MAT3006＊：Real Analysis Homework 2

李肖鹏（116010114）

Due date：Feb．14， 2020
Page 34，Problem 8．Let B be the set of rational numbers in the interval $[0,1]$ ，and let $\left\{I_{k}\right\}_{k=1}^{n}$ be a finite collection of open intervals that covers B ．Prove that $\sum_{k=1}^{n} m^{*}\left(I_{k}\right) \geq 1$ ．

We first prove a lemma，i．e．，$\overline{\bigcup_{i=1}^{N} E_{i}}=\bigcup_{i=1}^{N} \overline{E_{i}}$ for any finite $N \geq 1$ ．Since $\bigcup_{i=1}^{N} \overline{E_{i}}$ is a closed set（finite union of closd set is closed）containing $\bigcup_{i=1}^{N} E_{i}$ ，by definition of closure，$\overline{\bigcup_{i=1}^{N} E_{i}} \subset \bigcup_{i=1}^{N} \overline{E_{i}}$ ． If $x \in \bigcup_{i=1}^{N} \overline{E_{i}}$ ，then x is a limit point of some E_{i} ，thus it is a limit point of $\bigcup_{i=1}^{N} E_{i}$ ，which shows $x \in \overline{\bigcup_{i=1}^{N} E_{i}}$ ．Therefore，$\overline{\bigcup_{i=1}^{N} E_{i}} \supset \bigcup_{i=1}^{N} \overline{E_{i}}$ and the claim is proved．

Take a sequence of I_{k}＇s that covers B ，then $B \subset \bigcup_{k=1}^{N} I_{k}$ ，Take closure on both sides yields $[0,1] \subset \overline{\bigcup_{k=1}^{N} I_{k}}=\bigcup_{k=1}^{N} \overline{I_{k}}$ ．Therefore，$m^{*}([0,1]) \leq m^{*}\left(\cup_{k=1}^{N} \overline{I_{k}}\right) \leq \sum_{k=1}^{N} m^{*}\left(\overline{I_{k}}\right)$ ．Since I_{k}＇s are open interval，so $m^{*}\left(I_{k}\right)=m^{*}\left(\overline{I_{k}}\right)$ for all $k=1, \ldots, N$ ．This is sufficient to show $\sum_{k=1}^{n} m^{*}\left(I_{k}\right) \geq 1$ ．

Page 34，Problem 9．Prove that if $m^{*}(A)=0$ ，then $m^{*}(A \cup B)=m^{*}(B)$ ．
Since $B \subset A \cup B$ ，by property 2 of outer measure，$m^{*}(B) \leq m^{*}(A \cup B)$ ．By property 3 of outer measure，$m^{*}(A \cup B) \leq m^{*}(A)+m^{*}(B)=m^{*}(B)$ ．Thus，$m^{*}(A \cup B)=m^{*}(B)$ ．

Page 34，Problem 10．Let A and B be bounded sets for which there is an $\alpha>0$ such that $|a-b| \geq \alpha$ for all $a \in A, b \in B$ ．Prove that $m^{*}(A \cup B)=m^{*}(A)+m^{*}(B)$ ．

For all $a \in A$ ，let $N(a ; \alpha / 3)$ be open ball centered at a with radius $\alpha / 3$ ，then $G=\bigcup_{a \in A} N(a ; \alpha / 3)$ is open set containing A ．Similarly，denote $H=\bigcup_{b \in B} N(b ; \alpha / 3)$ ，and it is also an open set contain－ ing B ．Now we claim that $G \cap H=\varnothing$ ．If there exists $c \in G \cap H$ ，then there exists $a_{0} \in A$ and $b_{0} \in B$ such that $\left|a_{0}-c\right|<\alpha / 3$ and $\left|b_{0}-c\right|<\alpha / 3$ ．Consider

$$
\left|a_{0}-b_{0}\right| \leq\left|a_{0}-c\right|+\left|c-b_{0}\right|<\frac{2}{3} \alpha<\alpha
$$

which contradicts to $|a-b| \geq \alpha$ for all $a \in A$ and $b \in B$ ．Therefore，by property 6 of outer measure， $m^{*}(A \cup B)=m^{*}(A)+m^{*}(B)$ ．

Extra Problem 1．Let \mathcal{M} denote the collection of all Lebesgue measurable sets．Prove that if $E \in \mathcal{M}$ ，then $E^{c} \in \mathcal{M}$ ．

Since E is measurable，for all $n \in \mathbb{N}^{+}$，there exists open set G_{n} such that $m^{*}\left(G_{n} \backslash E\right)<\frac{1}{n}$ ． Since $F_{n}=G_{n}^{c}$ is closed，by property 4 of Lebesgue measure，$F_{n} \in \mathcal{M}$ ．Let $H=\bigcup_{n=1}^{\infty} F_{n}$ ，then H
is measurable by property 3 of Lebesgue measure. Note that $H \subset E^{c}$, so let $A=E^{c} \backslash H$, we tend to show $m^{*}(A)=0$. This is true because for all $k \in \mathbb{N}^{+}, A=E^{c} \backslash H \subset E^{c} \backslash F_{k}=E^{c} \backslash G_{k}^{c}=G_{k} \backslash E$, which shows $m^{*}(A) \leq m^{*}\left(G_{k} \backslash E\right)<\frac{1}{k}$. Take $k \rightarrow \infty$, we conclude that $m^{*}(A)=0$. Then by property 2 of Lebesgue measure, $A \in \mathcal{M}$, and by property 3 of Lebesgue measure, $E^{c}=A \cup H$ is measurable.

Extra Problem 2. If $E \in \mathcal{M}$, prove that for all $\epsilon>0$, there exists closed subset $F \subset E$ such that $m^{*}(E \backslash F)<\epsilon$.

By Extra Problem 1, $E^{c} \in \mathcal{M}$, so for all $\epsilon>0$, there exists an open set G such that $G \supset E^{c}$ and $m^{*}\left(G \backslash E^{c}\right)<\epsilon$. Consider $F=G^{c}$ is a closed set, and $F \subset E$. Note that $E \backslash F=E \backslash G^{c}=G \backslash E^{c}$, so $m^{*}(E \backslash F)=m^{*}\left(G \backslash E^{c}\right)<\epsilon$.

Extra Problem 3. If $E_{k} \in \mathcal{M}$ for $k=1,2, \ldots$, prove that $\bigcap_{k=1}^{\infty} E_{k} \in \mathcal{M}$.
If $E_{k} \in \mathcal{M}$ for all $k \in \mathbb{N}^{+}$, then by Extra Problem $1, E_{k}^{c} \in \mathcal{M}$. Since $E_{k}^{c} \in \mathcal{M}$ for all $k \in \mathbb{N}^{+}$, then by property 3 of Lebesgue measure, $\bigcup_{k=1}^{\infty} E_{k}^{c} \in \mathcal{M}$. By Extra Problem 1, $\left(\cup_{k=1}^{\infty} E_{k}^{c}\right)^{c} \in \mathcal{M}$. Since $\left(\cup_{k=1}^{\infty} E_{k}^{c}\right)^{c}=\cap_{k=1}^{\infty} E_{k}$, we proved that $\bigcap_{k=1}^{\infty} E_{k} \in \mathcal{M}$.

Extra Problem 4. Let $E_{k} \in \mathcal{M}$ for $k=1,2, \ldots$, such that $E_{k} \cap E_{j}=\varnothing$ if $k \neq j$. Prove that $m\left(\cup_{k=1}^{\infty} E_{k}\right)=\sum_{k=1}^{\infty} m\left(E_{k}\right)$.

We first prove a lemma, that is, if $C_{k}, k=1, \ldots, K$, are pairwise disjoint compact subsets of \mathbb{R}^{n}, then $m\left(\cup_{k=1}^{K} C_{k}\right)=\sum_{k=1}^{K} m\left(C_{k}\right)$. Suppose $\operatorname{dist}\left(C_{i}, C_{j}\right)=0$, then there exists $a_{n} \in C_{i}$ and $b_{n} \in C_{j}$ such that $d\left(a_{n}, b_{n}\right) \rightarrow 0$, where d is the metric function. Since $C_{i} \times C_{j}$ is also compact, $d(x, y)$ defined on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ is a continuous function, and continuous function on compact set attains its infimum, so there exists $a \in C_{i}$ and $b \in C_{j}$ such that $d(a, b)=0$. However, $d(a, b)=0$ implies that $a=b$, so $C_{i} \cap C_{j} \neq \varnothing$, contradiction. Therefore, $\operatorname{dist}\left(C_{i}, C_{j}\right)>0$. By remark of property 6 of outer measure, there exists open set G_{i}, G_{j} such that $G_{i} \supset C_{i}$ and $G_{j} \supset C_{j}$ and $G_{i} \cap G_{j}=\varnothing$. By property 6 of outer measure, $m^{*}\left(C_{i} \cup C_{j}\right)=m^{*}\left(C_{i}\right)+m^{*}\left(C_{j}\right)$. Using induction, it is easy to see $m^{*}\left(\cup_{k=1}^{K} C_{k}\right)=\sum_{k=1}^{K} m^{*}\left(C_{k}\right)$. Since compact set must be Lebesgue measurable, we obtain $m\left(\cup_{k=1}^{K} C_{k}\right)=\sum_{k=1}^{K} m\left(C_{k}\right)$.

Then we prove the desired statement is true when all E_{k} 's are bounded. By property 3 of outer measure, $m\left(\cup_{k=1}^{\infty} E_{k}\right) \leq \sum_{k=1}^{\infty} m\left(E_{k}\right)$. By Extra Problem 2, for all $\epsilon>0$, there exists closed $F_{k} \subset E_{k}$ such that $m\left(E_{k} \backslash F_{k}\right)<\frac{\epsilon}{2^{k}}$. Then it is obvious that for all $k \geq 1$,

$$
m\left(E_{k}\right) \leq m\left(F_{k}\right)+m\left(E_{k} \backslash F_{k}\right)<\frac{\epsilon}{2^{k}}+m\left(F_{k}\right)
$$

Take summation on left, middle and right from $k=1,2, \ldots K$, we have

$$
\sum_{k=1}^{K} m\left(E_{k}\right) \leq \sum_{k=1}^{K}\left(m\left(F_{k}\right)+m\left(E_{k} \backslash F_{k}\right)\right)<\epsilon+\sum_{k=1}^{K} m\left(F_{k}\right)
$$

Since $F_{k} \subset E_{k}$ and F_{k} 's are pairwise disjoint compact set, $\sum_{k=1}^{K} m\left(F_{k}\right)=m\left(\cup_{k=1}^{K} F_{k}\right) \leq m\left(\cup_{k=1}^{\infty} E_{k}\right)$. Take $K \rightarrow \infty$, we have $\sum_{k=1}^{\infty} m\left(E_{k}\right) \leq \epsilon+m\left(\cup_{k=1}^{\infty} E_{k}\right)$. Take $\epsilon \rightarrow \infty, \sum_{k=1}^{\infty} m\left(E_{k}\right) \leq m\left(\cup_{k=1}^{\infty} E_{k}\right)$. Therefore, we proved the desired statement for bounded E_{k} 's.

For general E_{k} 's, define B_{j} as the open ball in \mathbb{R}^{n} centered at the origin with radius j for all $j \in \mathbb{N}^{+}$and set $B_{0}=\varnothing$. For $i, j \in \mathbb{N}^{+}$, define $E_{k j}=E_{k} \cap\left(B_{j} \backslash B_{j-1}\right)$, then $E_{k j}$'s are measurable, pairwise disjoint and bounded. Therefore,

$$
m\left(\bigcup_{k=1}^{\infty} E_{k}\right)=m\left(\bigcup_{k, j \in \mathbb{N}^{+}} E_{k j}\right)=\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} m\left(E_{k j}\right)=\sum_{k=1}^{\infty} m\left(E_{k}\right)
$$

because $E_{k}=\bigcup_{j=1}^{\infty} E_{k j}$ and $m\left(E_{k}\right)=\sum_{j=1}^{\infty} m\left(E_{k j}\right)$ because $E_{k j}$'s are pairwise disjoint and bounded. Therefore, the general case is also proved.

Extra Problem 5. For all $E, F \in \mathcal{M}$ such that $F \subset E$, prove that $m(E \backslash F)+m(F)=m(E)$. Furthermore, if $m(F)<\infty$, then $m(E \backslash F)=m(E)-m(F)$.

By Extra Problem 4, set $E_{1}=E \backslash F, E_{2}=F$, and $E_{k}=\varnothing$ for $k \geq 3$, then it is obvious that E_{k} 's are pairwise disjoint measurable set, so $m\left(E_{1}\right)+m\left(E_{2}\right)=m\left(E_{1} \cup E_{2}\right)=m(E)$, which shows $m(E \backslash F)+m(F)=m(E)$. If $m(F)<\infty$, then we can deduce a finite number $m(F)$ on both sides of the equation, and the equation still holds, i.e., $m(E \backslash F)=m(E)-m(F)$.

Extra Problem 6. Supose $E_{k} \in \mathcal{M}$ for all $k=1,2, \ldots$, prove
(i) If $E_{1} \subset E_{2} \subset \cdots \subset E_{k} \subset E_{k+1} \subset \cdots$, then $\lim _{k \rightarrow \infty} m\left(E_{k}\right)=m\left(\lim _{k \rightarrow \infty} E_{k}\right)$.

Let $F_{1}=E_{1}$, and $F_{k}=E_{k} \backslash E_{k-1}$ for all $k \geq 2$. Then F_{k} 's are pairwise disjoint for all $k=1,2, \ldots$. Since all E_{k} 's are measurable, by Extra Problem $1, E_{k}^{c}$'s are measurable, and by Extra Problem 3, F_{k} 's are measurable. By Extra Problem 4, we have
$m\left(\bigcup_{k=1}^{\infty} E_{k}\right)=m\left(\bigcup_{k=1}^{\infty} F_{k}\right)=\sum_{k=1}^{\infty} m\left(F_{k}\right)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} m\left(F_{k}\right)=\lim _{n \rightarrow \infty} m\left(\bigcup_{k=1}^{n} F_{k}\right)=\lim _{n \rightarrow \infty} m\left(E_{n}\right)$
Therefore, $m\left(\lim _{k \rightarrow \infty} E_{k}\right)=m\left(\bigcup_{k=1}^{\infty} E_{k}\right)=\lim _{n \rightarrow \infty} m\left(E_{n}\right)$.
(ii) If $E_{1} \supset E_{2} \supset \cdots \supset E_{k} \supset E_{k+1} \supset \cdots$ and there exists $k_{0} \geq 1$ such that $m\left(E_{k_{0}}\right)<\infty$, then $\lim _{k \rightarrow \infty} m\left(E_{k}\right)=m\left(\lim _{k \rightarrow \infty} E_{k}\right)$.

WLOG, we only consider the smallest one among such k_{0} and denote it as k_{0}. Let $F_{k}=$ $E_{k} \backslash E_{k+1}$ for $k \geq k_{0}$, and denote $E=\cap_{k=k_{0}}^{\infty} E_{k}=\cap_{k=1}^{\infty} E_{k}$. Then E, F_{k} for all $k \geq k_{0}$ are all pairwise disjoint, and $E_{n} \backslash E=\cup_{k=n}^{\infty} F_{n}$ for $n \geq k_{0}$. Since $m\left(E_{k_{0}}\right)$ is finite, $m\left(\cup_{k=n}^{\infty} F_{n}\right)$ is also finite for all $n \geq k_{0}$. Hence,

$$
m\left(E_{n}\right)=m(E)+m\left(\bigcup_{k=n}^{\infty} F_{k}\right)=m(E)+\sum_{k=n}^{\infty} m\left(F_{k}\right)=m(E)+\sum_{k=k_{0}}^{\infty} m\left(F_{k}\right)-\sum_{k=k_{0}}^{n-1} m\left(F_{k}\right)
$$

Since $\sum_{k=k_{0}}^{n-1} m\left(F_{k}\right)$ is increasing in n and $\sum_{k=k_{0}}^{\infty} m\left(F_{k}\right)$ is finite, take $n \rightarrow \infty$, we have

$$
\lim _{n \rightarrow \infty} m\left(E_{n}\right)=m(E)+\sum_{k=k_{0}}^{\infty} m\left(F_{k}\right)-\sum_{k=k_{0}}^{\infty} m\left(F_{k}\right)=m(E)=m\left(\bigcap_{k=1}^{\infty} E_{k}\right)
$$

Therefore, $\lim _{n \rightarrow \infty} m\left(E_{n}\right)=m\left(\lim _{n \rightarrow \infty} \cap_{k=1}^{n} E_{k}\right)=m\left(\lim _{n \rightarrow \infty} E_{n}\right)$.
(iii) Find a counter-example of (ii) if such k_{0} in (ii) does not exist.

Let $E_{k}=[k, \infty)$, then $m\left(E_{k}\right)=\infty$ for all $k \geq 1$, so such k_{0} does not exist. It is obvious that

$$
\lim _{k \rightarrow \infty} m\left(E_{k}\right)=\infty \neq 0=m(\varnothing)=m\left(\bigcap_{k=1}^{\infty} E_{k}\right)=m\left(\lim _{k \rightarrow \infty} \bigcap_{i=1}^{k} E_{i}\right)=m\left(\lim _{k \rightarrow \infty} E_{k}\right)
$$

Therefore, (ii) is not true if such k_{0} does not exist.

Extra Problem 7. Prove the Cantor set C is Lebesgue measurable and $m(C)=0$.
Notice that $C=\bigcap_{k=1}^{\infty} F_{k}$ where F_{k} 's satisfy $F_{1} \supset F_{2} \supset \cdots$ and since all $F_{k} \subset[0,1]$ are closed set, $m\left(F_{k}\right) \leq 1$. Therefore, we can apply Extra Problem 6 (ii), that is,

$$
m(C)=m\left(\bigcap_{k=1}^{\infty} F_{k}\right)=m\left(\lim _{k \rightarrow \infty} F_{k}\right)=\lim _{k \rightarrow \infty} m\left(F_{k}\right)
$$

Since F_{k} consists of 2^{k} disjoint closed intervals where each of the closed interval is of length 3^{-k}, we conclude that $m(C)=\lim _{k \rightarrow \infty}\left(\frac{2}{3}\right)^{k}=0$.

Extra Problem 8. Let C_{p} be the Cantor-like set in HW1, Extra Problem 3. Prove that $C_{p} \in \mathcal{M}$ and compute $m\left(C_{p}\right)$.

Notice that $C_{p}=\bigcap_{k=1}^{\infty} F_{k}$ where F_{k} 's consist of 2^{n} closed subintervals of equal length, and since closed set are measurable and finite union of measurable sets is measurable, $F_{k} \in \mathcal{M}$ for all $k \geq 1$. By Extra Problem 3, $C_{p}=\bigcap_{k=1}^{\infty} F_{k} \in \mathcal{M}$.

By HW1, Extra Problem 3, the total length of all open intervals removed is equal to $\frac{1}{p-2}$. Since every removed open intervals are disjoint, by σ-additivity, $m\left([0,1] \backslash C_{p}\right)=\frac{1}{p-2}$. Thus, $m\left(C_{p}\right)=\frac{p-3}{p-2}$ for all $p \geq 3, p$ integer.

Extra Problem 9. A subset of \mathbb{R}^{n} is said to be of F_{σ}-type if it is the countable union of closed subsets of \mathbb{R}^{n}. Similarly, a subset of \mathbb{R}^{n} is said to be of G_{δ}-type if it is the countable intersection of open subsets of \mathbb{R}^{n}.
(i) Let $\left\{f_{n}(x)\right\}_{n=1}^{\infty}$ be continuous on \mathbb{R}. Prove that $\left\{x \in \mathbb{R} \mid \underline{\lim }_{n \rightarrow \infty} f_{n}(x)>0\right\}$ is F_{σ}-type.

It is easy to see that $\left\{x \in \mathbb{R} \mid \underline{\lim }_{n \rightarrow \infty} f_{n}(x)>0\right\}=\bigcup_{k \in \mathbb{N}^{+}}\left\{x \in \mathbb{R} \left\lvert\, \sup _{m \geq 1} \inf _{n \geq m} f_{n}(x) \geq \frac{1}{k}\right.\right\}$. Furthermore, we have $\left\{x \in \mathbb{R} \left\lvert\, \sup _{m \geq 1} \inf _{n \geq m} f_{n}(x) \geq \frac{1}{k}\right.\right\}=\bigcup_{m \geq 1} \bigcap_{n \geq m}\left\{x \in \mathbb{R} \left\lvert\, f_{n}(x) \geq \frac{1}{k}\right.\right\}$. Since $f_{n}(x)$ is continuous, $\left\{x \in \mathbb{R} \left\lvert\, f_{n}(x) \geq \frac{1}{k}\right.\right\}$ is a closed set because $\left[\frac{1}{k},+\infty\right)$ is closed for all $k \in \mathbb{N}^{+}$. Therefore, we have $\left\{x \in \mathbb{R} \mid \underline{\lim }_{n \rightarrow \infty} f_{n}(x)>0\right\}=\bigcup_{k \in \mathbb{N}^{+}, m \in \mathbb{N}^{+}} F_{m, k}$, where $F_{m, k}=$ $\bigcap_{n \geq m}\left\{x \in \mathbb{R} \left\lvert\, f_{n}(x) \geq \frac{1}{k}\right.\right\}$ is closed because it is the intersection of closed set. Therefore, $\left\{x \in \mathbb{R} \mid \underline{\lim }_{n \rightarrow \infty} f_{n}(x)>0\right\}$ is F_{σ}-type.
(ii) Let $f(x)$ be defined on \mathbb{R}. Prove that $\left\{x \in \mathbb{R} \mid \lim _{y \rightarrow x} f(y)<\infty\right\}$ is G_{δ}-type.

Define a function $W(x)$ on \mathbb{R} as

$$
W(x)=\inf _{\delta>0} \sup _{y, z \in N_{\delta}^{o}(x)}|f(y)-f(z)|
$$

where $N_{\delta}^{o}(x)$ is the deleting neighborhood of x with radius δ. Then we claim that $W(x)=0$ is equivalent to say $\lim _{y \rightarrow x} f(y)=L<\infty$. If this is true, then

$$
\left\{x \in \mathbb{R} \mid \lim _{y \rightarrow x} f(y)<\infty\right\}=\{x \in \mathbb{R} \mid W(x)=0\}=\bigcap_{n=1}^{\infty}\left\{x \in \mathbb{R} \left\lvert\, W(x)<\frac{1}{n}\right.\right\}
$$

Furthermore, consider

$$
\left\{x \in \mathbb{R} \left\lvert\, W(x)<\frac{1}{n}\right.\right\}=\bigcup_{x, \delta>0}\left\{N_{\delta}^{o}(x)\left|\sup _{y, z \in N_{\delta}^{o}(x)}\right| f(y)-f(z) \left\lvert\,<\frac{1}{n}\right.\right\}
$$

Note that LHS \subset RHS is obvious, and for $u \in$ RHS, there exists x_{0}, δ_{0} such that $u \in N_{\delta_{0}}^{o}\left(x_{0}\right)$. Since u is an interior point of $N_{\delta_{0}}^{o}\left(x_{0}\right)$, there exists δ_{1} such that $N_{\delta_{1}}^{o}(u) \subset N_{\delta_{0}}^{o}\left(x_{0}\right)$. This shows

$$
W(u)=\inf _{\delta>0} \sup _{y, z \in N_{\delta}^{o}(u)}|f(y)-f(z)| \leq \sup _{y, z \in N_{\delta_{1}}^{o}(u)}|f(y)-f(z)| \leq \sup _{y, z \in N_{\delta_{0}}^{o}(u)}|f(y)-f(z)|<\frac{1}{n}
$$

Therefore, $u \in$ LHS, which verifies the equality above. Since $\left\{x \in \mathbb{R} \left\lvert\, W(x)<\frac{1}{n}\right.\right\}$ is the union of open set, it is open. Hence, $\left\{x \in \mathbb{R} \mid \lim _{y \rightarrow x} f(y)<\infty\right\}$ is G_{δ}-type because it is the countable intersection of those open sets.

To prove our first claim, i.e.,

$$
\left\{x \in \mathbb{R} \mid \lim _{y \rightarrow x} f(y)<\infty\right\}=\{x \in \mathbb{R} \mid W(x)=0\}
$$

Note that by definition of function limit, it is easy to see LHS \subset RHS. Now consider $x \in$ RHS, $W(x)=0$. For $u \in$ RHS, we have for all $\epsilon>0$, there exists $\delta>0$, such that $\sup _{y, z \in N_{\delta}^{o}(x)} \mid f(y)-$ $f(z) \mid<\epsilon$. Consider $x_{n} \rightarrow x$ and $x_{n}<x$, there exists N such that for all $n \geq m>N$, $\left|f\left(x_{n}\right)-f\left(x_{m}\right)\right|<\epsilon$. This shows $f\left(x_{n}\right)$ is a Cauchy sequence, hence convergent to L. Similarly, for $x_{n} \rightarrow x$ but $x_{n}>x, f\left(x_{n}\right) \rightarrow L^{\prime}$. It is not hard to see $L^{\prime}=L$, so the left limit of f at x is equal to the right limit, meaning that $\lim _{y \rightarrow x} f(y)$ exists.

Extra Problem 10. Let F_{k} for $k \in \mathbb{N}^{+}$be nonempty closed subsets of \mathbb{R}^{n} s.t. $\operatorname{dist}\left(x_{0}, F_{k}\right) \rightarrow \infty$ as $k \rightarrow \infty$ for a fixed point $x_{0} \in \mathbb{R}^{n}$. Prove that $\overline{\bigcup_{k=1}^{\infty} F_{k}}=\bigcup_{k=1}^{\infty} F_{k}$.

The fact that $\overline{\bigcup_{k=1}^{\infty} F_{k}} \supset \bigcup_{k=1}^{\infty} F_{k}$ is trivial, so we only need to prove $\overline{\bigcup_{k=1}^{\infty} F_{k}} \subset \bigcup_{k=1}^{\infty} F_{k}$. For arbitrary $x \in \overline{\bigcup_{k=1}^{\infty} F_{k}}$, if $x \notin \bigcup_{k=1}^{\infty} F_{k}$, then there exists a sequence $\left\{x_{n}\right\} \subset \bigcup_{k=1}^{\infty} F_{k}$ such that $x_{n} \rightarrow x$. If all x_{n} 's lie in finitely many F_{k} 's then there exists k_{0} such that $F_{k_{0}}$ contains infinitely many x_{n} 's, i.e., there exists a subsequence of x_{n}, denoted as $x_{n_{j}}$ such that for all $j \in \mathbb{N}^{+}, x_{n_{j}} \in F_{k_{0}}$. Note that $x_{n_{j}} \rightarrow x$, so x is a limit point of $F_{k_{0}}$, but $F_{k_{0}}$ is closed, so $x \in F_{k_{0}} \subset \bigcup_{k=1}^{\infty} F_{k}$ which is a contradiction to $x \notin \bigcup_{k=1}^{\infty} F_{k}$. This means all x_{n} 's cannot lie in finitely many F_{k} 's, so there exists a subsequence $F_{k_{j}}$ of F_{k} such that there exists at least one $x_{n_{j}} \in F_{k_{j}}$. Then since dist $\left(x_{0}, F_{k}\right) \rightarrow \infty$, $\operatorname{dist}\left(x_{0}, F_{k_{j}}\right) \rightarrow \infty$ and thus $d\left(x_{0}, x_{n_{j}}\right) \geq \operatorname{dist}\left(x_{0}, F_{k_{j}}\right) \rightarrow \infty$. This is impossible because

$$
d\left(x_{0}, x_{n_{j}}\right) \leq d\left(x_{0}, x\right)+d\left(x, x_{n_{j}}\right) \rightarrow d\left(x_{0}, x\right)
$$

as $j \rightarrow \infty$, and $d\left(x_{0}, x\right)$ is a finite constant which cannot tend to infinity. This implies if $x \in \overline{\bigcup_{k=1}^{\infty} F_{k}}$, we must have $x \in \bigcup_{k=1}^{\infty} F_{k}$. Therefore, $\overline{\bigcup_{k=1}^{\infty} F_{k}} \subset \bigcup_{k=1}^{\infty} F_{k}$ and we are done.

Extra Problem 11. Prove that $\frac{1}{4}$ is in Cantor set C.
Notice that

$$
\frac{1}{4}=\frac{0}{3}+\frac{2}{3^{2}}+\frac{0}{3^{3}}+\frac{2}{3^{4}}+\cdots+\frac{0}{3^{2 k-1}}+\frac{2}{3^{2 k}}+\cdots=\sum_{k=1}^{\infty} \frac{a_{k}}{3^{k}}
$$

which shows that in the ternary expression, $\frac{1}{4}=0.020202 \cdots_{(3)}$. Notice that any number in $[0,1]$ that only contains digits 0 and 2 under ternary system are in Cantor set, so $\frac{1}{4} \in C$.

Another way to prove $\frac{1}{4} \in C$ is by using the formula

$$
C=[0,1] \backslash \bigcup_{n=1}^{\infty} \bigcup_{k=0}^{3^{n-1}-1}\left(\frac{3 k+1}{3^{n}}, \frac{3 k+2}{3^{n}}\right)
$$

Suppose $\frac{1}{4} \notin C$, then there exists $n \in \mathbb{N}^{+}$and $k \in \mathbb{N}, k \leq 3^{n-1}-1$ such that $\frac{1}{4} \in\left(\frac{3 k+1}{3^{n}}, \frac{3 k+2}{3^{n}}\right)$. Therefore, we have $12 k+4<3^{n}<12 k+8$, which means there are only three possible cases: $3^{n}=12 k+5,3^{n}=12 k+6$ and $3^{n}=12 k+7$. However, 3^{n} is an odd integer but $12 k+6$ is even for all k, so $3^{n} \neq 12 k+6$. Also, $3^{n} \equiv 0(\bmod 3)$, but $12 k+5 \equiv 2(\bmod 3)$ and $12 k+7 \equiv 1(\bmod 3)$, so $3^{n} \neq 12 k+5$ and $3^{n} \neq 12 k+7$. Therefore, such n and k does not exist, which means $\frac{1}{4} \in C$.

Extra Problem 12. Let $E \subset \mathbb{R}$ with finite $m^{*}(E)>0$. Prove that $\forall a \in\left(0, m^{*}(E)\right)$, there exists $A \subset E$ such that $m^{*}(A)=a$.

Define $f(r)=m^{*}(E \cap(-r, r))$, then we claim that $f(0)=0, f(r) \rightarrow m^{*}(E)$ as $r \rightarrow \infty$ and $f(r)$ is continuous on $[0, \infty)$. If all of these claims are true, then by intermediate value theorem, for all $a \in\left(0, m^{*}(E)\right)$ there exists $r>0$ such that $f(r)=a$ and we can take $A=E \cap(-r, r)$. Then $A \subset E$ and $m^{*}(A)=a$.

Let us prove all those claims. First, it is trivial that $f(0)=0$ because $m^{*}(\varnothing)=0$.
Second, by corollary of property 5 of outer measure, there exists a G_{δ} set G such that $G \supset E$ and $m(G)=m^{*}(E)$, so

$$
\begin{aligned}
f(r) & =m^{*}(E \cap(-r, r)) \geq m^{*}(E)-m^{*}\left(E \cap(-r, r)^{c}\right) \\
& \geq m^{*}(E)-m^{*}\left(G \cap(-r, r)^{c}\right)=m^{*}(E)-m\left(G \cap(-r, r)^{c}\right)
\end{aligned}
$$

By Extra Problem 6 (ii), since $m(G)=m^{*}(E)<\infty, m(G \cap(-n, n))<\infty$ for all $n \in \mathbb{N}^{+}$,

$$
\begin{aligned}
\lim _{r \rightarrow \infty} f(r) & =\lim _{n \rightarrow \infty} f(n) \geq \lim _{n \rightarrow \infty}\left[m^{*}(E)-m\left(G \cap(-n, n)^{c}\right)\right] \\
& =m^{*}(E)-m\left(G \cap \lim _{n \rightarrow \infty}(-n, n)^{c}\right)=m^{*}(E)-m(G \cap \varnothing)=m^{*}(E)
\end{aligned}
$$

Since $f(r) \leq m^{*}(E)$ is trivial, we can conclude that $f(r) \rightarrow m^{*}(E)$ as $r \rightarrow \infty$.
To prove the continuity, first it is obvious that $f\left(r_{1}\right) \geq f\left(r_{2}\right)$ if $r_{1} \geq r_{2}$. For all $\epsilon>0$, fix any $r_{0} \in[0, \infty)$, take $\delta=\epsilon / 2$, for all $0<r-r_{0}<\delta$, we have

$$
\begin{aligned}
f(r)-f\left(r_{0}\right) & =m^{*}(E \cap(-r, r))-m^{*}\left(E \cap\left(-r_{0}, r_{0}\right)\right) \\
& \leq m^{*}\left(E \cap\left(-r,-r_{0}\right)\right)+m^{*}\left(E \cap\left(-r_{0}, r_{0}\right)\right)+m^{*}\left(E \cap\left(r_{0}, r\right)\right)-m^{*}\left(E \cap\left(-r_{0}, r_{0}\right)\right) \\
& =m^{*}\left(E \cap\left(-r,-r_{0}\right)\right)+m^{*}\left(E \cap\left(r_{0}, r\right)\right) \leq 2\left(r-r_{0}\right)<2 \delta<\epsilon
\end{aligned}
$$

Combined with $f(r)-f\left(r_{0}\right) \geq 0$, we can conclude that $f(r)$ is right continuous at any point $r_{0} \in[0, \infty)$. Similarly, for all $0<r_{0}-r<\delta$, we can prove $0 \leq f\left(r_{0}\right)-f(r)<\epsilon$, which means $f(r)$ is left continuous at any point $r_{0} \in(0, \infty)$. Therefore, $f(r)$ is continuous at $[0, \infty)$.

Extra Problem 13. Let $A_{1}, A_{2} \subset \mathbb{R}^{n}, A_{1} \subset A_{2}, A_{1} \in \mathcal{M}, m\left(A_{1}\right)=m^{*}\left(A_{2}\right)<\infty$. Prove that $A_{2} \in \mathcal{M}$.

By definition of outer measure, for all $\epsilon>0$, there exists a collection of open rectangles $\left\{I_{n}\right\}_{n=1}^{\infty}$ such that $m^{*}\left(A_{2}\right)+\epsilon>\sum_{n=1}^{\infty} m^{*}\left(I_{n}\right)$. Since $m\left(A_{1}\right)=m^{*}\left(A_{2}\right)$ and I_{n} 's are measurable, we have $m\left(A_{1}\right)+\epsilon>\sum_{n=1}^{\infty} m\left(I_{n}\right)$. Consider $G=\bigcup_{n=1}^{\infty} I_{n} \supset A_{2} \supset A_{1}$, we have

$$
m^{*}\left(G \backslash A_{2}\right) \leq m\left(G \backslash A_{1}\right)=m\left(\bigcup_{n=1}^{\infty} I_{n}\right)-m\left(A_{1}\right)<\sum_{n=1}^{\infty} m\left(I_{n}\right)-\left(\sum_{n=1}^{\infty} m\left(I_{n}\right)-\epsilon\right)=\epsilon
$$

where the first equality is because G (open set) and A_{1} are both measurable and the last equality is because $\sum_{n=1}^{\infty} m\left(I_{n}\right)$ is bounded above by $m^{*}\left(A_{2}\right)+\epsilon<\infty$. Therefore, we proved that for all $\epsilon>0$, there exists an open set G covering A_{2} and $m^{*}\left(G \backslash A_{2}\right)<\epsilon$, which means $A_{2} \in \mathcal{M}$.

Extra Problem 14. Prove that $E \in \mathcal{M}$ if and only if $\forall T \subset \mathbb{R}^{n}, m^{*}(T)=m^{*}(T \cap E)+m^{*}\left(T \cap E^{c}\right)$.
We first prove the "only if" part. It is obvious that $m^{*}(T) \leq m^{*}(T \cap E)+m^{*}\left(T \cap E^{c}\right)$. Again, by corollary of property 5 of outer measure, there exists G_{δ} set G such that $G \supset T$ and $m(G)=m^{*}(T)$. Notice that $G=(G \cap E) \cup(G \backslash E)$, since G and E are measurable,

$$
m^{*}(T)=m(G)=m(G \cap E)+m(G \backslash E) \geq m^{*}(T \cap E)+m^{*}(T \backslash E)
$$

Therefore, $m^{*}(T)=m^{*}(T \cap E)+m^{*}\left(T \cap E^{c}\right)$.
Then we prove the "if" part. Note that $E=\bigcup_{k=1}^{\infty} E_{k}$ where $E_{k}=E \cap B(0 ; k)$ for $k \in \mathbb{N}^{+}$, so we only need to prove $E_{k} \in \mathcal{M}$. For each $k \in \mathbb{N}^{+}$and all $\epsilon>0$, there exists sequence of open rectangles $\left\{I_{n}^{k}\right\}_{n=1}^{\infty}$ such that $m^{*}\left(E_{k}\right)+\epsilon>\sum_{n=1}^{\infty} m^{*}\left(I_{n}^{k}\right) \geq m^{*}\left(\bigcup_{n=1}^{\infty} I_{n}^{k}\right)$. Denote $U_{k}=\bigcup_{n=1}^{\infty} I_{n}^{k}$ and $V_{k}=U_{k} \cap B_{k}$ where $B_{k}=B(0 ; k)$. Note that V_{k} is bounded and since U_{k} and B_{k} are open, so is V_{k}. Now V_{k} is open and $U_{k} \supset V_{k} \supset E_{k}$, so we only need to prove $m^{*}\left(V_{k} \backslash E_{k}\right)<\epsilon$. By assumption, take $T=V_{k}, m^{*}\left(V_{k}\right)=m^{*}\left(V_{k} \backslash E\right)+m^{*}\left(V_{k} \cap E\right)<\infty$.

Notice that $V_{k} \backslash E=U_{k} \cap B_{k} \cap E^{c}$, and

$$
\begin{aligned}
V_{k} \backslash E_{k} & =\left(U_{k} \cap B_{k}\right) \cap\left(E \cap B_{k}\right)^{c}=\left(U_{k} \cap B_{k}\right) \cap\left(E^{c} \cup B_{k}^{c}\right) \\
& =\left(U_{k} \cap B_{k} \cap E^{c}\right) \cup\left(U_{k} \cap B_{k} \cap B_{k}^{c}\right)=U_{k} \cap B_{k} \cap E^{c}
\end{aligned}
$$

Therefore, $m^{*}\left(V_{k} \backslash E\right)=m^{*}\left(V_{k} \backslash E_{k}\right)$ and since $V_{k} \cap E=U_{k} \cap E_{k}=E_{k}$, we have $m^{*}\left(V_{k}\right)=$ $m^{*}\left(V_{k} \backslash E_{k}\right)+m^{*}\left(E_{k}\right)$. Combined with $m^{*}\left(E_{k}\right)+\epsilon>m^{*}\left(U_{k}\right) \geq m^{*}\left(V_{k}\right)$, we obtain $m^{*}\left(V_{k} \backslash E_{k}\right)<\epsilon$. Therefore $E_{k} \in \mathcal{M}$ and thus $E \in \mathcal{M}$.

Extra Problem 15. Let $A \in \mathcal{M}, B \subset \mathbb{R}^{n}$ with $m^{*}(B)<\infty$. Prove $m^{*}(A \cup B)+m^{*}(A \cap B)=$ $m^{*}(A)+m^{*}(B)$.

Since $A \in \mathcal{M}$, by Extra Problem 14, for all $T \subset \mathbb{R}^{n}, m^{*}(T)=m^{*}(T \cap A)+m^{*}\left(T \cap A^{c}\right)$. Let $T=B$ and $A \cup B$, we have

$$
\begin{gather*}
m^{*}(B)=m^{*}(B \cap A)+m^{*}\left(B \cap A^{c}\right) \tag{1}\\
m^{*}(A \cup B)=m^{*}(A \cup B \cap A)+m^{*}\left(A \cup B \cap A^{c}\right)=m^{*}(A)+m^{*}\left(B \cap A^{c}\right) \tag{2}
\end{gather*}
$$

Since $m^{*}(B)<\infty, m^{*}\left(B \cap A^{c}\right) \leq m^{*}(B)<\infty$ and $m^{*}(A \cap B) \leq m^{*}(B)<\infty,(2)-(1)$ yields

$$
m^{*}(A \cup B)-m^{*}(B)=m^{*}(A)-m^{*}(B \cap A) \Longrightarrow m^{*}(A \cup B)+m^{*}(A \cap B)=m^{*}(A)+m^{*}(B)
$$

Notice that add or subtract a finite number on both sides of a equation will not change the equality.

Extra Problem 16. Suppose $m^{*}(E)<\infty$. If $m^{*}(E)=\sup \{m(F) \mid F \subset E, F$ closed $\}$, then $E \in \mathcal{M}$.
By definition, for all $n \in \mathbb{N}^{+}$, there exists F_{n} closed and $F_{n} \subset E$ such that $m^{*}(E)<m^{*}\left(F_{n}\right)+\frac{1}{n}$. Take $F=\bigcup_{n=1}^{\infty} F_{n}$, so F is measurable and $m^{*}(F) \geq m\left(F_{n}\right)$. This impiles that $m^{*}(E)<m^{*}(F)+\frac{1}{n}$ for all $n \in \mathbb{N}^{+}$. Take $n \rightarrow \infty$, we have $m^{*}(E) \leq m^{*}(F)$, and since $m^{*}(E) \geq m^{*}(F)$ by $F \subset E$, we have $m^{*}(E)=m^{*}(F)=m(F)$. Apply Extra Problem 13 , since $F \in \mathcal{M}$ and $m(F)=m^{*}(E)<\infty$, we conclude that $E \in \mathcal{M}$.

Extra Problem 17. Prove that if $E_{k} \in \mathcal{M}$ for $k \in \mathbb{N}^{+}$.
(i) $m\left(\underline{\lim }_{k \rightarrow \infty} E_{k}\right) \leq \underline{\lim }_{k \rightarrow \infty} m\left(E_{k}\right)$.

Let $F_{n}=\bigcap_{k=n}^{\infty} E_{k}$, then $F_{n} \in \mathcal{M}$ and they form an increasing sequence. By Extra Problem 6(i), $m\left(\cup_{n=1}^{\infty} F_{n}\right)=\lim _{n \rightarrow \infty} m\left(F_{n}\right)$. Also, for all $k \geq n, m\left(F_{n}\right) \leq m\left(E_{k}\right)$, so $m\left(F_{n}\right) \leq$ $\inf _{k \geq n} m\left(E_{k}\right)$. Therefore,

$$
m\left(\underline{\lim _{k \rightarrow \infty}} E_{k}\right)=m\left(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} E_{k}\right)=\lim _{n \rightarrow \infty} m\left(F_{n}\right) \leq \lim _{n \rightarrow \infty} \inf _{k \geq n} m\left(E_{k}\right)=\varliminf_{k \rightarrow \infty} m\left(E_{k}\right)
$$

This shows $m\left(\underline{\lim }_{k \rightarrow \infty} E_{k}\right) \leq \underline{\lim }_{k \rightarrow \infty} m\left(E_{k}\right)$.
(ii) If there exists $k_{0} \geq 1$ such that $m\left(\cup_{k=k_{0}}^{\infty} E_{k}\right)<\infty$, then $m\left(\overline{\lim }_{k \rightarrow \infty} E_{k}\right) \geq \overline{\lim }_{k \rightarrow \infty} m\left(E_{k}\right)$.

Again, Let $F_{n}=\bigcup_{k=n}^{\infty} E_{k}$, then $F_{n} \in \mathcal{M}$ and they form an decreasing sequence satisfying that there exists k_{0} such that $m\left(F_{k_{0}}\right)<\infty$. Therefore, by Extra Problem 6(ii), $m\left(\cap_{n=1}^{\infty} F_{n}\right)=$ $\lim _{n \rightarrow \infty} m\left(F_{n}\right)$. Since $m\left(F_{n}\right) \geq m\left(E_{k}\right)$ for all $k \geq n$, we have $m\left(F_{n}\right) \geq \sup _{k \geq n} m\left(E_{k}\right)$. Thus,

$$
m\left(\varlimsup_{k \rightarrow \infty} E_{k}\right)=m\left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_{k}\right)=\lim _{n \rightarrow \infty} m\left(F_{n}\right) \geq \lim _{n \rightarrow \infty} \sup _{k \geq n} E_{k}=\varlimsup_{k \rightarrow \infty} m\left(E_{k}\right)
$$

This shows $m\left(\overline{\lim }_{k \rightarrow \infty} E_{k}\right) \geq \varlimsup_{k \rightarrow \infty} m\left(E_{k}\right)$.

Extra Problem 18. Let $E_{k} \subset[0,1], E_{k} \in \mathcal{M}, m\left(E_{k}\right)=1$ for all $k \in \mathbb{N}^{+}$. Prove $m\left(\cap_{k=1}^{\infty} E_{k}\right)=1$.
Since $E_{k} \subset[0,1], E_{k} \in \mathcal{M}$, for all $k \in \mathbb{N}^{+}$, we have

$$
m\left([0,1] \backslash E_{k}\right)=m([0,1])-m\left(E_{k}\right)=1-m\left(E_{k}\right)=0
$$

Consider

$$
m\left([0,1] \backslash \cap_{k=1}^{\infty} E_{k}\right)=m\left(\cup_{k=1}^{\infty}\left([0,1] \backslash E_{k}\right)\right) \leq \sum_{k=1}^{\infty} m\left([0,1] \backslash E_{k}\right)=0
$$

Therefore, $m\left([0,1] \backslash \cap_{k=1}^{\infty} E_{k}\right)=0$ and we can prove $m\left(\cap_{k=1}^{\infty} E_{k}\right)=m([0,1])-m\left([0,1] \backslash \cap_{k=1}^{\infty} E_{k}\right)=1$.

Extra Problem 19. Let $E_{i} \subset[0,1], E_{i} \in \mathcal{M}$ for all $i=1, \ldots, k$, and $\sum_{i=1}^{k} m\left(E_{i}\right)>k-1$. Prove that $m\left(\cap_{i=1}^{k} E_{i}\right)>0$.

Since $E_{i} \in \mathcal{M}$ and $E_{i} \subset[0,1]$ for all $i=1, \ldots, k$, we have

$$
m\left([0,1] \backslash E_{i}\right)=m([0,1])-m\left(E_{i}\right)=1-m\left(E_{i}\right)
$$

Suppose $m\left(\cap_{i=1}^{k} E_{i}\right)=0$, then

$$
1=m\left([0,1] \backslash \cap_{i=1}^{k} E_{i}\right)=m\left(\cup_{i=1}^{k}\left([0,1] \backslash E_{i}\right)\right) \leq \sum_{i=1}^{k} m\left([0,1] \backslash E_{i}\right)=k-\sum_{i=1}^{k} m\left(E_{i}\right)
$$

This shows that $\sum_{i=1}^{k} m\left(E_{i}\right) \leq k-1$ which is a contradiction to $\sum_{i=1}^{k} m\left(E_{i}\right)>k-1$. Therefore, $m\left(\cap_{i=1}^{k} E_{i}\right)>0$.

Extra Problem 20. Let $E \subset \mathbb{R}$ and define outer Jordan content of E by

$$
J_{*}(E)=\inf \left\{\sum_{i=1}^{N}\left|I_{i}\right| \mid I_{i} \text { intervals, } \bigcup_{i=1}^{N} I_{i} \supset E\right\}
$$

(i) Prove that $J_{*}(E)=J_{*}(\bar{E})$.

It is obvious that $J_{*}(E) \leq J_{*}(\bar{E})$. To show the converse, consider any I_{k} 's such that $G=$ $\bigcup_{k=1}^{N} I_{k} \supset E$, it is easy to see $\bar{G} \supset \bar{E}$. Since $\bar{G}=\bigcup_{k=1}^{N} \bar{I}_{k}$ by the lemma proved in Page 34, Problem 8, and $\left|I_{k}\right|=\left|\bar{I}_{k}\right|$, we can conclude that for each $\left\{I_{k}\right\}_{k=1}^{N}$ such that $\bigcup_{k=1}^{N} I_{k} \supset E$, we can find $\left\{\bar{I}_{k}\right\}_{k=1}^{\infty}$ such that $\bigcup_{k=1}^{N} \bar{I}_{k} \supset \bar{E}$ and $\sum_{k=1}^{N}\left|I_{k}\right|=\sum_{k=1}^{N}\left|\bar{I}_{k}\right|$. This shows that $J_{*}(E) \geq J_{*}(\bar{E})$. Therefore, $J_{*}(E)=J_{*}(\bar{E})$.
(ii) Find a countable set $E \subset[0,1]$ such that $J_{*}(E)=1$, and $m^{*}(E)=0$.

Consider the countable set $E=[0,1] \cap \mathbb{Q}$. Since E is countable, we can enumerate E as $\left\{q_{n}\right\}_{n=1}^{\infty}$. For all $\epsilon>0$, the set $U=\bigcup_{n=1}^{\infty}\left(q_{n}-\epsilon / 2^{n+1}, q_{n}+\epsilon / 2^{n+1}\right)$. Then U is obviously an open set covering E, so

$$
m^{*}(E) \leq m^{*}(U) \leq \sum_{n=1}^{\infty} \frac{\epsilon}{2^{n}}=\epsilon
$$

Take $\epsilon \rightarrow 0$, we can conclude that $m^{*}(E)=0$. Since $\bar{E}=[0,1]$, by part (i), we have $J_{*}(E)=J_{*}(\bar{E})=J_{*}([0,1])$. It is obvious that $J_{*}([0,1]) \leq 1$. Since intervals are rectangles in one dimensional case, we can still apply Fact 2 of volume of rectangles, i.e., if $[0,1] \subset$ $\bigcup_{k=1}^{N} I_{k}$, then $1 \leq \sum_{k=1}^{N}\left|I_{k}\right|$. By definition of infimum, for $\epsilon>0$, there exists I_{k} 's such that $J_{*}([0,1])+\epsilon>\sum_{k=1}^{N}\left|I_{k}\right| \geq 1$. Therefore, take $\epsilon \rightarrow 0$, we have $J_{*}([0,1]) \geq 1$, which means $J_{*}([0,1])=1$. Therefore, E is a countable set such that $J_{*}(E)=1$, and $m^{*}(E)=0$.

