# MAT3006＊：Real Analysis <br> Homework 4 

李肖鹏（116010114）

Due date：Mar．6， 2020
Extra Problem 1．Define $f:[a, b] \mapsto \mathbb{R}$ such that for all $E \subset[a, b]$ and $E \in \mathcal{M}$ ，we have $f(E) \in \mathcal{M}$ ． Prove that for all $Z \subset[a, b]$ with $m(Z)=0$ ，we have $m(f(Z))=0$ ．

Suppose there exists $Z \subset[a, b]$ with $m(Z)=0$ and $m(f(Z))>0$ ，then by a remark in lecture， there exists $S \subset f(Z)$ such that $S \notin \mathcal{M}$ ．Since for all $E \in \mathcal{M}, f(E) \in \mathcal{M}$ ，we conclude that if $f(E) \notin \mathcal{M}$ then $E \notin \mathcal{M}$ ．Therefore，$f^{-1}(S) \notin \mathcal{M}$ ．However，$f^{-1}(S) \subset Z$ ，but $Z$ is null set，and any subset of a null set is measurable with zero measure，so we obtain a contradiction．This shows that，for all $Z \subset[a, b]$ with $m(Z)=0$ ，we have $m(f(Z))=0$ ．

Extra Problem 2．Let $f$ be defined on $E \in \mathcal{M}$ ，and $f$ be finite on $E$ ．Prove that the following are equivalent：
（i）$f$ is measurable on $E$ ；
（ii）$f^{-1}(G) \in \mathcal{M}$ for all open set $G \subset \mathbb{R}$ ．
（iii）$f^{-1}(F) \in \mathcal{M}$ for all closed set $F \subset \mathbb{R}$ ．
（iv）$f^{-1}(B) \in \mathcal{M}$ for all Borel set $B \subset \mathbb{R}$ ．

We first prove $(\mathrm{ii}) \Longrightarrow(\mathrm{i}),(\mathrm{iii}) \Longrightarrow(\mathrm{i})$ ，and（iv）$\Longrightarrow(\mathrm{i})$ ．Recall that $f$ is measurable if $f^{-1}((-\infty, t)) \in$ $\mathcal{M}$ for all $t \in \mathbb{R}$ ．If we assume（ii），since all $(-\infty, t)$ is open，（i）automatically holds．If we assume（iii），since $(-\infty, t)^{c}$ is a closed set for all $t, f^{-1}\left((-\infty, t)^{c}\right) \in \mathcal{M}$ ．By a useful identity， $f^{-1}\left((-\infty, t)^{c}\right)=\left[f^{-1}((-\infty, t))\right]^{c} \in \mathcal{M}$ ．Thus，$f^{-1}((-\infty, t)) \in \mathcal{M}$ ，and（i）is established．If we assume（iv），since $(-\infty, t)$ must be Borel set，（i）automatically holds．

Now we prove（i）$\Longrightarrow$（iv）．To prove（i）$\Longrightarrow$（iv），construct $\mathcal{S}=\left\{E \in \mathbb{R} \mid f^{-1}(E) \in \mathcal{M}\right\}$ ．If $f$ is measurable，then $f^{-1}((-\infty, t)) \in \mathcal{M}$ ．Also，by useful identity in lecture，$f^{-1}((t, \infty)) \in \mathcal{M}$ ．Since $f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B)$ ，and any open interval $(a, b)$ can be written as $(-\infty, b) \cap(a, \infty)$ ， $f^{-1}(I) \in \mathcal{M}$ for all open interval $I$ ．Furthermore，for each open set $G, G=\bigcup_{k=1}^{\infty} I_{k}$ ，since $f^{-1}(G)=$ $\bigcup_{k=1}^{\infty} f^{-1}\left(I_{k}\right), f^{-1}(G) \in \mathcal{M}$ ．Actually we have already proved（i）$\Longrightarrow$（ii）．

Now we try to show $\mathcal{S}$ is a $\sigma$－algebra．First，$f^{-1}(\varnothing)=\varnothing \in \mathcal{M}$ and $f^{-1}(\mathbb{R})=E \in \mathcal{M}$ ．Second， for any $A \subset \mathbb{R}$ ，if $f^{-1}(A) \in \mathcal{M}$ ，again since $f^{-1}\left(A^{c}\right)=\left[f^{-1}(A)\right]^{c}, f^{-1}\left(A^{c}\right) \in \mathcal{M}$ ．This actually verifies（ii）$\Longrightarrow$（iii），hence（i）$\Longrightarrow$（iii）．

Third，if $f^{-1}\left(E_{k}\right) \in \mathcal{M}$ for all $i \in \mathbb{N}^{+}$，then $f^{-1}\left(\cup_{k=1}^{\infty} E_{k}\right)=\bigcup_{k=1} f^{-1}\left(E_{k}\right) \in \mathcal{M}$ ．Therefore， $\mathcal{S}$
is a $\sigma$-algebra contains all open sets, but since $\mathcal{B}$ is the smallest $\sigma$-algebra containing all open sets, we have $\mathcal{B} \subset \mathcal{S}$. This finishes the proof of (i) $\Longrightarrow$ (iv).

Extra Problem 3. Prove that monotone increasing function defined on $[a, b]$ is measurable.
If $f$ is increasing function, then the set $\{x \in[a, b] \mid f(x)>t\}$ is an interval for all $t$, and hence measurable. By definition $f$ is measurable.

Extra Problem 4. Let $f$ be defined on $[a, b]$. Suppose for all $[\alpha, \beta] \subset(a, b), f$ is measurable on $[\alpha, \beta]$. Prove $f$ is measurable on $[a, b]$.

Notice that $\left[a+\frac{1}{n}, b-\frac{1}{n}\right] \subset(a, b)$ for all $n \geq 1$. By hypothesis, $f$ is measurable on every $\left[a+\frac{1}{n}, b-\frac{1}{n}\right]$, thus $\left\{\left.x \in\left[a+\frac{1}{n}, b-\frac{1}{n}\right] \right\rvert\, f(x)>t\right\} \in \mathcal{M}$. Also, $(a, b)=\bigcup_{n=1}^{\infty}\left[a+\frac{1}{n}, b-\frac{1}{n}\right]$, so $\{x \in(a, b) \mid f(x)>t\}=\bigcup_{n=1}^{\infty}\left\{\left.x \in\left[a+\frac{1}{n}, b-\frac{1}{n}\right] \right\rvert\, f(x)>t\right\} \in \mathcal{M}$. Therefore, $f$ is measurable on $(a, b)$. Since $\{a, b\}$ has measure zero, and $f$ is measurable on any zero measure set, so $f$ is also measurable on $[a, b]$.

Extra Problem 5. Let $f$ be differentiable on $[a, b]$. Prove that $f^{\prime}(x)$ is also measurable on $[a, b]$.
Let $g_{n}(x)=\frac{f\left(x+\frac{1}{n}\right)-f(x)}{\frac{1}{n}}$, then $g_{n}(x)$ is continuous on $\left[a, b-\frac{1}{n}\right]$, hence measurable. For each $[\alpha, \beta] \subset(a, b)$, there exists large $N_{\beta}$ such that $[\alpha, \beta] \subset\left[a, b-\frac{1}{n}\right]$, hence $g_{n}$ is measurable on $[\alpha, \beta]$ for all $n \geq N_{\beta}$. Since $f^{\prime}(x)=\lim _{n \rightarrow \infty} g_{n}(x), f^{\prime}(x)$ is measurable on $[\alpha, \beta]$. By Extra Problem $4, f^{\prime}(x)$ is also measurable on $[a, b]$.

Extra Problem 6. Define $f: \mathbb{R}^{2} \mapsto \mathbb{R}$ such that $f(x, y)$ is a measurable function of $x \in \mathbb{R}$ for each fixed $y$. Also, for each fixed $x, f$ is a continuous function of $y \in \mathbb{R}$. Define $F(x)=\max _{y \in[0,1]} f(x, y)$. Prove that $F(x)$ is measurable on $\mathbb{R}$.

Consider the equality $\{x \in \mathbb{R} \mid F(x)>t\}=\bigcup_{k=1}^{\infty}\left\{x \in \mathbb{R} \mid f\left(x, r_{k}\right)>t\right\}$ where $\left\{r_{k}\right\}_{k=1}^{\infty}=$ $\mathbb{Q} \cap[0,1]$. If so, then since $f\left(x, r_{k}\right)$ is measurable for each fixed $r_{k},\left\{x \in \mathbb{R} \mid f\left(x, r_{k}\right)>t\right\} \in \mathcal{M}$, so we can easily see $\{x \in \mathbb{R} \mid F(x)>t\} \in \mathcal{M}$, and hence $F$ is measurable on $\mathbb{R}$. To check why the equality holds above, we need to use $f(x, y)$ is continuous with respect $y$. RHS $\subset$ LHS is trivial because for all $x \in$ RHS, there exists $k$ such that $f\left(x, r_{k}\right)>t$, then $F(x)=\max _{y \in[0,1]} f(x, y) \geq f\left(x, r_{k}\right)>t$, so $x \in$ LHS. For $x \in$ LHS, $F(x)=\max _{y \in[0,1]} f(x, y)>t$. Since $f(x, y)$ is continuous with respect to $y$ on compact set $[0,1]$, there exists $y_{0} \in[0,1]$ such that $f\left(x, y_{0}\right)=F(x)$. If $y_{0} \in \mathbb{Q}$, then $x \in$ RHS and we are done. If $y_{0} \notin \mathbb{Q}$, then there exists a sequence $a_{n} \rightarrow y_{0}$ and $a_{n} \subset \mathbb{Q} \cap[0,1]$ such that $f\left(x, a_{n}\right) \rightarrow f\left(x, y_{0}\right)$. Take $N$ large enough such that $f\left(x, y_{0}\right)-f\left(x, a_{n}\right) \leq \frac{F(x)-t}{2}$, then $f\left(x, a_{n}\right) \geq \frac{F(x)+t}{2}>t$. This shows $x \in$ RHS. Thus, we establish that LHS $=$ RHS.

Extra Problem 7. Let $E \subset \mathbb{R}^{n}$. Prove that $E \in \mathcal{M}$ if and only if $I_{E}(x)$ is measurable on $\mathbb{R}^{n}$, where $I_{E}(x)$ is the indicator function of set $E$.

If $I_{E}(x)$ is measurable on $\mathbb{R}^{n}$, then since $\{1\}$ is a closed set, and by Extra Problem 2, $E=$ $f^{-1}(\{1\}) \in \mathcal{M}$. If $E$ is measurable, then consider $I_{E}^{-1}((t, \infty))$, if $t \leq 0$, then $I_{E}^{-1}((t, \infty))=\mathbb{R} \in \mathcal{M}$;
if $t \in(0,1)$, then $I_{E}^{-1}((t, \infty))=E \in \mathcal{M}$; if $t \geq 1$, then $I_{E}^{-1}((t, \infty))=\varnothing \in \mathcal{M}$. Therefore, $I_{E}^{-1}((t, \infty)) \in \mathcal{M}$ for all $t \in \mathbb{R}$, so $I_{E}(x)$ is measurable.

Extra Problem 8. Let $f$ be real-valued and measurable on $E \in \mathcal{M}$ with $m(E)<\infty$. Prove that for all $\epsilon>0$, there exists bounded measurable function $g(x)$ defined on $E$ such that $m(\{x \in$ $E \mid f(x) \neq g(x)\})<\epsilon$.

For all $k \geq 1$, let $E_{k}=\{x \in E| | f(x) \mid>k\}$, then $E_{k+1} \subset E_{k}$ for all $k \geq 1$. Also, $\lim _{k \rightarrow \infty} E_{k}=$ $\bigcap_{k=1}^{\infty} E_{k}=\varnothing$ because $f$ is real-valued. Since $f$ is measurable on $E \in \mathcal{M},|f|$ is measurable, so $E_{k} \in \mathcal{M}$ for all $k \geq 1$. Furthermore, $m\left(E_{1}\right) \subset m(E)<\infty$, hence we have $\lim _{k \rightarrow \infty} m\left(E_{k}\right)=$ $m\left(\lim _{k \rightarrow \infty} E_{k}\right)=0$. Therefore, for all $\epsilon>0$, there exists $K \geq 1$ such that $m\left(E_{k}\right)<\epsilon$ for all $k \geq K$. Let us take $k=K$, and define

$$
g(x)= \begin{cases}f(x) & x \in E \backslash E_{K} \\ 0 & x \in E_{K}\end{cases}
$$

Then $m(\{x \in E \mid f(x) \neq g(x)\}) \leq m\left(E_{K}\right)<\epsilon$.

Extra Problem 9. Construct an example in which $f$ is measurable and $g$ is continuous, but $f \circ g$ is not measurable.

Recall Cantor function $c(x)$, define $\hat{c}(x)=x+f(x)$, then $\hat{c}(x)$ is strictly increasing and continuous on $[0,1]$. Since $\hat{c}^{-1}$ is also continuous, we take $g=\hat{c}^{-1}$. Also, we proved that $m(\hat{c}(C))=1$ for Cantor set $C$, so there exists non-measurable set $S \subset \hat{c}(C)$, and $B=\hat{c}^{-1}(S) \subset C$ is measurable. Take $f=I_{B}$ to be the indicator function of $B$, by Extra Problem $7, f$ is measurable. We claim that $h=f \circ g$ is not measurable. Suppose it is measurable, then since $\{1\}$ is closed, $h^{-1}(\{1\})$ must be measurable. However, $h^{-1}(\{1\})=g^{-1} \circ f^{-1}(\{1\})=g^{-1}(B)=\hat{c}(B)=S \notin \mathcal{M}$, which is a contradiction. Therefore, $f \circ g$ is not measurable.

