MAT3006＊：Real Analysis
 Homework 9

李肖鹏（116010114）

Due date：April．10， 2020
Extra Problem 1．Suppose $f \in L^{1}(E), E \in \mathcal{M} . E=\bigcup_{k=1}^{\infty} E_{k}, E_{k} \in \mathcal{M}$ ，pairwise disjoint．Prove that $\int_{E} f(x) d x=\sum_{k=1}^{\infty} \int_{E_{k}} f(x) d x$ ．

Let $f_{k}(x)=f(x) I_{E_{k}}(x)$ ，then since $E=\bigcup_{k=1}^{\infty} E_{k}$ and E_{k}＇s pairwise disjoint，we have $f(x)=$ $\sum_{k=1}^{\infty} f_{k}(x)$ and $f_{k} \in L^{1}(E)$ ．Also，

$$
\sum_{k=1}^{\infty} \int_{E}\left|f_{k}(x)\right| d x=\sum_{k=1}^{\infty} \int_{E_{k}}|f(x)| d x=\int_{E}|f(x)| d x<\infty
$$

where the last equality comes from the nonnegative version of the desired results．Then by general integration term by term property，

$$
\int_{E} f(x) d x=\int_{E} \sum_{k=1}^{\infty} f_{k}(x) d x=\sum_{k=1}^{\infty} \int_{E} f_{k}(x) d x=\sum_{k=1}^{\infty} \int_{E_{k}} f(x) d x
$$

This shows the desired results．

Extra Problem 2．Prove that for all $f \in L^{1}(E), E \in \mathcal{M}$ ，there exists a sequence $f_{k}(x) \in L^{1}(E)$ ， s．t．f_{k} is bounded on E and $f_{k} \rightarrow f$ in $L^{1}(E)$ as $k \rightarrow \infty$ ．

Define for all $k \in \mathbb{N}^{+}$，

$$
f_{k}(x)= \begin{cases}f(x) & \text { if }|f(x)| \leq k \\ k & \text { if } f(x)>k \\ -k & \text { if } f(x)<-k\end{cases}
$$

Then it is obvious that $f_{k}(x)$ is bounded and $\left|f_{k}(x)\right| \leq|f(x)|$ for all $x \in E$ ．Also，$f_{k}(x) \rightarrow f(x)$ pointwise（if convergent to infinity is accepted，otherwise convergent a．e．is also enough）．Notice that $\left|f_{k}-f\right| \leq 2|f| \in L^{1}(E)$ ，by DCT， $\int_{E}\left|f_{k}-f\right| d x \rightarrow 0$ as $k \rightarrow \infty$ ．

Extra Problem 3．Prove that for all $f \in L^{1}(E), E \in \mathcal{M}$ ，there exists simple functions $f_{k}(x) \in$ $L^{1}(E)$ s．t．$f_{k} \rightarrow f$ in $L^{1}(E)$ ．

Recall there exists simple measurable function $\phi_{k}(x)$ s．t．$\left|\phi_{k}(x)\right|<\infty$ and $\left|\phi_{k}(x)\right| \leq|f(x)|$ for all $x \in E$ converging pointwise to f on E ．Therefore，$\phi_{k}(x) \in L^{1}(E)$ and $f-\phi_{k}(x)$ is well defined $\left(\infty-\infty\right.$ will not exist）．Let $f_{k}=\phi_{k}$ ，since $\left|f(x)-f_{k}(x)\right| \leq 2|f(x)| \in L^{1}(E)$ ，by DCT，$f_{k} \rightarrow f$ in $L^{1}(E)$ ．

Extra Problem 4. Use " \Longrightarrow " to denote "implies" and " \longrightarrow " to denote "after passing to a subsequence implies", complete the following diagram
converge a.u.
converge a.e.
converge in measure

$$
\text { converge in } L^{1}(E)
$$

in general case, special case when $m(E)<\infty$, and special case when $\left|f_{k}\right| \leq g \in L^{1}(E)$ respectively.
In general case, the diagram is

In $m(E)<\infty$ case, the diagram is

In dominated case, the diagram is

Extra Problem 5. Suppose $f \in L^{1}(E)$. Prove that for all $\epsilon>0$, there exists $\delta>0$ s.t. for all $e \subset E, e \in \mathcal{M}$, with $m(e)<\delta$, we have $\int_{e}|f(x)| d x<\epsilon$.

By Extra Problem 2, for all $\epsilon>0$, there exists a bounded $L^{1}(E)$-integrable function g s.t. $\int_{E}|f-g| d x<\epsilon / 2$ and $|g(x)| \leq M$ for all $x \in E$. Take $\delta=\frac{\epsilon}{2 M}$, we have

$$
\int_{e}|f| d x \leq \int_{e}|f-g| d x+\int_{e}|g| d x<\frac{\epsilon}{2}+M \frac{\epsilon}{2 M}=\epsilon
$$

Therefore, we prove the absolute continuity of integrals.

Extra Problem 6. Let $f_{k} \in L^{1}(E)$ be s.t. $f_{k} \rightarrow f_{\infty}$ a.e. on E. Suppose $m(E)<\infty$. Prove that $f_{\infty} \in L^{1}(E)$ and $f_{k} \rightarrow f_{\infty}$ in $L^{1}(E)$ if and only if for all $\epsilon>0$, there exists $\delta>0$ s.t. $\int_{e}\left|f_{k}(x)\right| d x<\epsilon$ for all $k \geq 1$ whenever $e \subset E, e \in \mathcal{M}$ and $m(E)<\delta$.

For "only if" part, since $f_{k} \rightarrow f_{\infty}$ in $L^{1}(E)$, there exists k_{0} s.t. if $k \geq k_{0}+1, \int_{E}\left|f_{k}-f_{\infty}\right| d x<$ $\epsilon / 2$. Also, in this case $f_{\infty} \in L^{1}(E)$, so by Extra Problem 5, there exists $\delta_{k}\left(k \in \mathbb{N}^{+} \cup\{\infty\}\right)$ s.t. for all $e \subset E, e \in \mathcal{M}$ with $m(e)<\delta$, we have $\int_{e}\left|f_{k}\right| d x<\epsilon / 2$. Take $\delta=\min \left\{\delta_{1}, \ldots, \delta_{k_{0}}, \delta_{\infty}\right\}$, then for all $k \geq k_{0}+1$,

$$
\int_{e}\left|f_{k}(x)\right| d x \leq \int_{e}\left|f_{k}(x)-f_{\infty}(x)\right| d x+\int_{e}\left|f_{\infty}(x)\right| d x<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

This implies for all $\epsilon>0$, there exists $\delta>0$ s.t. $\int_{e}\left|f_{\infty}(x)\right| d x>\epsilon$ for all $k \geq 1$ whenever $e \subset E$, $e \in \mathcal{M}$ and $m(E)<\delta$.

For "if" part, note that $m(E)<\infty$, then uniform convergent implies $L^{1}(E)$ convergence. By Egorov's Theorem, for all $\delta_{1}>0$, there exists $E_{\delta_{1}} \in \mathcal{M}, E_{\delta_{1}} \subset E$ s.t. $m\left(E_{\delta_{1}}\right)<\delta_{1}$ and $f_{k} \rightarrow f_{\infty}$ uniformly on $E \backslash E_{\delta_{1}}$. Therefore, $\int_{E \backslash E_{\delta_{1}}}\left|f_{k}-f_{\infty}\right| d x<\epsilon$ if $k \geq k_{0}$. By assumption, there exists $\delta>0$ s.t. $\int_{e}\left|f_{k}(x)\right| d x<\epsilon$ as long as $e \subset E, e \in \mathcal{M}$ and $m(e)<\delta$. Therefore, take $e=E_{\delta_{1}}$ and $\delta=\delta_{1}$,

$$
\int_{E}\left|f_{k}-f_{\infty}\right| d x=\int_{E \backslash E_{\delta}}\left|f_{k}-f_{\infty}\right| d x+\int_{E_{\delta}}\left|f_{k}\right| d x+\int_{E_{\delta}}\left|f_{\infty}\right| d x
$$

By Fatou's lemma,

$$
\int_{e}\left|f_{\infty}\right| d x=\int_{e} \underline{\lim _{k \rightarrow \infty}}\left|f_{k}\right| d x \leq \lim _{k \rightarrow \infty} \int_{e}\left|f_{k}\right| d x<\epsilon
$$

Therefore, $\int_{E}\left|f_{k}-f_{\infty}\right| d x<3 \epsilon$, which means $f_{k} \rightarrow f_{\infty}$ in $L^{1}(E)$. Since $f_{\infty}=\left(f_{\infty}-f_{k}\right)+f_{k}$, it is easy to see $f_{\infty} \in L^{1}(E)$.

Extra Problem 7. Recall that one type of improper integral $\int_{a}^{b} f(x) d x$ can be regarded as $\lim _{c \rightarrow a^{+}} \int_{c}^{b} f(x) d x$ where $\int_{c}^{b} f(x) d x$ is a Riemann integral. If such a limit exists as a finite number, then we say the improper integral $\int_{a}^{b} f(x) d x$ is convergent. Also, the other type of improper integral $\int_{-\infty}^{\infty} f(x) d x=\lim _{a \rightarrow-\infty, b \rightarrow \infty} \int_{a}^{b} f(x) d x$ converges if $\int_{a}^{b} f(x) d x$ is Riemann integral and such limit exists as a finite number.
(i) Suppose the improper integral $\int_{a}^{b} f(x) d x$ is absolutely convergent. Prove that $f \in L^{1}([a, b])$ and $\int_{a}^{b} f(x) d m=\int_{a}^{b} f(x) d x$.

Let $f_{k}(x)=f(x) I_{\left[a+\frac{1}{k}, b\right]}(x)$ for all $k \geq 1$. Since $f_{k}(x)$ is Riemann integrable, it must be measurable on $[a, b]$ (can be regarded as the limit of step function, and step function is measurable). Since $\left|f_{k}\right|$ increases to $|f|$ pointwise, by MCT,

$$
\int_{a}^{b}|f(x)| d m=\lim _{k \rightarrow \infty} \int_{a}^{b}\left|f_{k}(x)\right| d m=\lim _{k \rightarrow \infty} \int_{a+\frac{1}{k}}^{b}|f(x)| d m=\lim _{k \rightarrow \infty} \int_{a+\frac{1}{k}}^{b}|f(x)| d x<\infty
$$

Therefore, $f \in L^{1}([a, b])$, and

$$
\int_{a}^{b} f(x) d x=\lim _{k \rightarrow \infty} \int_{a+\frac{1}{k}}^{b} f(x) d x=\lim _{k \rightarrow \infty} \int_{a}^{b} f_{k}(x) d m=\int_{a}^{b} f(x) d m
$$

where the last equality comes from DCT for f_{k} with dominating function $f(x)$.
(ii) Suppose $\int_{a}^{b} f(x) d x$ is an improper integral and $f \in L^{1}([a, b])$. Prove that $\int_{a}^{b} f(x) d x$ is absolutely convergent.

Denote $g(c)=\int_{c}^{b}|f(x)| d x$ where $c \in(a, b]$, and by definition, $g(c) \rightarrow g(a)$ as $c \rightarrow a+$. Notice that $\int_{c}^{b}|f(x)| d x$ is nonnegative and increasing in c, the limit always exists (may be infinity). Then $g\left(a+\frac{1}{n}\right) \rightarrow g(a)$ as $n \rightarrow \infty$. Since when $c<a, g(c)$ is a Riemann integral,

$$
g\left(a+\frac{1}{n}\right)=\int_{a+\frac{1}{n}}^{b}|f(x)| d m=\int_{a}^{b}\left|f_{n}(x)\right| d m
$$

where $f_{n}(x)$ is defined similar to part (i). Since $\left|f_{n}\right| \leq|f|, f_{n} \rightarrow f$ pointwise and $|f| \in L^{1}$, by DCT, $g\left(a+\frac{1}{n}\right) \rightarrow \int_{a}^{b}|f(x)| d m$. This shows that $g(a)=\int_{a}^{b}|f(x)| d m<\infty$. Therefore, $\int_{a}^{b} f(x) d x$ is absolutely convergent.
(iii) Prove the same result for improper integral $\int_{-\infty}^{\infty} f(x) d x$ as in (i) and (ii).

First, suppose $\int_{-\infty}^{\infty} f(x) d x$ converges absolutely, then $\int_{-\infty}^{\infty}|f(x)| d x<\infty$. This implies $\int_{-\infty}^{0}|f(x)| d x<\infty$ and $\int_{0}^{\infty}|f(x)| d x<\infty$. Let $f_{k}^{+}(x)=f(x) I_{[0, k]}$, then $f_{k}^{+} \rightarrow f$ on $[0, \infty)$ pointwise and $\left|f_{k}^{+}\right|$is increasing. Thus, by MCT,

$$
\int_{0}^{\infty}|f(x)| d m=\lim _{k \rightarrow \infty} \int_{0}^{\infty}\left|f_{k}^{+}\right| d m=\lim _{k \rightarrow \infty} \int_{0}^{k}|f| d m
$$

Since $|f|$ is bounded on $[0, k]$, so the Lebesgue integral is equal to Riemann integral, i.e,

$$
\lim _{k \rightarrow \infty} \int_{0}^{k}|f| d m=\lim _{k \rightarrow \infty} \int_{0}^{k}|f| d x=\lim _{b \rightarrow \infty} \int_{0}^{b}|f(x)| d x
$$

where the last equality holds because the limit exists (monotone bounded). Therefore, we proved that $\int_{0}^{\infty}|f(x)| d m=\int_{0}^{\infty}|f(x)| d x$. Similarly, we can prove $\int_{-\infty}^{0}|f| d m=\int_{-\infty}^{0}|f| d x$. Therefore, $\int_{-\infty}^{\infty}|f| d m=\int_{-\infty}^{\infty}|f| d x<\infty$, so $f \in L^{1}(\mathbb{R})$.

Then we can let $f_{k}(x)=f(x) I_{[-k, k]}(x)$. It is obvious that $f_{k} \rightarrow f$ pointwise on \mathbb{R}. Also, $\left|f_{k}\right| \leq|f| \in L^{1}(\mathbb{R})$, so by DCT,

$$
\int_{-\infty}^{\infty} f(x) d m=\int_{-\infty}^{\infty} \lim _{k \rightarrow \infty} f_{k}(x) d m=\lim _{k \rightarrow \infty} \int_{-\infty}^{\infty} f_{k}(x) d m=\lim _{k \rightarrow \infty} \int_{-k}^{k} f(x) d m
$$

Since $f(x)$ is bounded on $[-k, k]$, so Lebesgue integral is equal to Riemann integral, i.e.,

$$
\lim _{k \rightarrow \infty} \int_{-k}^{k} f(x) d m=\lim _{k \rightarrow \infty} \int_{-k}^{k} f(x) d x=\int_{-\infty}^{\infty} f(x) d x
$$

where the last equality holds because the limit of $\int_{a}^{b} f(x) d x$ exists as a finite numeber as $a \rightarrow-\infty$ and $b \rightarrow \infty$.

Conversely, suppose $f \in L^{1}(\mathbb{R})$, we want to show the improper integrals $\int_{0}^{\infty}|f(x)| d x$ and $\int_{-\infty}^{0}|f(x)| d x$ exist as a fintie number. Denote $g(b)=\int_{0}^{b}|f(x)| d x$ for any $b \geq 0$, then $g(b)$ is a nonnegative increasing function, so $\lim _{b \rightarrow \infty} g(b)$ exists (may be infinity). If this limit is infinity, then by definition, for all $M>0$, there exists $B>0$ s.t. for all $b \geq B, g(b) \geq M$. However, for each B, we can always find an integer N s.t. $N>B$, so for all $M>0$, there exists $N \in \mathbb{N}^{+}$s.t. for all integer $k \geq N, g(k) \geq M$, so $\lim _{k \rightarrow \infty} g(k)=\infty$. Note

$$
\infty=\lim _{k \rightarrow \infty} g(k)=\lim _{k \rightarrow \infty} \int_{0}^{k}|f(x)| d x=\lim _{k \rightarrow \infty} \int_{0}^{k}|f(x)| d m=\lim _{k \rightarrow \infty} \int_{0}^{\infty}\left|f_{k}(x)\right| d m
$$

By MCT on $\left|f_{k}(x)\right|$ restricted on $(0, \infty), \lim _{k \rightarrow \infty} \int_{0}^{\infty}\left|f_{k}(x)\right| d m=\int_{0}^{\infty}|f(x)| d m=\infty$. This is a contradiction because $\infty>\int_{-\infty}^{\infty}|f(x)| d m \geq \int_{0}^{\infty}|f(x)| d m$. Therefore, $\lim _{b \rightarrow \infty} g(b)$ exists as a finite number. This implies the improper integral $\int_{0}^{\infty}|f(x)| d x$ exists as a finite number. Similarly, we can show $\int_{-\infty}^{0}|f(x)| d x$ exists as a finite number. This shows $\int_{-\infty}^{\infty}|f(x)| d x$ exists as a finite number.

Extra Problem 8. Let $\alpha>-1$. Define $\Gamma(\alpha)=\int_{0}^{\infty} e^{-t} t^{\alpha+1} d t$. Prove Lebesgue integral

$$
\int_{0}^{\infty} \frac{e^{-x}}{1-e^{-x}} x^{\alpha+1} d m=\Gamma(\alpha) \sum_{n=1}^{\infty} \frac{1}{n^{\alpha+2}}
$$

Is the improper integral $\int_{0}^{\infty} \frac{e^{-x}}{1-e^{-x}} x^{\alpha+1} d x$ convergent absolutely?
Note that by Taylor expansion and I.T.T. for nonegative measurable function,

$$
\int_{0}^{\infty} \frac{e^{-x}}{1-e^{-x}} x^{\alpha+1} d m=\int_{0}^{\infty} \sum_{n=1}^{\infty} e^{-n x} x^{\alpha+1} d m=\sum_{n=1}^{\infty} \int_{0}^{\infty} e^{-n x} x^{\alpha+1} d m
$$

Note that for all $\alpha>-1$, there exists a $K_{\alpha}>0$ s.t. for all $x \geq K_{\alpha}, e^{x / 2}>x^{\alpha+1}$. Therefore,

$$
\begin{aligned}
\int_{0}^{\infty} e^{-n x} x^{\alpha+1} d m & =\int_{0}^{K_{\alpha}} e^{-n x} x^{\alpha+1} d m+\int_{K_{\alpha}}^{\infty} e^{-n x} x^{\alpha+1} d m \\
& \leq K_{\alpha}^{\alpha+1} \int_{0}^{K_{\alpha}} e^{-n x} d m+\int_{K_{\alpha}}^{\infty} e^{(-n+1 / 2) x} d m \\
& \leq K_{\alpha}^{\alpha+2}+\int_{0}^{\infty} e^{-x / 2} d m
\end{aligned}
$$

It is easy to see the Cauchy-Riemann integral $\int_{0}^{\infty} e^{-x / 2} d x$ is absolutely convergent, so by previous result, the Lebesgue integral $\int_{0}^{\infty} e^{-x / 2} d m$ is equal to Cauchy-Riemann integral and hence a finite number. Thus, $\int_{0}^{\infty} e^{-n x} x^{\alpha+1} d m$ is finite and we can apply change of variable $t=n x$ to Lebesgue integral because of HW8, Extra Problem 7, i.e.,

$$
\int_{0}^{\infty} e^{-n x} x^{\alpha+1} d m=\frac{1}{n^{\alpha+2}} \int_{0}^{\infty} e^{-t} t^{\alpha+1} d m=\frac{1}{n^{\alpha+2}} \Gamma(\alpha)
$$

where the last equality is because $\int_{0}^{\infty} e^{-t} t^{\alpha+1} d m$ is also finite, and thus it is equal to its CauchyRiemann integral $\int_{0}^{\infty} e^{-t} t^{\alpha+1} d t$. When $\alpha>-1, \alpha+2>1$, so the series $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha+2}}$ converges. Since $\Gamma(\alpha)$ is finite (by what we proved above with $n=1$), $\int_{0}^{\infty} \frac{e^{-x}}{1-e^{-x}} x^{\alpha+1} d m$ is finite, again by Extra Problem 7, its corresponding Cauchy Riemann integral converges absolutely.

Extra Problem 9. Let $f(x, y) \in L^{1}\left(E_{1} \times E_{2}\right)$, where $x \in E_{1} \subset \mathbb{R}^{n_{1}}, E_{1} \in \mathcal{M}$ and $y \in E_{2} \subset \mathbb{R}^{n_{2}}$, $E_{2} \in \mathcal{M}$. Prove that $\int_{E_{2}} f(x, y) d y \in L^{1}\left(E_{1}\right)$ and $\int_{E_{1}} f(x, y) d x \in L^{1}\left(E_{2}\right)$.

Note that $g(x, y)=|f(x, y)| I_{E_{1}}(x) I_{E_{2}}(y)$ is nonnegative and measurable on $\mathbb{R}^{n_{1}+n_{2}}$. Therefore, by Fubini's theorem (nonnegative version), we have

$$
\int_{\mathbb{R}^{n_{2}}} \int_{\mathbb{R}^{n_{1}}} g(x, y) d x d y=\int_{\mathbb{R}^{n_{1}+n_{2}}} g(x, y) d(x, y)
$$

which is equivalent to (since $f \in L^{1}\left(E_{1} \times E_{2}\right)$),

$$
\int_{E_{2}} \int_{E_{1}}|f(x, y)| d x d y=\int_{E_{1} \times E_{2}}|f(x, y)| d(x, y)<\infty
$$

This impiles that $\int_{E_{1}}|f(x, y)| d x \in L^{1}\left(E_{2}\right)$. Note that

$$
\left|\int_{E_{1}} f(x, y) d x\right| \leq \int_{E_{1}}|f(x, y)| d x<\infty
$$

Thus, $\int_{E_{1}} f(x, y) d x \in L^{1}\left(E_{2}\right)$. Similarly, by the other part of Fubini, we also have

$$
\int_{E_{1}} \int_{E_{2}}|f(x, y)| d y d x=\int_{E_{1} \times E_{2}}|f(x, y)| d(x, y)<\infty
$$

so $\int_{E_{2}}|f(x, y)| d y \in L^{1}\left(E_{1}\right)$. For the same reason, $\int_{E_{2}} f(x, y) d y \in L^{1}\left(E_{1}\right)$.

Extra Problem 10. Let $f(x)$ be nonnegative on $E \in \mathcal{M}, E \subset \mathbb{R}^{n}$. Let $A=\{(x, y) \in E \times \mathbb{R} \mid 0 \leq$ $y \leq f(x)\}$. Prove that f is measurable on E iff $A \subset \mathbb{R}^{n+1}$ is measurable. Also prove if $f(x)$ is measurable on E, then $\int_{E} f(x) d x=m(A)$.

For "only if" part, let $F(x, y)=f(x)$, then $\{(x, y) \mid F(x, y)>t\}=\{x \mid f(x)>t\} \times \mathbb{R} \in \mathcal{M}\left(\mathbb{R}^{n+1}\right)$ because $\{x \mid f(x)>t\} \in \mathcal{M}\left(\mathbb{R}^{n}\right)$. Let $G(x, y)=y-f(x)$, then $G(x, y)$ is measurable in \mathbb{R}^{n+1} and $A=\{(x, y) \in E \times \mathbb{R} \mid G(x, y) \leq 0\} \cap\{(x, y) \in E \times \mathbb{R} \mid y \geq 0\} \in \mathcal{M}\left(\mathbb{R}^{n+1}\right)$ because the first part is in $\mathcal{M}\left(\mathbb{R}^{n+1}\right)$ and the second part is closed in \mathbb{R}^{n+1}.

For "if" part, since $A \in \mathcal{M}\left(\mathbb{R}^{n+1}\right)$, by Lemma 2 in lecture, $I_{A}(x, y)$ is measurable in \mathbb{R}^{n+1}. By Fubini's theorem (nonnegative version) $\int_{\mathbb{R}} I_{A}(x, y) d y$ is measurable in $x \in \mathbb{R}^{n}$. Notice that $f(x)=\int_{\mathbb{R}} I_{A}(x, y) d y$ for each fixed $x \in E$, so we are done.

The last claim is easy to see, since

$$
m(A)=\int_{\mathbb{R}^{n+1}} I_{A}(x, y) d(x, y)=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}} I_{A}(x, y) d y d x=\int_{E} f(x) d x
$$

Extra Problem 11. Suppose $f(x)$ is measurable on $E \subset \mathbb{R}^{n}, E \in \mathcal{M}$. Fora all $\lambda \geq 0$, let $F(\lambda)=m(\{x \in E| | f(x) \mid>\lambda\})$. Prove that if $|f|^{p} \in L^{1}(E)$ where $p \geq 1$, then $\int_{E}|f(x)|^{p} d x=$ $p \int_{0}^{\infty} \lambda^{p-1} F(\lambda) d \lambda$.

Denote $A=\{(x, \lambda) \in E \times \mathbb{R}|0 \leq \lambda<|f(x)|\}$. Then since f is measurable on E, by Extra Problem $10, A$ is measurable in \mathbb{R}^{n+1}. Note that $I_{A}(x, \lambda)=I_{A}(x, \lambda) I_{E}(x) I_{\mathbb{R}_{+}}(\lambda)$ and by Lemma 2 in
lecture it is a measurable function on \mathbb{R}^{n+1}. This implies $p \lambda^{p-1} I_{A}(x, \lambda) I_{E}(x) I_{\mathbb{R}_{+}}(\lambda)$ is a nonnegative measurable function on \mathbb{R}^{n+1}. By Fubini's theorem (nonnegative),

$$
\begin{aligned}
\int_{\mathbb{R}^{n+1}} p \lambda^{p-1} I_{A}(x, \lambda) I_{E}(x) I_{\mathbb{R}_{+}}(\lambda) d(x \lambda) & =\int_{\mathbb{R}} \int_{\mathbb{R}^{n}} p \lambda^{p-1} I_{A}(x, \lambda) I_{E}(x) I_{\mathbb{R}_{+}}(\lambda) d x d \lambda \\
& =p \int_{0}^{\infty} \lambda^{p-1} \int_{E} I_{A}(x, \lambda) d x d \lambda=p \int_{0}^{\infty} \lambda^{p-1} F(\lambda) d \lambda \\
\int_{\mathbb{R}^{n+1}} p \lambda^{p-1} I_{A}(x, \lambda) I_{E}(x) I_{\mathbb{R}_{+}}(\lambda) d(x \lambda) & =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}} p \lambda^{p-1} I_{A}(x, \lambda) I_{E}(x) I_{\mathbb{R}_{+}}(\lambda) d \lambda d x \\
& =\int_{E} \int_{0}^{\infty} p \lambda^{p-1} I_{A}(x, \lambda) d \lambda d x \\
& \left.=\int_{E} \int_{0}^{|f(x)|^{p}} 1 d y d x=\int_{E}|f(x)|^{p} d x \quad \quad \quad \text { (Take } y=\lambda^{p}\right)
\end{aligned}
$$

Therefore, $\int_{E}|f(x)|^{p} d x=p \int_{0}^{\infty} \lambda^{p-1} F(\lambda) d \lambda$.

