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Extra Problem 1. Let f∞, fn, n ∈ N+ be measurable and finite a.e. on E ∈ M, and suppose
m(E) < ∞. Prove that if any subsequence fnk

of fn contains a subsequence fnki
which converges

to f∞ a.e. on E as i → ∞, then fn → f∞ in measure on E as n → ∞.

Suppose fn does not converge to f in measure. Then we know that there exists ϵ > 0 and σ > 0

and a subsequence fnk
such that m({x ∈ E | |fnk

− f | > σ}) > ϵ for all k. However, by assumption
this fnk

also has a further subsequence fnki
such that fnki

→ f as i → ∞. Therefore, fnki
→ f in

measure, i.e., for all σ > 0, m({x ∈ E | |fnki
− f | > σ}) → 0 as i → ∞, which contradicts the fact

that m({x ∈ E | |fnk
− f | > σ}) > ϵ for all k. Therefore, fn → f∞ in measure on E.

Extra Problem 2. Let E ∈ M and m(E) < ∞. Suppose fn → f∞ and gn → g∞ both in measure
on E. Prove that fngn → f∞g∞ in measure as n → ∞.

Consider an arbitrary subsequence of fngn, denoted as fn,kgn,k. Since fn,k → f in measure,
there exists a subsequence fn,k,i → f a.e., and since gn,k,i → g in measure, there exists a subsequence
gn,k,i,j → g a.e. on E. Therefore, we obtain fn,k,i,j → f a.e. and gn,k,i,j → g a.e., so fn,k,i,jgn,k,i,j →
fg a.e. and hence fn,k,i,jgn,k,i,j → fg in measure. Since fn,k,i,jgn,k,i,j is also a subsequence of fn,k
and gn,k, this implies for each subsequence of fngn, there exists a further subsequence fn,k,i,jgn,k,i,j

that converges to fg a.e.. By Extra Problem 1, fngn → fg in measure.

Extra Problem 3. Suppose fn → f∞ in measure on E ∈ M; g is uniformly continuous on R.
Prove that g ◦ fn → g ◦ f in measure as n → ∞.

If g is uniformly continuous, then for any ϵ > 0 s.t. |g(x) − g(y)| ≥ ϵ, then there exists δϵ s.t.
|x− y| ≥ δϵ for all x, y ∈ E. Therefore, for all σ > 0, if |g(fn(x))− g(f∞(x))| ≥ ϵ, then there exists
δσ such that |fn(x)− f∞(x)| ≥ δσ. This implies

m({x ∈ E | |g(fn(x))− g(f∞(x)) ≥ ϵ}) ≤ m({x ∈ E | |fn(x)− f∞(x)| ≥ δσ})

Let n → ∞, since fn → f∞ in measure, the RHS above tends to zero, which means LHS also tends
to zero. This implies g(fn(x)) → g(f∞(x)) in measure since ϵ can be arbitrary.

Extra Problem 4. Let fn,i → fn in measure as i → ∞ on E ∈ M. Also, fn → f∞ in measure as
n → ∞. Prove that there exists subsequence fnm,im → f∞ a.u. as m → ∞.
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Since fn → f∞ in measure, there exists a subsequence fnm
of fn s.t. fnm

→ f∞ a.u.. Consider
fn1,i, since fn1,i → fn1

in measure, there exists a subsequence f
n1,i

(1)
j

that converges to fn1
a.u. on

E. Then consider f
n2,i

(1)
j

, since it is a subsequence of fn2,i, fn2,i
(1)
j

→ fn2
in measure, then there

exists a subsequence of f
n2,i

(1)
j

, denoted as f
n2,i

(2)
j

s.t. f
n2,i

(2)
j

→ fn2
a.u.. Continue this process, we

can find f
nm,i

(m)
j

→ fnm
a.u. and {i(m+1)

j }∞j=1 ⊂ {i(m)
j }∞j=1 for all m ≥ 1. Take the diagonal sequence

{i(j)j }∞j=1, then f
nm,i

(j)
j

→ fnm
a.u. on E for each fixed m ≥ 1.

Let gm,j = f
nm,i

(j)
j

and gm = fnm
, then gm,j → gm a.u. as j → ∞ and gm → f∞ as m → ∞.

For all m ≥ 1, take a large jm and Bm ⊂ E s.t. m(Bm) < 1
2m

and |gm,l − gm| < 1
2m

on E \ Bm

if j ≥ jm. WLOG, we can choose jm s.t. jm is strictly increasing to infinity as m → ∞. Then
we claim that gm,jm → f∞ a.u. on E. For any δ > 0, take Bδ ⊂ E s.t. Bδ < δ

100
and gm → f∞

uniformly on E \ Bδ. For any ϵ > 0, take large M ≥ 1 s.t.
∑∞

m=M
1
2m

< δ
100

, |gm − f∞| < ϵ
2

on
E \Bδ and m > 1− log2 ϵ for all m ≥ M . Let Eδ = Bδ ∪ (

∪∞
m=M Bm), then m(Eδ) < δ. On E \Eδ,

for m ≥ M , we have |gm,jm − f∞| < |gm,jm − gm|+ |gm − f∞| < ϵ.

Extra Problem 5. Suppose fn → f∞ in measure on E ∈ R, E ∈ M. Assume fn is M -Lipschitz
continuous on E for all n ≥ 1, prove that fn → f∞ a.e. as n → ∞.

Let E0 = {x ∈ E | ∃ ϵx > 0, m(Nϵx(x) ∩ E) = 0} where Nϵx(x) is the neighborhood of x with
radius ϵx. Then E0 ⊂

∪
x∈E0

Nϵx(x). By Lindelöf covering theorem, there exists {xn}∞n=1 ⊂ E0 and
{ϵn}∞n=1 ⊂ {ϵx}x∈E0

s.t. E0 ⊂
∪∞

n=1 Nϵn(xn) and m(E ∩Nϵn(xn)) = 0 for all n ≥ 1. Notice that

0 ≤ m∗(E0) ≤ m∗

(
∞∪

n=1

(E ∩Nϵn(xn))

)
≤

∞∑
n=1

m∗(E ∩Nϵn(xn)) = 0

Therefore, m(E0) = 0. For each fixed x0 ∈ E\E0, x0 /∈ E0 implies that for all ϵ > 0, m(E∩Nϵ(x0)) =

2c(ϵ;x0) > 0. Since fn → f∞ in measure on E as n → ∞, fn is Cauchy in measure, and there exists
N(c, ϵ) ≥ 1 s.t. m({x ∈ E | |fn − fm| > ϵ}) < c for all m,n ≥ N(c, ϵ). Define

A = {x ∈ E | |fn − fm| ≤ ϵ} ∩ (E ∩Nϵ(x0))

We claim that A ≠ ∅, because otherwise E ∩Nϵ(x0) ⊂ {x ∈ E | |fn − fm| > ϵ}. Then,

2c = m(E ∩Nϵ(x0)) ≤ m({x ∈ E | |fn − fm| > ϵ}) < c

gives a contradiction. Thus, we can pick y ∈ A, and |fn(y) − fm(y)| ≤ ϵ when n,m ≥ N(c, ϵ).
Hence,

|fn(x0)− fm(x0)| ≤ |fn(x0)− fn(y)|+ |fn(y)− fm(y)|+ |fm(y)− fm(x0)| ≤ 2M |x0 − y|+ ϵ

Since y ∈ A, |y − x0| < ϵ, we obtain |fn(x0) − fm(x0)| ≤ (2M + 1)ϵ. This is enough to show
fn(x0) → f∞(x0) and since x0 is arbitrary in E except a zero measure set E0, fn(x) → f∞(x) a.e.
on E.

Extra Problem 6. Let f be real-valued and defined on E ∈ Rn, E ∈ M, satisfying ∀ δ > 0, there
exists closed Fδ ⊂ E s.t. m(E \ Fδ) < δ and f

∣∣
Fδ

is continuous. Prove f is measureable on E.
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By assumption, for all n ∈ N, there exists closed Fn ⊂ E s.t. m(E \ Fn) < 1
n

and f
∣∣
Fn

is
continuous. Note that E \

∪∞
n=1 Fn ⊂ E \ Fn for all n ∈ N+, define Z = E \

∪∞
n=1 Fn, we have

m(Z) ≤ m(E \Fn) <
1
n

. Hence, m(Z) = 0. For all t ∈ R, since f
∣∣
Fn

is continuous, {x ∈ Fn | f(x) >
t} is open hence measurable. Since any subset of a null set is measurable, {x ∈ Z | f(x) > a} ∈ M.
Therefore, {x ∈ E | f(x) > t} = {x ∈ Z | f(x) > a} ∪

∪∞
n=1{x ∈ Fn | f(x) > t} is measurable. This

implies f is measurable on E.

Extra Problem 7. Let f be real-valued, measurable on a finite interval [a, b]. Prove that there
exists sequence hk s.t. hk → 0, f(x+ hk) → f(x) for a.e. x ∈ [a, b] as k → ∞.

Denote E = [a, b]. By Lusin’s theorem, for every k ∈ N+, there exists closed Fk ⊂ E s.t.
m(E \ Fk) <

b−a
2k+2 and f

∣∣
Fk

is continuous. Note that m(E \ Fk) = m(E)−m(Fk) = b− a−m(Fk),
we can conclude m(Fk) >

(
1− 1

2k+2

)
(b− a). Also notice that E is bounded, so Fk is compact and

f
∣∣
Fk

is uniformly continuous. Thus, there exists small hk s.t. for all x, y ∈ Fk, |x− y| < hk, we have
|f(x)− f(y)| < 1

k
. WLOG, assume hk < b−a

2k+1 → 0 as k → ∞.

Now we need to estimate m(Fk ∩ (Fk − hk)). Consider

m(Fk ∩ (Fk − hk)) = m(Fk) +m(Fk − hk)−m(Fk ∪ (Fk − hk))

= 2m(Fk)−m(Fk ∪ (Fk − hk))

>

(
2− 1

2k+1

)
(b− a)−m(E ∪ (E − hk))

=

(
2− 1

2k+1

)
(b− a)− ((b− a) + hk)

>

(
1− 1

2k

)
(b− a)

Therefore, let Ek = E \ (Fk ∩ (Fk − hk)), we have m(Ek) ≤ b − a − (b − a)
(
1− 1

2k

)
= b−a

2k
for

all k ≥ 1. Therefore,
∑∞

k=1 m(Ek) < ∞. By Borel-Cantelli lemma, m(limk→∞ Ek) = 0. For
x ∈ E \ limk→∞ Ek = limk→∞(E \ Ek) = limk→∞[Fk ∩ (Fk − hk)], there exists Nx s.t. for k ≥ Nx,
x ∈ E \ Ek. This shows x ∈ Fk and x + hk ∈ Fk. By uniform continuity, |f(x) − f(x + hk)| < 1

k
.

Therefore, if k → ∞, hk → 0 and f(x+hk) → f(x). This proves f(x+hk) → f(x) for a.e. x ∈ [a, b].
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