
MAT3006∗: Real Analysis
Homework 2

李肖鹏 (116010114)

Due date: Feb. 14, 2020

Page 34, Problem 8. Let B be the set of rational numbers in the interval [0, 1], and let {Ik}nk=1

be a finite collection of open intervals that covers B. Prove that
∑n

k=1 m
∗(Ik) ≥ 1.

We first prove a lemma, i.e.,
∪N

i=1 Ei =
∪N

i=1 Ei for any finite N ≥ 1. Since
∪N

i=1 Ei is a closed
set (finite union of closd set is closed) containing

∪N
i=1 Ei, by definition of closure,

∪N
i=1 Ei ⊂

∪N
i=1 Ei.

If x ∈
∪N

i=1 Ei, then x is a limit point of some Ei, thus it is a limit point of
∪N

i=1 Ei, which shows
x ∈

∪N
i=1 Ei. Therefore,

∪N
i=1 Ei ⊃

∪N
i=1 Ei and the claim is proved.

Take a sequence of Ik’s that covers B, then B ⊂
∪N

k=1 Ik, Take closure on both sides yields
[0, 1] ⊂

∪N
k=1 Ik =

∪N
k=1 Ik. Therefore, m∗([0, 1]) ≤ m∗(∪N

k=1Ik) ≤
∑N

k=1 m
∗(Ik). Since Ik’s are open

interval, so m∗(Ik) = m∗(Ik) for all k = 1, . . . , N . This is sufficient to show
∑n

k=1 m
∗(Ik) ≥ 1.

Page 34, Problem 9. Prove that if m∗(A) = 0, then m∗(A ∪B) = m∗(B).

Since B ⊂ A∪B, by property 2 of outer measure, m∗(B) ≤ m∗(A∪B). By property 3 of outer
measure, m∗(A ∪B) ≤ m∗(A) +m∗(B) = m∗(B). Thus, m∗(A ∪B) = m∗(B).

Page 34, Problem 10. Let A and B be bounded sets for which there is an α > 0 such that
|a− b| ≥ α for all a ∈ A, b ∈ B. Prove that m∗(A ∪B) = m∗(A) +m∗(B).

For all a ∈ A, let N(a;α/3) be open ball centered at a with radius α/3, then G =
∪

a∈A N(a;α/3)

is open set containing A. Similarly, denote H =
∪

b∈B N(b;α/3), and it is also an open set contain-
ing B. Now we claim that G ∩ H = ∅. If there exists c ∈ G ∩ H, then there exists a0 ∈ A and
b0 ∈ B such that |a0 − c| < α/3 and |b0 − c| < α/3. Consider

|a0 − b0| ≤ |a0 − c|+ |c− b0| <
2

3
α < α

which contradicts to |a− b| ≥ α for all a ∈ A and b ∈ B. Therefore, by property 6 of outer measure,
m∗(A ∪B) = m∗(A) +m∗(B).

Extra Problem 1. Let M denote the collection of all Lebesgue measurable sets. Prove that if
E ∈ M, then Ec ∈ M.

Since E is measurable, for all n ∈ N+, there exists open set Gn such that m∗(Gn \ E) < 1
n

.
Since Fn = Gc

n is closed, by property 4 of Lebesgue measure, Fn ∈ M. Let H =
∪∞

n=1 Fn, then H
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is measurable by property 3 of Lebesgue measure. Note that H ⊂ Ec, so let A = Ec \H, we tend
to show m∗(A) = 0. This is true because for all k ∈ N+, A = Ec \H ⊂ Ec \Fk = Ec \Gc

k = Gk \E,
which shows m∗(A) ≤ m∗(Gk \ E) < 1

k
. Take k → ∞, we conclude that m∗(A) = 0. Then by

property 2 of Lebesgue measure, A ∈ M, and by property 3 of Lebesgue measure, Ec = A ∪H is
measurable.

Extra Problem 2. If E ∈ M, prove that for all ϵ > 0, there exists closed subset F ⊂ E such that
m∗(E \ F ) < ϵ.

By Extra Problem 1, Ec ∈ M, so for all ϵ > 0, there exists an open set G such that G ⊃ Ec and
m∗(G \Ec) < ϵ. Consider F = Gc is a closed set, and F ⊂ E. Note that E \ F = E \Gc = G \Ec,
so m∗(E \ F ) = m∗(G \ Ec) < ϵ.

Extra Problem 3. If Ek ∈ M for k = 1, 2, . . ., prove that
∩∞

k=1 Ek ∈ M.

If Ek ∈ M for all k ∈ N+, then by Extra Problem 1, Ec
k ∈ M. Since Ec

k ∈ M for all k ∈ N+,
then by property 3 of Lebesgue measure,

∪∞
k=1 E

c
k ∈ M. By Extra Problem 1, (∪∞

k=1E
c
k)

c ∈ M.
Since (∪∞

k=1E
c
k)

c = ∩∞
k=1Ek, we proved that

∩∞
k=1 Ek ∈ M.

Extra Problem 4. Let Ek ∈ M for k = 1, 2, . . ., such that Ek ∩ Ej = ∅ if k ̸= j. Prove that
m(∪∞

k=1Ek) =
∑∞

k=1 m(Ek).

We first prove a lemma, that is, if Ck, k = 1, . . . ,K, are pairwise disjoint compact subsets
of Rn, then m(∪K

k=1Ck) =
∑K

k=1 m(Ck). Suppose dist(Ci, Cj) = 0, then there exists an ∈ Ci and
bn ∈ Cj such that d(an, bn) → 0, where d is the metric function. Since Ci × Cj is also compact,
d(x, y) defined on Rn×Rn is a continuous function, and continuous function on compact set attains
its infimum, so there exists a ∈ Ci and b ∈ Cj such that d(a, b) = 0. However, d(a, b) = 0 implies
that a = b, so Ci ∩ Cj ̸= ∅, contradiction. Therefore, dist(Ci, Cj) > 0. By remark of property 6
of outer measure, there exists open set Gi, Gj such that Gi ⊃ Ci and Gj ⊃ Cj and Gi ∩ Gj = ∅.
By property 6 of outer measure, m∗(Ci ∪ Cj) = m∗(Ci) + m∗(Cj). Using induction, it is easy
to see m∗(∪K

k=1Ck) =
∑K

k=1 m
∗(Ck). Since compact set must be Lebesgue measurable, we obtain

m(∪K
k=1Ck) =

∑K
k=1 m(Ck).

Then we prove the desired statement is true when all Ek’s are bounded. By property 3 of outer
measure, m(∪∞

k=1Ek) ≤
∑∞

k=1 m(Ek). By Extra Problem 2, for all ϵ > 0, there exists closed Fk ⊂ Ek

such that m(Ek \ Fk) <
ϵ
2k

. Then it is obvious that for all k ≥ 1,

m(Ek) ≤ m(Fk) +m(Ek \ Fk) <
ϵ

2k
+m(Fk)

Take summation on left, middle and right from k = 1, 2, . . .K, we have
K∑

k=1

m(Ek) ≤
K∑

k=1

(m(Fk) +m(Ek \ Fk)) < ϵ+
K∑

k=1

m(Fk)

Since Fk ⊂ Ek and Fk’s are pairwise disjoint compact set,
∑K

k=1 m(Fk) = m(∪K
k=1Fk) ≤ m(∪∞

k=1Ek).
Take K → ∞, we have

∑∞
k=1 m(Ek) ≤ ϵ +m(∪∞

k=1Ek). Take ϵ → ∞,
∑∞

k=1 m(Ek) ≤ m(∪∞
k=1Ek).

Therefore, we proved the desired statement for bounded Ek’s.
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For general Ek’s, define Bj as the open ball in Rn centered at the origin with radius j for all
j ∈ N+ and set B0 = ∅. For i, j ∈ N+, define Ekj = Ek ∩ (Bj \ Bj−1), then Ekj ’s are measurable,
pairwise disjoint and bounded. Therefore,

m

(
∞∪
k=1

Ek

)
= m

 ∪
k,j∈N+

Ekj

 =
∞∑
k=1

∞∑
j=1

m(Ekj) =
∞∑
k=1

m(Ek)

because Ek =
∪∞

j=1 Ekj and m(Ek) =
∑∞

j=1 m(Ekj) because Ekj ’s are pairwise disjoint and bounded.
Therefore, the general case is also proved.

Extra Problem 5. For all E,F ∈ M such that F ⊂ E, prove that m(E \ F ) + m(F ) = m(E).
Furthermore, if m(F ) < ∞, then m(E \ F ) = m(E)−m(F ).

By Extra Problem 4, set E1 = E \ F , E2 = F , and Ek = ∅ for k ≥ 3, then it is obvious that
Ek’s are pairwise disjoint measurable set, so m(E1) +m(E2) = m(E1 ∪ E2) = m(E), which shows
m(E \ F ) +m(F ) = m(E). If m(F ) < ∞, then we can deduce a finite number m(F ) on both sides
of the equation, and the equation still holds, i.e., m(E \ F ) = m(E)−m(F ).

Extra Problem 6. Supose Ek ∈ M for all k = 1, 2, . . ., prove

(i) If E1 ⊂ E2 ⊂ · · · ⊂ Ek ⊂ Ek+1 ⊂ · · · , then limk→∞ m(Ek) = m(limk→∞ Ek).

Let F1 = E1, and Fk = Ek \ Ek−1 for all k ≥ 2. Then Fk’s are pairwise disjoint for all
k = 1, 2, . . .. Since all Ek’s are measurable, by Extra Problem 1, Ec

k’s are measurable, and by
Extra Problem 3, Fk’s are measurable. By Extra Problem 4, we have

m

(
∞∪
k=1

Ek

)
= m

(
∞∪
k=1

Fk

)
=

∞∑
k=1

m(Fk) = lim
n→∞

n∑
k=1

m(Fk) = lim
n→∞

m

(
n∪

k=1

Fk

)
= lim

n→∞
m(En)

Therefore, m(limk→∞ Ek) = m (
∪∞

k=1 Ek) = limn→∞ m(En).

(ii) If E1 ⊃ E2 ⊃ · · · ⊃ Ek ⊃ Ek+1 ⊃ · · · and there exists k0 ≥ 1 such that m(Ek0
) < ∞, then

limk→∞ m(Ek) = m(limk→∞ Ek).

WLOG, we only consider the smallest one among such k0 and denote it as k0. Let Fk =

Ek \ Ek+1 for k ≥ k0, and denote E = ∩∞
k=k0

Ek = ∩∞
k=1Ek. Then E,Fk for all k ≥ k0 are all

pairwise disjoint, and En \E = ∪∞
k=nFn for n ≥ k0. Since m(Ek0

) is finite, m(∪∞
k=nFn) is also

finite for all n ≥ k0. Hence,

m(En) = m(E) +m

(
∞∪

k=n

Fk

)
= m(E) +

∞∑
k=n

m(Fk) = m(E) +
∞∑

k=k0

m(Fk)−
n−1∑
k=k0

m(Fk)

Since
∑n−1

k=k0
m(Fk) is increasing in n and

∑∞
k=k0

m(Fk) is finite, take n → ∞, we have

lim
n→∞

m(En) = m(E) +
∞∑

k=k0

m(Fk)−
∞∑

k=k0

m(Fk) = m(E) = m

(
∞∩
k=1

Ek

)

Therefore, limn→∞ m(En) = m(limn→∞ ∩n
k=1Ek) = m(limn→∞ En).
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(iii) Find a counter-example of (ii) if such k0 in (ii) does not exist.

Let Ek = [k,∞), then m(Ek) = ∞ for all k ≥ 1, so such k0 does not exist. It is obvious that

lim
k→∞

m(Ek) = ∞ ̸= 0 = m(∅) = m

(
∞∩
k=1

Ek

)
= m

(
lim
k→∞

k∩
i=1

Ei

)
= m

(
lim
k→∞

Ek

)
Therefore, (ii) is not true if such k0 does not exist.

Extra Problem 7. Prove the Cantor set C is Lebesgue measurable and m(C) = 0.

Notice that C =
∩∞

k=1 Fk where Fk’s satisfy F1 ⊃ F2 ⊃ · · · and since all Fk ⊂ [0, 1] are closed
set, m(Fk) ≤ 1. Therefore, we can apply Extra Problem 6 (ii), that is,

m(C) = m

(
∞∩
k=1

Fk

)
= m

(
lim
k→∞

Fk

)
= lim

k→∞
m(Fk)

Since Fk consists of 2k disjoint closed intervals where each of the closed interval is of length 3−k, we
conclude that m(C) = limk→∞

(
2
3

)k
= 0.

Extra Problem 8. Let Cp be the Cantor-like set in HW1, Extra Problem 3. Prove that Cp ∈ M
and compute m(Cp).

Notice that Cp =
∩∞

k=1 Fk where Fk’s consist of 2n closed subintervals of equal length, and
since closed set are measurable and finite union of measurable sets is measurable, Fk ∈ M for all
k ≥ 1. By Extra Problem 3, Cp =

∩∞
k=1 Fk ∈ M.

By HW1, Extra Problem 3, the total length of all open intervals removed is equal to 1
p−2

. Since
every removed open intervals are disjoint, by σ-additivity, m([0, 1] \Cp) =

1
p−2

. Thus, m(Cp) =
p−3
p−2

for all p ≥ 3, p integer.

Extra Problem 9. A subset of Rn is said to be of Fσ-type if it is the countable union of closed
subsets of Rn. Similarly, a subset of Rn is said to be of Gδ-type if it is the countable intersection of
open subsets of Rn.

(i) Let {fn(x)}∞n=1 be continuous on R. Prove that {x ∈ R | limn→∞ fn(x) > 0} is Fσ-type.

It is easy to see that {x ∈ R | limn→∞ fn(x) > 0} =
∪

k∈N+{x ∈ R | supm≥1 infn≥m fn(x) ≥ 1
k
}.

Furthermore, we have {x ∈ R | supm≥1 infn≥m fn(x) ≥ 1
k
} =

∪
m≥1

∩
n≥m{x ∈ R | fn(x) ≥ 1

k
}.

Since fn(x) is continuous, {x ∈ R | fn(x) ≥ 1
k
} is a closed set because [ 1

k
,+∞) is closed for all

k ∈ N+. Therefore, we have {x ∈ R | limn→∞ fn(x) > 0} =
∪

k∈N+,m∈N+ Fm,k, where Fm,k =∩
n≥m{x ∈ R | fn(x) ≥ 1

k
} is closed because it is the intersection of closed set. Therefore,

{x ∈ R | limn→∞ fn(x) > 0} is Fσ-type.

(ii) Let f(x) be defined on R. Prove that {x ∈ R | limy→x f(y) < ∞} is Gδ-type.

Define a function W (x) on R as

W (x) = inf
δ>0

sup
y,z∈No

δ (x)

|f(y)− f(z)|
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where No
δ (x) is the deleting neighborhood of x with radius δ. Then we claim that W (x) = 0

is equivalent to say limy→x f(y) = L < ∞. If this is true, then{
x ∈ R

∣∣∣∣ lim
y→x

f(y) < ∞
}

= {x ∈ R |W (x) = 0} =
∞∩

n=1

{
x ∈ R |W (x) <

1

n

}
Furthermore, consider{

x ∈ R
∣∣∣∣W (x) <

1

n

}
=
∪

x,δ>0

{
No

δ (x)

∣∣∣∣∣ sup
y,z∈No

δ (x)

|f(y)− f(z)| < 1

n

}

Note that LHS ⊂ RHS is obvious, and for u ∈ RHS, there exists x0, δ0 such that u ∈ No
δ0
(x0).

Since u is an interior point of No
δ0
(x0), there exists δ1 such that No

δ1
(u) ⊂ No

δ0
(x0). This shows

W (u) = inf
δ>0

sup
y,z∈No

δ (u)

|f(y)− f(z)| ≤ sup
y,z∈No

δ1
(u)

|f(y)− f(z)| ≤ sup
y,z∈No

δ0
(u)

|f(y)− f(z)| < 1

n

Therefore, u ∈ LHS, which verifies the equality above. Since
{
x ∈ R

∣∣W (x) < 1
n

}
is the union

of open set, it is open. Hence, {x ∈ R | limy→x f(y) < ∞} is Gδ-type because it is the countable
intersection of those open sets.

To prove our first claim, i.e.,{
x ∈ R

∣∣∣∣ lim
y→x

f(y) < ∞
}

= {x ∈ R |W (x) = 0}

Note that by definition of function limit, it is easy to see LHS ⊂ RHS. Now consider x ∈ RHS,
W (x) = 0. For u ∈ RHS, we have for all ϵ > 0, there exists δ > 0, such that supy,z∈No

δ (x)
|f(y)−

f(z)| < ϵ. Consider xn → x and xn < x, there exists N such that for all n ≥ m > N ,
|f(xn)−f(xm)| < ϵ. This shows f(xn) is a Cauchy sequence, hence convergent to L. Similarly,
for xn → x but xn > x, f(xn) → L′. It is not hard to see L′ = L, so the left limit of f at x is
equal to the right limit, meaning that limy→x f(y) exists.

Extra Problem 10. Let Fk for k ∈ N+ be nonempty closed subsets of Rn s.t. dist(x0, Fk) → ∞ as
k → ∞ for a fixed point x0 ∈ Rn. Prove that

∪∞
k=1 Fk =

∪∞
k=1 Fk.

The fact that
∪∞

k=1 Fk ⊃
∪∞

k=1 Fk is trivial, so we only need to prove
∪∞

k=1 Fk ⊂
∪∞

k=1 Fk. For
arbitrary x ∈

∪∞
k=1 Fk, if x /∈

∪∞
k=1 Fk, then there exists a sequence {xn} ⊂

∪∞
k=1 Fk such that

xn → x. If all xn’s lie in finitely many Fk’s then there exists k0 such that Fk0
contains infinitely

many xn’s, i.e., there exists a subsequence of xn, denoted as xnj
such that for all j ∈ N+, xnj

∈ Fk0
.

Note that xnj
→ x, so x is a limit point of Fk0

, but Fk0
is closed, so x ∈ Fk0

⊂
∪∞

k=1 Fk which is a
contradiction to x /∈

∪∞
k=1 Fk. This means all xn’s cannot lie in finitely many Fk’s, so there exists a

subsequence Fkj
of Fk such that there exists at least one xnj

∈ Fkj
. Then since dist(x0, Fk) → ∞,

dist(x0, Fkj
) → ∞ and thus d(x0, xnj

) ≥ dist(x0, Fkj
) → ∞. This is impossible because

d(x0, xnj
) ≤ d(x0, x) + d(x, xnj

) → d(x0, x)

as j → ∞, and d(x0, x) is a finite constant which cannot tend to infinity. This implies if x ∈
∪∞

k=1 Fk,
we must have x ∈

∪∞
k=1 Fk. Therefore,

∪∞
k=1 Fk ⊂

∪∞
k=1 Fk and we are done.
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Extra Problem 11. Prove that 1
4

is in Cantor set C.

Notice that

1

4
=

0

3
+

2

32
+

0

33
+

2

34
+ · · ·+ 0

32k−1
+

2

32k
+ · · · =

∞∑
k=1

ak
3k

which shows that in the ternary expression, 1
4
= 0.020202 · · ·(3). Notice that any number in [0, 1]

that only contains digits 0 and 2 under ternary system are in Cantor set, so 1
4
∈ C.

Another way to prove 1
4
∈ C is by using the formula

C = [0, 1] \
∞∪

n=1

3n−1−1∪
k=0

(
3k + 1

3n
,
3k + 2

3n

)
Suppose 1

4
/∈ C, then there exists n ∈ N+ and k ∈ N, k ≤ 3n−1 − 1 such that 1

4
∈ ( 3k+1

3n
, 3k+2

3n
).

Therefore, we have 12k + 4 < 3n < 12k + 8, which means there are only three possible cases:
3n = 12k+5, 3n = 12k+6 and 3n = 12k+7. However, 3n is an odd integer but 12k+6 is even for
all k, so 3n ̸= 12k + 6. Also, 3n ≡ 0 (mod 3), but 12k + 5 ≡ 2 (mod 3) and 12k + 7 ≡ 1 (mod 3),
so 3n ̸= 12k + 5 and 3n ̸= 12k + 7. Therefore, such n and k does not exist, which means 1

4
∈ C.

Extra Problem 12. Let E ⊂ R with finite m∗(E) > 0. Prove that ∀ a ∈ (0,m∗(E)), there exists
A ⊂ E such that m∗(A) = a.

Define f(r) = m∗(E ∩ (−r, r)), then we claim that f(0) = 0, f(r) → m∗(E) as r → ∞ and f(r)

is continuous on [0,∞). If all of these claims are true, then by intermediate value theorem, for all
a ∈ (0,m∗(E)) there exists r > 0 such that f(r) = a and we can take A = E ∩ (−r, r). Then A ⊂ E

and m∗(A) = a.

Let us prove all those claims. First, it is trivial that f(0) = 0 because m∗(∅) = 0.
Second, by corollary of property 5 of outer measure, there exists a Gδ set G such that G ⊃ E

and m(G) = m∗(E), so

f(r) = m∗(E ∩ (−r, r)) ≥ m∗(E)−m∗(E ∩ (−r, r)c)

≥ m∗(E)−m∗(G ∩ (−r, r)c) = m∗(E)−m(G ∩ (−r, r)c)

By Extra Problem 6 (ii), since m(G) = m∗(E) < ∞, m(G ∩ (−n, n)) < ∞ for all n ∈ N+,

lim
r→∞

f(r) = lim
n→∞

f(n) ≥ lim
n→∞

[m∗(E)−m(G ∩ (−n, n)c)]

= m∗(E)−m
(
G ∩ lim

n→∞
(−n, n)c

)
= m∗(E)−m(G ∩∅) = m∗(E)

Since f(r) ≤ m∗(E) is trivial, we can conclude that f(r) → m∗(E) as r → ∞.
To prove the continuity, first it is obvious that f(r1) ≥ f(r2) if r1 ≥ r2. For all ϵ > 0, fix any

r0 ∈ [0,∞), take δ = ϵ/2, for all 0 < r − r0 < δ, we have

f(r)− f(r0) = m∗(E ∩ (−r, r))−m∗(E ∩ (−r0, r0))

≤ m∗(E ∩ (−r,−r0)) +m∗(E ∩ (−r0, r0)) +m∗(E ∩ (r0, r))−m∗(E ∩ (−r0, r0))

= m∗(E ∩ (−r,−r0)) +m∗(E ∩ (r0, r)) ≤ 2(r − r0) < 2δ < ϵ

6



Combined with f(r) − f(r0) ≥ 0, we can conclude that f(r) is right continuous at any point
r0 ∈ [0,∞). Similarly, for all 0 < r0 − r < δ, we can prove 0 ≤ f(r0)− f(r) < ϵ, which means f(r)

is left continuous at any point r0 ∈ (0,∞). Therefore, f(r) is continuous at [0,∞).

Extra Problem 13. Let A1, A2 ⊂ Rn, A1 ⊂ A2, A1 ∈ M, m(A1) = m∗(A2) < ∞. Prove that
A2 ∈ M.

By definition of outer measure, for all ϵ > 0, there exists a collection of open rectangles {In}∞n=1

such that m∗(A2) + ϵ >
∑∞

n=1 m
∗(In). Since m(A1) = m∗(A2) and In’s are measurable, we have

m(A1) + ϵ >
∑∞

n=1 m(In). Consider G =
∪∞

n=1 In ⊃ A2 ⊃ A1, we have

m∗(G \A2) ≤ m (G \A1) = m

(
∞∪

n=1

In

)
−m(A1) <

∞∑
n=1

m(In)−

(
∞∑

n=1

m(In)− ϵ

)
= ϵ

where the first equality is because G (open set) and A1 are both measurable and the last equality is
because

∑∞
n=1 m(In) is bounded above by m∗(A2)+ ϵ < ∞. Therefore, we proved that for all ϵ > 0,

there exists an open set G covering A2 and m∗(G \A2) < ϵ, which means A2 ∈ M.

Extra Problem 14. Prove that E ∈ M if and only if ∀T ⊂ Rn, m∗(T ) = m∗(T ∩E)+m∗(T ∩Ec).

We first prove the “only if” part. It is obvious that m∗(T ) ≤ m∗(T ∩E)+m∗(T ∩Ec). Again, by
corollary of property 5 of outer measure, there exists Gδ set G such that G ⊃ T and m(G) = m∗(T ).
Notice that G = (G ∩ E) ∪ (G \ E), since G and E are measurable,

m∗(T ) = m(G) = m(G ∩ E) +m(G \ E) ≥ m∗(T ∩ E) +m∗(T \ E)

Therefore, m∗(T ) = m∗(T ∩ E) +m∗(T ∩ Ec).

Then we prove the “if” part. Note that E =
∪∞

k=1 Ek where Ek = E ∩ B(0; k) for k ∈ N+,
so we only need to prove Ek ∈ M. For each k ∈ N+ and all ϵ > 0, there exists sequence of open
rectangles {Ikn}∞n=1 such that m∗(Ek) + ϵ >

∑∞
n=1 m

∗(Ikn) ≥ m∗ (∪∞
n=1 I

k
n

)
. Denote Uk =

∪∞
n=1 I

k
n

and Vk = Uk∩Bk where Bk = B(0; k). Note that Vk is bounded and since Uk and Bk are open, so is
Vk. Now Vk is open and Uk ⊃ Vk ⊃ Ek, so we only need to prove m∗(Vk \ Ek) < ϵ. By assumption,
take T = Vk, m∗(Vk) = m∗(Vk \ E) +m∗(Vk ∩ E) < ∞.

Notice that Vk \ E = Uk ∩Bk ∩ Ec, and

Vk \ Ek = (Uk ∩Bk) ∩ (E ∩Bk)
c = (Uk ∩Bk) ∩ (Ec ∪Bc

k)

= (Uk ∩Bk ∩ Ec) ∪ (Uk ∩Bk ∩Bc
k) = Uk ∩Bk ∩ Ec

Therefore, m∗(Vk \ E) = m∗(Vk \ Ek) and since Vk ∩ E = Uk ∩ Ek = Ek, we have m∗(Vk) =

m∗(Vk \Ek)+m∗(Ek). Combined with m∗(Ek)+ ϵ > m∗(Uk) ≥ m∗(Vk), we obtain m∗(Vk \Ek) < ϵ.
Therefore Ek ∈ M and thus E ∈ M.

Extra Problem 15. Let A ∈ M, B ⊂ Rn with m∗(B) < ∞. Prove m∗(A ∪ B) + m∗(A ∩ B) =

m∗(A) +m∗(B).
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Since A ∈ M, by Extra Problem 14, for all T ⊂ Rn, m∗(T ) = m∗(T ∩ A) +m∗(T ∩ Ac). Let
T = B and A ∪B, we have

m∗(B) = m∗(B ∩A) +m∗(B ∩Ac) (1)

m∗(A ∪B) = m∗(A ∪B ∩A) +m∗(A ∪B ∩Ac) = m∗(A) +m∗(B ∩Ac) (2)

Since m∗(B) < ∞, m∗(B ∩Ac) ≤ m∗(B) < ∞ and m∗(A ∩B) ≤ m∗(B) < ∞, (2)− (1) yields

m∗(A ∪B)−m∗(B) = m∗(A)−m∗(B ∩A) =⇒ m∗(A ∪B) +m∗(A ∩B) = m∗(A) +m∗(B)

Notice that add or subtract a finite number on both sides of a equation will not change the equality.

Extra Problem 16. Suppose m∗(E) < ∞. If m∗(E) = sup{m(F ) |F ⊂ E,F closed}, then E ∈ M.

By definition, for all n ∈ N+, there exists Fn closed and Fn ⊂ E such that m∗(E) < m∗(Fn)+
1
n

.
Take F =

∪∞
n=1 Fn, so F is measurable and m∗(F ) ≥ m(Fn). This impiles that m∗(E) < m∗(F )+ 1

n

for all n ∈ N+. Take n → ∞, we have m∗(E) ≤ m∗(F ), and since m∗(E) ≥ m∗(F ) by F ⊂ E, we
have m∗(E) = m∗(F ) = m(F ). Apply Extra Problem 13, since F ∈ M and m(F ) = m∗(E) < ∞,
we conclude that E ∈ M.

Extra Problem 17. Prove that if Ek ∈ M for k ∈ N+.

(i) m (limk→∞ Ek) ≤ limk→∞ m(Ek).

Let Fn =
∩∞

k=n Ek, then Fn ∈ M and they form an increasing sequence. By Extra Prob-
lem 6(i), m(∪∞

n=1Fn) = limn→∞ m(Fn). Also, for all k ≥ n, m(Fn) ≤ m(Ek), so m(Fn) ≤
infk≥n m(Ek). Therefore,

m

(
lim
k→∞

Ek

)
= m

(
∞∪

n=1

∞∩
k=n

Ek

)
= lim

n→∞
m(Fn) ≤ lim

n→∞
inf
k≥n

m(Ek) = lim
k→∞

m(Ek)

This shows m (limk→∞ Ek) ≤ limk→∞ m(Ek).

(ii) If there exists k0 ≥ 1 such that m
(
∪∞

k=k0
Ek

)
< ∞, then m

(
limk→∞ Ek

)
≥ limk→∞ m(Ek).

Again, Let Fn =
∪∞

k=n Ek, then Fn ∈ M and they form an decreasing sequence satisfying
that there exists k0 such that m(Fk0

) < ∞. Therefore, by Extra Problem 6(ii), m(∩∞
n=1Fn) =

limn→∞ m(Fn). Since m(Fn) ≥ m(Ek) for all k ≥ n, we have m(Fn) ≥ supk≥n m(Ek). Thus,

m
(

lim
k→∞

Ek

)
= m

(
∞∩

n=1

∞∪
k=n

Ek

)
= lim

n→∞
m(Fn) ≥ lim

n→∞
sup
k≥n

Ek = lim
k→∞

m(Ek)

This shows m
(
limk→∞ Ek

)
≥ limk→∞ m(Ek).

Extra Problem 18. Let Ek ⊂ [0, 1], Ek ∈ M, m(Ek) = 1 for all k ∈ N+. Prove m(∩∞
k=1Ek) = 1.

Since Ek ⊂ [0, 1], Ek ∈ M, for all k ∈ N+, we have

m([0, 1] \ Ek) = m([0, 1])−m(Ek) = 1−m(Ek) = 0
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Consider
m([0, 1] \ ∩∞

k=1Ek) = m(∪∞
k=1([0, 1] \ Ek)) ≤

∞∑
k=1

m([0, 1] \ Ek) = 0

Therefore, m([0, 1]\∩∞
k=1Ek) = 0 and we can prove m(∩∞

k=1Ek) = m([0, 1])−m([0, 1]\∩∞
k=1Ek) = 1.

Extra Problem 19. Let Ei ⊂ [0, 1], Ei ∈ M for all i = 1, . . . , k, and
∑k

i=1 m(Ei) > k − 1. Prove
that m(∩k

i=1Ei) > 0.

Since Ei ∈ M and Ei ⊂ [0, 1] for all i = 1, . . . , k, we have

m([0, 1] \ Ei) = m([0, 1])−m(Ei) = 1−m(Ei)

Suppose m(∩k
i=1Ei) = 0, then

1 = m([0, 1] \ ∩k
i=1Ei) = m(∪k

i=1([0, 1] \ Ei)) ≤
k∑

i=1

m([0, 1] \ Ei) = k −
k∑

i=1

m(Ei)

This shows that
∑k

i=1 m(Ei) ≤ k − 1 which is a contradiction to
∑k

i=1 m(Ei) > k − 1. Therefore,
m(∩k

i=1Ei) > 0.

Extra Problem 20. Let E ⊂ R and define outer Jordan content of E by

J∗(E) = inf
{

N∑
i=1

|Ii|

∣∣∣∣∣ Ii intervals,
N∪
i=1

Ii ⊃ E

}
(i) Prove that J∗(E) = J∗(Ē).

It is obvious that J∗(E) ≤ J∗(Ē). To show the converse, consider any Ik’s such that G =∪N
k=1 Ik ⊃ E, it is easy to see Ḡ ⊃ Ē. Since Ḡ =

∪N
k=1 Īk by the lemma proved in Page 34,

Problem 8, and |Ik| = |Īk|, we can conclude that for each {Ik}Nk=1 such that
∪N

k=1 Ik ⊃ E,
we can find {Īk}∞k=1 such that

∪N
k=1 Īk ⊃ Ē and

∑N
k=1 |Ik| =

∑N
k=1 |Īk|. This shows that

J∗(E) ≥ J∗(Ē). Therefore, J∗(E) = J∗(Ē).

(ii) Find a countable set E ⊂ [0, 1] such that J∗(E) = 1, and m∗(E) = 0.

Consider the countable set E = [0, 1] ∩ Q. Since E is countable, we can enumerate E as
{qn}∞n=1. For all ϵ > 0, the set U =

∪∞
n=1(qn − ϵ/2n+1, qn + ϵ/2n+1). Then U is obviously an

open set covering E, so

m∗(E) ≤ m∗(U) ≤
∞∑

n=1

ϵ

2n
= ϵ

Take ϵ → 0, we can conclude that m∗(E) = 0. Since Ē = [0, 1], by part (i), we have
J∗(E) = J∗(Ē) = J∗([0, 1]). It is obvious that J∗([0, 1]) ≤ 1. Since intervals are rectangles
in one dimensional case, we can still apply Fact 2 of volume of rectangles, i.e., if [0, 1] ⊂∪N

k=1 Ik, then 1 ≤
∑N

k=1 |Ik|. By definition of infimum, for ϵ > 0, there exists Ik’s such that
J∗([0, 1]) + ϵ >

∑N
k=1 |Ik| ≥ 1. Therefore, take ϵ → 0, we have J∗([0, 1]) ≥ 1, which means

J∗([0, 1]) = 1. Therefore, E is a countable set such that J∗(E) = 1, and m∗(E) = 0.
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