Vi, \ E = U, N B, N E€, and
Vi\ Ex = (U N By) N (ENBg) = (Uy,N B) N (E°U By)
= (U NByNE)U (U,NB,NB;)=Ux,NB,NE"
Therefore, m*(Vi, \ E) = m*(Vi \ Ex) and since Vy N E = Uy N Ey = Ej, we have m*(V}) =

m* (Vi \ Ex) +m*(Ex). Combined with m*(Ey)+e€ > m*(Uy) > m*(V}), we obtain m*(V \ Ex) < €.
Therefore E;, € M and thus F € M.

Extra Problem 15. Let A € M, B C R™ with m*(B) < oo. Prove m*(AU B) + m*(AN B) =
m*(A) + m*(B).



Since A € M, by Extra Problem 14, for all T C R, m*(T) = m*(T'N A) + m*(T N A°). Let
T = B and AU B, we have
m*(B) =m*(BNA)+m"(BnNA°) (1)

m*(AUB)=m*"(AUBNA)+m" (AU BN A°) =m*(A) + m* (BN A°) (2)
Since m*(B) < oo, m*(BN A°) < m*(B) < oo and m*(AN B) < m*(B) < o0, (2) — (1) yields
m (AU B) —m*(B) =m"(A) —m"(BNA) = m"(AUB)+m*(ANB) =m"(A) + m"(B)

Notice that add or subtract a finite number on both sides of a equation will not change the equality.

Extra Problem 16. Suppose m*(E) < co. If m*(E) = sup{m(F) | F C E, F closed}, then E € M.

By definition, for all n € NT, there exists F), closed and F,, C E such that m*(E) < m*(F,)+=.
Take F = J,°, F,, so F is measurable and m*(F) > m(F,). This impiles that m*(E) < m*(F)+ %
for all n € N*. Take n — oo, we have m*(E) < m*(F), and since m*(E) > m*(F) by F C E, we
have m*(F) = m*(F) = m(F'). Apply Extra Problem 13, since F' € M and m(F) = m*(F) < oo,
we conclude that £ € M.

Extra Problem 17. Prove that if E;, € M for k € N*.

Let F, = ﬂ;’;n Ey, then F, € M and they form an increasing sequence. By Extra Prob-
lem 6(i), m(UX, F,) = lim, oo m(F,). Also, for all & > n, m(F,) < m(Ey), so m(F,) <

infy>,, m(Ey). Therefore,

o ) = (U N E) = g, mif) < Jimg, Jof m(BL) = lim mi(E)
This shows m (lim,_, . Ey) < lim, , . m(Ey).

(ii) If there exists ko > 1 such that m (Ui‘;koEk) < oo, then m (H,HOO Ek) > limg 00 m(Ey).

Again, Let F, = [J,_, Ej, then F, € M and they form an decreasing sequence satisfying
that there exists ko such that m(Fj,) < oo. Therefore, by Extra Problem 6(ii), m(NS2, F,,) =
lim,, 00 m(F,). Since m(F,) > m(E}y) for all k > n, we have m(F),) > supy,, m(£y). Thus,

(i ) m(QkL_J E) S, () 2 Jim sup B = Jim m(E)

This shows m (mkﬁm Ek) > limy 00 m(Ey).

Extra Problem 18. Let E;, C [0,1], E, € M, m(Ey) = 1 for all k € N*. Prove m(N32, E}) = 1.
Since Ey C [0,1], Ex € M, for all k € N*, we have

m([0, 1]\ Ex) = m([0,1]) = m(Ex) = 1 —m(Ex) = 0



Consider
o0

m([0, 1\ M, Bx) = m(UFZ, ([0, 1]\ Eg)) Z ([0, 1]\ Ex) =0

Therefore, m([0, 1]\ N2, Ex) = 0 and we can prove m(N2, Ex) = m([0, 1]) —m([0, 1]\ N2, Ex) = 1.

Extra Problem 19. Let E; C [0,1], E; € M forall i =1,...,k, and Zle m(E;) >k — 1. Prove
that m(Nk_, E;) > 0.

Since E; € M and E; C [0,1] for all i = 1,...,k, we have

m([0, 1]\ E;) = m([0,1]) — m(E;) = 1 — m(E)

Suppose m(NF_, E;) = 0, then

E
Ea

=m([0,1] \ NE_, B;) = m(UE,([0,1]\ Ey)) Z ([0, 1\ E;) =k =) _ m(E;)

i=1 i=1
This shows that Zle m(E;) < k — 1 which is a contradiction to Zle m(E;) > k — 1. Therefore,
m(ﬁleﬂ) > 0.

Extra Problem 20. Let £ C R and define outer Jordan content of E by

N

J.(E) :inf{zm\

i=1

N
I; intervals, U I; D E}

=1

(i) Prove that J.(E) = J.(E).

It is obvious that J,(E) < J*(E) To show the converse, consider any I;’s such that G =
U,[f:l I, D E, it is easy to see G D E. Since G = Ufcvzl I;, by the lemma proved in Page 34,
Problem 8, and |I;| = |I;|, we can conclude that for each {I;}~_; such that Uf::l I, O FE,
we can find {I;}3°, such that U,IC\[:1 I, D E and Zszl |I| = Z,JCVZI |Ix|. This shows that
J.(E) > J.(E). Therefore, J,(E) = J.(E).

(ii) Find a countable set E' C [0,1] such that J.(E) = 1, and m*(E) = 0.

Consider the countable set E = [0,1] N Q. Since F is countable, we can enumerate E as
{gn}22,. For all € > 0, the set U = [J,~, (g, — €/2""!, ¢, + €/2"T1). Then U is obviously an

open set covering F, so
= e
(E)<m*(U) < — =
m*(E) <m™( )_3212” €

Take € — 0, we can conclude that m*(E) = 0. Since E = [0,1], by part (i), we have
J.(E) = J.(E) = J.([0,1]). Tt is obvious that J.([0,1]) < 1. Since intervals are rectangles
in one dimensional case, we can still apply Fact 2 of volume of rectangles, i.e., if [0,1] C
Uivzl Iy, then 1 < Zi\;l |I.|. By definition of infimum, for € > 0, there exists I;’s such that
J.([0,1]) + € > 25:1 |I] > 1. Therefore, take € — 0, we have J,([0,1]) > 1, which means
J.([0,1]) = 1. Therefore, E is a countable set such that J.(E) =1, and m*(E) = 0.



