MAT3006＊：Real Analysis Homework 6

李肖鹏（116010114）

Due date：Mar．20， 2020
Extra Problem 1．Let $f_{\infty}, f_{n}, n \in \mathbb{N}^{+}$be measurable and finite a．e．on $E \in \mathcal{M}$ ，and suppose $m(E)<\infty$ ．Prove that if any subsequence $f_{n_{k}}$ of f_{n} contains a subsequence $f_{n_{k_{i}}}$ which converges to f_{∞} a．e．on E as $i \rightarrow \infty$ ，then $f_{n} \rightarrow f_{\infty}$ in measure on E as $n \rightarrow \infty$ ．

Suppose f_{n} does not converge to f in measure．Then we know that there exists $\epsilon>0$ and $\sigma>0$ and a subsequence $f_{n_{k}}$ such that $m\left(\left\{x \in E\left|\left|f_{n_{k}}-f\right|>\sigma\right\}\right)>\epsilon\right.$ for all k ．However，by assumption this $f_{n_{k}}$ also has a further subsequence $f_{n_{k_{i}}}$ such that $f_{n_{k_{i}}} \rightarrow f$ as $i \rightarrow \infty$ ．Therefore，$f_{n_{k_{i}}} \rightarrow f$ in measure，i．e．，for all $\sigma>0, m\left(\left\{x \in E| | f_{n_{k_{i}}}-f \mid>\sigma\right\}\right) \rightarrow 0$ as $i \rightarrow \infty$ ，which contradicts the fact that $m\left(\left\{x \in E\left|\left|f_{n_{k}}-f\right|>\sigma\right\}\right)>\epsilon\right.$ for all k ．Therefore，$f_{n} \rightarrow f_{\infty}$ in measure on E ．

Extra Problem 2．Let $E \in \mathcal{M}$ and $m(E)<\infty$ ．Suppose $f_{n} \rightarrow f_{\infty}$ and $g_{n} \rightarrow g_{\infty}$ both in measure on E ．Prove that $f_{n} g_{n} \rightarrow f_{\infty} g_{\infty}$ in measure as $n \rightarrow \infty$ ．

Consider an arbitrary subsequence of $f_{n} g_{n}$ ，denoted as $f_{n, k} g_{n, k}$ ．Since $f_{n, k} \rightarrow f$ in measure， there exists a subsequence $f_{n, k, i} \rightarrow f$ a．e．，and since $g_{n, k, i} \rightarrow g$ in measure，there exists a subsequence $g_{n, k, i, j} \rightarrow g$ a．e．on E ．Therefore，we obtain $f_{n, k, i, j} \rightarrow f$ a．e．and $g_{n, k, i, j} \rightarrow g$ a．e．，so $f_{n, k, i, j} g_{n, k, i, j} \rightarrow$ $f g$ a．e．and hence $f_{n, k, i, j} g_{n, k, i, j} \rightarrow f g$ in measure．Since $f_{n, k, i, j} g_{n, k, i, j}$ is also a subsequence of $f_{n, k}$ and $g_{n, k}$ ，this implies for each subsequence of $f_{n} g_{n}$ ，there exists a further subsequence $f_{n, k, i, j} g_{n, k, i, j}$ that converges to $f g$ a．e．．By Extra Problem 1，$f_{n} g_{n} \rightarrow f g$ in measure．

Extra Problem 3．Suppose $f_{n} \rightarrow f_{\infty}$ in measure on $E \in \mathcal{M} ; g$ is uniformly continuous on \mathbb{R} ． Prove that $g \circ f_{n} \rightarrow g \circ f$ in measure as $n \rightarrow \infty$ ．

If g is uniformly continuous，then for any $\epsilon>0$ s．t．$|g(x)-g(y)| \geq \epsilon$ ，then there exists δ_{ϵ} s．t． $|x-y| \geq \delta_{\epsilon}$ for all $x, y \in E$ ．Therefore，for all $\sigma>0$ ，if $\left|g\left(f_{n}(x)\right)-g\left(f_{\infty}(x)\right)\right| \geq \epsilon$ ，then there exists δ_{σ} such that $\left|f_{n}(x)-f_{\infty}(x)\right| \geq \delta_{\sigma}$ ．This implies

$$
m\left(\left\{x \in E\left|\mid g\left(f_{n}(x)\right)-g\left(f_{\infty}(x)\right) \geq \epsilon\right\}\right) \leq m\left(\left\{x \in E| | f_{n}(x)-f_{\infty}(x) \mid \geq \delta_{\sigma}\right\}\right)\right.
$$

Let $n \rightarrow \infty$ ，since $f_{n} \rightarrow f_{\infty}$ in measure，the RHS above tends to zero，which means LHS also tends to zero．This implies $g\left(f_{n}(x)\right) \rightarrow g\left(f_{\infty}(x)\right)$ in measure since ϵ can be arbitrary．

Extra Problem 4．Let $f_{n, i} \rightarrow f_{n}$ in measure as $i \rightarrow \infty$ on $E \in \mathcal{M}$ ．Also，$f_{n} \rightarrow f_{\infty}$ in measure as $n \rightarrow \infty$ ．Prove that there exists subsequence $f_{n_{m}, i_{m}} \rightarrow f_{\infty}$ a．u．as $m \rightarrow \infty$ ．

Since $f_{n} \rightarrow f_{\infty}$ in measure, there exists a subsequence $f_{n_{m}}$ of f_{n} s.t. $f_{n_{m}} \rightarrow f_{\infty}$ a.u.. Consider $f_{n_{1}, i}$, since $f_{n_{1}, i} \rightarrow f_{n_{1}}$ in measure, there exists a subsequence $f_{n_{1}, i_{j}^{(1)}}$ that converges to $f_{n_{1}}$ a.u. on E. Then consider $f_{n_{2}, i_{j}^{(1)}}$, since it is a subsequence of $f_{n_{2}, i}, f_{n_{2}, i_{j}^{(1)}} \rightarrow f_{n_{2}}$ in measure, then there exists a subsequence of $f_{n_{2}, i_{j}^{(1)}}$, denoted as $f_{n_{2}, i_{j}^{(2)}}$ s.t. $f_{n_{2}, i_{j}^{(2)}} \rightarrow f_{n_{2}}$ a.u.. Continue this process, we can find $f_{n_{m}, i_{j}^{(m)}} \rightarrow f_{n_{m}}$ a.u. and $\left\{i_{j}^{(m+1)}\right\}_{j=1}^{\infty} \subset\left\{i_{j}^{(m)}\right\}_{j=1}^{\infty}$ for all $m \geq 1$. Take the diagonal sequence $\left\{i_{j}^{(j)}\right\}_{j=1}^{\infty}$, then $f_{n_{m}, i_{j}^{(j)}} \rightarrow f_{n_{m}}$ a.u. on E for each fixed $m \geq 1$.

Let $g_{m, j}=f_{n_{m}, i_{j}^{(j)}}$ and $g_{m}=f_{n_{m}}$, then $g_{m, j} \rightarrow g_{m}$ a.u. as $j \rightarrow \infty$ and $g_{m} \rightarrow f_{\infty}$ as $m \rightarrow \infty$. For all $m \geq 1$, take a large j_{m} and $B_{m} \subset E$ s.t. $m\left(B_{m}\right)<\frac{1}{2^{m}}$ and $\left|g_{m, l}-g_{m}\right|<\frac{1}{2^{m}}$ on $E \backslash B_{m}$ if $j \geq j_{m}$. WLOG, we can choose j_{m} s.t. j_{m} is strictly increasing to infinity as $m \rightarrow \infty$. Then we claim that $g_{m, j_{m}} \rightarrow f_{\infty}$ a.u. on E. For any $\delta>0$, take $B_{\delta} \subset E$ s.t. $B_{\delta}<\frac{\delta}{100}$ and $g_{m} \rightarrow f_{\infty}$ uniformly on $E \backslash B_{\delta}$. For any $\epsilon>0$, take large $M \geq 1$ s.t. $\sum_{m=M}^{\infty} \frac{1}{2^{m}}<\frac{\delta}{100},\left|g_{m}-f_{\infty}\right|<\frac{\epsilon}{2}$ on $E \backslash B_{\delta}$ and $m>1-\log _{2} \epsilon$ for all $m \geq M$. Let $E_{\delta}=B_{\delta} \cup\left(\bigcup_{m=M}^{\infty} B_{m}\right)$, then $m\left(E_{\delta}\right)<\delta$. On $E \backslash E_{\delta}$, for $m \geq M$, we have $\left|g_{m, j_{m}}-f_{\infty}\right|<\left|g_{m, j_{m}}-g_{m}\right|+\left|g_{m}-f_{\infty}\right|<\epsilon$.

Extra Problem 5. Suppose $f_{n} \rightarrow f_{\infty}$ in measure on $E \in \mathbb{R}, E \in \mathcal{M}$. Assume f_{n} is M-Lipschitz continuous on E for all $n \geq 1$, prove that $f_{n} \rightarrow f_{\infty}$ a.e. as $n \rightarrow \infty$.

Let $E_{0}=\left\{x \in E \mid \exists \epsilon_{x}>0, m\left(N_{\epsilon_{x}}(x) \cap E\right)=0\right\}$ where $N_{\epsilon_{x}}(x)$ is the neighborhood of x with radius ϵ_{x}. Then $E_{0} \subset \bigcup_{x \in E_{0}} N_{\epsilon_{x}}(x)$. By Lindelöf covering theorem, there exists $\left\{x_{n}\right\}_{n=1}^{\infty} \subset E_{0}$ and $\left\{\epsilon_{n}\right\}_{n=1}^{\infty} \subset\left\{\epsilon_{x}\right\}_{x \in E_{0}}$ s.t. $E_{0} \subset \bigcup_{n=1}^{\infty} N_{\epsilon_{n}}\left(x_{n}\right)$ and $m\left(E \cap N_{\epsilon_{n}}\left(x_{n}\right)\right)=0$ for all $n \geq 1$. Notice that

$$
0 \leq m^{*}\left(E_{0}\right) \leq m^{*}\left(\bigcup_{n=1}^{\infty}\left(E \cap N_{\epsilon_{n}}\left(x_{n}\right)\right)\right) \leq \sum_{n=1}^{\infty} m^{*}\left(E \cap N_{\epsilon_{n}}\left(x_{n}\right)\right)=0
$$

Therefore, $m\left(E_{0}\right)=0$. For each fixed $x_{0} \in E \backslash E_{0}, x_{0} \notin E_{0}$ implies that for all $\epsilon>0, m\left(E \cap N_{\epsilon}\left(x_{0}\right)\right)=$ $2 c\left(\epsilon ; x_{0}\right)>0$. Since $f_{n} \rightarrow f_{\infty}$ in measure on E as $n \rightarrow \infty, f_{n}$ is Cauchy in measure, and there exists $N(c, \epsilon) \geq 1$ s.t. $m\left(\left\{x \in E\left|\left|f_{n}-f_{m}\right|>\epsilon\right\}\right)<c\right.$ for all $m, n \geq N(c, \epsilon)$. Define

$$
A=\left\{x \in E| | f_{n}-f_{m} \mid \leq \epsilon\right\} \cap\left(E \cap N_{\epsilon}\left(x_{0}\right)\right)
$$

We claim that $A \neq \varnothing$, because otherwise $E \cap N_{\epsilon}\left(x_{0}\right) \subset\left\{x \in E| | f_{n}-f_{m} \mid>\epsilon\right\}$. Then,

$$
2 c=m\left(E \cap N_{\epsilon}\left(x_{0}\right)\right) \leq m\left(\left\{x \in E| | f_{n}-f_{m} \mid>\epsilon\right\}\right)<c
$$

gives a contradiction. Thus, we can pick $y \in A$, and $\left|f_{n}(y)-f_{m}(y)\right| \leq \epsilon$ when $n, m \geq N(c, \epsilon)$. Hence,

$$
\left|f_{n}\left(x_{0}\right)-f_{m}\left(x_{0}\right)\right| \leq\left|f_{n}\left(x_{0}\right)-f_{n}(y)\right|+\left|f_{n}(y)-f_{m}(y)\right|+\left|f_{m}(y)-f_{m}\left(x_{0}\right)\right| \leq 2 M\left|x_{0}-y\right|+\epsilon
$$

Since $y \in A,\left|y-x_{0}\right|<\epsilon$, we obtain $\left|f_{n}\left(x_{0}\right)-f_{m}\left(x_{0}\right)\right| \leq(2 M+1) \epsilon$. This is enough to show $f_{n}\left(x_{0}\right) \rightarrow f_{\infty}\left(x_{0}\right)$ and since x_{0} is arbitrary in E except a zero measure set $E_{0}, f_{n}(x) \rightarrow f_{\infty}(x)$ a.e. on E.

Extra Problem 6. Let f be real-valued and defined on $E \in \mathbb{R}^{n}, E \in \mathcal{M}$, satisfying $\forall \delta>0$, there exists closed $F_{\delta} \subset E$ s.t. $m\left(E \backslash F_{\delta}\right)<\delta$ and $\left.f\right|_{F_{\delta}}$ is continuous. Prove f is measureable on E.

By assumption, for all $n \in \mathbb{N}$, there exists closed $F_{n} \subset E$ s.t. $m\left(E \backslash F_{n}\right)<\frac{1}{n}$ and $\left.f\right|_{F_{n}}$ is continuous. Note that $E \backslash \bigcup_{n=1}^{\infty} F_{n} \subset E \backslash F_{n}$ for all $n \in \mathbb{N}^{+}$, define $Z=E \backslash \bigcup_{n=1}^{\infty} F_{n}$, we have $m(Z) \leq m\left(E \backslash F_{n}\right)<\frac{1}{n}$. Hence, $m(Z)=0$. For all $t \in \mathbb{R}$, since $\left.f\right|_{F_{n}}$ is continuous, $\left\{x \in F_{n} \mid f(x)>\right.$ $t\}$ is open hence measurable. Since any subset of a null set is measurable, $\{x \in Z \mid f(x)>a\} \in \mathcal{M}$. Therefore, $\{x \in E \mid f(x)>t\}=\{x \in Z \mid f(x)>a\} \cup \bigcup_{n=1}^{\infty}\left\{x \in F_{n} \mid f(x)>t\right\}$ is measurable. This implies f is measurable on E.

Extra Problem 7. Let f be real-valued, measurable on a finite interval $[a, b]$. Prove that there exists sequence h_{k} s.t. $h_{k} \rightarrow 0, f\left(x+h_{k}\right) \rightarrow f(x)$ for a.e. $x \in[a, b]$ as $k \rightarrow \infty$.

Denote $E=[a, b]$. By Lusin's theorem, for every $k \in \mathbb{N}^{+}$, there exists closed $F_{k} \subset E$ s.t. $m\left(E \backslash F_{k}\right)<\frac{b-a}{2^{k+2}}$ and $\left.f\right|_{F_{k}}$ is continuous. Note that $m\left(E \backslash F_{k}\right)=m(E)-m\left(F_{k}\right)=b-a-m\left(F_{k}\right)$, we can conclude $m\left(F_{k}\right)>\left(1-\frac{1}{2^{k+2}}\right)(b-a)$. Also notice that E is bounded, so F_{k} is compact and $\left.f\right|_{F_{k}}$ is uniformly continuous. Thus, there exists small h_{k} s.t. for all $x, y \in F_{k},|x-y|<h_{k}$, we have $|f(x)-f(y)|<\frac{1}{k}$. WLOG, assume $h_{k}<\frac{b-a}{2^{k+1}} \rightarrow 0$ as $k \rightarrow \infty$.

Now we need to estimate $m\left(F_{k} \cap\left(F_{k}-h_{k}\right)\right)$. Consider

$$
\begin{aligned}
m\left(F_{k} \cap\left(F_{k}-h_{k}\right)\right) & =m\left(F_{k}\right)+m\left(F_{k}-h_{k}\right)-m\left(F_{k} \cup\left(F_{k}-h_{k}\right)\right) \\
& =2 m\left(F_{k}\right)-m\left(F_{k} \cup\left(F_{k}-h_{k}\right)\right) \\
& >\left(2-\frac{1}{2^{k+1}}\right)(b-a)-m\left(E \cup\left(E-h_{k}\right)\right) \\
& =\left(2-\frac{1}{2^{k+1}}\right)(b-a)-\left((b-a)+h_{k}\right) \\
& >\left(1-\frac{1}{2^{k}}\right)(b-a)
\end{aligned}
$$

Therefore, let $E_{k}=E \backslash\left(F_{k} \cap\left(F_{k}-h_{k}\right)\right)$, we have $m\left(E_{k}\right) \leq b-a-(b-a)\left(1-\frac{1}{2^{k}}\right)=\frac{b-a}{2^{k}}$ for all $k \geq 1$. Therefore, $\sum_{k=1}^{\infty} m\left(E_{k}\right)<\infty$. By Borel-Cantelli lemma, $m\left(\overline{\lim }_{k \rightarrow \infty} E_{k}\right)=0$. For $x \in E \backslash \varlimsup_{k \rightarrow \infty} E_{k}=\underline{\lim }_{k \rightarrow \infty}\left(E \backslash E_{k}\right)=\underline{\lim }_{k \rightarrow \infty}\left[F_{k} \cap\left(F_{k}-h_{k}\right)\right]$, there exists N_{x} s.t. for $k \geq N_{x}$, $x \in E \backslash E_{k}$. This shows $x \in F_{k}$ and $x+h_{k} \in F_{k}$. By uniform continuity, $\left|f(x)-f\left(x+h_{k}\right)\right|<\frac{1}{k}$. Therefore, if $k \rightarrow \infty, h_{k} \rightarrow 0$ and $f\left(x+h_{k}\right) \rightarrow f(x)$. This proves $f\left(x+h_{k}\right) \rightarrow f(x)$ for a.e. $x \in[a, b]$.

