MAT3006*: Real Analysis

Homework 9

ZEHE IS (116010114)
Due date: April. 10, 2020

Extra Problem 1. Suppose f € L'(E), E € M. E =J,_, Ex, E;, € M, pairwise disjoint. Prove
that IE f(x) dx = 22021 fEk f(:L") dz.

Let fi(z) = f(z)Ig,(x), then since E = (J;_, Ey and E}’s pairwise disjoint, we have f(z) =
Sore, fe(x) and fy € L' (E). Also,

i/EUk(xﬂd?ﬂ:i/Ek If(a?)ldx:/E|f(:v)|daz<oo

where the last equality comes from the nonnegative version of the desired results. Then by general

integration term by term property,

/Ef(a:) da::/Ei_o:fk(x) dx:i_o:/Efk(x) dx:i_o: Ekf(x) dx

This shows the desired results.

Extra Problem 2. Prove that for all f € L'(FE), E € M, there exists a sequence fi(z) € L'(FE),
s.t. fx is bounded on E and f;, — f in L'(E) as k — occ.

Define for all k € NT,
flx) i [f(z)] <k
felw) =<k if flx) >k
ki flz) < —k
Then it is obvious that fi(z) is bounded and |fx(x)| < |f(x)| for all x € E. Also, fr(x) — f(x)

pointwise (if convergent to infinity is accepted, otherwise convergent a.e. is also enough). Notice
that |fr — f| < 2|f| € L'(E), by DCT, [, |fx — f| dz — 0 as k — oo.

Extra Problem 3. Prove that for all f € L'(E), E € M, there exists simple functions fi(z) €
LY(E) s.t. fr — fin LY(E).

Recall there exists simple measurable function ¢y (x) s.t. |¢r(x)| < co and |¢x(x)| < |f(x)| for
all z € E converging pointwise to f on E. Therefore, ¢y (x) € L'(E) and f — ¢y (x) is well defined
(0o — oo will not exist). Let f, = ¢y, since |f(z) — fu(z)| < 2|f(z)] € L*(E), by DCT, fi — f in
L'(E).



Extra Problem 4. Use “=—" to denote “implies” and “—” to denote “after passing to a subse-

quence implies”, complete the following diagram

converge a.u.

converge a.e. ’ converge in measure

converge in L'(E)

in general case, special case when m(F) < oo, and special case when |fx| < g € L*(E) respectively.

In general case, the diagram is

converge a.u.

N

converge a.e. { converge in measure

\/

‘ converge in L'(F) ‘

In m(E) < oo case, the diagram is

converge a.u.

N

converge a.e. { converge in measure

T

converge in L'(E)

In dominated case, the diagram is

converge a.u.

~\

converge a.c. | { converge in measure

N

converge in L'(F)

Extra Problem 5. Suppose f € L'(F). Prove that for all € > 0, there exists § > 0 s.t. for all
e C E, e € M, with m(e) <6, we have [ |f(z)| dx <e.



By Extra Problem 2, for all ¢ > 0, there exists a bounded L'(E)-integrable function g s.t.

Jolf —glde < e/2and |g(x)] < M for all € E. Take 6 = we have

_€_
2M°

<
/|f|dx /|f g|dm+/|g|dm< +M2M €

Therefore, we prove the absolute continuity of integrals.

Extra Problem 6. Let f;, € L'(E) be s.t. fr. — f. a.e. on E. Suppose m(E) < oco. Prove that
foo € L'(E) and fy = fo in L'(E) if and only if for all € > 0, there exists § > 0s.t. [ |fi(z)] dz <€
for all £ > 1 whenever e C E, e € M and m(E) < ¢.

For “only if” part, since fr = foo in L'(E), there exists ko s.t. if k > ko + 1, [, [fr — fool dz <
€/2. Also, in this case fo, € L*(F), so by Extra Problem 5, there exists &, (k € NT U {co}) s.t. for
all e C E, e € M with m(e) < 8, we have [ |fi| dz < ¢/2. Take § = min{dy,...,0d,, 0}, then for
all k> ko + 1,

/|fk(ar)| dr < /|fk(33) — foo(2)] da:+/|foo(g;)| dor < §_|_ % — ¢

This implies for all € > 0, there exists § > 0 s.t. [ |fo(z)| dz > € for all k > 1 whenever e C E,
e € M and m(E) < 6.

For “if” part, note that m(F) < oo, then uniform convergent implies L!(F) convergence. By
Egorov’s Theorem, for all §; > 0, there exists Es, € M, Es;, C E s.t. m(Es,) < 6 and fr = foo
uniformly on E \ Es,. Therefore, [ B\Es, — foo| dz < € if k > kg. By assumption, there exists
6> 0st. [ |fu(z)| de < €as longaseCE e € M and m(e) < §. Therefore, take e = Es, and

5*617
/E|fkfoo|dx=/E\E5 |fkfm|dx+/Eé |fk|dx+/&foo|dx

By Fatou’s lemma,

k—o00 k—o0

/|foo]dx—/hm |fe| de < lim [ |fx] dz <e

Therefore, [, |fi — fool dz < 3¢, which means f; — fw in LI(E). Since foo = (foo — fr) + [fr, it is
easy to see fo € L'(E).

Extra Problem 7. Recall that one type of improper integral fab f(x) dx can be regarded as
lim, o+ fcb f(x) dx where fcb f(z) dz is a Riemann integral. If such a limit exists as a finite number,
then we say the improper integral f: f(z) dz is convergent. Also, the other type of improper integral
2 (@) do = lima - o psoo f: f(z) dz converges if f; f(z) dz is Riemann integral and such limit

exists as a finite number.

(i) Suppose the improper integral f: f(x) dx is absolutely convergent. Prove that f € L'([a,b])
and fab f(z) dm = fab f(z) dz

Let fiy(z) = f(2)jq1 () for all K > 1. Since fi(x) is Riemann integrable, it must be mea-
surable on [a, b] (can be regarded as the limit of step function, and step function is measurable).

Since |fx| increases to | f| pointwise, by MCT,

/|f )| dm = hm/ |fr(x)] dm = hrn/ x)| dm = hm/ f(x)] de < oo



Therefore, f € L'([a,b]), and

/abf(x) dr = lim /ai,i f(x) do = klirg/ab fu(x) dm = /ab f(z) dm

where the last equality comes from DCT for f;, with dominating function f(z).

(ii) Suppose f: f(z) dz is an improper integral and f € L'([a,b]). Prove that f: f(z) dz is

absolutely convergent.

Denote g(c f |f(x)| dz where ¢ € (a,b], and by definition, g(c) — g(a) as ¢ — a+. Notice
that fc [f( f )| dz is nonnegative and increasing in ¢, the limit always exists (may be infinity).

Then g(a + =) — g(a) as n — oo. Since when ¢ < a, g(c) is a Riemann integral,

s(a+ 1) =/ @ dm= [ 15,6 am

where f,(z) is defined similar to part (i). Since |f,| < |f|, fn — f pointwise and |f| € L*,
by DCT, g(a + 1) — f: |f(x)| dm. This shows that g(a) = fab |f(x)| dm < oo. Therefore,
ff f(x) dx is absolutely convergent.

(iii) Prove the same result for improper integral [* f(z) dz as in (i) and (ii).

First, suppose ffooo f(x) dx converges absolutely, then ffooo |f(z)] de < oo. This implies
fi)oo |f(z)| dz < oo and fooo |f(z)] dz < co. Let fi (z) = f(z)Ijo, then fF — f on [0,00)
pointwise and |f,F| is increasing. Thus, by MCT,

oo oo k
/ |f(x)] dm = lim/ |f| dm = lim/ |f| dm
0 k—oo [ k—oo o

Since |f| is bounded on [0, k], so the Lebesgue integral is equal to Riemann integral, i.e,

k k b
lim/ |f| dm = lim/ |f| dz = lim/ |f(x)| dz
k—oo Jq k—oo o b—oo Jo

where the last equality holds because the limit exists (monotone bounded). Therefore, we
proved that [ |f(z)| dm = [;° |f(z)| dz. Similarly, we can prove fi)oo |f| dm = ffoo |f] dz.
Therefore, [*°_|f| dm = [~ _|f| dz < o0, so f € L'(R).
Then we can let fi(x) = f(x)lj_pr(x). It is obvious that f, — f pointwise on R. Also,
il <1fI € L'(R), so by DCT,

k

/ flx)dm = / hm fe(x) dm = hm h fr(z) dm = klim f(x) dm

k—o00 —oo | g

Since f(x) is bounded on [—k, k], so Lebesgue integral is equal to Riemann integral, i.e.,

klggc/z f(@) dm = lim /i ) da = /Z ) da

where the last equality holds because the limit of fab f(x) dx exists as a finite numeber as

a — —oo and b — oo.



Conversely, suppose f € L'(R), we want to show the improper integrals fooo |f(x)| dx and
fi)oo |f(x)| dz exist as a fintie number. Denote g(b) = fob |f(x)| dx for any b > 0, then g(b)
is a nonnegative increasing function, so lim;,_, ., g(b) exists (may be infinity). If this limit is
infinity, then by definition, for all M > 0, there exists B > 0 s.t. for all b > B, g(b) > M.
However, for each B, we can always find an integer N s.t. N > B, so for all M > 0, there
exists N € N* s.t. for all integer k > N, g(k) > M, so limy,_,, g(k) = co. Note

k k 0
oo = lim g(k) = lim / |f(x)| dx = lim / |f(x)| dm = lim / | fx(x)| dm
k—o0 k—oo Jq k—oo [q k—oo [q

By MCT on |fi(z)| restricted on (0,00), limy_s [ |fi(x)| dm = [;°|f(z)| dm = oo. This
is a contradiction because oo > [ _|f(z)| dm > [[7|f(z)| dm. Therefore, limy_, » g(b) exists
as a finite number. This implies the improper integral [ |f(z)| da exists as a finite number.
Similarly, we can show fi)oo | f(2)| dz exists as a finite number. This shows [~ _|f(z)| dz exists

as a finite number.

Extra Problem 8. Let a > —1. Define I'(a) = f e~'t**t! dt. Prove Lebesgue integral

o0

[e’e] e a+1d :F 1
/Olemx m=T)y —

n=1

Is the improper integral [~ 2**! dx convergent absolutely?

1 e~

Note that by Taylor expansion and I.T.T. for nonegative measurable function,

o0 e_m oo 0 o0 [e%e]
— ot dm = g e "t dm = E e "t dm
o l—e™® 0 0
n=1 n=1

Note that for all o > —1, there exists a K, > 0 s.t. for all z > K, €*/? > z®*'. Therefore,

oS} Ka s}
/ e*nl’l,&Jrl dm :/ efnxma+1 dm—l—/ efn:v a+1 dm
0 0 Ko

Kq [e%s)
S th-i-l/ e dm—|—/ 6(—’ﬂ-i-l/2)m dm
0 Ko
< Kot +/ e~"/* dm
0

It is easy to see the Cauchy-Riemann integral [;~ e~*/2

—x/2

dx is absolutely convergent, so by previous
result, the Lebesgue integral fooo e dm is equal to Cauchy-Riemann integral and hence a finite
number. Thus, fooo e "zt dm is finite and we can apply change of variable ¢t = nx to Lebesgue

integral because of HWS8, Extra Problem 7, i.e.,

—nx a+1 _ —typa+1 _
/0 e dm = e /0 e "t dm = — ()

where the last equality is because fooo e~'t*tt dm is also finite, and thus it is equal to its Cauchy-
Riemann integral [J~ e "t**! dt. When o > —1, a4+ 2 > 1, so the series Y

nel 7o —L converges.

e %

Tt dm is finite, again by

Since I'(«) is finite (by what we proved above with n = 1), fo

—e— T

Extra Problem 7, its corresponding Cauchy Riemann integral converges absolutely.



Extra Problem 9. Let f(z,y) € L'(E;, x E;), where z € By C R™, E; € M and y € E, C R,
Ey € M. Prove that [, f(z,y) dy € L'(Ey) and [, f(z,y) dv € L'(Ey).

Note that g(x,y) = | f(z,y)|Ig, (x)Ig,(y) is nonnegative and measurable on R"**"2. Therefore,

by Fubini’s theorem (nonnegative version), we have

/ / g(z,y) dx dy:/ g(z,y) d(z,y)
R72 JR™1 Rn1+n2

which is equivalent to (since f € L'(E; x E»)),

[ [ veataray= [ i)l <o

E1 XE2

This impiles that [, |f(z,y)| dv € L'(E,). Note that

flz,y) dx
Ey

< /E |F()] dz < 00

Thus, [, f(z,y) dz € L'(E;). Similarly, by the other part of Fubini, we also have

/ f(@,y)| dy dz = / (@, y)| d(z,y) < oo
Ey JEs E1xEs

so [, |f(z,y)| dy € L'(E,). For the same reason, [, f(z,y)dy € L'(E1).

Extra Problem 10. Let f(x) be nonnegative on £ € M, E C R". Let A = {(z,y) € ExR|0 <
y < f(x)}. Prove that f is measurable on E iff A C R™™! is measurable. Also prove if f(z) is
measurable on E, then [, f(z) dz = m(A).

For “only if” part, let F(z,y) = f(x), then {(z,y) | F(x,y) >t} = {z| f(z) > t} xR € M(R"*!)
because {z | f(x) >t} € M(R"). Let G(z,y) =y — f(z), then G(x,y) is measurable in R"*! and
A={(z,y) € ExR|G(z,y) <0} N{(z,y) € ExR|y >0} € M(R""!) because the first part is in
M(R™*1) and the second part is closed in R™ "1,

For “if” part, since A € M(R"*!), by Lemma 2 in lecture, I4(z,y) is measurable in R"*!.
By Fubini’s theorem (nonnegative version) [, I4(x,y) dy is measurable in x € R". Notice that

f(x) = [z La(x,y) dy for each fixed x € E, so we are done.

The last claim is easy to see, since

m)= [ newden = [ [ L= [ @

Extra Problem 11. Suppose f(z) is measurable on E C R", E € M. Fora all A > 0, let
F(\) = m({z € E||f(z)| > A}). Prove that if [f|? € L'(E) where p > 1, then [, |f(z)|" dx =
pfyS APTIE(A) dA.

Denote A = {(z,\) € E xR|0 < XA < |f(z)|}. Then since f is measurable on E, by Extra
Problem 10, A is measurable in R"*!. Note that I4(z,\) = I4(z,\)Ig(z)Iz, () and by Lemma 2 in



lecture it is a measurable function on R"**. This implies pA?~ 14 (x, A)[g(z)Ir, (\) is a nonnegative

measurable function on R"*!. By Fubini’s theorem (nonnegative),
[ oV LN I@h 0 ded) = [ o e VI, () do
Rn+1 R n

:p/ /\pl/ Li(z,\) da d/\:p/ APTLE () dA
0 E 0

/Rn+1 pAP T (2, MIg(x)Ig, (N) d(zX) = /” /Rp)\”_llA(J;, MIg(x)Ig, (N) dX dx

:// PN (2, \) d da
EJo
[f(@)[”
:// 1dyd:z::/ |f(z)]P dx (Take y = \?)
EJo E

Therefore, [, |f(x)|P dz=p [~ AP"'F(X) dA.



