MAT3006^{*}: Real Analysis Homework 9

李肖鹏 (116010114)

Due date: April. 10, 2020

Extra Problem 1. Suppose $f \in L^1(E)$, $E \in \mathcal{M}$. $E = \bigcup_{k=1}^{\infty} E_k$, $E_k \in \mathcal{M}$, pairwise disjoint. Prove that $\int_E f(x) dx = \sum_{k=1}^{\infty} \int_{E_k} f(x) dx$.

Let $f_k(x) = f(x)I_{E_k}(x)$, then since $E = \bigcup_{k=1}^{\infty} E_k$ and E_k 's pairwise disjoint, we have $f(x) = \sum_{k=1}^{\infty} f_k(x)$ and $f_k \in L^1(E)$. Also,

$$\sum_{k=1}^{\infty} \int_{E} |f_{k}(x)| \, dx = \sum_{k=1}^{\infty} \int_{E_{k}} |f(x)| \, dx = \int_{E} |f(x)| \, dx < \infty$$

where the last equality comes from the nonnegative version of the desired results. Then by general integration term by term property,

$$\int_{E} f(x) \, dx = \int_{E} \sum_{k=1}^{\infty} f_k(x) \, dx = \sum_{k=1}^{\infty} \int_{E} f_k(x) \, dx = \sum_{k=1}^{\infty} \int_{E_k} f(x) \, dx$$

This shows the desired results.

Extra Problem 2. Prove that for all $f \in L^1(E)$, $E \in \mathcal{M}$, there exists a sequence $f_k(x) \in L^1(E)$, s.t. f_k is bounded on E and $f_k \to f$ in $L^1(E)$ as $k \to \infty$.

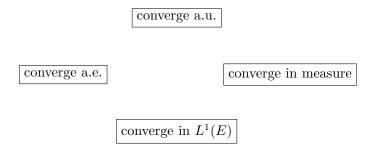
Define for all $k \in \mathbb{N}^+$,

$$f_k(x) = \begin{cases} f(x) & \text{if } |f(x)| \le k \\ k & \text{if } f(x) > k \\ -k & \text{if } f(x) < -k \end{cases}$$

Then it is obvious that $f_k(x)$ is bounded and $|f_k(x)| \leq |f(x)|$ for all $x \in E$. Also, $f_k(x) \to f(x)$ pointwise (if convergent to infinity is accepted, otherwise convergent a.e. is also enough). Notice that $|f_k - f| \leq 2|f| \in L^1(E)$, by DCT, $\int_E |f_k - f| dx \to 0$ as $k \to \infty$.

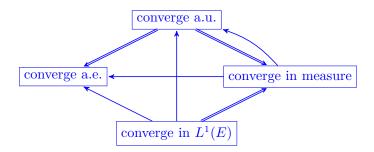
Extra Problem 3. Prove that for all $f \in L^1(E)$, $E \in \mathcal{M}$, there exists simple functions $f_k(x) \in L^1(E)$ s.t. $f_k \to f$ in $L^1(E)$.

Recall there exists simple measurable function $\phi_k(x)$ s.t. $|\phi_k(x)| < \infty$ and $|\phi_k(x)| \le |f(x)|$ for all $x \in E$ converging pointwise to f on E. Therefore, $\phi_k(x) \in L^1(E)$ and $f - \phi_k(x)$ is well defined $(\infty - \infty$ will not exist). Let $f_k = \phi_k$, since $|f(x) - f_k(x)| \le 2|f(x)| \in L^1(E)$, by DCT, $f_k \to f$ in $L^1(E)$. **Extra Problem 4.** Use " \Longrightarrow " to denote "implies" and " \longrightarrow " to denote "after passing to a subsequence implies", complete the following diagram

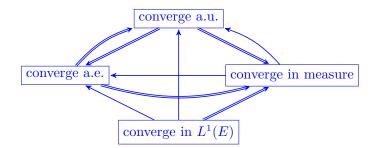


in general case, special case when $m(E) < \infty$, and special case when $|f_k| \leq g \in L^1(E)$ respectively.

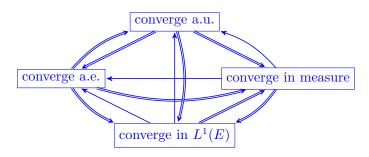
In general case, the diagram is



In $m(E) < \infty$ case, the diagram is



In dominated case, the diagram is



Extra Problem 5. Suppose $f \in L^1(E)$. Prove that for all $\epsilon > 0$, there exists $\delta > 0$ s.t. for all $e \subset E$, $e \in \mathcal{M}$, with $m(e) < \delta$, we have $\int_e |f(x)| dx < \epsilon$.

By Extra Problem 2, for all $\epsilon > 0$, there exists a bounded $L^1(E)$ -integrable function g s.t. $\int_E |f - g| \, dx < \epsilon/2$ and $|g(x)| \leq M$ for all $x \in E$. Take $\delta = \frac{\epsilon}{2M}$, we have

$$\int_{e} |f| \, dx \leq \int_{e} |f - g| \, dx + \int_{e} |g| \, dx < \frac{\epsilon}{2} + M \frac{\epsilon}{2M} = \epsilon$$

Therefore, we prove the absolute continuity of integrals.

Extra Problem 6. Let $f_k \in L^1(E)$ be s.t. $f_k \to f_\infty$ a.e. on E. Suppose $m(E) < \infty$. Prove that $f_\infty \in L^1(E)$ and $f_k \to f_\infty$ in $L^1(E)$ if and only if for all $\epsilon > 0$, there exists $\delta > 0$ s.t. $\int_e |f_k(x)| dx < \epsilon$ for all $k \ge 1$ whenever $e \subset E$, $e \in \mathcal{M}$ and $m(E) < \delta$.

For "only if" part, since $f_k \to f_\infty$ in $L^1(E)$, there exists k_0 s.t. if $k \ge k_0 + 1$, $\int_E |f_k - f_\infty| dx < \epsilon/2$. Also, in this case $f_\infty \in L^1(E)$, so by Extra Problem 5, there exists δ_k $(k \in \mathbb{N}^+ \cup \{\infty\})$ s.t. for all $e \subset E$, $e \in \mathcal{M}$ with $m(e) < \delta$, we have $\int_e |f_k| dx < \epsilon/2$. Take $\delta = \min\{\delta_1, \ldots, \delta_{k_0}, \delta_\infty\}$, then for all $k \ge k_0 + 1$,

$$\int_{e} |f_k(x)| \, dx \le \int_{e} |f_k(x) - f_\infty(x)| \, dx + \int_{e} |f_\infty(x)| \, dx < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

This implies for all $\epsilon > 0$, there exists $\delta > 0$ s.t. $\int_{e} |f_{\infty}(x)| dx > \epsilon$ for all $k \ge 1$ whenever $e \subset E$, $e \in \mathcal{M}$ and $m(E) < \delta$.

For "if" part, note that $m(E) < \infty$, then uniform convergent implies $L^1(E)$ convergence. By Egorov's Theorem, for all $\delta_1 > 0$, there exists $E_{\delta_1} \in \mathcal{M}$, $E_{\delta_1} \subset E$ s.t. $m(E_{\delta_1}) < \delta_1$ and $f_k \to f_{\infty}$ uniformly on $E \setminus E_{\delta_1}$. Therefore, $\int_{E \setminus E_{\delta_1}} |f_k - f_{\infty}| dx < \epsilon$ if $k \ge k_0$. By assumption, there exists $\delta > 0$ s.t. $\int_e |f_k(x)| dx < \epsilon$ as long as $e \subset E$, $e \in \mathcal{M}$ and $m(e) < \delta$. Therefore, take $e = E_{\delta_1}$ and $\delta = \delta_1$,

$$\int_{E} |f_k - f_{\infty}| \, dx = \int_{E \setminus E_{\delta}} |f_k - f_{\infty}| \, dx + \int_{E_{\delta}} |f_k| \, dx + \int_{E_{\delta}} |f_{\infty}| \, dx$$

By Fatou's lemma,

$$\int_{e} |f_{\infty}| \ dx = \int_{e} \lim_{k \to \infty} |f_{k}| \ dx \le \lim_{k \to \infty} \int_{e} |f_{k}| \ dx < \epsilon$$

Therefore, $\int_E |f_k - f_\infty| dx < 3\epsilon$, which means $f_k \to f_\infty$ in $L^1(E)$. Since $f_\infty = (f_\infty - f_k) + f_k$, it is easy to see $f_\infty \in L^1(E)$.

Extra Problem 7. Recall that one type of improper integral $\int_a^b f(x) dx$ can be regarded as $\lim_{c \to a^+} \int_c^b f(x) dx$ where $\int_c^b f(x) dx$ is a Riemann integral. If such a limit exists as a finite number, then we say the improper integral $\int_a^b f(x) dx$ is convergent. Also, the other type of improper integral $\int_{-\infty}^{\infty} f(x) dx = \lim_{a \to -\infty, b \to \infty} \int_a^b f(x) dx$ converges if $\int_a^b f(x) dx$ is Riemann integral and such limit exists as a finite number.

(i) Suppose the improper integral $\int_a^b f(x) dx$ is absolutely convergent. Prove that $f \in L^1([a, b])$ and $\int_a^b f(x) dm = \int_a^b f(x) dx$.

Let $f_k(x) = f(x)I_{[a+\frac{1}{k},b]}(x)$ for all $k \ge 1$. Since $f_k(x)$ is Riemann integrable, it must be measurable on [a,b] (can be regarded as the limit of step function, and step function is measurable). Since $|f_k|$ increases to |f| pointwise, by MCT,

$$\int_{a}^{b} |f(x)| \, dm = \lim_{k \to \infty} \int_{a}^{b} |f_{k}(x)| \, dm = \lim_{k \to \infty} \int_{a+\frac{1}{k}}^{b} |f(x)| \, dm = \lim_{k \to \infty} \int_{a+\frac{1}{k}}^{b} |f(x)| \, dx < \infty$$

Therefore, $f \in L^1([a, b])$, and

$$\int_{a}^{b} f(x) \, dx = \lim_{k \to \infty} \int_{a+\frac{1}{k}}^{b} f(x) \, dx = \lim_{k \to \infty} \int_{a}^{b} f_{k}(x) \, dm = \int_{a}^{b} f(x) \, dm$$

where the last equality comes from DCT for f_k with dominating function f(x).

(ii) Suppose $\int_a^b f(x) dx$ is an improper integral and $f \in L^1([a, b])$. Prove that $\int_a^b f(x) dx$ is absolutely convergent.

Denote $g(c) = \int_{c}^{b} |f(x)| dx$ where $c \in (a, b]$, and by definition, $g(c) \to g(a)$ as $c \to a+$. Notice that $\int_{c}^{b} |f(x)| dx$ is nonnegative and increasing in c, the limit always exists (may be infinity). Then $g(a + \frac{1}{n}) \to g(a)$ as $n \to \infty$. Since when c < a, g(c) is a Riemann integral,

$$g\left(a+\frac{1}{n}\right) = \int_{a+\frac{1}{n}}^{b} |f(x)| \, dm = \int_{a}^{b} |f_n(x)| \, dm$$

where $f_n(x)$ is defined similar to part (i). Since $|f_n| \leq |f|$, $f_n \to f$ pointwise and $|f| \in L^1$, by DCT, $g(a + \frac{1}{n}) \to \int_a^b |f(x)| dm$. This shows that $g(a) = \int_a^b |f(x)| dm < \infty$. Therefore, $\int_a^b f(x) dx$ is absolutely convergent.

(iii) Prove the same result for improper integral $\int_{-\infty}^{\infty} f(x) dx$ as in (i) and (ii).

First, suppose $\int_{-\infty}^{\infty} f(x) dx$ converges absolutely, then $\int_{-\infty}^{\infty} |f(x)| dx < \infty$. This implies $\int_{-\infty}^{0} |f(x)| dx < \infty$ and $\int_{0}^{\infty} |f(x)| dx < \infty$. Let $f_{k}^{+}(x) = f(x)I_{[0,k]}$, then $f_{k}^{+} \to f$ on $[0,\infty)$ pointwise and $|f_{k}^{+}|$ is increasing. Thus, by MCT,

$$\int_0^\infty |f(x)| \, dm = \lim_{k \to \infty} \int_0^\infty |f_k^+| \, dm = \lim_{k \to \infty} \int_0^k |f| \, dm$$

Since |f| is bounded on [0, k], so the Lebesgue integral is equal to Riemann integral, i.e,

$$\lim_{k \to \infty} \int_0^k |f| \, dm = \lim_{k \to \infty} \int_0^k |f| \, dx = \lim_{b \to \infty} \int_0^b |f(x)| \, dx$$

where the last equality holds because the limit exists (monotone bounded). Therefore, we proved that $\int_0^{\infty} |f(x)| \ dm = \int_0^{\infty} |f(x)| \ dx$. Similarly, we can prove $\int_{-\infty}^0 |f| \ dm = \int_{-\infty}^0 |f| \ dx$. Therefore, $\int_{-\infty}^{\infty} |f| \ dm = \int_{-\infty}^\infty |f| \ dx < \infty$, so $f \in L^1(\mathbb{R})$.

Then we can let $f_k(x) = f(x)I_{[-k,k]}(x)$. It is obvious that $f_k \to f$ pointwise on \mathbb{R} . Also, $|f_k| \leq |f| \in L^1(\mathbb{R})$, so by DCT,

$$\int_{-\infty}^{\infty} f(x) \, dm = \int_{-\infty}^{\infty} \lim_{k \to \infty} f_k(x) \, dm = \lim_{k \to \infty} \int_{-\infty}^{\infty} f_k(x) \, dm = \lim_{k \to \infty} \int_{-k}^{k} f(x) \, dm$$

Since f(x) is bounded on [-k, k], so Lebesgue integral is equal to Riemann integral, i.e.,

$$\lim_{k \to \infty} \int_{-k}^{k} f(x) \, dm = \lim_{k \to \infty} \int_{-k}^{k} f(x) \, dx = \int_{-\infty}^{\infty} f(x) \, dx$$

where the last equality holds because the limit of $\int_a^b f(x) dx$ exists as a finite number as $a \to -\infty$ and $b \to \infty$.

Conversely, suppose $f \in L^1(\mathbb{R})$, we want to show the improper integrals $\int_0^\infty |f(x)| dx$ and $\int_{-\infty}^0 |f(x)| dx$ exist as a finite number. Denote $g(b) = \int_0^b |f(x)| dx$ for any $b \ge 0$, then g(b) is a nonnegative increasing function, so $\lim_{b\to\infty} g(b)$ exists (may be infinity). If this limit is infinity, then by definition, for all M > 0, there exists B > 0 s.t. for all $b \ge B$, $g(b) \ge M$. However, for each B, we can always find an integer N s.t. N > B, so for all M > 0, there exists $N \in \mathbb{N}^+$ s.t. for all integer $k \ge N$, $g(k) \ge M$, so $\lim_{k\to\infty} g(k) = \infty$. Note

$$\infty = \lim_{k \to \infty} g(k) = \lim_{k \to \infty} \int_0^k |f(x)| \, dx = \lim_{k \to \infty} \int_0^k |f(x)| \, dm = \lim_{k \to \infty} \int_0^\infty |f_k(x)| \, dm$$

By MCT on $|f_k(x)|$ restricted on $(0, \infty)$, $\lim_{k\to\infty} \int_0^\infty |f_k(x)| dm = \int_0^\infty |f(x)| dm = \infty$. This is a contradiction because $\infty > \int_{-\infty}^\infty |f(x)| dm \ge \int_0^\infty |f(x)| dm$. Therefore, $\lim_{b\to\infty} g(b)$ exists as a finite number. This implies the improper integral $\int_0^\infty |f(x)| dx$ exists as a finite number. Similarly, we can show $\int_{-\infty}^0 |f(x)| dx$ exists as a finite number. This shows $\int_{-\infty}^\infty |f(x)| dx$ exists as a finite number.

Extra Problem 8. Let $\alpha > -1$. Define $\Gamma(\alpha) = \int_0^\infty e^{-t} t^{\alpha+1} dt$. Prove Lebesgue integral

$$\int_0^\infty \frac{e^{-x}}{1 - e^{-x}} x^{\alpha + 1} \, dm = \Gamma(\alpha) \sum_{n=1}^\infty \frac{1}{n^{\alpha + 2}}$$

Is the improper integral $\int_0^\infty \frac{e^{-x}}{1-e^{-x}} x^{\alpha+1} dx$ convergent absolutely?

Note that by Taylor expansion and I.T.T. for nonegative measurable function,

$$\int_0^\infty \frac{e^{-x}}{1 - e^{-x}} x^{\alpha+1} \, dm = \int_0^\infty \sum_{n=1}^\infty e^{-nx} x^{\alpha+1} \, dm = \sum_{n=1}^\infty \int_0^\infty e^{-nx} x^{\alpha+1} \, dm$$

Note that for all $\alpha > -1$, there exists a $K_{\alpha} > 0$ s.t. for all $x \ge K_{\alpha}$, $e^{x/2} > x^{\alpha+1}$. Therefore,

$$\int_{0}^{\infty} e^{-nx} x^{\alpha+1} dm = \int_{0}^{K_{\alpha}} e^{-nx} x^{\alpha+1} dm + \int_{K_{\alpha}}^{\infty} e^{-nx} x^{\alpha+1} dm$$
$$\leq K_{\alpha}^{\alpha+1} \int_{0}^{K_{\alpha}} e^{-nx} dm + \int_{K_{\alpha}}^{\infty} e^{(-n+1/2)x} dm$$
$$\leq K_{\alpha}^{\alpha+2} + \int_{0}^{\infty} e^{-x/2} dm$$

It is easy to see the Cauchy-Riemann integral $\int_0^\infty e^{-x/2} dx$ is absolutely convergent, so by previous result, the Lebesgue integral $\int_0^\infty e^{-x/2} dm$ is equal to Cauchy-Riemann integral and hence a finite number. Thus, $\int_0^\infty e^{-nx} x^{\alpha+1} dm$ is finite and we can apply change of variable t = nx to Lebesgue integral because of HW8, Extra Problem 7, i.e.,

$$\int_0^\infty e^{-nx} x^{\alpha+1} \, dm = \frac{1}{n^{\alpha+2}} \int_0^\infty e^{-t} t^{\alpha+1} \, dm = \frac{1}{n^{\alpha+2}} \Gamma(\alpha)$$

where the last equality is because $\int_0^\infty e^{-t}t^{\alpha+1} dm$ is also finite, and thus it is equal to its Cauchy-Riemann integral $\int_0^\infty e^{-t}t^{\alpha+1} dt$. When $\alpha > -1$, $\alpha + 2 > 1$, so the series $\sum_{n=1}^\infty \frac{1}{n^{\alpha+2}}$ converges. Since $\Gamma(\alpha)$ is finite (by what we proved above with n = 1), $\int_0^\infty \frac{e^{-x}}{1-e^{-x}}x^{\alpha+1} dm$ is finite, again by Extra Problem 7, its corresponding Cauchy Riemann integral converges absolutely. **Extra Problem 9.** Let $f(x, y) \in L^1(E_1 \times E_2)$, where $x \in E_1 \subset \mathbb{R}^{n_1}$, $E_1 \in \mathcal{M}$ and $y \in E_2 \subset \mathbb{R}^{n_2}$, $E_2 \in \mathcal{M}$. Prove that $\int_{E_2} f(x, y) \, dy \in L^1(E_1)$ and $\int_{E_1} f(x, y) \, dx \in L^1(E_2)$.

Note that $g(x,y) = |f(x,y)|I_{E_1}(x)I_{E_2}(y)$ is nonnegative and measurable on $\mathbb{R}^{n_1+n_2}$. Therefore, by Fubini's theorem (nonnegative version), we have

$$\int_{\mathbb{R}^{n_2}} \int_{\mathbb{R}^{n_1}} g(x, y) \, dx \, dy = \int_{\mathbb{R}^{n_1 + n_2}} g(x, y) \, d(x, y)$$

which is equivalent to (since $f \in L^1(E_1 \times E_2)$),

$$\int_{E_2} \int_{E_1} |f(x,y)| \, dx \, dy = \int_{E_1 \times E_2} |f(x,y)| \, d(x,y) < \infty$$

This implies that $\int_{E_1} |f(x,y)| dx \in L^1(E_2)$. Note that

$$\left| \int_{E_1} f(x,y) \, dx \right| \le \int_{E_1} |f(x,y)| \, dx < \infty$$

Thus, $\int_{E_1} f(x,y) \, dx \in L^1(E_2)$. Similarly, by the other part of Fubini, we also have

$$\int_{E_1} \int_{E_2} |f(x,y)| \, dy \, dx = \int_{E_1 \times E_2} |f(x,y)| \, d(x,y) < \infty$$

so $\int_{E_2} |f(x,y)| \ dy \in L^1(E_1)$. For the same reason, $\int_{E_2} f(x,y) \ dy \in L^1(E_1)$.

Extra Problem 10. Let f(x) be nonnegative on $E \in \mathcal{M}$, $E \subset \mathbb{R}^n$. Let $A = \{(x, y) \in E \times \mathbb{R} \mid 0 \le y \le f(x)\}$. Prove that f is measurable on E iff $A \subset \mathbb{R}^{n+1}$ is measurable. Also prove if f(x) is measurable on E, then $\int_E f(x) dx = m(A)$.

For "only if" part, let F(x, y) = f(x), then $\{(x, y) | F(x, y) > t\} = \{x | f(x) > t\} \times \mathbb{R} \in \mathcal{M}(\mathbb{R}^{n+1})$ because $\{x | f(x) > t\} \in \mathcal{M}(\mathbb{R}^n)$. Let G(x, y) = y - f(x), then G(x, y) is measurable in \mathbb{R}^{n+1} and $A = \{(x, y) \in E \times \mathbb{R} | G(x, y) \leq 0\} \cap \{(x, y) \in E \times \mathbb{R} | y \geq 0\} \in \mathcal{M}(\mathbb{R}^{n+1})$ because the first part is in $\mathcal{M}(\mathbb{R}^{n+1})$ and the second part is closed in \mathbb{R}^{n+1} .

For "if" part, since $A \in \mathcal{M}(\mathbb{R}^{n+1})$, by Lemma 2 in lecture, $I_A(x, y)$ is measurable in \mathbb{R}^{n+1} . By Fubini's theorem (nonnegative version) $\int_{\mathbb{R}} I_A(x, y) \, dy$ is measurable in $x \in \mathbb{R}^n$. Notice that $f(x) = \int_{\mathbb{R}} I_A(x, y) \, dy$ for each fixed $x \in E$, so we are done.

The last claim is easy to see, since

$$m(A) = \int_{\mathbb{R}^{n+1}} I_A(x,y) \ d(x,y) = \int_{\mathbb{R}^n} \int_{\mathbb{R}} I_A(x,y) \ dy \ dx = \int_E f(x) \ dx$$

Extra Problem 11. Suppose f(x) is measurable on $E \subset \mathbb{R}^n$, $E \in \mathcal{M}$. For all $\lambda \geq 0$, let $F(\lambda) = m(\{x \in E \mid |f(x)| > \lambda\})$. Prove that if $|f|^p \in L^1(E)$ where $p \geq 1$, then $\int_E |f(x)|^p dx = p \int_0^\infty \lambda^{p-1} F(\lambda) d\lambda$.

Denote $A = \{(x,\lambda) \in E \times \mathbb{R} \mid 0 \le \lambda < |f(x)|\}$. Then since f is measurable on E, by Extra Problem 10, A is measurable in \mathbb{R}^{n+1} . Note that $I_A(x,\lambda) = I_A(x,\lambda)I_E(x)I_{\mathbb{R}_+}(\lambda)$ and by Lemma 2 in lecture it is a measurable function on \mathbb{R}^{n+1} . This implies $p\lambda^{p-1}I_A(x,\lambda)I_E(x)I_{\mathbb{R}_+}(\lambda)$ is a nonnegative measurable function on \mathbb{R}^{n+1} . By Fubini's theorem (nonnegative),

$$\int_{\mathbb{R}^{n+1}} p\lambda^{p-1} I_A(x,\lambda) I_E(x) I_{\mathbb{R}_+}(\lambda) \ d(x\lambda) = \int_{\mathbb{R}} \int_{\mathbb{R}^n} p\lambda^{p-1} I_A(x,\lambda) I_E(x) I_{\mathbb{R}_+}(\lambda) \ dx \ d\lambda$$
$$= p \int_0^\infty \lambda^{p-1} \int_E I_A(x,\lambda) \ dx \ d\lambda = p \int_0^\infty \lambda^{p-1} F(\lambda) \ d\lambda$$

$$\int_{\mathbb{R}^{n+1}} p\lambda^{p-1} I_A(x,\lambda) I_E(x) I_{\mathbb{R}_+}(\lambda) \ d(x\lambda) = \int_{\mathbb{R}^n} \int_{\mathbb{R}} p\lambda^{p-1} I_A(x,\lambda) I_E(x) I_{\mathbb{R}_+}(\lambda) \ d\lambda \ dx$$
$$= \int_E \int_0^{\infty} p\lambda^{p-1} I_A(x,\lambda) \ d\lambda \ dx$$
$$= \int_E \int_0^{|f(x)|^p} 1 \ dy \ dx = \int_E |f(x)|^p \ dx \qquad (\text{Take } y = \lambda^p)$$

Therefore, $\int_E |f(x)|^p dx = p \int_0^\infty \lambda^{p-1} F(\lambda) d\lambda$.