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Extra Problem 1. Let fk(x) be nonnegative and measurable on [0, 1] s.t. fk(x) → ∞ a.e. on [0, 1].
Prove that

´ 1

0
fk(x) dx → ∞.

Denote ak =
´ 1

0
fk(x) dx, suppose ak ̸→ ∞, then there exists a finite M and a subsequence akj

of ak s.t. akj
≤ M for all j ∈ N+. By Fatou’s lemma,

ˆ 1

0

lim
j→∞

fkj
(x) dx ≤ lim

j→∞

ˆ 1

0

fkj
(x) dx ≤ lim

j→∞
M = M < ∞

If we let A = {x | fk(x) → ∞}, since fk is nonnegative, we have
ˆ 1

0

lim
j→∞

fkj
(x) dx ≥

ˆ
A

lim
j→∞

fkj
(x) dx =

ˆ
A

∞ dx = ∞ ·m(A) = ∞

since m(A) = 1. Therefore, we have ∞ < ∞ which is a contradiction. This impiles ak → ∞.

Extra Problem 2. Let fk(x) be nonnegative and measurable on E ∈ M, fk → f∞ in measure on
E. Prove that

´
E
f∞(x) dx ≤ limk→∞

´
E
fk(x) dx.

Since fk → f∞ in measure on E, by definition, fk, f∞ are a.e. finite on E. Suppose Ek = {x ∈
E | fk(x) = ∞} for all k and E∞ = {x ∈ E | f∞(x) = ∞}, then m(Ek) = 0 and m(E∞) = 0. Thus,
denote F = E∞ ∪

∪∞
k=1 Ek, m(F ) = 0. Therefore, it suffices to show

ˆ
E\F

f∞(x) dx ≤ lim
k→∞

ˆ
E\F

fk(x) dx

Let A = E \F , then on A, fk and f∞ are everywhere finite. Since fk → f∞ in measure, there exists
a subsequence fkj

→ f∞ a.e.. Therefore, limk→∞ fk(x) ≤ limj→∞ fkj
(x) ≤ f∞(x).

Let B = {x ∈ A | limk→∞ fk(x) < f∞(x)}, and suppose m(B) > 0. Denote Bk = {x ∈
A | limk→∞ fk(x) ≤ f∞(x) − 1

k
}, so Bk increases to B and thus m(Bk) → m(B). Take δ = m(B)

2
,

there exists N s.t. m(BN ) ≥ δ. For each fixed x ∈ BN , since limk→∞ fk(x) = supk≥1 infn≥k fn(x),
we have infn≥k fn(x) ≤ f∞(x)− 1

N
< f∞(x)− 1

2N
for all k. This implies for all k, there exists n ≥ k

s.t. fn(x) < f∞(x)− 1
2N

. Therefore, we can pick a subsequence kn s.t. kn is strictly increasing and
fkn

(x) < f∞(x) − 1
2N

. Therefore, x ∈ {x ∈ A | |fk(x) − f∞(x)| > 1
2N

} for all k = kn. Therefore,
m({x ∈ A | |fkn

(x)− f∞(x)| > 1
2N

}) ≥ δ for all n ≥ 1. This contradicts that fk → f∞ in measure.

Therefore, m(B) = 0, and limk→∞ fk(x) = f∞(x) a.e. on A. By Fatou’s lemma,ˆ
A

f∞(x) dx =

ˆ
A

lim
k→∞

fk(x) dx ≤ lim
k→∞

ˆ
A

fk(x) dx
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Extra Problem 3. Let Ek ⊂ [0, 1], Ek ∈ M, for all k ≥ 1 s.t. m(Ek) ≥ δ > 0 where δ is a constant.
Assume for a sequence ak we have

∑∞
k=1 |ak|IEk

(x) < ∞ a.e. on [0, 1]. Prove that
∑∞

k=1 |ak| < ∞.

Let f(x) =
∑∞

k=1 |ak|IEk
(x), and Bn = {x ∈ [0, 1] | f(x) < n}. Since f is finite a.e. on [0, 1],

m(Bn) → 1 increasingly. There exists N s.t. BN ≥ 1− δ
2
. Also,

m(Ek ∩BN ) = m(Ek) +m(BN )−m(Ek ∪BN ) ≥ δ + 1− δ

2
− 1 =

δ

2

for all k ≥ 1. Notice that
´
BN

f(x) dx ≤ Nm(BN ) ≤ N , and
ˆ
BN

f(x) dx =

ˆ 1

0

∞∑
k=1

|ak|IEk∩BN
(x) dx =

∞∑
k=1

|ak|m(Ek ∩BN ) ≥ δ

2

∞∑
k=1

|ak|

Therefore, δ
2

∑∞
k=1 |ak| ≤ N , which implies that

∑∞
k=1 |ak| < ∞.

Extra Problem 4. Let fk(x) be measurable on E ∈ M s.t. |fk| ≤ F a.e. on E, where F ∈ L1(E)

and fk → f∞ in measure on E. Prove that
´
E
|fk − f∞| dx → 0 as k → ∞. In particular,´

E
fk(x) dx →

´
E
f∞(x) dx as k → ∞.

Let Ak = {x |F (x) > 1
k
} and A =

∪∞
k=1 Ak = {x |F (x) ̸= 0}. Then Ak increases to A and

E \ A = {x |F (x) = 0} and for x ∈ E \ A, fk(x) = 0, f∞(x) = 0 for all k ≥ 1. Since F ∈ L1(E),
m(Ak) < ∞ for all k ≥ 1. Suppose

´
E
|fk − f∞| dx ̸→ 0, then there exists a subsequence fkj

s.t.

ϵ ≤
ˆ
E

|fkj
− f∞| dx ≤ 2

ˆ
E\Ak

F dx+

ˆ
Ak

|fk − f∞| dx

for some fixed ϵ > 0. Since Ak → A, F is nonnegative, by MCT,
ˆ
E\Ak

F dx →
ˆ
E\A

F dx = 0

Therefore, there exists N s.t. for all k ≥ N ,
´
E\A F dx < ϵ

4
. This implies

´
Ak

|fkj
− f∞| dx > ϵ

2
.

Since fk → f∞ in measure, there exists a further subsequence fkjm
→ f∞ a.e. on E. This implies

that |f∞| ≤ F a.e. and f∞ ∈ L1(E). Therefore, by DCT,
´
E
|fkjm

− f∞| dx → 0 which contradicts
that

´
Ak

|fkj
− f∞| dx > ϵ

2
. Therefore,

´
E
|fk − f∞| dx → 0 and by similar argument in the proof of

DCT, we have
´
E
fk(x) dx →

´
E
f∞(x) dx as k → ∞.

Extra Problem 5. Let fk(x) be measurable and nonnegative on E ∈ M, where m(E) < ∞. Prove
that fk → 0 in measure on E iff

´
E

fk(x)
1+fk(x)

dx → 0.

For “if” part, let gk(x) = fk(x)
1+fk(x)

, then gk(x) ∈ [0, 1] for all x, k.
´
E
gk(x) dx → 0 means gk → 0

in L1, thus gk → 0 in measure on E. By definition, for any σ > 0, m({x ∈ E | gk(x) > σ
1+σ

}) → 0 as
k → ∞. Since h(x) = x

1+x
is continuous and strictly increasing on [0, 1], so gk(x) >

σ
1+σ

is equivalent
to fk(x) > σ. Thus, m({x ∈ E | fk(x) > σ}) → 0, i.e., fk → 0 in measure on E.

For “only if” part, suppose fk → 0 in measure but
´
E
gk dx ̸→ 0, then there exists ϵ > 0, for

all N , there exists k > N s.t.
´
E
gk dx ≥ ϵ. Since m(E) < ∞, denote M = m(E) and WLOGG,

2



assume ϵ < 2M . Consider Bk = {x ∈ E | gk ≥ ϵ
2M

}. Claim that m(Bk) ≥ ϵ
2
. Suppose not,

ϵ ≤
ˆ
E

gk dx =

ˆ
Bk

gk dx+

ˆ
E\Bk

gk dx ≤ m(Bk) +
ϵ

2M
m(E \Bk) <

ϵ

2
+

ϵ

2
= ϵ

which is a contradiction, so m(Bk) ≥ ϵ
2
. Thus, m({x ∈ E | fk(x) ≥ ϵ/(2M)

1+ϵ/(2M)
}) ≥ ϵ

2
for all k > N ,

but this contradicts that fk → 0 in measure on E, so
´
E
gk dx → 0.

Extra Problem 6. Let fk(x) be nonnegative measurable on E ∈ M. Let f ∈ L1(E) s.t. fk → f

in measure on E and
´
E
fk(x) dx →

´
E
f(x) dx. Prove that

´
E
|fk(x)− f(x)| dx → 0.

Let gk = fk+f−|fk−f |, since fk → f in measure, fk−f → 0 in measure, and thus |fk−f | → 0

in measure. By linearity, gk = fk + f −|fk − f | → f + f −0 = 2f in measure. Apply Extra Problem
2 on gk, ˆ

E

2f ; dx ≤ lim
k→∞

ˆ
E

gk dx = lim
k→∞

ˆ
E

[fk + f − |fk − f |] dx

Since f ∈ L1(E) and
´
E
fk dx →

´
E
f dx, there exists N s.t. for all k ≥ N , fk ∈ L1(E). Thus, if

we only consider k ≥ N , by linearity of integral,

lim
k→∞

ˆ
E

[fk + f − |fk − f |] dx = 2

ˆ
E

f dx− lim
k→∞

ˆ
E

|fk − f | dx

Therefore, limk→∞
´
E
|fk − f | dx ≤ 0, which implies limk→∞

´
E
|fk − f | dx = 0.

Extra Problem 7. Let c ∈ R \ {0} and a ∈ R. Suppose f ∈ L1(R). Prove that f(cx+ a) ∈ L1(R)
and
´
R f(cx+ a) dx = 1

|c|

´
R f(y) dy.

The key is to show for any E ⊂ R, E ∈ M, we have cE ∈ M and m(cE) = |c|m(E) for
all real c ̸= 0. Let {Rk}∞k=1 be L-covering of E, then {cRk}∞k=1 is a L-covering of cE. Also,
m∗(cE) ≤

∑∞
k=1 |cRk| = |c|

∑∞
k=1 |Rk|, so by taking infinimum over all L-covering of E, we have

m∗(cE) ≤ |c|m∗(E). Since m∗(E) = m∗( cE
c
) ≤ 1

|c|m
∗(cE), we obtain m∗(cE) = |c|m∗(E). Note

that f(x) = cx is a Lipschitz continuous function, so it maps any measurable set to measurable set.
Since cE = f(E), cE is measurable. This shows m(cE) = cm(E).

Consider any indicator function f = IE(x) for any measurable set E ⊂ R. Since f ∈ L1,´
R IE(x) dx = m(E) < ∞. By translation invariance proved in lecture and the fact we proved

above, the set E−a
c

is measurable and m(E−a
c

) = 1
|c|m(E). Since f(cx+ a) = IE(cx+ a) = IE−a

c
(x),

ˆ
R
f(cx+ a) dx = m

(
E − a

c

)
=

1

|c|
m(E) =

1

|c|

ˆ
R
f(y) dy

Then consider any nonneagtive simple measurable function with the form f(x) =
∑n

k=1 akIEk
(x)

where Ek’s are measurable with and ak > 0’s are real number. If f ∈ L1(R), then we can always
define Ek’s s.t. m(Ek) < ∞ for all k. Then for each k, IEk

(cx + a) ∈ L1(R) and thus, as a finite
sum of L1 function, f(cx+ a) ∈ L1. Also, by I.T.T.,

ˆ
R
f(cx+ a) dx =

ˆ
R

n∑
k=1

akIEk
(cx+ a) dx =

n∑
k=1

ak
|c|

ˆ
R
IEk

(y) dy =
1

|c|

ˆ
R
f(y) dy

3



Next, for any nonnegative measurable function f , there exists nonegative simple function ϕn(x)

increasing to f(x). Since f(x) ∈ L1, ϕn(x) ∈ L1, and ϕn(cx+ a) ∈ L1. Then by MCT,
ˆ
R
f(cx+ a) dx = lim

n→∞

ˆ
R
ϕn(cx+ a) dx = lim

n→∞

1

|c|

ˆ
R
ϕn(y) dy =

1

|c|

ˆ
R
f(y) dy

which also shows f(cx + a) ∈ L1. Finally, for general measurable function f , f = f+ − f− where
f+, f− are both nonnegative. If f ∈ L1, then f+, f− are both in L1, thus f+(cx + a), f−(cx + a)

are both in L1, and so f(cx+ a) are in L1. In addition,
ˆ
R
f(cx+ a) dx =

ˆ
R
f+(cx+ a) dx−

ˆ
R
f−(cx+ a) dx =

1

|c|

ˆ
R
f+(y) dy − 1

|c|

ˆ
R
f−(y) dy

Therefore, we finish the whole proof.

Extra Problem 8. Let E ⊂ R and E ∈ M. Suppose f ∈ L1(E), and prove that
´

E−a
c

f(cx+a) dx =
1
|c|

´
E
f(y) dy for all c ̸= 0, a ∈ R.

Notice that
ˆ

E−a
c

f(cx+ a) dx =

ˆ
R
IE−a

c
(x)f(cx+ a) dx =

ˆ
R
IE(cx+ a)f(cx+ a) dx

Apply Extra Problem 7, we have
ˆ
R
IE(cx+ a)f(cx+ a) dx =

1

|c|

ˆ
R
IE(y)f(y) dy =

1

|c|

ˆ
E

f(y) dy

Therefore, we proved that
´

E−a
c

f(cx+ a) dx = 1
|c|

´
E
f(y) dy.
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