
MAT3006∗: Real Analysis
Homework 3

李肖鹏 (116010114)

Due date: Feb. 28, 2020

Page 47, Problem 26. Let {Ek}∞k=1 be a countable disjoint collection of measurable sets. Prove
that for any set A, m∗ (A ∩

∪∞
k=1 Ek) =

∑∞
k=1 m

∗(A ∩ Ek).

Take a Gδ type set G such that G ⊃ A ∩
∪∞

k=1 Ek and m∗ (A ∩
∪∞

k=1 Ek) = m(G). Therefore,
we can see

m∗

(
A ∩

∞∪
k=1

Ek

)
≥ m

(
G ∩

∞∪
k=1

Ek

)
= m

(
∞∪
k=1

(Ek ∩G)

)
=

∞∑
k=1

m(Ek ∩G) ≥
∞∑
k=1

m∗(Ek ∩A)

where the second equality uses the fact that {Ek ∩ G}∞k=1 are countable disjoint measurable sets.
Since m∗ (A ∩

∪∞
k=1 Ek) ≤

∑∞
k=1 m

∗(A∩Ek) follows directly from σ-subadditivity of outer measure,
we conclude that m∗ (A ∩

∪∞
k=1 Ek) =

∑∞
k=1 m

∗(A ∩ Ek).

Extra Problem 1. Let Ek, k ∈ N+, be Lebesgue measurable, satisfying
∑∞

k=1 m(Ek) < ∞. Prove
that m

(
limk→∞ Ek

)
= 0.

Since limk→∞ Ek =
∩∞

k=1

∪∞
n=k En, denote G = limk→∞ Ek and Gk =

∪∞
n=k En, then Gk is

decreasing. Also, for all k ≥ 1, m(G) ≤ m(Gk) ≤
∑∞

n=k m(Ek). The RHS tends to 0 as k → ∞
since the series

∑∞
k=1 m(Ek) < ∞. Take k → ∞ and we obtain m(G) = 0 as required.

Extra Problem 2. Give an example of an open set O such that the boundary of the closure of it
has positive Lebesgue measure.

Consider the Cantor-like set with p = 4 defined in HW1, Denote O =
∪

k=1 E2k−1, where Ek’s
denote the union of all open intervals removed at step k. Also denote G =

∪
k=1 E2k. Then it is

easy to see that [0, 1] = O ∪ G ∪ C4. Since O and G are disjoint open set, Ō ∩ G = ∅. We claim
that C4 ⊂ ∂Ō, and if so, from HW2, we know m(C4) =

1
2
, so m(∂Ō) ≥ 1

2
> 0.

To prove C4 ⊂ ∂Ō, it suffices to prove for arbitrary x ∈ C4, for all δ > 0, Nδ(x) ∩G ̸= ∅ and
Nδ(x) ∩ O ̸= ∅. If so, since G ∩ Ō = ∅, G ⊂ (Ō)c and Nδ(x) ∩ (Ō)c ̸= ∅. Also, Nδ(x) ∩ O ̸= ∅
impliles that Nδ(x) ∩ Ō ̸= ∅. Therefore, x is the limit point of Ō and (Ō)c, by definition of ∂Ō,
x ∈ ∂Ō. Since x is arbitrary, C4 ∈ ∂Ō.

Now we prove Nδ(x) ∩ G ̸= ∅ and Nδ(x) ∩ O ̸= ∅ for all δ > 0 for each fixed x ∈ C4. Since
C4 =

∪∞
k=1 Fk where each Fk consists of disjoint closed interval with equal length. Since the length

of each closed interval converges to zero, there exists a closed interval I such that x ∈ I ⊂ Nδ(x).
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Then this closed interval I must contain open interval removed at both even and odd steps, so
I ∩G ̸= ∅ and I ∩O ̸= ∅. This shows Nδ(x) ∩G ̸= ∅ and Nδ(x) ∩O ̸= ∅ for all δ > 0.

Extra Problem 3. Suppose E,F ⊂ R and E,F ∈ M. If m(E) > 0 and m(F ) > 0, then E + F

contains an interval.

First, since E =
∪

n∈N E ∩ [−n, n] and F =
∪

n∈N F ∩ [−n, n], we can find out n0 and n1 such
that m(E ∩ [−n0, n0]) > 0 and m(F ∩ [−n1, n1]) > 0. Denote E′ = E ∩ [−n0, n0], F ′ = F ∩ [−n1, n1]

and n = n1 +n2. Then E′ +F ′ ⊂ E+F and E′, F ′, E′ +F ′ are all subset of [−n, n]. Thus, we only
need to show E′ + F ′ contains an interval.

Then, we claim that convolution of f, g ∈ L2(−n, n) is continuous on [−n, n]. Denote the
indicator function of E′ and F ′ as IE′(x) and IF ′(x). Note f(x) =

´
[−n,n]

IE′(x − t)IF ′(t) dm(t)

is nonnegative and continuous. Hence, the set G = {x ∈ [−n, n] | f(x) > 0} is open. Since´
[−n,n]

f(x) dm(x) = m(E′) ·m(F ′) > 0, m(G) > 0, G is nonempty and contains an open non-empty
interval U . Thus, we only need to show G ⊂ E′ + F ′. If x ∈ [−n�n] \ (E′ + F ′), then for such x, if
t ∈ F ′, x− t /∈ E′, so f(x) = 0. Therefore, if f(x) > 0, x ∈ E′ + F ′, so G ⊂ E′ + F ′.

For the proof of our claim, since there exists fn → f and gn → g converging in L2(−n, n) with
fn, gn continuous function on [−n, n]. It is trivial that fn ∗ gn is continuous and f ∗ g is the uniform
limit of fn ∗ gn, so it is also continuous. The uniform convergence is given by

sup
[−n,n]

|f ∗ g − fn ∗ g| ≤ ∥fn − f∥L2∥g∥L2 → 0

sup
[−n,n]

|fn ∗ g − fn ∗ gn| ≤ ∥fn∥L2∥g − gn∥L2 → 0

Therefore, we finish the whole proof.

Extra Problem 4. Let f be continuous on [0, 1]. Prove that the graph Γ of y = f(x), as a subset
of R2, has Lebesgue measure 0.

Let ϵ > 0, since f is continuous on [0, 1], it is uniformly continuous. Therefore, there exists
δ > 0 such that |x − y| < δ implies |f(x) − f(y)| < ϵ. Let P = {x0 = 0, x1, . . . , xn−1, xn = 1} be a
partition of [0, 1] such that |xi − xi−1| < δ are of the same length for all i = 1, . . . , n.

The graph Γ = {(x, f(x)) |x ∈ [0, 1]} satisfies Γ ⊂
∪n

i=1[xi−1, xi] × [mi,Mi] where mi =

min[xi−1,xi] f(x) and Mi = max[xi−1,xi] f(x). Since |xi − xi−1| < δ for all i, Mi − mi ≤ ϵ for all
i. Thus,

m∗(Γ) ≤
n∑

i=1

m([xi−1, xi]) ·m([mi,Mi]) ≤ ϵ
n∑

i=1

m([xi−1, xi]) = ϵ

Therefore, take ϵ → 0, we obtain m∗(Γ) = 0, which means Γ is measurable with zero measure.

Extra Problem 5. Let A,B ⊂ Rn with finite outer measure. Prove |m∗(A)−m∗(B)| ≤ m∗(A△B).

Since m∗(A) and m∗(B) are finite, it suffices to show

m∗(A) ≤ m∗(B) +m∗(A△B), m∗(B) ≤ m∗(A) +m∗(A△B)
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Apply the equivalent definition of symmetric difference, we have A△B = (A ∪B) \ (A ∩B). Then
it is easy to see that (A△B) ∪B = A ∪B and (A△B) ∪A = A ∪B. Therefore,

m∗(A) ≤ m∗(A ∪B) = m∗((A△B) ∪B) ≤ m∗(B) +m∗(A△B)

m∗(B) ≤ m∗(A ∪B) = m∗((A△B) ∪A) ≤ m∗(A) +m∗(A△B)

Therefore, we proved the desire inequality |m∗(A)−m∗(B)| ≤ m∗(A△B).

Extra Problem 6. Does there exists a closed proper subset F of [0, 1] such that m(F ) = 1?

Suppose yes, then E = [0, 1] \ F is a nonempty open set. Then it must contains an open
interval which has measure k > 0, so m(E) ≥ k > 0. Since m([0, 1]) = m(E) +m(F ) = 1, we have
m(F ) = 1− k < 1, contradiction. Therefore, such F does not exist.

Extra Problem 7. Let E ∈ M with m(E) > 0. Prove that there exists x ∈ E such that for all
δ > 0, m(E ∩Bδ(x)) > 0, where Bδ(x) is the ball centered at x with radius δ > 0.

Suppose not, then for all x ∈ E, there exists δx such that m(E ∩ Bδx(x)) = 0. Notice
that

∪
x∈E Bδx(x) ⊃ E, so by Lindelöf covering theorem, there exists a countable open subcover

{Bδxn
(xn)}∞n=1 of E. Therefore,

∪∞
n=1(E ∩Bδxn

(xn)) ⊃ E and

m(E) ≤ m

(
∞∪

n=1

(E ∩Bδxn
(xn))

)
≤

∞∑
n=1

m(E ∩Bδxn
(xn)) = 0

since each m(E ∩Bδxn
(xn)) = 0. However, we assume m(E) > 0, so contradiction shows that there

exists x ∈ E such that for all δ > 0, m(E ∩Bδ(x)) > 0.

Extra Problem 8. Let E ⊂ Rn. Prove that there exists Gδ set G ⊃ E such that for all A ∈ M,
we have m∗(E ∩A) = m(G ∩A).

Since A ∈ M, by Carathéodory property, we have m∗(E) = m∗(E ∩A) +m∗(E ∩Ac). Take a
Gδ set such that G ⊃ E, m∗(E) = m(G). Also, m(G) = m(G ∩A) +m(G ∩Ac). If m∗(E) < ∞,

m∗(E ∩A)−m∗(G ∩A) = m∗(G ∩Ac)−m∗(E ∩Ac) ≥ 0

However, by monotonicity, m∗(E ∩A) ≤ m∗(G ∩A), so m∗(E ∩A) = m∗(G ∩A).

If m∗(E) = ∞, then let Ck = {(x1, . . . , xn) ∈ Rn | |xi| ≤ k, ∀ 1 ≤ i ≤ n}. Denote Ek =

E ∩ Ck, so m∗(Ek) < ∞. Therefore, we can find Gδ set Gk ⊃ Ek such that m(Gk) = m∗(Ek) and
m(Gk ∩ A) = m∗(Ek ∩ A). Let Hk =

∩∞
n=k Gn, Hk is also a Gδ set for all k, and Ek ⊂ Hk ⊂ Gk.

It is easy to see m∗(Ek ∩ A) = m(Hk ∩ A). Let H =
∪∞

k=1 Hk, then E ⊂ H. Note that Ek ∩ A

and Hk ∩ A are both increasing, so take limit on both sides of m∗(Ek ∩ A) = m(Hk ∩ A), we
obtain m∗(E ∩ A) = m(H ∩ A). Notice that H ∈ M, there exists Gδ set O such that O ⊃ H and
m(O \H) = 0. Since O = (O \H) ∪H, O ∩A = [(O \H) ∩A] ∪ (H ∩A), so we have

m(O ∩A) ≤ m((O \H) ∩A) +m(H ∩A) ≤ m(O \H) +m(H ∩A) = m(H ∩A)
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Also, by monotonicity, m(O ∩A) ≥ m(H ∩A), so m(O ∩A) = m(H ∩A) = m∗(E ∩A). The set O

is the desired Gδ set.

Extra Problem 9. Let E /∈ M. Prove that there exists ϵ > 0 such that whenever A,B ∈ M,
A ⊃ E, B ⊃ Ec, we always have m(A ∩B) ≥ ϵ.

Suppose not, then for all k ≥ 1, there exists Ak, Bk ∈ M such that Ak ⊃ E, Bk ⊃ Ec, and
m(Ak ∩ Bk) ≤ 1

k
. Let A =

∩∞
k=1 Ak and B =

∩∞
k=1 Bk, then m(A ∩ B) = 0. Also, A ⊃ E and

B ⊃ Ec, so Bc ⊂ E. Notice that m(A \Bc) = m(A ∩B) = 0 and m∗(E \Bc) ≤ m(A \Bc) = 0, so
m∗(E \Bc) = 0 and E \Bc ∈ M. Since Bc ∈ M, E = (E \Bc) ∪Bc ∈ M. Contradiction!

Extra Problem 10. Let E ⊂ R and E ∈ M. Suppose there exists open intervals Ik for k ∈ N+

such that m(E ∩ Ik) ≥ 2
3
m(Ik). Prove that m (E ∩

∪∞
k=1 Ik) ≥

1
3
m (
∪∞

k=1 Ik).

It sufffices to show that for all n ≥ 1, m (E ∩
∪n

k=1 Ik) ≥ 1
3
m (
∪n

k=1 Ik) because if so, then
since E ∩

∪n
k=1 Ik and

∪n
k=1 Ik are both increasing, we can take limit on both sides and the desire

inequality holds. First, for each k = 1, . . . , n, check if there exists k′ ̸= k, k′ = 1, . . . , n such that
Ik′ ⊂ Ik. If yes, then delete Ik′ , and finally we will obtain a subcollection of open intervals. After
relabeling, we obtain {Ik}mk=1 with m ≤ n and

∪n
k=1 Ik =

∪m
k=1 Ik.

Furthermore, consider if there exists distinct index j, k, l = 1, . . . ,m such that Ij ∩ Ik ∩ Il ̸= ∅,
then Ij∪Ik∪Il is an open interval (a, b). If we denote Ij = (aj , bj), Ik = (ak, bk) and Il = (al, bl), then
aj , ak, al must be distinct and so are bj , bk, bl (if two of them are equal, then one interval is contained
in another, which is impossible since we have already delete the smaller one in the previous step).
Therefore, a, b come from two different intervals and the third interval is contained in the union of
those two intervals, so we can delete the third interval without changing Ij ∪ Ik ∪ Il. Therefore, we
can finally obtain a further subcollection of open intervals. After relabeling, we can obtain {Ik}pk=1

with p ≤ m and
∪m

k=1 Ik =
∪p

k=1 Ik.Thus, it suffices to show m (E ∩
∪p

k=1 Ik) ≥
1
3
m (
∪p

k=1 Ik).

Notice that for this new subcollection {Ik}pk=1, if we denote Ik = (ak, bk), then WLOG, we can
assume a1 < a2 < · · · < ap and b1 < b2 < · · · < bp. Furthermore, ak+2 ≥ bk for all k = 1, . . . , p− 2.
Thus, an essential observation is that each Ik can only have nonempty intersection with Ik−1 and Ik,
and it will not intersect with I1, . . . , Ik−2, Ik+2, . . . , Ip. Then denote Ik,j = Ik ∩ Ij for all k ̸= j and
also denote Jk = Ik\

(∪p
j ̸=k, j=1 Ik,j

)
. Then we can see that

∪p
k=1 Ik = (

∪p
k=1 Jk)∪

(∪p
k ̸=j, k,j=1 Ik,j

)
.

The most important thing is that all Ik,j and Jk are all pairwise disjoint. Therefore, we can conclude

2m

(
E ∩

p∪
k=1

Ik

)
= 2m

[(
p∪

k=1

Jk ∩ E

)
∪

(∪
k ̸=j

Ik,j ∩ E

)]

= 2

p∑
k=1

m(Jk ∩ E) + 2

p∑
k ̸=j, k,j=1

m(Ik,j ∩ E)

≥ [m(J1 ∩ E) +m(I1,2 ∩ E)] + [m(I1,2 ∩ E) +m(J2 ∩ E) +m(I2,3 ∩ E)] + · · ·

=

p∑
k=1

m(Ik ∩ E) ≥ 2

3

p∑
k=1

m(Ik) ≥
2

3
m

(
p∪

k=1

Ik

)

Therefore, 2m (E ∩
∪p

k=1 Ik) ≥
2
3
m (
∪p

k=1 Ik) implies that m (E ∩
∪p

k=1 Ik) ≥
1
3
m (
∪p

k=1 Ik).
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