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Page 63, Problem 15. Let f be a measurable function on E that is finite a.e. on E and m(E) < ∞.
For each ϵ > 0, show that there is a measurable set F contained in E and a sequence ϕn(x) of simple
functions on E such that ϕn → f uniformly on F and m(E \ F ) < ϵ.

Define Ek = {x ∈ E | |f(x)| ≥ k} then Ek ∈ M, Ek is decreasing and f is bounded outside
Ek. Since f is finite a.e. on E, it is not hard (see Extra Problem 3 below for details) to prove
limk→∞ Ek = 0. Therefore, for each ϵ > 0, there exists K such that m(EK) < ϵ and f is bounded
on E \EK . Let F = E \EK , then since f is bounded on F , by approximation theorem, there exists
a sequence of simple functions ϕn on E such that ϕn → f uniformly on F .

Page 63, Problem 16. Let I be a closed, bounded interval and E a measurable subset of I. Let
ϵ > 0. Show that there is a step function h on I and a measurable subset F of I for which h = IE

on F and m(I \ F ) < ϵ.

Since E ∈ M, there exists U =
∪N

k=1 Ck where Ck’s are closed (bounded) intervals and
m(E△U) < ϵ. Let F = I \ (E△U), then we have

F = I ∩ (E△U)c = I ∩ ((E ∪ U) ∩ (E ∩ U)c)c = [I \ (E ∪ U)] ∪ [I ∩ (E ∩ U)]

Define h(x) on F by h(x) = 1 if x ∈ I ∩ U and h(x) = 0 if x ∈ I \ U . Then for x ∈ F , if x ∈ E,
then x ∈ I ∩ (E ∩ U) and h(x) = 1; if x /∈ E, then x ∈ I \ (E ∪ U), so h(x) = 0. Therefore, on F ,
h(x) = IE(x). It is trivial that m(I \ F ) < ϵ. Also, since U =

∪N
k=1 Ck, I ∩ U =

∪N
k=1(I ∩ Ck), and

h(x) =
∑N

k=1 II∩Ck
(x), which is indeed a step function.

Page 67, Problem 31. Let fn be a sequence of measurable functions on E that converges to the
real-valued f pointwise on E. Show that E =

∪∞
k=1 Ek, where for each k, Ek is measurable, and fn

converges uniformly to f on each Ek if k > 1, and m(E1) = 0.

First consider when m(E) < ∞. By Egorov’s theorem, fn → f a.u. on E. Thus, for all k ≥ 1,
there exists Fk ∈ M and Fk ⊂ E s.t. m(Fk) <

1
2k

and fn → f uniformly on E \Fk. Let Ek = E \Fk

for k ≥ 2 and E1 = E \
∪∞

k=2 Ek =
∩∞

k=2 Fk. Consider m(E1) ≤ m(Fk) >
1
2k

for all k ≥ 2, thus let
k → ∞, we obtain m(E1) = 0.

Then consider m(E) = ∞. Let Jk = E ∩ Bk(0) and E =
∪∞

k=1 Jk. Since Jk is bounded,
m(Jk) < ∞, so for fixed k ≥ 1, there exists Ek

i s.t. Jk =
∪∞

i=1 E
k
i and Ek

i are measurable for all
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i ≥ 1. Also, m(Ek
1 ) = 0 and fn → f uniformly on Ek

i for i ≥ 2. Let E1 =
∪∞

k=1 E
k
1 , then it is

obvious that m(E1) = 0. Thus, E = E1 ∪
∪∞

k=1

∪∞
i=2 E

k
i and after renumbering these countably

many sets except E1, we can obtain the desired result.

Extra Problem 1. Let fk(x) be measurable on E ∈ M, where m(E) < ∞. Suppose fk(x) → ∞
a.e. on E as k → ∞, then fk → ∞ a.u. on E.

Let gk(x) = arctan(fk(x)), then it is trivial that gk(x)’s are measurable on E and gk(x) → π
2

a.e. on E. Since π
2

is a finite number, by Egorov’s theorem, gk(x) → π
2

a.u., which means for each
δ > 0, there exists Eδ such that m(Eδ) < δ and gk(x) → π

2
uniformly on E \ Eδ. By definition,

∀ ϵ > 0, there exists N(ϵ) such that for all k ≥ N(ϵ), |gk(x)− π
2
| < ϵ for all x ∈ E \Eδ. Since tan(x)

is a continuous function on (−π/2, π/2) and tan(x) → ∞ as x → π/2, for all M > 0, there exists
δ(M), such that tan(x) > M for all |x − π/2| < δ(M). Take ϵ = δ(K) above, then for all K > 0,
there exists N(δ(K)) such that for k ≥ N(δ(K)), |gk(x) − π

2
| < δ(K), so tan(gk(x)) > K for all

x ∈ E \ Eδ. But tan(gk(x)) is nothing but fk(x), so this shows fk(x) → ∞ uniformly on E \ Eδ.

Extra Problem 2. Let E ∈ M, fk → f in measure and gk → g in measure one E as k → ∞.
Prove that fk + gk → f + g in measure on E as k → ∞.

Since |fk + gk − (f + g)| ≤ |fk − f |+ |gk − g|, if |fk + gk − (f + g)| ≥ δ, then either |fk − f | or
|gk − g| must be no less than δ/2. Therefore we can obtain

{x | |fn(x) + gn(x)− (f(x) + g(x))| ≥ δ} ⊂ {x | |fn(x)− f(x)| ≥ δ/2} ∪ {x | |gn(x)− g(x)| ≥ δ/2}

Take measure on both sides, and by using subadditivity of Lebesgue measure, we have

m ({x | |fn(x) + gn(x)− (f(x) + g(x))| ≥ δ}) → 0

because as n → ∞,

m ({x | |fn(x)− f(x)| ≥ δ/2}) +m ({x | |gn(x)− g(x)| ≥ δ/2}) → 0

Extra Problem 3. Let fn be measurable on [0, 1] with |fn(x)| < ∞ for a.e. x ∈ E. Show that
there exists sequence of positive numbers cn such that fn(x)

cn
→ 0 a.e. on E as n → ∞.

For each fixed n ≥ 1, define Ek
n = {x ∈ [0, 1] | |fn(x)| ≥ k} for all k ≥ 1. It is obvious that

limk→∞ m(Ek
n) = 0 because if not, then there exists a subsequence kj such that m(E

kj
n ) ≥ ϵ > 0

for all j. Since kj → ∞ as j → ∞, fn(x) = ∞ on a positive measure set, which contradict fn(x) is
finite a.e. x ∈ E. This implies for each fixed n, we can take kn large enough such that m(Ekn

n ) < 1
2n

for all n ≥ 1. Since
∑∞

n=1 m(Ekn
n ) < ∞, by Borel-Cantelli Lemma, m(limn→∞ Ekn

n ) = 0. Take
A = limn→∞ Ekn

n , if x /∈ A, then there exists M such that for all n ≥ M , x /∈ Ekn
n . This means

|fn(x)| < kn for large n for each fixed x. Therefore, for a fixed x /∈ A, take cn = nkn, when n is
large, fn(x)

cn
≤ 1

n
. This implies fn(x)

cn
→ 0 a.e. on E.
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Extra Problem 4. Let fn be measurable on R and λn be a sequence of positive numbers, satisfying
∞∑

n=1

m ({x ∈ R | |fn(x)| > λn}) < ∞

Prove that lim supn→∞
|fn(x)|

λn
≤ 1 a.e. on R.

If we denote En = {x ∈ R | |fn(x)| > λn}, by Borel-Cantelli Lemma, m(limn→∞ En) = 0. Let
A = limn→∞ En, if x /∈ A, then there exists Nx such that |fn(x)| ≤ λn for n ≥ Nx. Therefore, for this
fixed x, lim supn→∞

|fn(x)|
λn

≤ 1. This has already been enough to conclude lim supn→∞
|fn(x)|

λn
≤ 1

a.e. on R.

Extra Problem 5. Let fk(x) be real-valued, measurable on E ∈ M, with m(E) < ∞. Prove that
fk → 0 a.e. on E as k → ∞ if and only if

lim
j→∞

m

({
x ∈ E

∣∣∣∣ sup
k≥j

|fk(x)| ≥ ϵ

})
= 0

for all ϵ > 0.

For “only if” part, let Eϵ
j = {x ∈ E | supk≥j |fk(x)| ≥ ϵ}. It is easy to see Eϵ

j is decreasing.
Since m(E) < ∞, we have limj→∞ m(Eϵ

j) = m(∩∞
j=1E

ϵ
j) = m({x ∈ E | limk→∞ |fk(x)| ≥ ϵ}). Since

fk → 0 a.e., limk→∞ |fk(x)| = 0 a.e., thus we have m({x ∈ E | limk→∞ |fk(x)| ≥ ϵ}) = 0.

For “if” part, let Z = {x ∈ E | fk(x) ̸→ 0}, and Ek
l = {x ∈ E | |fk(x)| ≥ 1

l
}. Then by the proof of

Egorov’s theroem, we know Z =
∪∞

l=1 limj→∞ F j
l where F j

l =
∪∞

k=j E
k
l . If x ∈ F j

l , then there exists
k0 ≥ j such that x ∈ Ek0

l . This shows |fk0
(x)| ≥ 1

l
. Then supk≥j |fk(x)| ≥ |fk0

(x)| ≥ 1
l
. Take ϵ = 1

l

in the hypothesis, x ∈ {x ∈ E | supk≥j |fk(x)| ≥ 1
l
}. Therefore, F j

l ⊂ {x ∈ E | supk≥j |fk(x)| ≥ 1
l
}.

Therefore, by taking measure on both sides and taking limit w.r.t. j, we have limj→∞ m(F j
l ) = 0.

Since F j
l is decreasing and with finite measure, limj→∞ m(F j

l ) = m(limj→∞ F j
l ) = 0. Therefore,

m(Z) = 0, i.e., fk → 0 a.e. on E.

Extra Problem 6. Let fk,i(x), 1 ≤ k < ∞, 1 ≤ i < ∞, be real-valued and measurable on [0, 1],
satisfying

(i) For each fixed k ≥ 1, fk,i → fk a.e. on [0, 1] as i → ∞ with some fk real-valued on [0, 1].

(ii) fk → g a.e. on [0, 1] as k → ∞, with some g real-valued on [0, 1].

Prove that there exists kj and ij such that fkj ,ij → g a.e. on [0, 1] as j → ∞.

Denote E = [0, 1]. Consider {f1,i}, by Egorov theorem, take δ = 1/2, there exists E1 ⊂ E s.t.
m(E1) < 1/2. Also, by definition of uniform convergence, there exists i1 s.t. |f1,i1(x) − f1(x)| <
ϵ/2 for all x ∈ E \ E1. Similarly, in general, we will obtain Ej s.t. m(Ej) < 1/2j and ij s.t.
|fj,ij (x)− fj(x)| < ϵ/2 for all x ∈ E \Ej . WLOG, we can assume ij is strictly increasing to infinity
as j → ∞. Let A = limj→∞ Ej , since

∑∞
j=1 m(Ej) =

∑∞
j=1 1/2

j < ∞, by Borel-Cantelli Lemma,
m(A) = 0. Define E0 = E \ A, then E0 = limj→∞(E \ Ej). Therefore, for each fixed x ∈ E0, there
exists jx ≥ 1 s.t. x ∈ E \ Ej for all j ≥ jx and |fj,ij − fj | < ϵ/2. Since fj → g a.e., there exists
Z ⊂ E and m(Z) = 0 s.t. for each j and each fixed x ∈ E \ Z, there exists K s.t. for all j ≥ K,

3



|fj(x) − g(x)| < ϵ/2. This implies for each fixed x ∈ E0, there exists M = max{jx,K} s.t. for all
j ≥ M ,

|fj,ij (x)− g(x)| ≤ |fj,ij − fj |+ |fj − g| < ϵ/2 + ϵ/2 = ϵ

Thus, fj,ij → g(x) a.e. on E.
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