MAT3006*: Real Analysis

Homework 6
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Extra Problem 1. Let f., f., n € NT be measurable and finite a.e. on £ € M, and suppose
m(E) < co. Prove that if any subsequence f,, of f, contains a subsequence fni, Which converges

to fs a.e. on E as i — oo, then f,, — f. in measure on E as n — oo.

Suppose f,, does not converge to f in measure. Then we know that there exists e > 0 and o > 0
and a subsequence f,,, such that m({z € E||f,, — f| > o}) > € for all k. However, by assumption
this f,, also has a further subsequence f,, such that f, — f asi — oo. Therefore, f,, — fin
measure, i.e., for all o > 0, m({z € E||f.,, — f| > o}) — 0 as i — oo, which contradicts the fact
that m({x € E||f,, — f| > 0}) > € for all k. Therefore, f, — fo in measure on E.

Extra Problem 2. Let £ € M and m(E) < co. Suppose f,, — f and g, — goo both in measure

on FE. Prove that f,g, = fegeo in measure as n — oo.

Consider an arbitrary subsequence of f,g,, denoted as f, kg, . Since f,; — f in measure,
there exists a subsequence f,, ,; = f a.e., and since g, ;,; — g in measure, there exists a subsequence
Gn ki — g a.e. on IJ. Therefore, we obtain f,, x,; — f a.e. and g, i ; — g a.€., 50 fr ki jGnkij —
fg a.e. and hence f, i jgnki; — fg in measure. Since f, 1 jgn ki  is also a subsequence of f,, i
and g, i, this implies for each subsequence of f,, g,, there exists a further subsequence f, xi jGn.k.i,;

that converges to fg a.e.. By Extra Problem 1, f,g, — fg in measure.
Extra Problem 3. Suppose f, — f. in measure on £ € M; g is uniformly continuous on R.
Prove that g o f,, — g o f in measure as n — oo.

If ¢ is uniformly continuous, then for any € > 0 s.t. |g(x) — g(y)| > ¢, then there exists J s.t.
|z —y| > dc for all x,y € E. Therefore, for all o > 0, if |g(f.(z)) — g(foo(z))| > €, then there exists
0, such that |f,(x) — feo(z)| > 0,. This implies

m({z € El|g(fu(2)) — 9(foc(2)) = €}) <m{z € E[|fu(2) — foo(2)| = b})

Let n — oo, since f,, = fo in measure, the RHS above tends to zero, which means LHS also tends

to zero. This implies g(f,(x)) — g(fs(z)) in measure since € can be arbitrary.

Extra Problem 4. Let f,; — f, in measure as ¢ — oo on E € M. Also, f,, =& fo in measure as

n — 0o. Prove that there exists subsequence f,, ;. — feo a.u. as m — oo.



Since f, = f» in measure, there exists a subsequence f,, of f, s.t. fn. — fs a.u.. Consider
fnr,, since f,, ; — fn, in measure, there exists a subsequence fnl,i§1> that converges to f,, a.u. on
E. Then consider fn2 ,m, since it is a subsequence of f,, ;, fn2 ;0 — fn, in measure, then there

st 7

exists a subsequence of fn2 ,, denoted as fn2 ;@ st fn2 ;@ = fn, a.u.. Continue this process, we
] (¥} [
can find f tm = fn,, au. and {i§m+1) ®,C {igm)}]ﬁl for all m > 1. Take the diagonal sequence

{i;j) 21 then fo i fn,, au. on E for each fixed m > 1.

Let gn; = fnm,i(.j) and g, = fn,., then g, ; — g» a.u. as j — oo and g, = foo as m — 0.
For all m > 1, take ;t large j, and B,, C E s.t. m(B,,) < %n and |gm — gm| < 1,1 on E'\ B,
if 7 > jm. WLOG, we can choose j,, s.t. j,, is strictly increasing to infinity as m — oo. Then
jm — foo @ on E. For any 6 > 0, take B; CEst B;s <
uniformly on E \ Bs;. For any € > 0, take large M > 1s.t. >~ -L < 1%0, |9m — fool < § om
E\ Bs and m > 1—log, € for all m > M. Let E; = Bs U (U, _,; Bm), then m(Es) < 4. On E'\ E,

for m > M, we have |gm ;.. — foo|l < |Gm.jn. — Gm| + |gm — foo| <€

we claim that g,, and g, — feo

1()()

Extra Problem 5. Suppose f, — fo in measure on £ € R, £ € M. Assume f, is M-Lipschitz

continuous on F for all n > 1, prove that f, — f. a.e. as n — oo.

Let Eg = {x € E|3e, > 0, m(N, (x) N E) = 0} where N, (z) is the neighborhood of x with
radius €,. Then Ey C J,cp,
{en}) C{extuen, st Eo C U, —, Ne,(z,) and m(E N N, (z,)) = 0 for all n > 1. Notice that

N., (z). By Lindelof covering theorem, there exists {x, }7°, C Ey and

0<m*(Ey) <m* (G (ENN, (xn))> < im*(E NN, (2,)) =0

Therefore, m(FEy) = 0. For each fixed xy € E\ Ey, xo ¢ Fo implies that for all e > 0, m(ENN(zg)) =
2¢(€; 1) > 0. Since f,, — fo in measure on F as n — oo, f, is Cauchy in measure, and there exists
N(c,e) > 1st. m({z € El|fn — fm] > €}) < cfor all m,n > N(c,¢€). Define

A={z e E|lfn — ful < e} N (EN Ne(xo))
We claim that A # &, because otherwise E N N (z¢) C {x € E'||fn — fm| > €}. Then,
2c=m(ENNc(xg)) <m{{z € E||fn— fm] >€}) <c

gives a contradiction. Thus, we can pick y € A, and |f,(y) — fm(y)] < € when n,m > N(c,e¢).

Hence,

|fn(®0) = fin(20)| < [fu(z0) = fuly)| + [fn(y) = fn ()] + [fim(y) — fin(20)| < 2M |20 — Y| + €

Since y € A, |y — xo| < €, we obtain |f,(xo) — fm(zo)| < (2M + 1)e. This is enough to show
fa(zo) = foo(xo) and since zg is arbitrary in E except a zero measure set Ey, f,(x) = foo(x) a.e.
on E.

Extra Problem 6. Let f be real-valued and defined on E € R", E € M, satisfying V§ > 0, there

exists closed F5 C E s.t. m(E \ Fs) < ¢ and f|F5 is continuous. Prove f is measureable on E.



By assumption, for all n € N, there exists closed F,, C E s.t. m(E \ F,) < % and f|F is
continuous. Note that E\ J,_, F,, C E\ F, for all n € N*, define Z = E\ |J,_, F,,, we have
m(Z) <m(E\ F,) < 1. Hence, m(Z) = 0. For all ¢ € R, since f’Fw is continuous, {z € F, | f(z) >
t} is open hence measurable. Since any subset of a null set is measﬁrable, {r e Z| f(z) > a} € M.
Therefore, {z € E| f(z) >t} ={z € Z| f(z) > a}UJ,_ {z € F, | f(z) > t} is measurable. This

implies f is measurable on E.

Extra Problem 7. Let f be real-valued, measurable on a finite interval [a,b]. Prove that there

exists sequence hy s.t. hy — 0, f(x + hg) — f(x) for a.e. = € [a,b] as k — oo.

Denote £ = [a,b]. By Lusin’s theorem, for every k € N7, there exists closed Fj, C E s.t.
m(E\ Fr) < 2=% and f’Fk is continuous. Note that m(E \ Fy) = m(E) — m(Fy) =b — a — m(Fy),
we can conclude m(Fy) > ’(1 — 3777 ) (b — a). Also notice that E is bounded, so F}, is compact and
f|Fk is uniformly continuous. Thus, there exists small hy s.t. for all x,y € F}, |x —y| < hg, we have
|f(@) = f(y)| < +. WLOG, assume h;, < 2% — 0 as k — oo.

Now we need to estimate m(EF) N (Fy — hy)). Consider

m(F, N (Fy — hy)) = m(Fy) + m(Fy — hy,) — m(EFy, U (F}, — hy))
= 2m(Fy) — m(Fy, U (Fj, — hy))

> (2—213“) (b—a) — m(EU (E — hy))

_ (2_ 2k1+1> (b—a)— ((b—a) + hy)

> (121k> (b a)

Therefore, let Ej, = E \ (Fj, N (F), — hy,)), we have m(Ey) < b—a— (b—a) (1 —5) = % for
all k& > 1. Therefore, Y ;- m(Ey) < oo. By Borel-Cantelli lemma, m(limy_ o Ey) = 0. For
v € E\limy o Ey = lim, , (E\ Ey) = lim, ,_[F N (F) — hy)], there exists N, s.t. for k > N,,
z € E\ Ey. This shows z € F}, and « + hj, € F},. By uniform continuity, |f(z) — f(z + hy)| < 1.

Therefore, if k — oo, hy, — 0 and f(z+hg) — f(z). This proves f(x+hi) — f(x) for a.e. z € [a, b].



