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Homework 9
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Due date: April. 10, 2020

Extra Problem 1. Suppose f ∈ L1(E), E ∈ M. E =
∪∞

k=1 Ek, Ek ∈ M, pairwise disjoint. Prove
that

´
E
f(x) dx =

∑∞
k=1

´
Ek

f(x) dx.

Let fk(x) = f(x)IEk
(x), then since E =

∪∞
k=1 Ek and Ek’s pairwise disjoint, we have f(x) =∑∞

k=1 fk(x) and fk ∈ L1(E). Also,
∞∑
k=1

ˆ
E

|fk(x)| dx =
∞∑
k=1

ˆ
Ek

|f(x)| dx =

ˆ
E

|f(x)| dx < ∞

where the last equality comes from the nonnegative version of the desired results. Then by general
integration term by term property,

ˆ
E

f(x) dx =

ˆ
E

∞∑
k=1

fk(x) dx =
∞∑
k=1

ˆ
E

fk(x) dx =
∞∑
k=1

ˆ
Ek

f(x) dx

This shows the desired results.

Extra Problem 2. Prove that for all f ∈ L1(E), E ∈ M, there exists a sequence fk(x) ∈ L1(E),
s.t. fk is bounded on E and fk → f in L1(E) as k → ∞.

Define for all k ∈ N+,

fk(x) =


f(x) if |f(x)| ≤ k

k if f(x) > k

−k if f(x) < −k

Then it is obvious that fk(x) is bounded and |fk(x)| ≤ |f(x)| for all x ∈ E. Also, fk(x) → f(x)

pointwise (if convergent to infinity is accepted, otherwise convergent a.e. is also enough). Notice
that |fk − f | ≤ 2|f | ∈ L1(E), by DCT,

´
E
|fk − f | dx → 0 as k → ∞.

Extra Problem 3. Prove that for all f ∈ L1(E), E ∈ M, there exists simple functions fk(x) ∈
L1(E) s.t. fk → f in L1(E).

Recall there exists simple measurable function ϕk(x) s.t. |ϕk(x)| < ∞ and |ϕk(x)| ≤ |f(x)| for
all x ∈ E converging pointwise to f on E. Therefore, ϕk(x) ∈ L1(E) and f − ϕk(x) is well defined
(∞−∞ will not exist). Let fk = ϕk, since |f(x) − fk(x)| ≤ 2|f(x)| ∈ L1(E), by DCT, fk → f in
L1(E).
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Extra Problem 4. Use “=⇒” to denote “implies” and “−→” to denote “after passing to a subse-
quence implies”, complete the following diagram

converge a.u.

converge a.e. converge in measure

converge in L1(E)

in general case, special case when m(E) < ∞, and special case when |fk| ≤ g ∈ L1(E) respectively.

In general case, the diagram is

converge a.e.

converge a.u.

converge in measure

converge in L1(E)

In m(E) < ∞ case, the diagram is

converge a.e.

converge a.u.

converge in measure

converge in L1(E)

In dominated case, the diagram is

converge a.e.

converge a.u.

converge in measure

converge in L1(E)

Extra Problem 5. Suppose f ∈ L1(E). Prove that for all ϵ > 0, there exists δ > 0 s.t. for all
e ⊂ E, e ∈ M, with m(e) < δ, we have

´
e
|f(x)| dx < ϵ.
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By Extra Problem 2, for all ϵ > 0, there exists a bounded L1(E)-integrable function g s.t.´
E
|f − g| dx < ϵ/2 and |g(x)| ≤ M for all x ∈ E. Take δ = ϵ

2M
, we haveˆ

e

|f | dx ≤
ˆ
e

|f − g| dx+

ˆ
e

|g| dx <
ϵ

2
+M

ϵ

2M
= ϵ

Therefore, we prove the absolute continuity of integrals.

Extra Problem 6. Let fk ∈ L1(E) be s.t. fk → f∞ a.e. on E. Suppose m(E) < ∞. Prove that
f∞ ∈ L1(E) and fk → f∞ in L1(E) if and only if for all ϵ > 0, there exists δ > 0 s.t.

´
e
|fk(x)| dx < ϵ

for all k ≥ 1 whenever e ⊂ E, e ∈ M and m(E) < δ.

For “only if” part, since fk → f∞ in L1(E), there exists k0 s.t. if k ≥ k0 +1,
´
E
|fk − f∞| dx <

ϵ/2. Also, in this case f∞ ∈ L1(E), so by Extra Problem 5, there exists δk (k ∈ N+ ∪ {∞}) s.t. for
all e ⊂ E, e ∈ M with m(e) < δ, we have

´
e
|fk| dx < ϵ/2. Take δ = min{δ1, . . . , δk0

, δ∞}, then for
all k ≥ k0 + 1, ˆ

e

|fk(x)| dx ≤
ˆ
e

|fk(x)− f∞(x)| dx+

ˆ
e

|f∞(x)| dx <
ϵ

2
+

ϵ

2
= ϵ

This implies for all ϵ > 0, there exists δ > 0 s.t.
´
e
|f∞(x)| dx > ϵ for all k ≥ 1 whenever e ⊂ E,

e ∈ M and m(E) < δ.

For “if” part, note that m(E) < ∞, then uniform convergent implies L1(E) convergence. By
Egorov’s Theorem, for all δ1 > 0, there exists Eδ1 ∈ M, Eδ1 ⊂ E s.t. m(Eδ1) < δ1 and fk → f∞

uniformly on E \ Eδ1 . Therefore,
´
E\Eδ1

|fk − f∞| dx < ϵ if k ≥ k0. By assumption, there exists
δ > 0 s.t.

´
e
|fk(x)| dx < ϵ as long as e ⊂ E, e ∈ M and m(e) < δ. Therefore, take e = Eδ1 and

δ = δ1, ˆ
E

|fk − f∞| dx =

ˆ
E\Eδ

|fk − f∞| dx+

ˆ
Eδ

|fk| dx+

ˆ
Eδ

|f∞| dx

By Fatou’s lemma, ˆ
e

|f∞| dx =

ˆ
e

lim
k→∞

|fk| dx ≤ lim
k→∞

ˆ
e

|fk| dx < ϵ

Therefore,
´
E
|fk − f∞| dx < 3ϵ, which means fk → f∞ in L1(E). Since f∞ = (f∞ − fk) + fk, it is

easy to see f∞ ∈ L1(E).

Extra Problem 7. Recall that one type of improper integral
´ b

a
f(x) dx can be regarded as

limc→a+

´ b

c
f(x) dx where

´ b

c
f(x) dx is a Riemann integral. If such a limit exists as a finite number,

then we say the improper integral
´ b

a
f(x) dx is convergent. Also, the other type of improper integral´∞

−∞ f(x) dx = lima→−∞,b→∞
´ b

a
f(x) dx converges if

´ b

a
f(x) dx is Riemann integral and such limit

exists as a finite number.

(i) Suppose the improper integral
´ b

a
f(x) dx is absolutely convergent. Prove that f ∈ L1([a, b])

and
´ b

a
f(x) dm =

´ b

a
f(x) dx.

Let fk(x) = f(x)I[a+ 1
k ,b](x) for all k ≥ 1. Since fk(x) is Riemann integrable, it must be mea-

surable on [a, b] (can be regarded as the limit of step function, and step function is measurable).
Since |fk| increases to |f | pointwise, by MCT,ˆ b

a

|f(x)| dm = lim
k→∞

ˆ b

a

|fk(x)| dm = lim
k→∞

ˆ b

a+ 1
k

|f(x)| dm = lim
k→∞

ˆ b

a+ 1
k

|f(x)| dx < ∞
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Therefore, f ∈ L1([a, b]), and
ˆ b

a

f(x) dx = lim
k→∞

ˆ b

a+ 1
k

f(x) dx = lim
k→∞

ˆ b

a

fk(x) dm =

ˆ b

a

f(x) dm

where the last equality comes from DCT for fk with dominating function f(x).

(ii) Suppose
´ b

a
f(x) dx is an improper integral and f ∈ L1([a, b]). Prove that

´ b

a
f(x) dx is

absolutely convergent.

Denote g(c) =
´ b

c
|f(x)| dx where c ∈ (a, b], and by definition, g(c) → g(a) as c → a+. Notice

that
´ b

c
|f(x)| dx is nonnegative and increasing in c, the limit always exists (may be infinity).

Then g(a+ 1
n
) → g(a) as n → ∞. Since when c < a, g(c) is a Riemann integral,

g

(
a+

1

n

)
=

ˆ b

a+ 1
n

|f(x)| dm =

ˆ b

a

|fn(x)| dm

where fn(x) is defined similar to part (i). Since |fn| ≤ |f |, fn → f pointwise and |f | ∈ L1,
by DCT, g(a + 1

n
) →

´ b

a
|f(x)| dm. This shows that g(a) =

´ b

a
|f(x)| dm < ∞. Therefore,´ b

a
f(x) dx is absolutely convergent.

(iii) Prove the same result for improper integral
´∞
−∞ f(x) dx as in (i) and (ii).

First, suppose
´∞
−∞ f(x) dx converges absolutely, then

´∞
−∞ |f(x)| dx < ∞. This implies´ 0

−∞ |f(x)| dx < ∞ and
´∞
0

|f(x)| dx < ∞. Let f+
k (x) = f(x)I[0,k], then f+

k → f on [0,∞)

pointwise and |f+
k | is increasing. Thus, by MCT,
ˆ ∞

0

|f(x)| dm = lim
k→∞

ˆ ∞

0

|f+
k | dm = lim

k→∞

ˆ k

0

|f | dm

Since |f | is bounded on [0, k], so the Lebesgue integral is equal to Riemann integral, i.e,

lim
k→∞

ˆ k

0

|f | dm = lim
k→∞

ˆ k

0

|f | dx = lim
b→∞

ˆ b

0

|f(x)| dx

where the last equality holds because the limit exists (monotone bounded). Therefore, we
proved that

´∞
0

|f(x)| dm =
´∞
0

|f(x)| dx. Similarly, we can prove
´ 0

−∞ |f | dm =
´ 0

−∞ |f | dx.
Therefore,

´∞
−∞ |f | dm =

´∞
−∞ |f | dx < ∞, so f ∈ L1(R).

Then we can let fk(x) = f(x)I[−k,k](x). It is obvious that fk → f pointwise on R. Also,
|fk| ≤ |f | ∈ L1(R), so by DCT,

ˆ ∞

−∞
f(x) dm =

ˆ ∞

−∞
lim
k→∞

fk(x) dm = lim
k→∞

ˆ ∞

−∞
fk(x) dm = lim

k→∞

ˆ k

−k

f(x) dm

Since f(x) is bounded on [−k, k], so Lebesgue integral is equal to Riemann integral, i.e.,

lim
k→∞

ˆ k

−k

f(x) dm = lim
k→∞

ˆ k

−k

f(x) dx =

ˆ ∞

−∞
f(x) dx

where the last equality holds because the limit of
´ b

a
f(x) dx exists as a finite numeber as

a → −∞ and b → ∞.
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Conversely, suppose f ∈ L1(R), we want to show the improper integrals
´∞
0

|f(x)| dx and´ 0

−∞ |f(x)| dx exist as a fintie number. Denote g(b) =
´ b

0
|f(x)| dx for any b ≥ 0, then g(b)

is a nonnegative increasing function, so limb→∞ g(b) exists (may be infinity). If this limit is
infinity, then by definition, for all M > 0, there exists B > 0 s.t. for all b ≥ B, g(b) ≥ M .
However, for each B, we can always find an integer N s.t. N > B, so for all M > 0, there
exists N ∈ N+ s.t. for all integer k ≥ N , g(k) ≥ M , so limk→∞ g(k) = ∞. Note

∞ = lim
k→∞

g(k) = lim
k→∞

ˆ k

0

|f(x)| dx = lim
k→∞

ˆ k

0

|f(x)| dm = lim
k→∞

ˆ ∞

0

|fk(x)| dm

By MCT on |fk(x)| restricted on (0,∞), limk→∞
´∞
0

|fk(x)| dm =
´∞
0

|f(x)| dm = ∞. This
is a contradiction because ∞ >

´∞
−∞ |f(x)| dm ≥

´∞
0

|f(x)| dm. Therefore, limb→∞ g(b) exists
as a finite number. This implies the improper integral

´∞
0

|f(x)| dx exists as a finite number.
Similarly, we can show

´ 0

−∞ |f(x)| dx exists as a finite number. This shows
´∞
−∞ |f(x)| dx exists

as a finite number.

Extra Problem 8. Let α > −1. Define Γ(α) =
´∞
0

e−ttα+1 dt. Prove Lebesgue integral
ˆ ∞

0

e−x

1− e−x
xα+1 dm = Γ(α)

∞∑
n=1

1

nα+2

Is the improper integral
´∞
0

e−x

1−e−x xα+1 dx convergent absolutely?

Note that by Taylor expansion and I.T.T. for nonegative measurable function,
ˆ ∞

0

e−x

1− e−x
xα+1 dm =

ˆ ∞

0

∞∑
n=1

e−nxxα+1 dm =
∞∑

n=1

ˆ ∞

0

e−nxxα+1 dm

Note that for all α > −1, there exists a Kα > 0 s.t. for all x ≥ Kα, ex/2 > xα+1. Therefore,
ˆ ∞

0

e−nxxα+1 dm =

ˆ Kα

0

e−nxxα+1 dm+

ˆ ∞

Kα

e−nxxα+1 dm

≤ Kα+1
α

ˆ Kα

0

e−nx dm+

ˆ ∞

Kα

e(−n+1/2)x dm

≤ Kα+2
α +

ˆ ∞

0

e−x/2 dm

It is easy to see the Cauchy-Riemann integral
´∞
0

e−x/2 dx is absolutely convergent, so by previous
result, the Lebesgue integral

´∞
0

e−x/2 dm is equal to Cauchy-Riemann integral and hence a finite
number. Thus,

´∞
0

e−nxxα+1 dm is finite and we can apply change of variable t = nx to Lebesgue
integral because of HW8, Extra Problem 7, i.e.,

ˆ ∞

0

e−nxxα+1 dm =
1

nα+2

ˆ ∞

0

e−ttα+1 dm =
1

nα+2
Γ(α)

where the last equality is because
´∞
0

e−ttα+1 dm is also finite, and thus it is equal to its Cauchy-
Riemann integral

´∞
0

e−ttα+1 dt. When α > −1, α + 2 > 1, so the series
∑∞

n=1
1

nα+2 converges.
Since Γ(α) is finite (by what we proved above with n = 1),

´∞
0

e−x

1−e−xx
α+1 dm is finite, again by

Extra Problem 7, its corresponding Cauchy Riemann integral converges absolutely.
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Extra Problem 9. Let f(x, y) ∈ L1(E1 × E2), where x ∈ E1 ⊂ Rn1 , E1 ∈ M and y ∈ E2 ⊂ Rn2 ,
E2 ∈ M. Prove that

´
E2

f(x, y) dy ∈ L1(E1) and
´
E1

f(x, y) dx ∈ L1(E2).

Note that g(x, y) = |f(x, y)|IE1
(x)IE2

(y) is nonnegative and measurable on Rn1+n2 . Therefore,
by Fubini’s theorem (nonnegative version), we have

ˆ
Rn2

ˆ
Rn1

g(x, y) dx dy =

ˆ
Rn1+n2

g(x, y) d(x, y)

which is equivalent to (since f ∈ L1(E1 × E2)),
ˆ
E2

ˆ
E1

|f(x, y)| dx dy =

ˆ
E1×E2

|f(x, y)| d(x, y) < ∞

This impiles that
´
E1

|f(x, y)| dx ∈ L1(E2). Note that∣∣∣∣ˆ
E1

f(x, y) dx

∣∣∣∣ ≤ ˆ
E1

|f(x, y)| dx < ∞

Thus,
´
E1

f(x, y) dx ∈ L1(E2). Similarly, by the other part of Fubini, we also have
ˆ
E1

ˆ
E2

|f(x, y)| dy dx =

ˆ
E1×E2

|f(x, y)| d(x, y) < ∞

so
´
E2

|f(x, y)| dy ∈ L1(E1). For the same reason,
´
E2

f(x, y) dy ∈ L1(E1).

Extra Problem 10. Let f(x) be nonnegative on E ∈ M, E ⊂ Rn. Let A = {(x, y) ∈ E × R | 0 ≤
y ≤ f(x)}. Prove that f is measurable on E iff A ⊂ Rn+1 is measurable. Also prove if f(x) is
measurable on E, then

´
E
f(x) dx = m(A).

For “only if” part, let F (x, y) = f(x), then {(x, y) |F (x, y) > t} = {x | f(x) > t}×R ∈ M(Rn+1)

because {x | f(x) > t} ∈ M(Rn). Let G(x, y) = y − f(x), then G(x, y) is measurable in Rn+1 and
A = {(x, y) ∈ E ×R |G(x, y) ≤ 0} ∩ {(x, y) ∈ E ×R | y ≥ 0} ∈ M(Rn+1) because the first part is in
M(Rn+1) and the second part is closed in Rn+1.

For “if” part, since A ∈ M(Rn+1), by Lemma 2 in lecture, IA(x, y) is measurable in Rn+1.
By Fubini’s theorem (nonnegative version)

´
R IA(x, y) dy is measurable in x ∈ Rn. Notice that

f(x) =
´
R IA(x, y) dy for each fixed x ∈ E, so we are done.

The last claim is easy to see, since

m(A) =

ˆ
Rn+1

IA(x, y) d(x, y) =

ˆ
Rn

ˆ
R
IA(x, y) dy dx =

ˆ
E

f(x) dx

Extra Problem 11. Suppose f(x) is measurable on E ⊂ Rn, E ∈ M. Fora all λ ≥ 0, let
F (λ) = m({x ∈ E | |f(x)| > λ}). Prove that if |f |p ∈ L1(E) where p ≥ 1, then

´
E
|f(x)|p dx =

p
´∞
0

λp−1F (λ) dλ.

Denote A = {(x, λ) ∈ E × R | 0 ≤ λ < |f(x)|}. Then since f is measurable on E, by Extra
Problem 10, A is measurable in Rn+1. Note that IA(x, λ) = IA(x, λ)IE(x)IR+

(λ) and by Lemma 2 in
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lecture it is a measurable function on Rn+1. This implies pλp−1IA(x, λ)IE(x)IR+
(λ) is a nonnegative

measurable function on Rn+1. By Fubini’s theorem (nonnegative),
ˆ
Rn+1

pλp−1IA(x, λ)IE(x)IR+
(λ) d(xλ) =

ˆ
R

ˆ
Rn

pλp−1IA(x, λ)IE(x)IR+
(λ) dx dλ

= p

ˆ ∞

0

λp−1

ˆ
E

IA(x, λ) dx dλ = p

ˆ ∞

0

λp−1F (λ) dλ

ˆ
Rn+1

pλp−1IA(x, λ)IE(x)IR+
(λ) d(xλ) =

ˆ
Rn

ˆ
R
pλp−1IA(x, λ)IE(x)IR+

(λ) dλ dx

=

ˆ
E

ˆ ∞

0

pλp−1IA(x, λ) dλ dx

=

ˆ
E

ˆ |f(x)|p

0

1 dy dx =

ˆ
E

|f(x)|p dx (Take y = λp)

Therefore,
´
E
|f(x)|p dx = p

´∞
0

λp−1F (λ) dλ.
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