MAT3006＊：Real Analysis
 Homework 8

李肖鹏（116010114）

Due date：April．3， 2020
Extra Problem 1．Let $f_{k}(x)$ be nonnegative and measurable on $[0,1]$ s．t．$f_{k}(x) \rightarrow \infty$ a．e．on $[0,1]$ ． Prove that $\int_{0}^{1} f_{k}(x) d x \rightarrow \infty$ ．

Denote $a_{k}=\int_{0}^{1} f_{k}(x) d x$ ，suppose $a_{k} \nrightarrow \infty$ ，then there exists a finite M and a subsequence $a_{k_{j}}$ of a_{k} s．t．$a_{k_{j}} \leq M$ for all $j \in \mathbb{N}^{+}$．By Fatou＇s lemma，

$$
\int_{0}^{1} \varliminf_{j \rightarrow \infty} f_{k_{j}}(x) d x \leq \underline{\varliminf_{j \rightarrow \infty}} \int_{0}^{1} f_{k_{j}}(x) d x \leq \varliminf_{j \rightarrow \infty} M=M<\infty
$$

If we let $A=\left\{x \mid f_{k}(x) \rightarrow \infty\right\}$ ，since f_{k} is nonnegative，we have

$$
\int_{0}^{1} \lim _{j \rightarrow \infty} f_{k_{j}}(x) d x \geq \int_{A} \lim _{j \rightarrow \infty} f_{k_{j}}(x) d x=\int_{A} \infty d x=\infty \cdot m(A)=\infty
$$

since $m(A)=1$ ．Therefore，we have $\infty<\infty$ which is a contradiction．This impiles $a_{k} \rightarrow \infty$ ．

Extra Problem 2．Let $f_{k}(x)$ be nonnegative and measurable on $E \in \mathcal{M}, f_{k} \rightarrow f_{\infty}$ in measure on E ．Prove that $\int_{E} f_{\infty}(x) d x \leq \varliminf_{k \rightarrow \infty} \int_{E} f_{k}(x) d x$ ．

Since $f_{k} \rightarrow f_{\infty}$ in measure on E ，by definition，f_{k}, f_{∞} are a．e．finite on E ．Suppose $E_{k}=\{x \in$ $\left.E \mid f_{k}(x)=\infty\right\}$ for all k and $E_{\infty}=\left\{x \in E \mid f_{\infty}(x)=\infty\right\}$ ，then $m\left(E_{k}\right)=0$ and $m\left(E_{\infty}\right)=0$ ．Thus， denote $F=E_{\infty} \cup \bigcup_{k=1}^{\infty} E_{k}, m(F)=0$ ．Therefore，it suffices to show

$$
\int_{E \backslash F} f_{\infty}(x) d x \leq \varliminf_{k \rightarrow \infty} \int_{E \backslash F} f_{k}(x) d x
$$

Let $A=E \backslash F$ ，then on A, f_{k} and f_{∞} are everywhere finite．Since $f_{k} \rightarrow f_{\infty}$ in measure，there exists a subsequence $f_{k_{j}} \rightarrow f_{\infty}$ a．e．．Therefore，$\underline{\lim }_{k \rightarrow \infty} f_{k}(x) \leq \lim _{j \rightarrow \infty} f_{k_{j}}(x) \leq f_{\infty}(x)$ ．

Let $B=\left\{x \in A \mid \underline{\lim }_{k \rightarrow \infty} f_{k}(x)<f_{\infty}(x)\right\}$ ，and suppose $m(B)>0$ ．Denote $B_{k}=\{x \in$ $\left.A \left\lvert\, \underline{l i m}_{k \rightarrow \infty} f_{k}(x) \leq f_{\infty}(x)-\frac{1}{k}\right.\right\}$ ，so B_{k} increases to B and thus $m\left(B_{k}\right) \rightarrow m(B)$ ．Take $\delta=\frac{m(B)}{2}$ ， there exists N s．t．$m\left(B_{N}\right) \geq \delta$ ．For each fixed $x \in B_{N}$ ，since $\underline{l i m}_{k \rightarrow \infty} f_{k}(x)=\sup _{k \geq 1} \inf _{n \geq k} f_{n}(x)$ ， we have $\inf _{n \geq k} f_{n}(x) \leq f_{\infty}(x)-\frac{1}{N}<f_{\infty}(x)-\frac{1}{2 N}$ for all k ．This implies for all k ，there exists $n \geq k$ s．t．$f_{n}(x)<f_{\infty}(x)-\frac{1}{2 N}$ ．Therefore，we can pick a subsequence k_{n} s．t．k_{n} is strictly increasing and $f_{k_{n}}(x)<f_{\infty}(x)-\frac{1}{2 N}$ ．Therefore，$x \in\left\{x \in A\left|\left|f_{k}(x)-f_{\infty}(x)\right|>\frac{1}{2 N}\right\}\right.$ for all $k=k_{n}$ ．Therefore， $m\left(\left\{x \in A\left|\left|f_{k_{n}}(x)-f_{\infty}(x)\right|>\frac{1}{2 N}\right\}\right) \geq \delta\right.$ for all $n \geq 1$ ．This contradicts that $f_{k} \rightarrow f_{\infty}$ in measure．

Therefore，$m(B)=0$ ，and $\underline{l i m}_{k \rightarrow \infty} f_{k}(x)=f_{\infty}(x)$ a．e．on A ．By Fatou＇s lemma，

$$
\int_{A} f_{\infty}(x) d x=\int_{A} \underline{\lim _{k \rightarrow \infty}} f_{k}(x) d x \leq \underline{\lim _{k \rightarrow \infty}} \int_{A} f_{k}(x) d x
$$

Extra Problem 3. Let $E_{k} \subset[0,1], E_{k} \in \mathcal{M}$, for all $k \geq 1$ s.t. $m\left(E_{k}\right) \geq \delta>0$ where δ is a constant. Assume for a sequence a_{k} we have $\sum_{k=1}^{\infty}\left|a_{k}\right| I_{E_{k}}(x)<\infty$ a.e. on [0, 1]. Prove that $\sum_{k=1}^{\infty}\left|a_{k}\right|<\infty$.

Let $f(x)=\sum_{k=1}^{\infty}\left|a_{k}\right| I_{E_{k}}(x)$, and $B_{n}=\{x \in[0,1] \mid f(x)<n\}$. Since f is finite a.e. on $[0,1]$, $m\left(B_{n}\right) \rightarrow 1$ increasingly. There exists N s.t. $B_{N} \geq 1-\frac{\delta}{2}$. Also,

$$
m\left(E_{k} \cap B_{N}\right)=m\left(E_{k}\right)+m\left(B_{N}\right)-m\left(E_{k} \cup B_{N}\right) \geq \delta+1-\frac{\delta}{2}-1=\frac{\delta}{2}
$$

for all $k \geq 1$. Notice that $\int_{B_{N}} f(x) d x \leq N m\left(B_{N}\right) \leq N$, and

$$
\int_{B_{N}} f(x) d x=\int_{0}^{1} \sum_{k=1}^{\infty}\left|a_{k}\right| I_{E_{k} \cap B_{N}}(x) d x=\sum_{k=1}^{\infty}\left|a_{k}\right| m\left(E_{k} \cap B_{N}\right) \geq \frac{\delta}{2} \sum_{k=1}^{\infty}\left|a_{k}\right|
$$

Therefore, $\frac{\delta}{2} \sum_{k=1}^{\infty}\left|a_{k}\right| \leq N$, which implies that $\sum_{k=1}^{\infty}\left|a_{k}\right|<\infty$.

Extra Problem 4. Let $f_{k}(x)$ be measurable on $E \in \mathcal{M}$ s.t. $\left|f_{k}\right| \leq F$ a.e. on E, where $F \in L^{1}(E)$ and $f_{k} \rightarrow f_{\infty}$ in measure on E. Prove that $\int_{E}\left|f_{k}-f_{\infty}\right| d x \rightarrow 0$ as $k \rightarrow \infty$. In particular, $\int_{E} f_{k}(x) d x \rightarrow \int_{E} f_{\infty}(x) d x$ as $k \rightarrow \infty$.

Let $A_{k}=\left\{x \left\lvert\, F(x)>\frac{1}{k}\right.\right\}$ and $A=\bigcup_{k=1}^{\infty} A_{k}=\{x \mid F(x) \neq 0\}$. Then A_{k} increases to A and $E \backslash A=\{x \mid F(x)=0\}$ and for $x \in E \backslash A, f_{k}(x)=0, f_{\infty}(x)=0$ for all $k \geq 1$. Since $F \in L^{1}(E)$, $m\left(A_{k}\right)<\infty$ for all $k \geq 1$. Suppose $\int_{E}\left|f_{k}-f_{\infty}\right| d x \nrightarrow 0$, then there exists a subsequence $f_{k_{j}}$ s.t.

$$
\epsilon \leq \int_{E}\left|f_{k_{j}}-f_{\infty}\right| d x \leq 2 \int_{E \backslash A_{k}} F d x+\int_{A_{k}}\left|f_{k}-f_{\infty}\right| d x
$$

for some fixed $\epsilon>0$. Since $A_{k} \rightarrow A, F$ is nonnegative, by MCT,

$$
\int_{E \backslash A_{k}} F d x \rightarrow \int_{E \backslash A} F d x=0
$$

Therefore, there exists N s.t. for all $k \geq N, \int_{E \backslash A} F d x<\frac{\epsilon}{4}$. This implies $\int_{A_{k}}\left|f_{k_{j}}-f_{\infty}\right| d x>\frac{\epsilon}{2}$. Since $f_{k} \rightarrow f_{\infty}$ in measure, there exists a further subsequence $f_{k_{j_{m}}} \rightarrow f_{\infty}$ a.e. on E. This implies that $\left|f_{\infty}\right| \leq F$ a.e. and $f_{\infty} \in L^{1}(E)$. Therefore, by DCT, $\int_{E}\left|f_{k_{j_{m}}}-f_{\infty}\right| d x \rightarrow 0$ which contradicts that $\int_{A_{k}}\left|f_{k_{j}}-f_{\infty}\right| d x>\frac{\epsilon}{2}$. Therefore, $\int_{E}\left|f_{k}-f_{\infty}\right| d x \rightarrow 0$ and by similar argument in the proof of DCT, we have $\int_{E} f_{k}(x) d x \rightarrow \int_{E} f_{\infty}(x) d x$ as $k \rightarrow \infty$.

Extra Problem 5. Let $f_{k}(x)$ be measurable and nonnegative on $E \in \mathcal{M}$, where $m(E)<\infty$. Prove that $f_{k} \rightarrow 0$ in measure on E iff $\int_{E} \frac{f_{k}(x)}{1+f_{k}(x)} d x \rightarrow 0$.

For "if" part, let $g_{k}(x)=\frac{f_{k}(x)}{1+f_{k}(x)}$, then $g_{k}(x) \in[0,1]$ for all $x, k . \int_{E} g_{k}(x) d x \rightarrow 0$ means $g_{k} \rightarrow 0$ in L^{1}, thus $g_{k} \rightarrow 0$ in measure on E. By definition, for any $\sigma>0, m\left(\left\{x \in E \left\lvert\, g_{k}(x)>\frac{\sigma}{1+\sigma}\right.\right\}\right) \rightarrow 0$ as $k \rightarrow \infty$. Since $h(x)=\frac{x}{1+x}$ is continuous and strictly increasing on $[0,1]$, so $g_{k}(x)>\frac{\sigma}{1+\sigma}$ is equivalent to $f_{k}(x)>\sigma$. Thus, $m\left(\left\{x \in E \mid f_{k}(x)>\sigma\right\}\right) \rightarrow 0$, i.e., $f_{k} \rightarrow 0$ in measure on E.

For "only if" part, suppose $f_{k} \rightarrow 0$ in measure but $\int_{E} g_{k} d x \nrightarrow 0$, then there exists $\epsilon>0$, for all N, there exists $k>N$ s.t. $\int_{E} g_{k} d x \geq \epsilon$. Since $m(E)<\infty$, denote $M=m(E)$ and WLOGG,
assume $\epsilon<2 M$. Consider $B_{k}=\left\{x \in E \left\lvert\, g_{k} \geq \frac{\epsilon}{2 M}\right.\right\}$. Claim that $m\left(B_{k}\right) \geq \frac{\epsilon}{2}$. Suppose not,

$$
\epsilon \leq \int_{E} g_{k} d x=\int_{B_{k}} g_{k} d x+\int_{E \backslash B_{k}} g_{k} d x \leq m\left(B_{k}\right)+\frac{\epsilon}{2 M} m\left(E \backslash B_{k}\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

which is a contradiction, so $m\left(B_{k}\right) \geq \frac{\epsilon}{2}$. Thus, $m\left(\left\{x \in E \left\lvert\, f_{k}(x) \geq \frac{\epsilon /(2 M)}{1+\epsilon /(2 M)}\right.\right\}\right) \geq \frac{\epsilon}{2}$ for all $k>N$, but this contradicts that $f_{k} \rightarrow 0$ in measure on E, so $\int_{E} g_{k} d x \rightarrow 0$.

Extra Problem 6. Let $f_{k}(x)$ be nonnegative measurable on $E \in \mathcal{M}$. Let $f \in L^{1}(E)$ s.t. $f_{k} \rightarrow f$ in measure on E and $\int_{E} f_{k}(x) d x \rightarrow \int_{E} f(x) d x$. Prove that $\int_{E}\left|f_{k}(x)-f(x)\right| d x \rightarrow 0$.

Let $g_{k}=f_{k}+f-\left|f_{k}-f\right|$, since $f_{k} \rightarrow f$ in measure, $f_{k}-f \rightarrow 0$ in measure, and thus $\left|f_{k}-f\right| \rightarrow 0$ in measure. By linearity, $g_{k}=f_{k}+f-\left|f_{k}-f\right| \rightarrow f+f-0=2 f$ in measure. Apply Extra Problem 2 on g_{k},

$$
\int_{E} 2 f ; d x \leq \varliminf_{k \rightarrow \infty} \int_{E} g_{k} d x=\varliminf_{k \rightarrow \infty} \int_{E}\left[f_{k}+f-\left|f_{k}-f\right|\right] d x
$$

Since $f \in L^{1}(E)$ and $\int_{E} f_{k} d x \rightarrow \int_{E} f d x$, there exists N s.t. for all $k \geq N, f_{k} \in L^{1}(E)$. Thus, if we only consider $k \geq N$, by linearity of integral,

$$
\varliminf_{k \rightarrow \infty} \int_{E}\left[f_{k}+f-\left|f_{k}-f\right|\right] d x=2 \int_{E} f d x-\varlimsup_{k \rightarrow \infty} \int_{E}\left|f_{k}-f\right| d x
$$

Therefore, $\varlimsup_{\lim }^{k \rightarrow \infty} \int_{E}\left|f_{k}-f\right| d x \leq 0$, which implies $\lim _{k \rightarrow \infty} \int_{E}\left|f_{k}-f\right| d x=0$.

Extra Problem 7. Let $c \in \mathbb{R} \backslash\{0\}$ and $a \in \mathbb{R}$. Suppose $f \in L^{1}(\mathbb{R})$. Prove that $f(c x+a) \in L^{1}(\mathbb{R})$ and $\int_{\mathbb{R}} f(c x+a) d x=\frac{1}{|c|} \int_{\mathbb{R}} f(y) d y$.

The key is to show for any $E \subset \mathbb{R}, E \in \mathcal{M}$, we have $c E \in \mathcal{M}$ and $m(c E)=|c| m(E)$ for all real $c \neq 0$. Let $\left\{R_{k}\right\}_{k=1}^{\infty}$ be L-covering of E, then $\left\{c R_{k}\right\}_{k=1}^{\infty}$ is a L-covering of $c E$. Also, $m^{*}(c E) \leq \sum_{k=1}^{\infty}\left|c R_{k}\right|=|c| \sum_{k=1}^{\infty}\left|R_{k}\right|$, so by taking infinimum over all L-covering of E, we have $m^{*}(c E) \leq|c| m^{*}(E)$. Since $m^{*}(E)=m^{*}\left(\frac{c E}{c}\right) \leq \frac{1}{|c|} m^{*}(c E)$, we obtain $m^{*}(c E)=|c| m^{*}(E)$. Note that $f(x)=c x$ is a Lipschitz continuous function, so it maps any measurable set to measurable set. Since $c E=f(E), c E$ is measurable. This shows $m(c E)=c m(E)$.

Consider any indicator function $f=I_{E}(x)$ for any measurable set $E \subset \mathbb{R}$. Since $f \in L^{1}$, $\int_{\mathbb{R}} I_{E}(x) d x=m(E)<\infty$. By translation invariance proved in lecture and the fact we proved above, the set $\frac{E-a}{c}$ is measurable and $m\left(\frac{E-a}{c}\right)=\frac{1}{|c|} m(E)$. Since $f(c x+a)=I_{E}(c x+a)=I_{\frac{E-a}{c}}(x)$,

$$
\int_{\mathbb{R}} f(c x+a) d x=m\left(\frac{E-a}{c}\right)=\frac{1}{|c|} m(E)=\frac{1}{|c|} \int_{\mathbb{R}} f(y) d y
$$

Then consider any nonneagtive simple measurable function with the form $f(x)=\sum_{k=1}^{n} a_{k} I_{E_{k}}(x)$ where E_{k} 's are measurable with and $a_{k}>0$'s are real number. If $f \in L^{1}(\mathbb{R})$, then we can always define E_{k} 's s.t. $m\left(E_{k}\right)<\infty$ for all k. Then for each $k, I_{E_{k}}(c x+a) \in L^{1}(\mathbb{R})$ and thus, as a finite sum of L^{1} function, $f(c x+a) \in L^{1}$. Also, by I.T.T.,

$$
\int_{\mathbb{R}} f(c x+a) d x=\int_{\mathbb{R}} \sum_{k=1}^{n} a_{k} I_{E_{k}}(c x+a) d x=\sum_{k=1}^{n} \frac{a_{k}}{|c|} \int_{\mathbb{R}} I_{E_{k}}(y) d y=\frac{1}{|c|} \int_{\mathbb{R}} f(y) d y
$$

Next, for any nonnegative measurable function f, there exists nonegative simple function $\phi_{n}(x)$ increasing to $f(x)$. Since $f(x) \in L^{1}, \phi_{n}(x) \in L^{1}$, and $\phi_{n}(c x+a) \in L^{1}$. Then by MCT,

$$
\int_{\mathbb{R}} f(c x+a) d x=\lim _{n \rightarrow \infty} \int_{\mathbb{R}} \phi_{n}(c x+a) d x=\lim _{n \rightarrow \infty} \frac{1}{|c|} \int_{\mathbb{R}} \phi_{n}(y) d y=\frac{1}{|c|} \int_{\mathbb{R}} f(y) d y
$$

which also shows $f(c x+a) \in L^{1}$. Finally, for general measurable function $f, f=f^{+}-f^{-}$where f^{+}, f^{-}are both nonnegative. If $f \in L^{1}$, then f^{+}, f^{-}are both in L^{1}, thus $f^{+}(c x+a), f^{-}(c x+a)$ are both in L^{1}, and so $f(c x+a)$ are in L^{1}. In addition,

$$
\int_{\mathbb{R}} f(c x+a) d x=\int_{\mathbb{R}} f^{+}(c x+a) d x-\int_{\mathbb{R}} f^{-}(c x+a) d x=\frac{1}{|c|} \int_{\mathbb{R}} f^{+}(y) d y-\frac{1}{|c|} \int_{\mathbb{R}} f^{-}(y) d y
$$

Therefore, we finish the whole proof.

Extra Problem 8. Let $E \subset \mathbb{R}$ and $E \in \mathcal{M}$. Suppose $f \in L^{1}(E)$, and prove that $\int_{\frac{E-a}{c}} f(c x+a) d x=$ $\frac{1}{|c|} \int_{E} f(y) d y$ for all $c \neq 0, a \in \mathbb{R}$.

Notice that

$$
\int_{\frac{E-a}{c}} f(c x+a) d x=\int_{\mathbb{R}} I_{\frac{E-a}{c}}(x) f(c x+a) d x=\int_{\mathbb{R}} I_{E}(c x+a) f(c x+a) d x
$$

Apply Extra Problem 7, we have

$$
\int_{\mathbb{R}} I_{E}(c x+a) f(c x+a) d x=\frac{1}{|c|} \int_{\mathbb{R}} I_{E}(y) f(y) d y=\frac{1}{|c|} \int_{E} f(y) d y
$$

Therefore, we proved that $\int_{\frac{E-a}{c}} f(c x+a) d x=\frac{1}{|c|} \int_{E} f(y) d y$.

