MAT3006＊：Real Analysis Homework 3

李肖鹏（116010114）

Due date：Feb．28， 2020
Page 47，Problem 26．Let $\left\{E_{k}\right\}_{k=1}^{\infty}$ be a countable disjoint collection of measurable sets．Prove that for any set $A, m^{*}\left(A \cap \bigcup_{k=1}^{\infty} E_{k}\right)=\sum_{k=1}^{\infty} m^{*}\left(A \cap E_{k}\right)$ ．

Take a G_{δ} type set G such that $G \supset A \cap \bigcup_{k=1}^{\infty} E_{k}$ and $m^{*}\left(A \cap \bigcup_{k=1}^{\infty} E_{k}\right)=m(G)$ ．Therefore， we can see

$$
m^{*}\left(A \cap \bigcup_{k=1}^{\infty} E_{k}\right) \geq m\left(G \cap \bigcup_{k=1}^{\infty} E_{k}\right)=m\left(\bigcup_{k=1}^{\infty}\left(E_{k} \cap G\right)\right)=\sum_{k=1}^{\infty} m\left(E_{k} \cap G\right) \geq \sum_{k=1}^{\infty} m^{*}\left(E_{k} \cap A\right)
$$

where the second equality uses the fact that $\left\{E_{k} \cap G\right\}_{k=1}^{\infty}$ are countable disjoint measurable sets． Since $m^{*}\left(A \cap \bigcup_{k=1}^{\infty} E_{k}\right) \leq \sum_{k=1}^{\infty} m^{*}\left(A \cap E_{k}\right)$ follows directly from σ－subadditivity of outer measure， we conclude that $m^{*}\left(A \cap \bigcup_{k=1}^{\infty} E_{k}\right)=\sum_{k=1}^{\infty} m^{*}\left(A \cap E_{k}\right)$ ．

Extra Problem 1．Let $E_{k}, k \in \mathbb{N}^{+}$，be Lebesgue measurable，satisfying $\sum_{k=1}^{\infty} m\left(E_{k}\right)<\infty$ ．Prove that $m\left(\overline{\lim }_{k \rightarrow \infty} E_{k}\right)=0$ ．

Since $\varlimsup_{k \rightarrow \infty} E_{k}=\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_{n}$ ，denote $G=\varlimsup_{k \rightarrow \infty} E_{k}$ and $G_{k}=\bigcup_{n=k}^{\infty} E_{n}$ ，then G_{k} is decreasing．Also，for all $k \geq 1, m(G) \leq m\left(G_{k}\right) \leq \sum_{n=k}^{\infty} m\left(E_{k}\right)$ ．The RHS tends to 0 as $k \rightarrow \infty$ since the series $\sum_{k=1}^{\infty} m\left(E_{k}\right)<\infty$ ．Take $k \rightarrow \infty$ and we obtain $m(G)=0$ as required．

Extra Problem 2．Give an example of an open set O such that the boundary of the closure of it has positive Lebesgue measure．

Consider the Cantor－like set with $p=4$ defined in HW1，Denote $O=\bigcup_{k=1} E_{2 k-1}$ ，where E_{k}＇s denote the union of all open intervals removed at step k ．Also denote $G=\bigcup_{k=1} E_{2 k}$ ．Then it is easy to see that $[0,1]=O \cup G \cup C_{4}$ ．Since O and G are disjoint open set， $\bar{O} \cap G=\varnothing$ ．We claim that $C_{4} \subset \partial \bar{O}$ ，and if so，from HW2，we know $m\left(C_{4}\right)=\frac{1}{2}$ ，so $m(\partial \bar{O}) \geq \frac{1}{2}>0$ ．

To prove $C_{4} \subset \partial \bar{O}$ ，it suffices to prove for arbitrary $x \in C_{4}$ ，for all $\delta>0, N_{\delta}(x) \cap G \neq \varnothing$ and $N_{\delta}(x) \cap O \neq \varnothing$ ．If so，since $G \cap \bar{O}=\varnothing, G \subset(\bar{O})^{c}$ and $N_{\delta}(x) \cap(\bar{O})^{c} \neq \varnothing$ ．Also，$N_{\delta}(x) \cap O \neq \varnothing$ impliles that $N_{\delta}(x) \cap \bar{O} \neq \varnothing$ ．Therefore，x is the limit point of \bar{O} and $(\bar{O})^{c}$ ，by definition of $\partial \bar{O}$ ， $x \in \partial \bar{O}$ ．Since x is arbitrary，$C_{4} \in \partial \bar{O}$ ．

Now we prove $N_{\delta}(x) \cap G \neq \varnothing$ and $N_{\delta}(x) \cap O \neq \varnothing$ for all $\delta>0$ for each fixed $x \in C_{4}$ ．Since $C_{4}=\bigcup_{k=1}^{\infty} F_{k}$ where each F_{k} consists of disjoint closed interval with equal length．Since the length of each closed interval converges to zero，there exists a closed interval I such that $x \in I \subset N_{\delta}(x)$ ．

Then this closed interval I must contain open interval removed at both even and odd steps, so $I \cap G \neq \varnothing$ and $I \cap O \neq \varnothing$. This shows $N_{\delta}(x) \cap G \neq \varnothing$ and $N_{\delta}(x) \cap O \neq \varnothing$ for all $\delta>0$.

Extra Problem 3. Suppose $E, F \subset \mathbb{R}$ and $E, F \in \mathcal{M}$. If $m(E)>0$ and $m(F)>0$, then $E+F$ contains an interval.

First, since $E=\bigcup_{n \in \mathbb{N}} E \cap[-n, n]$ and $F=\bigcup_{n \in \mathbb{N}} F \cap[-n, n]$, we can find out n_{0} and n_{1} such that $m\left(E \cap\left[-n_{0}, n_{0}\right]\right)>0$ and $m\left(F \cap\left[-n_{1}, n_{1}\right]\right)>0$. Denote $E^{\prime}=E \cap\left[-n_{0}, n_{0}\right], F^{\prime}=F \cap\left[-n_{1}, n_{1}\right]$ and $n=n_{1}+n_{2}$. Then $E^{\prime}+F^{\prime} \subset E+F$ and $E^{\prime}, F^{\prime}, E^{\prime}+F^{\prime}$ are all subset of $[-n, n]$. Thus, we only need to show $E^{\prime}+F^{\prime}$ contains an interval.

Then, we claim that convolution of $f, g \in L^{2}(-n, n)$ is continuous on $[-n, n]$. Denote the indicator function of E^{\prime} and F^{\prime} as $I_{E^{\prime}}(x)$ and $I_{F^{\prime}}(x)$. Note $f(x)=\int_{[-n, n]} I_{E^{\prime}}(x-t) I_{F^{\prime}}(t) d m(t)$ is nonnegative and continuous. Hence, the set $G=\{x \in[-n, n] \mid f(x)>0\}$ is open. Since $\int_{[-n, n]} f(x) d m(x)=m\left(E^{\prime}\right) \cdot m\left(F^{\prime}\right)>0, m(G)>0, G$ is nonempty and contains an open non-empty interval U. Thus, we only need to show $G \subset E^{\prime}+F^{\prime}$. If $x \in[-n n] \backslash\left(E^{\prime}+F^{\prime}\right)$, then for such x, if $t \in F^{\prime}, x-t \notin E^{\prime}$, so $f(x)=0$. Therefore, if $f(x)>0, x \in E^{\prime}+F^{\prime}$, so $G \subset E^{\prime}+F^{\prime}$.

For the proof of our claim, since there exists $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$ converging in $L^{2}(-n, n)$ with f_{n}, g_{n} continuous function on $[-n, n]$. It is trivial that $f_{n} * g_{n}$ is continuous and $f * g$ is the uniform limit of $f_{n} * g_{n}$, so it is also continuous. The uniform convergence is given by

$$
\begin{aligned}
& \sup _{[-n, n]}\left|f * g-f_{n} * g\right| \leq\left\|f_{n}-f\right\|_{L^{2}}\|g\|_{L^{2}} \rightarrow 0 \\
& \sup _{[-n, n]}\left|f_{n} * g-f_{n} * g_{n}\right| \leq\left\|f_{n}\right\|_{L^{2}}\left\|g-g_{n}\right\|_{L^{2}} \rightarrow 0
\end{aligned}
$$

Therefore, we finish the whole proof.

Extra Problem 4. Let f be continuous on $[0,1]$. Prove that the graph Γ of $y=f(x)$, as a subset of \mathbb{R}^{2}, has Lebesgue measure 0 .

Let $\epsilon>0$, since f is continuous on $[0,1]$, it is uniformly continuous. Therefore, there exists $\delta>0$ such that $|x-y|<\delta$ implies $|f(x)-f(y)|<\epsilon$. Let $P=\left\{x_{0}=0, x_{1}, \ldots, x_{n-1}, x_{n}=1\right\}$ be a partition of $[0,1]$ such that $\left|x_{i}-x_{i-1}\right|<\delta$ are of the same length for all $i=1, \ldots, n$.

The graph $\Gamma=\{(x, f(x)) \mid x \in[0,1]\}$ satisfies $\Gamma \subset \bigcup_{i=1}^{n}\left[x_{i-1}, x_{i}\right] \times\left[m_{i}, M_{i}\right]$ where $m_{i}=$ $\min _{\left[x_{i-1}, x_{i}\right]} f(x)$ and $M_{i}=\max _{\left[x_{i-1}, x_{i}\right]} f(x)$. Since $\left|x_{i}-x_{i-1}\right|<\delta$ for all $i, M_{i}-m_{i} \leq \epsilon$ for all i. Thus,

$$
m^{*}(\Gamma) \leq \sum_{i=1}^{n} m\left(\left[x_{i-1}, x_{i}\right]\right) \cdot m\left(\left[m_{i}, M_{i}\right]\right) \leq \epsilon \sum_{i=1}^{n} m\left(\left[x_{i-1}, x_{i}\right]\right)=\epsilon
$$

Therefore, take $\epsilon \rightarrow 0$, we obtain $m^{*}(\Gamma)=0$, which means Γ is measurable with zero measure.

Extra Problem 5. Let $A, B \subset \mathbb{R}^{n}$ with finite outer measure. Prove $\left|m^{*}(A)-m^{*}(B)\right| \leq m^{*}(A \triangle B)$.
Since $m^{*}(A)$ and $m^{*}(B)$ are finite, it suffices to show

$$
m^{*}(A) \leq m^{*}(B)+m^{*}(A \triangle B), \quad m^{*}(B) \leq m^{*}(A)+m^{*}(A \triangle B)
$$

Apply the equivalent definition of symmetric difference, we have $A \triangle B=(A \cup B) \backslash(A \cap B)$. Then it is easy to see that $(A \triangle B) \cup B=A \cup B$ and $(A \triangle B) \cup A=A \cup B$. Therefore,

$$
\begin{aligned}
& m^{*}(A) \leq m^{*}(A \cup B)=m^{*}((A \triangle B) \cup B) \leq m^{*}(B)+m^{*}(A \triangle B) \\
& m^{*}(B) \leq m^{*}(A \cup B)=m^{*}((A \triangle B) \cup A) \leq m^{*}(A)+m^{*}(A \triangle B)
\end{aligned}
$$

Therefore, we proved the desire inequality $\left|m^{*}(A)-m^{*}(B)\right| \leq m^{*}(A \triangle B)$.

Extra Problem 6. Does there exists a closed proper subset F of $[0,1]$ such that $m(F)=1$?
Suppose yes, then $E=[0,1] \backslash F$ is a nonempty open set. Then it must contains an open interval which has measure $k>0$, so $m(E) \geq k>0$. Since $m([0,1])=m(E)+m(F)=1$, we have $m(F)=1-k<1$, contradiction. Therefore, such F does not exist.

Extra Problem 7. Let $E \in \mathcal{M}$ with $m(E)>0$. Prove that there exists $x \in E$ such that for all $\delta>0, m\left(E \cap B_{\delta}(x)\right)>0$, where $B_{\delta}(x)$ is the ball centered at x with radius $\delta>0$.

Suppose not, then for all $x \in E$, there exists δ_{x} such that $m\left(E \cap B_{\delta_{x}}(x)\right)=0$. Notice that $\bigcup_{x \in E} B_{\delta_{x}}(x) \supset E$, so by Lindelöf covering theorem, there exists a countable open subcover $\left\{B_{\delta_{x_{n}}}\left(x_{n}\right)\right\}_{n=1}^{\infty}$ of E. Therefore, $\bigcup_{n=1}^{\infty}\left(E \cap B_{\delta_{x_{n}}}\left(x_{n}\right)\right) \supset E$ and

$$
m(E) \leq m\left(\bigcup_{n=1}^{\infty}\left(E \cap B_{\delta_{x_{n}}}\left(x_{n}\right)\right)\right) \leq \sum_{n=1}^{\infty} m\left(E \cap B_{\delta_{x_{n}}}\left(x_{n}\right)\right)=0
$$

since each $m\left(E \cap B_{\delta_{x_{n}}}\left(x_{n}\right)\right)=0$. However, we assume $m(E)>0$, so contradiction shows that there exists $x \in E$ such that for all $\delta>0, m\left(E \cap B_{\delta}(x)\right)>0$.

Extra Problem 8. Let $E \subset \mathbb{R}^{n}$. Prove that there exists G_{δ} set $G \supset E$ such that for all $A \in \mathcal{M}$, we have $m^{*}(E \cap A)=m(G \cap A)$.

Since $A \in \mathcal{M}$, by Carathéodory property, we have $m^{*}(E)=m^{*}(E \cap A)+m^{*}\left(E \cap A^{c}\right)$. Take a G_{δ} set such that $G \supset E, m^{*}(E)=m(G)$. Also, $m(G)=m(G \cap A)+m\left(G \cap A^{c}\right)$. If $m^{*}(E)<\infty$,

$$
m^{*}(E \cap A)-m^{*}(G \cap A)=m^{*}\left(G \cap A^{c}\right)-m^{*}\left(E \cap A^{c}\right) \geq 0
$$

However, by monotonicity, $m^{*}(E \cap A) \leq m^{*}(G \cap A)$, so $m^{*}(E \cap A)=m^{*}(G \cap A)$.
If $m^{*}(E)=\infty$, then let $C_{k}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}| | x_{i} \mid \leq k, \forall 1 \leq i \leq n\right\}$. Denote $E_{k}=$ $E \cap C_{k}$, so $m^{*}\left(E_{k}\right)<\infty$. Therefore, we can find G_{δ} set $G_{k} \supset E_{k}$ such that $m\left(G_{k}\right)=m^{*}\left(E_{k}\right)$ and $m\left(G_{k} \cap A\right)=m^{*}\left(E_{k} \cap A\right)$. Let $H_{k}=\bigcap_{n=k}^{\infty} G_{n}, H_{k}$ is also a G_{δ} set for all k, and $E_{k} \subset H_{k} \subset G_{k}$. It is easy to see $m^{*}\left(E_{k} \cap A\right)=m\left(H_{k} \cap A\right)$. Let $H=\bigcup_{k=1}^{\infty} H_{k}$, then $E \subset H$. Note that $E_{k} \cap A$ and $H_{k} \cap A$ are both increasing, so take limit on both sides of $m^{*}\left(E_{k} \cap A\right)=m\left(H_{k} \cap A\right)$, we obtain $m^{*}(E \cap A)=m(H \cap A)$. Notice that $H \in \mathcal{M}$, there exists G_{δ} set O such that $O \supset H$ and $m(O \backslash H)=0$. Since $O=(O \backslash H) \cup H, O \cap A=[(O \backslash H) \cap A] \cup(H \cap A)$, so we have

$$
m(O \cap A) \leq m((O \backslash H) \cap A)+m(H \cap A) \leq m(O \backslash H)+m(H \cap A)=m(H \cap A)
$$

Also, by monotonicity, $m(O \cap A) \geq m(H \cap A)$, so $m(O \cap A)=m(H \cap A)=m^{*}(E \cap A)$. The set O is the desired G_{δ} set.

Extra Problem 9. Let $E \notin \mathcal{M}$. Prove that there exists $\epsilon>0$ such that whenever $A, B \in \mathcal{M}$, $A \supset E, B \supset E^{c}$, we always have $m(A \cap B) \geq \epsilon$.

Suppose not, then for all $k \geq 1$, there exists $A_{k}, B_{k} \in \mathcal{M}$ such that $A_{k} \supset E, B_{k} \supset E^{c}$, and $m\left(A_{k} \cap B_{k}\right) \leq \frac{1}{k}$. Let $A=\bigcap_{k=1}^{\infty} A_{k}$ and $B=\bigcap_{k=1}^{\infty} B_{k}$, then $m(A \cap B)=0$. Also, $A \supset E$ and $B \supset E^{c}$, so $B^{c} \subset E$. Notice that $m\left(A \backslash B^{c}\right)=m(A \cap B)=0$ and $m^{*}\left(E \backslash B^{c}\right) \leq m\left(A \backslash B^{c}\right)=0$, so $m^{*}\left(E \backslash B^{c}\right)=0$ and $E \backslash B^{c} \in \mathcal{M}$. Since $B^{c} \in \mathcal{M}, E=\left(E \backslash B^{c}\right) \cup B^{c} \in \mathcal{M}$. Contradiction!

Extra Problem 10. Let $E \subset \mathbb{R}$ and $E \in \mathcal{M}$. Suppose there exists open intervals I_{k} for $k \in \mathbb{N}^{+}$ such that $m\left(E \cap I_{k}\right) \geq \frac{2}{3} m\left(I_{k}\right)$. Prove that $m\left(E \cap \bigcup_{k=1}^{\infty} I_{k}\right) \geq \frac{1}{3} m\left(\bigcup_{k=1}^{\infty} I_{k}\right)$.

It suffices to show that for all $n \geq 1, m\left(E \cap \bigcup_{k=1}^{n} I_{k}\right) \geq \frac{1}{3} m\left(\bigcup_{k=1}^{n} I_{k}\right)$ because if so, then since $E \cap \bigcup_{k=1}^{n} I_{k}$ and $\bigcup_{k=1}^{n} I_{k}$ are both increasing, we can take limit on both sides and the desire inequality holds. First, for each $k=1, \ldots, n$, check if there exists $k^{\prime} \neq k, k^{\prime}=1, \ldots, n$ such that $I_{k^{\prime}} \subset I_{k}$. If yes, then delete $I_{k^{\prime}}$, and finally we will obtain a subcollection of open intervals. After relabeling, we obtain $\left\{I_{k}\right\}_{k=1}^{m}$ with $m \leq n$ and $\bigcup_{k=1}^{n} I_{k}=\bigcup_{k=1}^{m} I_{k}$.

Furthermore, consider if there exists distinct index $j, k, l=1, \ldots, m$ such that $I_{j} \cap I_{k} \cap I_{l} \neq \varnothing$, then $I_{j} \cup I_{k} \cup I_{l}$ is an open interval (a, b). If we denote $I_{j}=\left(a_{j}, b_{j}\right), I_{k}=\left(a_{k}, b_{k}\right)$ and $I_{l}=\left(a_{l}, b_{l}\right)$, then a_{j}, a_{k}, a_{l} must be distinct and so are b_{j}, b_{k}, b_{l} (if two of them are equal, then one interval is contained in another, which is impossible since we have already delete the smaller one in the previous step). Therefore, a, b come from two different intervals and the third interval is contained in the union of those two intervals, so we can delete the third interval without changing $I_{j} \cup I_{k} \cup I_{l}$. Therefore, we can finally obtain a further subcollection of open intervals. After relabeling, we can obtain $\left\{I_{k}\right\}_{k=1}^{p}$ with $p \leq m$ and $\bigcup_{k=1}^{m} I_{k}=\bigcup_{k=1}^{p} I_{k}$. Thus, it suffices to show $m\left(E \cap \bigcup_{k=1}^{p} I_{k}\right) \geq \frac{1}{3} m\left(\bigcup_{k=1}^{p} I_{k}\right)$.

Notice that for this new subcollection $\left\{I_{k}\right\}_{k=1}^{p}$, if we denote $I_{k}=\left(a_{k}, b_{k}\right)$, then WLOG, we can assume $a_{1}<a_{2}<\cdots<a_{p}$ and $b_{1}<b_{2}<\cdots<b_{p}$. Furthermore, $a_{k+2} \geq b_{k}$ for all $k=1, \ldots, p-2$. Thus, an essential observation is that each I_{k} can only have nonempty intersection with I_{k-1} and I_{k}, and it will not intersect with $I_{1}, \ldots, I_{k-2}, I_{k+2}, \ldots, I_{p}$. Then denote $I_{k, j}=I_{k} \cap I_{j}$ for all $k \neq j$ and also denote $J_{k}=I_{k} \backslash\left(\bigcup_{j \neq k, j=1}^{p} I_{k, j}\right)$. Then we can see that $\bigcup_{k=1}^{p} I_{k}=\left(\bigcup_{k=1}^{p} J_{k}\right) \cup\left(\bigcup_{k \neq j, k, j=1}^{p} I_{k, j}\right)$. The most important thing is that all $I_{k, j}$ and J_{k} are all pairwise disjoint. Therefore, we can conclude

$$
\begin{aligned}
2 m\left(E \cap \bigcup_{k=1}^{p} I_{k}\right) & =2 m\left[\left(\bigcup_{k=1}^{p} J_{k} \cap E\right) \cup\left(\bigcup_{k \neq j} I_{k, j} \cap E\right)\right] \\
& =2 \sum_{k=1}^{p} m\left(J_{k} \cap E\right)+2 \sum_{k \neq j, k, j=1}^{p} m\left(I_{k, j} \cap E\right) \\
& \geq\left[m\left(J_{1} \cap E\right)+m\left(I_{1,2} \cap E\right)\right]+\left[m\left(I_{1,2} \cap E\right)+m\left(J_{2} \cap E\right)+m\left(I_{2,3} \cap E\right)\right]+\cdots \\
& =\sum_{k=1}^{p} m\left(I_{k} \cap E\right) \geq \frac{2}{3} \sum_{k=1}^{p} m\left(I_{k}\right) \geq \frac{2}{3} m\left(\bigcup_{k=1}^{p} I_{k}\right)
\end{aligned}
$$

Therefore, $2 m\left(E \cap \bigcup_{k=1}^{p} I_{k}\right) \geq \frac{2}{3} m\left(\bigcup_{k=1}^{p} I_{k}\right)$ implies that $m\left(E \cap \bigcup_{k=1}^{p} I_{k}\right) \geq \frac{1}{3} m\left(\bigcup_{k=1}^{p} I_{k}\right)$.

