MAT3006*: Real Analysis

Homework 5

ZEHE IS (116010114)
Due date: Mar. 13, 2020

Page 63, Problem 15. Let f be a measurable function on E that is finite a.e. on F and m(FE) < oo.
For each € > 0, show that there is a measurable set F' contained in F and a sequence ¢, (z) of simple

functions on FE such that ¢,, — f uniformly on F and m(FE \ F) <e.

Define E, = {x € E||f(xz)| > k} then E;, € M, Ej is decreasing and f is bounded outside
E). Since f is finite a.e. on E, it is not hard (see Extra Problem 3 below for details) to prove
limg o Fx = 0. Therefore, for each € > 0, there exists K such that m(Ek) < € and f is bounded
on E\ Ex. Let F = E\ Ek, then since f is bounded on F, by approximation theorem, there exists

a sequence of simple functions ¢,, on E such that ¢, — f uniformly on F.

Page 63, Problem 16. Let I be a closed, bounded interval and E a measurable subset of I. Let
€ > 0. Show that there is a step function h on I and a measurable subset F' of I for which h = Ig
on Fand m(I'\ F) <e.

Since £ € M, there exists U = Ugil Cy where Cy’s are closed (bounded) intervals and
m(EAU) <e. Let FF' =1\ (EAU), then we have

F=IN(EAU)=IN(EUU)N(ENU))=[I\(FUU)JU[IN(ENU)]

Define h(z) on F by h(z) =1if x € INU and h(z) =0if x € I\ U. Then for z € F, if x € E,
thenz € IN(ENU) and h(z) =1;if v ¢ E, thenz € I\ (EUU), so h(z) = 0. Therefore, on F,
h(z) = Ig(z). Tt is trivial that m(I \ F) < e. Also, since U = Uszl Cr, INU = U,]Ll(l N Cy), and

h(z) = Zszl I1nc, (), which is indeed a step function.

Page 67, Problem 31. Let f,, be a sequence of measurable functions on F that converges to the
real-valued f pointwise on F. Show that F = U,;“;l FE, where for each k, E) is measurable, and f,

converges uniformly to f on each Ej, if k > 1, and m(E;) = 0.

First consider when m(F) < co. By Egorov’s theorem, f,, — f a.u. on E. Thus, for all k > 1,
there exists Fj, € M and Fj, C E s.t. m(F}) < 2% and f, — f uniformly on E\ Fy. Let E, = E'\ F},
for k> 2 and Ey = E\ Up_y Ex = hey Fr. Consider m(Ey) < m(Fy) > 5 for all k > 2, thus let
k — oo, we obtain m(E;) = 0.

Then consider m(E) = oco. Let J, = E N By(0) and E = |J;—, Ji. Since J;, is bounded,

m(Jy,) < oo, so for fixed k > 1, there exists EF s.t. J, = (o, EF and EF are measurable for all



i > 1. Also, m(E¥) = 0 and f, — f uniformly on E¥ for i > 2. Let Ey = [J,—, E¥, then it is
obvious that m(E;) = 0. Thus, E = E; UJ,—, U=, EF and after renumbering these countably

many sets except E7, we can obtain the desired result.

Extra Problem 1. Let f;(z) be measurable on E € M, where m(E) < oo. Suppose fi(z) — o0

a.e. on F as k — oo, then f;, — oo a.u. on F.

Let g(z) = arctan(fi(z)), then it is trivial that g.(z)’s are measurable on E and gi(v) — 7
a.e. on I. Since 7 is a finite number, by Egorov’s theorem, gi(x) — 5 a.u., which means for each
d > 0, there exists Es such that m(Es) < 0 and gi(x) — 7§ uniformly on E \ Es. By definition,
Ve > 0, there exists N (e) such that for all k > N(e), |gp(x) — 5| < e forall 2 € E'\ Es. Since tan(x)
is a continuous function on (—n/2,7/2) and tan(z) — oo as x — «/2, for all M > 0, there exists
d(M), such that tan(x) > M for all |z — 7/2| < 6(M). Take ¢ = §(K) above, then for all K > 0,
there exists N(4(K)) such that for k > N(§(K)), |gr(x) — 5| < §(K), so tan(gx(z)) > K for all

x € E\ Es. But tan(gi(z)) is nothing but fi(x), so this shows fi(z) — oo uniformly on E'\ E;.

Extra Problem 2. Let £ € M, fi — f in measure and g5, — ¢ in measure one F as k — 0.
Prove that f; + gr — f + ¢ in measure on E as k — oo.

Since |fr +gr — (f + )| < |fe — f| +lgx — gl, if |fx +9x — (f +g)| > J, then either |f, — f| or
|gr — g| must be no less than 6/2. Therefore we can obtain

{z|[fn(2) + gn(z) = (f(2) + 9(2))] = 6} C{z[[fu(2) = f(2)] = 6/2} U{x||gn(2) — g(z)] = 6/2}

Take measure on both sides, and by using subadditivity of Lebesgue measure, we have

m ({z|[fn(2) + gn(x) — (f(2) + g(2))] = 6}) = 0

because as n — oo,

m ({z|[fu(x) = f(2)] = 6/2}) + m ({z||gn(2) - g(2)| = 6/2}) = 0

Extra Problem 3. Let f, be measurable on [0,1] with |f,(z)| < oo for a.e. € E. Show that

(

there exists sequence of positive numbers ¢,, such that () 5 0 ae. on E as n — oco.

For each fixed n > 1, define EF = {z € [0,1]||f.(x)] > k} for all k > 1. It is obvious that
limy 0 m(EY) = 0 because if not, then there exists a subsequence k; such that m(E ) >e>0
for all j. Since k; — 0o as j — 00, f,(x) = 0o on a positive measure set, which contradict f,(x) is
finite a.e. € E. This implies for each fixed n, we can take k,, large enough such that m(E*») < i
for all n > 1. Since > .- m(E") < oo, by Borel-Cantelli Lemma, m(lim,_,« EF") = 0. Take
A = lim,,_,oo EF, if ¢ A, then there exists M such that for all n > M, z ¢ EF». This means

|fn(z)| < K, for large n for each fixed x. Therefore, for a fixed z ¢ A, take ¢, = nk,, when n is
fale) ¢ 1 futo)

kn
n

large, . This implies — 0 a.e. on FE.



Extra Problem 4. Let f,, be measurable on R and )\, be a sequence of positive numbers, satisfying
D om({z €R[|fu(z)] > M\}) < 00
n=1

Prove that limsup,,_, . ‘ff\ﬂ <1la.e. onR.

If we denote E,, = {x € R||f.(z)] > \.}, by Borel-Cantelli Lemma, m(lim,, ., E,) = 0. Let
A =1lim, .o E,,if z ¢ A, then there exists N, such that |f,(z)| < A, for n > N,. Therefore, for this
fixed x, limsup,,_, .. w < 1. This has already been enough to conclude limsup,,_, UAﬂ <1
a.e. on R.

Extra Problem 5. Let fi(z) be real-valued, measurable on E € M, with m(E) < co. Prove that

fx > 0 a.e. on E as k — oo if and only if

lim m ({x ek
Jj—oo

suplu(e)] 2 e ) =0

k>j

for all e > 0.

For “only if” part, let £ = {z € E| sup;s; |fe(7)] > €}. It is easy to see Ef is decreasing.
Since m(E) < oo, we have lim;_,.o m(ES) = m(N52, ES) = m({z € E| limg_,o0 | fi(x)| > €}). Since
fr — 0 a.e., limy_ o | fu(x)| = 0 a.e., thus we have m({z € E | limy_,o0 |fr(z)| > €}) = 0.

For “if” part, let Z = {x € E| fi(x) # 0}, and E = {x € E||fi(x)| > 1}. Then by the proof of
Egorov’s theroem, we know Z = ;2 lim; o F} where F} = ;2 Ef. If = € F}, then there exists
ko > j such that z € EJ. This shows | fy,(z)| > 7. Then supy; | fr(2)| > |fi, ()| > 3. Take € =}
in the hypothesis, z € {z € E| sup,~; |fx(x)| > }}. Therefore, F} C {x € E|sup,~; |fr(x)| > }}.
Therefore, by taking measure on both sides and taking limit w.r.t. j, we have lim;_,,, m(F}) = 0.
Since F} is decreasing and with finite measure, lim; ., m(F}) = m(lim; ,o, F/) = 0. Therefore,
m(Z) =0, ie., fp - 0a.e. on E.

Extra Problem 6. Let f;;(z), 1 < k < 00, 1 < i < o0, be real-valued and measurable on [0, 1],
satisfying

(i) For each fixed k > 1, fy; — fr a.e. on [0, 1] as i — oo with some f; real-valued on [0, 1].

(ii) fx — g a.e. on [0, 1] as k — oo, with some g real-valued on [0, 1].

Prove that there exists k; and 4; such that fi ; — g a.e. on [0,1] as j — oo.

Denote E = [0,1]. Consider {f1,}, by Egorov theorem, take § = 1/2, there exists £y C E s.t.
m(E7) < 1/2. Also, by definition of uniform convergence, there exists i; s.t. |fi,, (z) — fi(z)] <
€/2 for all x € E \ F;. Similarly, in general, we will obtain F; s.t. m(E;) < 1/27 and i; s.t.
|fii,(x) = fi(x)| < e/2forall z € E\ E;. WLOG, we can assume 4; is strictly increasing to infinity
as j — 00. Let A = lim; o Ej, since Y372, m(E;) = .72 1/27 < oo, by Borel-Cantelli Lemma,
m(A) = 0. Define Ey = E'\ A, then Fy = lim; , (E\ E;). Therefore, for each fixed » € Ej, there
exists j, > 1s.t. x € B\ Ej for all j > j, and |f;;, — f;| < €/2. Since f; — g a.e., there exists
Z C E and m(Z) = 0 s.t. for each j and each fixed x € E \ Z, there exists K s.t. for all j > K,



|fj(x) — g(z)| < €/2. This implies for each fixed x € Ey, there exists M = max{j,, K} s.t. for all
J=M,

[fia;(x) —g(@)| < |fji, = fil +1fi —gl <e€/2+¢€/2=¢

Thus, f;;, — g(x) a.e. on E.



