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Chapter 1 Lesbegue Measurable Sets

1.1 Rectangles

Definition 1.1. Closed & Open Rectangles

A closed rectangle R in R" is a subset of R™ with the form R = [a1,b1] X - -+ X [an, by].
An open rectangle R in R™ is a subset of R"™ with the form R = (a1,b1) X - -+ X (ap, by).

Here ay, by are real numbers fork =1,... n. &

Remark Give real numbers ay, by, for k = 1, ..., n, we can define more general rectangles in a
similar way, i.e., a rectangle R in R™ has the form of [ 21 x I f,’; XX I gz, where 1Y is any kinds
of bounded intervals in R (open, closed, or half-open half-closed) with two end points x < y.
@ Note In fact we can define even more general rectangles (e.g. [0, 1] x [0, 1] rotated by 30°),
but it is meaningless for our study. Therefore, unless specified, the most general case we need to

consider whenever we talk about rectangles is the one defined in the above remark.

Definition 1.2. Volume of Rectangles

The volume of any rectangles R = I%* x -+ x Il in R™ is |R| = T[}"_, (bi — a;).

)
Definition 1.3. Almost Disjoint Union of Rectangles
A rectangle is the almost disjoint union of a collection of rectangles if the interior of the
rectangles in this collection are pairwise disjoint. We can also say the rectangles in this
collection are almost disjoint. &
4> Exercise 1.1 If arectangle R is the almost disjoint union of finitely many rectangles R, . .., Ry,
prove that |R| = Z%:l | Ry
Proof Let R = Iy x --- x I, where I;’s are intervals (1-dim rectangles) for j = 1,...,J.

o Special case: If R,,’s form a grid (each cell of the grid is a rectangle R,,) of R, i.e., for
each j, there exist almost disjoint intervals I 1, ..., [} N; st I; = Ug;l I; , and for each
R,,, we can find 1 < n;” < Njforj=1,..., st Ry = Il,n{n X o0 X I‘LnrJn. By
Definition 1.2, |R,,| = H;.Izl Zj | This implies Z%zl |Rm| = Z%:l H;‘]:1 L.
Since all R,;,’s form a grid of R, M = H‘jjzl N and summation over n" is equivalent to
the following form

No N1 J

M J Ny
STl =37 > > 1 i) (1.1)

m=1 j=1 ny=1 nao=1n1=1j =1
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For almost disjoint intervals, |I;| = Zfzvi 1 [1n] for each fixed j. This implies that

Ny No Ny J Ny No J N1
> > 2 = 3 > T oy 3 1l (12)
ny=1 no=1n1=1j=1 ny=1 no=1j5=2 ni=1

Ny Ny J
=101 T, (1.3)

ny=1  na=1j=2
Inductively, we can finally obtain Zﬁ/jzl e 22722:1 27]1\[11:1 szl L] = H}le |1;].
Therefore, Y |Rin| = [T/, 11;] = |R].
o General case: In general, R,,’s themselves may not be able to form a grid of R, but we can
partition each R, into smaller rectangles so that the finer partition forms a grid of R. This
can be done by simply extending each side of each R,, until they intersect the edge of R.
Then each of the orginal small rectangles R,, is the almost disjoint union of some (may
be just one) smaller rectangle(s), denoted as R,, = jg;l RE form =1,..., M. Apply
special case on R, |R| = - S™im | RE | Also notice that for each fixed m, RE,’s form
a grid of R, (why?). By applying special case to each R,,, we have |R,,| = 2’11 |RE |.
This implies the desired result |R| = Z%zl | Ry
O
Exercise 1.2 Let R, Ry, ..., Ry, be rectangles s.t. R C |J;— Ry, then |R| < > | | Ryl
Take a large rectangle R’ that contains R, Ry, ..., R,,. Extend all sidesof R, R1, ..., R,
until they intersect the edge of R’ to obtain smaller rectangles Ry,...,R,. In this way, R’ is the
almost disjoint union of f%l, R Rn; each of R, Ry, ..., R, is also the almost disjoint union of
Rl =>hcr |R;j|. Note that each R; C R must be
contained in one of Ry, ..., R;,. Therefore, ZRKR 1Rl < 22k YXher, 1Bl = 2255 | Ryl
O

some of Rl, .. ,Rn. By Exercise 1.1,

Actually for each of R', R, Ry, . .., Ry, we can find a subset of}él, N to form a grid
of it.
1.2
Let R be a rectangle, { R;;}32., be almost disjoint rectangles, and R O | J;~ | Ry. Then
[Rl = 3252y [Rel-

For each fixed n, R D UZ:1 Ry, so similar to the proof of Exercise 1.2, extend all sides
of Ry for k = 1,...n until they intersect the edge of R to obtain almost disjoint rectangles
R R}@n st. R=J RP. By Exercise 1.1, |R| = SoMn |R7"|. Note that each Ry, is the
almost disjoint union of some RJ', so we have 37| |Ri| < S27_; ZR?CP% IRP| < SOMn IR|.

This implies |[R| > Y, |Rg| forall n € NT. Take n — oo, we have |R| > >"7°, |Rx|. O

Problem 1.1 Prove that every open set O of R is the countable union of disjoint open intervals.

Exercise 1.3 Any open set G in R" can be decomposed into almost disjoint countable union of
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closed cubes (closed rectangles with equal-length edges).

Divide R™ into cubes [k1, k1 + 1] X -+ X [ky, kn + 1] (K1, .. ., ky, are integers). Denote
P; to be the collection of all these cubes. Now divide each of the cubes in P; into 2" closed
subcubes s.t. all subcubes are almost disjoint, and denote the collection of all such subcubes as
P,. Keep doing such kind of subdivision, and we will obtain P}, for all K € N™. Note that all
cubes in Py, are almost disjoint, any cubes in Py is the union of 2" cubes in Py, 1, and Py is
countable. Let Hy be the set of all cubes in P; and contained in G; H}, to be the set of all cubes
in Pj but not in any cubes in H1, ..., H;_1 and contained in G for any k > 2.
Claim: G' = ;2| U.ep, ¢ Where c represents cube. Since each ¢ € G, it is easy to see
Urz1 Ueenr, ¢ € G. Fix arbitrary z € G, denote © = (1, ..., ). Then for each fixed k > 1,

there exists integer a; , forl = 1,... ns.t. (127’“ <z < % L

ek a1 +1 Qp g Apg+ 1
T R B

Then z € ¢, € Py for all £ > 1. Since x is an interior point of G, there exists large enough

L et

K st cx C G. Ifcg isnotin Hy,..., Hg_1, then since it is in Px and contained in G, it
must be in Hye, This shows cx € i, Ueerr, ¢ 802 € UpZ; U,ep, ¢ and the claim is proved.
Note that each Hj, is countable because Hj, C P and Py is countable, so | J,_; ceH, Cis a
countable union. Also notice that cubes in different H}’s are almost disjoint, and since all cubes

in Py, are almost disjoint, cubes in H}, are also almost disjoint. U

1.2 Cantor Set

Definition 1.4. Cantor Set

Let Fy = [0,1]. Divide Fy into 3 equal-length subintervals and remove the center

12
3'3

interval (1,2). Let Fy = [0, 3] U [2,1] be the remaining set. Divide each interval in Fy

into 3 equal-length subintervals and remove the center intervals (%, %) and (g, %). Let
Fy=1[0,5]1U[2, 3] U[2, T]U[8,1] be the remaining set. Repeat the removing process to
obtain F3, ..., Fy, ..., and the Cantor set is defined to be C = (., F,.

L]

Property The Cantor set C

. is a closed set

2. contains all end points of the subintervals
3. is nowhere dense in R
4

. is a perfect set

1. Since F}, is finite union of closed sets, F}, is closed for all k¥ > 1. Since the intersection of
closed sets is always closed, C' is closed.

2. Trivial.



)
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3. For every x € C, we want to show that forall § > 0, (z — 6,z + ) ¢ C. Since x € C,
x € F), for all n, and thus z is in one of the closed subinterval(s) I,, of length 3% Take
n large s.t. I,, C (x — d,z + ¢). When we construct F), 1, center part of I,, needs to be
removed from I,,, so (z — , 2 + ) ¢ F,11 and this shows (z — §, 2 + ) ¢ C.

4. Denote C’ as the set of all limit points of C. Since C'is closed, C' C C, so we only need
to prove C' C C'. Foreach x € C, x € F,, for all n, so x is in some closed subinterval I,
of length 3% Let x,, be an end point of I,,, then as n — oo, z,, — x. Since z,, € C for
all n, x is a limit point of C' and « € C’. Since z is arbitrary in C, C' C C".

O
Now we want to prove a very famous proposition about Cantor set. We will first state this
proposition, then prove two useful facts in the exercises following with it, and at last, we will

provide a proof of the proposition.

Proposition 1.1. Cardinality of Cantor Set

The Cantor set C' is equivalent to [0, 1] in cardinality.

Exercise 1.4 Let D = {372, 2 [ax € {0,2}, Vk € NT}. Prove that C' = D.

Proof Recall C' = (g, F), where F}, is defined in Definition 1.4. First we use induction to
prove for all £ > 1, if a is the left end point of one subinterval constituting F}, then a can be
written as » .~ a,3~", where a, € {0,2} for1 <n < kanda, =0forn > k. Ifk =1,
thena = 0ora = % If a = 0, then justlet a,, = O foralln > 1; ifa = %, let a; = 2 and
an, = 0forn > 2, so our claim is true for £ = 1. Now we assume our claim is true for some k
and we want to prove it is also true for k£ + 1. Suppose a is the left end point of one subinterval
([a, b)) constituting Fj 1, if it is also the left end point of one subinterval constituting Fj, then
by induction hypothesis we have already proved our claim for k£ + 1. If a is not the left end
point of one subinterval in F, then there exists [c, b] in F}, s.t. [a,b] C [c,b]. By construction
a = ¢+ 2/31, and combined with induction hypothesis on ¢, a = SF_ 4,37 + 2/3F+1,
This shows a = Y 7, a3~ " s.t. a, € {0,2} for1 <n <k+1landa, =0forn > k+1,

and this finishes our induction.

Note that for each fixed £ > 1, the number of left end point of subinterval constituting
Fy. is exactly 2% However, the number of cases that a,, € {0,2} for1 <n < kanda, =0
for n > k is also 2. This shows if a = > °° | a,37" where a,, € {0,2} for 1 < n < k
and a,, = 0 for n > k must be a left end point of one subinterval constituting Fj. Also, by
construction, each subinterval in F}, is of length 1/3F, so if a is the left end point of some
subinterval, then b = a + 1/3¥ is the right end point of that subinterval. Since 1/3* can be
writtenas » %, 1 2/3", b= 0,37 " s.t. by = a, for1 <n < kandb, = 2forn > kif
a=> ", a,3"". Thisimplies thatifx = > °, z,3 ™ andy = Y .~ | y,3~" are in the same

subinterval of Fy, x, =y, for 1 <n < k.
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Now if # € D, thenz = > 7, a,3™", and it must lie in [sy, ] where s, = Zﬁzl a3~

n=1
and tj, = Zi:l an3™" 4 Y07, 12/3™. Since we have shown that such s;, must be a left end
point of some subinterval in F}, © € Fj. Here k is arbitrary, so x € C'and D C C. Conversely,
pick z € C, then for each k, there is an subinterval [xy,yx] in F} containing x, so xp — x.
Also note that [z11,yr+1] C |2k, yx] for all k. Since xy is the left end point, it has the form
of Zi:l an3~" where a,, € {0,2}, thus we have x = limy_,, Zﬁ:l a3 " =5 a,37"

n=1

where a,, € {0,2}. This showsz € Dand C C D,so C = D. ]

#: Exercise 1.5 Prove that forall = € [0, 1], there exists a,, € {0, 1} foralln > 1s.t. x = > > =
Forx =0, weleta, = 0foralln > 1; forx = 1, we let a,, = 1 for all n > 1, then it

iseasytosee x = > o, % Now let £ = (0, 1), and divide (0, 1) into two subintervals with
y Zn 1 2 ’ )

equal length 1/2. If z € (0, 5), set a; = 0 and a,, for n > 2 is to be determined; if ©z = %,
seta; = land seta,, = 0 foralln > 2;ifx € (%,1), set a; = 1 and a,, for n > 2 1is to be

determined. It is easy to see % < z < %l forall 2 € Ey. Denote E» = (0,4) U (3, 1),

2k—1

m=1> Ve

and keep on doing the same procedure, i.e., for each subinterval in £ = (0,1) \ {3
divide it into two subintervals with equal length 1/2* and if « is in the left subinterval (open),
we let a, = 0 and a,, for n > k + 1 to be determined; if = is the middle point, we let a;, = 1
and a,, = 0 for n > k + 1; if x is in the right subinterval (open), then let a; = 1 and a,, for

n > k + 1 to be determined. By this procedure, if z = Z for some k and 1 < m < 2k — 1,

then x = ZZ 1 2n; if = is not of such form, then after k: steps, we can determine the value
of a,...,ax but a, for n > k 4 1 cannot be determined. The most important observation is

that En 190 <x < Zn 158 + Qk Since the LHS and RHS converges to the same value as

k — oo, they both converge to x, and thus = = >, §= where a,, € {0, 1}. O
@ Notice that different from Exercise 1.4, the ay, we find in expression x =Y > | Sh may
not be unique. Think of number in the form of 3y for some k and m = 1, . L2k 1.

After all of the above tedious preparations, we are finally ready to prove Proposition 1.1 by
using the above two exercises.
[Proposition 1.1] Since it is trivial that Cantor set C'is a subset of [0, 1], the cardinality of
C'is less than or equal to [0, 1], so we if we can construct a surjective map from C' to [0, 1], it is
enough to show the cardinality of C'is larger than or equal to [0, 1], and thus we proved that they
have the same cardinality. By Exercise 1.4, it is equivalent to construct a surjective map from D
(defined in Exercise 1.4) to [0, 1]. Consider the mapping f : D +— [0, 1],

f (Z ;LZ) = Z a’;fa an € {0,2} (1.4)

n=1

It is surjective because by Exercise 1.5, each number in [0, 1] can be expressed as > - ; 27,1

where b, € {0, 1}, and by letting a,, = 2b,, € {0,2} for all n» > 1, we can find the preimage
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S, &, which is a number in C. The only thing we need to do is to prove f is well-defined.

Suppose > 02 4r = "% L2 where ay, ¢, € {0,2} foralln > 1. If a; # ¢;, WLOG, let

n=1 3n n=1 3%’

a1 = 0 and ¢; = 2, then

(1.5)

W o

1_OO 2>Ooan_oocn>
DI TEDIE D D
which is obviously impossible, so a; = ¢;. Inductively, we can show a,, = ¢, for alln > 1, so

f is well-defined. O

=, Problem Set 1.2 <>

1. Let p be a natural number greater than 1, and x a real umber, 0 < x < 1. Show that there

o0 ap

n—1 pi and

is a sequence {a, } of integers with 0 < a,, < p for each n such that x = )
that this sequence is unique except when x is of the form ¢/p™, in which case there are
exactly two such sequences. Show that, conversely, if {a,} is any sequence of integers
with 0 < a,, < p, the series 2;1.0:1 g—z converges to a real number z with 0 < z < 1.

2. Let A and B be sets. Suppose there exists injective mappings f : A — Bandg: B — A.
Prove that A ~ B.

3. Let G, (k € NT) be open and dense in R. Prove that ﬂ;ozl G, is uncountable.

4. Prove that i is in Cantor set C'.

5. Let 3 < p < co. The Cantor-like set is constructed as follows: On the interval [0, 1], first
pick the middle point 1/2 and remove the 1/p neighborhood of it. Denote the remaining
part of [0, 1] by F;. Now in the second stage, from each subterval in F}, remove the 1/p?
neighborhood of its middle point. Denote the remaining part as F5. Repeat this process we
get F,, which consists of 2" closed subintervals of equal length. Define Cp, = (2, F),.
Prove that

(a). O, is nowhere dense;
(b). Cp is a perfect set;
1

(c). the total length of all open inverals removed is equal to =)

6. Let { £}, }°2 ; be a sequence of sets. Define
L (o] (o] (o] o
k=1n=k k=1n=k
(2). Prove lim,,_oo E,, is equal to the set of points who belong to infinitely many F,,’s,
and

lim FE, = {z|3integer n, > 1, s.t. x € E,, whenever n > n,}
n—oo

(b). Suppose Ey C Es C --- C E, C ---, find lim E, and lim,, o E,,.

Nn— 00

(¢). Suppose E, N E,, = @, if n # m. Find lim E, and lim,,_,oo E,,.

T —r OO
(d). Letall E,, ¢ RY. Prove that

(B E,)" = lim (B, (hm En> — Tim (E,)°

n—00 n—00 n—00 n—00

6
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(e). Let f(x), {fn(2)}22, be defined on a set £ C RY. Prove that

ZE2{zcE|fu(x) A f(x)asn — oo} = U (k@oElk)

I=1
where EF = {z € E||fi(z) — f(z)| > }}.
7. Let E be a bounded closed subset of R". Suppose {fj}32, are continuous on E and

fx — f uniformly for some f as & — oo. Prove that
o

1) =N (U, o)

j=1

1.3 Outer Measure

Definition 1.5. Lebesgue Covering

Let E C R™, a sequence of open rectangles {Ry,}?° | is called a Lebesgue covering
(L-covering) of E if E C Uy Ry

&
Definition 1.6. Outer Measure
For all E C R", define outer measure of E by
m*(E) = inf { Z |Ri| | {Rx}ieq is a Lebesgue covering ofE}
k=1
)

Example 1.1 Let g € R", E' = {x(}, then one can check by definition that m*(E) = 0.

Next we will see two seemingly intuitive remarks, while they are not easy to prove and will

be very handy in the future study.

Remarlk If we require Ry’s to be closed rectangles in the definition of L-covering, then m*(E)

defined in Definition 1.6 does not change.
Proof  For simplicity, we denote m(E') to be the outer measure defined in Definition 1.6, and

m;;(E) to be outer measure newly defined in this Remark. For any open L-covering { R} }7° ; of
E, there exists closed L-covering { Ry, }3°, of E and Y 22 |Ri| = > pey | R/, then

{ Z |Ri| | { Rk}, open L-covering of E} C { Z |Ri| | { Rk}, closed L-covering of E}
k=1 k=1

so by property of infimum, m}(E) > m}(E).
Also, for all e > 0, there exists closed L-covering of E, {Fj}?°, s.t. mi(E) + € >
S°7° | | Fi|. Expand each side of each F}, by a factor 1+ ¢ to obtain a larger rectangle Ry, s.t. the
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interior of Ry, RY, contains Fy. Furthermore, |RS| = (1 + €)"|Fy|, thus,
o =
|y my(E)
m;(E) +e> >
¢ kzzl (I4+6e)™» = (1+¢)n
Take € — 0, we have m}(E) > m}(FE), and so m}(E) = m}(E). O

c

If we require Rj’s to be closed cubes in the definition of L-covering, then m*(E)
defined in Definition 1.6 does not change.

For simplicity, we denote m.(E) to be the outer measure defined in Definition 1.6,
and m},(E) to be outer measure newly defined in this Remark. Since cube is a special type of
rectangle, it is obvious that m},(F) > m} (F).

If m.(E) = oo, then m?,(E) > oo, somp,(E) = m*.(E) = co. Suppose m.(E) < oo,
forall e > 0, there exists open rectangular covering { R } 32 ; of E's.t. m}.(E)+¢ > > 12 | Ryl
Since Ry is an open set, by Exercise 1.3, Ry = Uf; ck,; wWhere ¢ ;’s are almost disjoint closed
cubes. Ry = ;2 ck; implies Ry D |J;o ¢k, so by Corollary 1.1, we obtain |Rj| >
> o2 |ek.i]- This implies mi (E) +e > > 72 > |egi| = mi, (E), where the last inequality
is because {Ck,i}i?izl forms a L-covering defined by using closed cubes. Take e — 0o, we obtain
mye(E) = me,(E), somy(E) = mg,(E). O

Thanks to the above two remarks, from now on, we don’t need to clarify the outer measure
or L-covering is defined by open rectangles or closed rectangles or closed cubes. Although
by default, we will still follow the open rectangle version, the next two exercises illustrate that
sometimes it is convenient to use other versions.

Exercise 1.6 Prove that m*(R) = |R| for closed rectangle R.

Obviously, m*(R) < |R| if we treat the outer measure here as the closed rectangle
version, because R itself is a closed rectangular covering of itself. Now we treat the outer
measure as open rectangle version, then for all € > 0, there exists L-covering (open rectangles)
{Ri}32, of Rst. m*(R) +¢ > Y 72, |Rk|. Since R is compact, there exists finite subcover
{Ry,}7, st. U", Rk, O R. By Exercise 1.2, Y| Ry, > |R|. Therefore, m*(R) + ¢ >
Soreq | Rk = 227 Ri, > |R|. Take € — 0, we obtain m*(R) > |R|, so m*(R) = |R|. O

Exercise 1.7 Prove that m*(R) = |R| for open rectangle R.

This time if we regard the outer measure as the open rectangle version, R is an L-covering
(open) of itself, so m*(R) < |R|. Take small 6 > 0 and define Rs = [a1 + 0,b1 — 0] X - -+ X
[an + d,b, — 0], where R = (a1,b1) X -+ X (an, by). Since R is an L-covering (open) of R,
|R| > m*(Rs). Since any L-covering of R is also an L covering of Rs, so m*(R) > m*(Rs).
By the Exercise 1.6, m*(Rs) = |R;| since Ry is closed rectangle. Take § — 0 on both sides of
m*(R) > |R;s|, we obtain m*(R) > |R|, so m*(R) = |R]. O
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Problem 1.2 If £y C Ey C R™, prove that m*(E;) < m*(E2). Hence, prove that the outer

measure of general rectangle R (defined in the Remark after Definition 1.1) is also equal to the

volume of R.

Let’s end this section by taking a closer look at some fundamental properties of outer

measure. Note that you may have already seen or proved some of them.

Property

1.
2.
3.

m*(E) >0,V E C R" and m*(@) = 0. This is called nonnegativity of outer measure.
IfEy C Ey C R, thenm*(E1) < m*(Es). This is called monotonicity of outer measure.
If By, C R"™ for k € NT, then m*(Uge; Ex) < > .peym*(Ey). This is called o-
subadditivity of outer measure.

Let E C R"andy € R", then m*(E+vy) = m*(FE). This is called translation invariance
of outer measure.

If E C R", then m*(E) = inf{m*(0) | O D E, O is open}.

6. Suppose E1, Eo C R", and there exists disjoint open set G,H s.t. G > E1, H D Es.

»on

Then m*(Ey U Ey) = m*(E1) + m*(E2).
Let E = ;- | Ry, where Ry’s are almost disjoint rectangles. Thenm*(E) =Y 7 | | Ry|-

. Trivial. Please prove it by yourself.

Has been proved in Problem 1.2.

For each fixed k, by definition of outer measure of Ej, for every ¢ > 0, there exists an L-
covering of By, { Ry }2°,,s.t. Upy Ry D Exand > 12, |Ri| < m*(Ey)+e/2F. Notice
that {Ry.;}75—, is an L-covering of |2 Bk, so m*(UpZ; Ex) < D252 o2 Rkl
This implies m* (72, Fr) < Yoo (m*(Ex) + €/2F) = S22 m*(Eg) + . Take
€ — 0, we will obtain m*(U;—; Ex) < > ooy m*(Ek).

Let { Ry }72, be an L-covering of £, then { R, + y}72, is also an L-covering of £ + y.
This implies m*(E 4+ y) < > 721 |[Ri +y| = > poy |Ri|- Take infimum over all L-
covering {R;}7°, of E, and we obtain m*(E + y) < m*(E). Now we proved for all
FcR"and z € R*", m*(F 4+ z) < m*(F). Let F = E + y and x = —y, then we have
m*(E) =m*(E+y+ (—y)) <m*(E+y). Thus, m*(E) = m*(E + y).

. By monotonicity of outer measure, m*(O) > m*(FE) for any open set O D E. Take

infimum over all open set O, we obtain m*(E) < inf{m*(O)|O D> E, O is open}.
By definition of m*(E), for all e > 0, there exists {R;}32, s.t. Uz Rx O E and
m*(E) 4+ € > > 32, |Rg|. Let G = (Jg—, Rk, then since R}’s are all open, G is open.
This implies m*(G) > inf{m*(O)|O D E, Oisopen}. By o-subadditivity of outer
measure, m*(G) < > |Ry|. Thus, m*(E) + ¢ > inf{m*(O)|O D E, O is open}.
Take € — 0, we have m*(E) > inf{m*(O) | O D E, O is open} and we are done.

By o-subadditivity of outer measure, m*(E; U Ey) < m*(E;)+m*(Es) is trivial. For all
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€ > 0, there exists L-covering { R, }7° ;, R}, closed rectangles s.t. U;OZI R, D F1UFE5and
m*(E1 U E) +€ >3 72 |Ry|. Since G, H are open, by Exercise 1.3, G = {J;>_; I;
and H = U;jzl Jm, where I,,,’s, Jp,’s are closed and almost disjoint cubes. Since
GNH =@, 1,,NJ,, = @ forany m, m’ > 1. By definition of rectangles, it is easy to see
the intersection of two rectangles is either empty or again a rectangle (maybe a rectangle in
lower dimension). Therefore, for each fixed &k > 1, { Ry NI, }o°_; and { RN Jp }oo_; are
closed almost disjoint rectangles (for any Ry N I, or Ry N J,,, with zero volume, we can
ignore it) contained in Ry,. By Corollary 1.1, |[Ri| > >~ | |ReNLm|+> ooy [ReN T .
Sum over k onbothsides, > ooy |Ri| > S rey Y oo 1 [ReNLn|+>pe 1 Dooe_ 1 [REN Ty
Since Jpo; R NG D Eq, {I, N Rk}Z?mzl is an L-covering (closed) of F;, we have
Yoy Yoy | Rk N L] > m*(Ey). Similarly, "7 > | |R N Jp| > m*(E>). This
shows > 22 |Rix| > m*(E1) + m*(E2). Therefore, m*(Ey U E2) + ¢ > m*(Ey) +
m*(Ey). Take € — 0, we obtain m*(E, U Eq) > m*(Ey) + m*(E»).

7. By o-subadditivity of outer measure, m*(E) < > 77, |Ry|. For each fixed n > 1,
Yoreq |Re|l = Y51 |Ry| and m*(E) > m*(U,_, Ry). Since all Ry,’s are open disjoint
rectangles, we can apply Property 6 inductively (n — 1 times) on J;_, R}, to obtain

m*(Up_1 Ry) = >_p—1 |Ry|. Thus, m*(E) > >}, | Ry| and we are done.

O
Corollary 1.2. of Property 5
For E C R", there exists {O,}>2, s.t. Oy, is open forn > 1 and ()2, O, D E and
m*(E) = m* ("2, On). .

Proof Since m*(E) = inf{m*(0)|O D E, O isopen}, for n > 1, there exists Oy, s.t. O,
is open, O, O E and m*(E) 4+ 1 > m*(0,,) > m*(E). Since m*(0y,) > m*((";"; On) >
m*(E) (by monotonicity of outer measure), we have m*(E) + L > m*("°°, 0,) > m*(E).
Take n — oo, by squeeze theorem, m*(E) = m*((,—; Oy). O
Remark Note that ()2, O,, is a Gs-type set (G stands for Gebiet Durchschnitt in German), so
we can restate the corollary as: for E C R, there exists a G5 set G O E and m*(G) = m*(E).

Corollary 1.3. of Property 7

Let G be open in R", then we have G = Uzozl ci, where ci’s are almost disjoint closed

cubes and m*(G) = Y12 |cxl- o

= Problem Set 1.3 <

1. Let B be the set of rational numbers in the interval [0, 1], and let {I}}_, be a finite

collection of open intervals that covers B. Prove that > ;' m*(I}) > 1.

2. Prove that if m*(A) = 0, then m*(A U B) = m*(B).
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3. Let A and B be bounded sets for which there is an o > 0 such that |a — b| > « for all
a € A, b€ B. Prove that m*(AU B) = m*(A) + m*(B).

4. Let Fy, for k € N be nonempty closed subsets of R s.t. dist(xg, F},) — oo as k — oo
for a fixed point o € R™. Prove that [ J;°, F}, = > Fi.

5. Let ¥ C R and define outer Jordan content of F by

N N
J.(E) = inf { > IL|| I intervals, | ] I; 5 E}

i=1 i=1

(a). Prove that J,(E) = J.(E).
(b). Find a countable set £ C [0, 1] such that J,(E) = 1, and m*(E) = 0.
6. Let A, B C R"™ with finite outer measure. Prove |m*(A4) — m*(B)| < m*(AAB).

1.4 Lebesgue Measurable Sets

Definition 1.7. Lebesgue Measurable Sets (Inner regularity)

We say E C R" is Lebesgue measurable if V¢ > 0, there exists open G D FE s.t.
m*(G \ E) < e. Denote the collection of all Lebesgue measurable sets as M and the

Lebesgue measure of E is m(E) = m*(E). &

We want to define such a new collection of sets because there exists Iy, Fa C R™ s.t.
E1N Ey =@, but m*(FEy U Eg) < m*(E1) +m*(Es2). We don't like such kind of strange sets,

and this phenomenon can only happen when the sets do not satisfy Definition 1.7.

The following are some basic and fundamental properties of Lebesgue measurable sets. For
some of them, we will leave the proof as an exercise in Problem Set 1.4, but you can use these
properties freely when you prove other statements.

Property
1. If O C R™ is open, then O € M.
IfE CR"and m*(E) =0, then E € M.
IfEy, € M forall k> 0, then | J;- | Ey, € M.
If F C R" is closed, then F € M.
If E € M, then E¢ € M.
IfE, € M forallk > 1, then (\;—, E, € M.
If Ey, € M forall k > 1, and E};’s pairwise disjoint, then m(Uy— Ex) = Y pe g m(E}).

This is called o-additivity of Lebesgue measure.

N S AR W

1. Trivial.

Trivial.

»on

Since Ej € M, for all € > 0, there exists open G, D Ej s.t. m(Gy \ E) < 5%+ Since
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Ure1 G \ Uiz B € Up21(Gg \ Ej), by monotonicity and o-subadditivity of outer
measure, m* (U2 Gr \ UpZy Bk) < m* (UpZi(Ge \ Ex)) < 2202, m* (G \ Ej).
This implies m* (UpZ; Gr \ Upzy Er) < >ie1 57 = € Let G = J;Z, Gy, then G is
the desired open set to prove | J; ; E is Lebesgue measurable.

4. Special case: If F is bounded, then F'is compact and m*(F') < oo. By Property 5 of outer
measure, for all € > 0, there exists open G D F' s.t. m*(G) < m*(F) +e. Since G \ F
is open, by Exercise 1.3, G \ ' = |J;, ¢, where ¢;’s are almost disjoint closed cubes.
Observe that Uﬁ:l ¢, is compact for any fixed £ > 1. Note that two disjoint compact sets
in R” can be separated by two disjoint open sets (This is a famous fact in basic topology).

Therefore, by Property 6 and monotonicity of outer measure,

k k
m*(F) +m* (U cn> =m" (FU (U cn>> <m*(G)
n=1 n=1

By Property 7 of outer measure, m*(UfL:1 Cn) = Zﬁzl |en|. This shows m*(G) —
m*(F) > 22:1 lcy| forall k > 1. Send k — oo, m*(G) — m*(F) > > | |c,|. Again
by Property 7, m*(G \ F') = Y32 |cx|. Therefore, m*(G\ F)) < eand F € M.
General case: Note that any closed set F' in R™ can be decomposed as countable union of
compact sets (F' = Uzozl F N By, where By, is the closed ball with radius k centered at
the orgin). For each compact set /' N By, we can use special case to prove it is in M, and
then by Property 3, Fis in M.
5. Question 1. in Problem Set 1.4.
6. Question 3. in Problem Set 1.4.
7. Question 4. in Problem Set 1.4.
(]

The following are two extremely handy corollaries of the above properties. We only display

the statement here and leave the proof as exercise in Problem Set 1.4, Question 5. and 6..

Corollary 1.4. of o-additivity

Suppose E,F € M, F C E withm(F') < oo, thenm(E \ F') = m(E) — m(F).

Corollary 1.5. Continuity of Lebesgue Measure

Suppose Ey, € M forall k > 1,
l. By C By C -+ C E C ---, then m(limg_, o0 E) = limg_,oo m(Ey) where
limyso0 B = U2, Bk

2. E1 D Ey D - D Ex D --- and there exists kg > 1 s.t. m(Ey,) < oo, then

m(limg_yo0 Ex) = limg_,oo m(Ey) where limy_, o0 B, = (\poy E.

v

Next, we introduce some basic concepts that we will use in our later study.
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Definition 1.8. o-algebra

A collection of sets in R™ which is closed under countable unions, intersections and

complement are called o-algebra.

&

Note By Property 5, 6 and 7 above, we can see M is a o-algebra.

Definition 1.9. Borel o-algebra

Borel o-algebra BB is the smallest o-algebra that contains all open sets in R". Any sets in

B are called Borel measurable sets. &

Note Later we will study a famous example which indicates that B is strictly contained in M.

Recall in the Remark of Corollary 1.2, we have mentioned the so-called G5 set. Now let’s

give a formal definition of it and another type of set: F} set.

Definition 1.10. £, & G5 Set

An F ' set is the countable union of closed sets. A G set is the countable intersection of

open sets.

&

At the end of this section, we will show our main result which illustrates the relation between

Lebesgue measurable set and Borel measurable set.

Theorem 1.1

For all E C R", the following are equivalent:
1. EeM

2. Forall € > 0, there exists closed F C E s.t. m*(E\ F) < e.

3. There exists Gs set s.t. G O E and m*(G \ E) = 0.

4. There exists Fy set s.t. F C E and m*(E \ F) = 0.

5. Ifm*(E) < oo, for all € > 0, there exists finitely many closed cubes cy, . .., cy, S.t.
U= Ule ¢ satisfies m*(UAE) < €, where the symmetric difference UNE =

(U\E)U(E\U). .

Proof

o 1 — 2: Question 2. in Problem Set 1.4.

o 2 — 4: By assumption, for all & > 1, there exists closed Fj, C E s.t. m*(E \ F) < %
Take F' = ;2| Fy, then F C E and F is F,-type. Note that E \ F' C E \ Fj, for all
k > 1. Therefore, m*(E\ F) < m*(E\ F) < 1. Take k — oo, we have m*(E\ F) = 0.

o 4 — 1: Since m*(E \ F') = 0, then by Property 2, E \ F' € M. Since F is the countable
union of closed set, by Property 3 and 4, F' € M. Since E = F U (E \ F), by Property 3
again, ¥ € M.

o 1 — 3: For k > 1, there exists open Gy s.t. Gy O E and m*(Gy, \ E) < 1. Let
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= Nie; Gk, then G is Gs-type and G D E. Note that G\ E C Gi \ E, so
m*(G\ E) <m*(Gy, \ E) < 1 for all k. Take k — oo, we have m*(G \ E) = 0.

e 3 — 1: Note that £ = (G \ E) U G°. Since m*(G\ F) =0,G\ E € M. Also, G is
the countable intersection of open sets, so G € M by Property 6, G € M. By Property
5, G¢ € M. Therefore, E€ € M and E € M.

o 1 — 5: For all € > 0, there exists open O D E s.t. m*(O \ E) < 155. By Corollary
1.3 and Exercise 1.6, we have O = UZO:1 ci, where ¢’s are almost disjoint closed cubes
and m*(0) = Y 72, m*(cx). Since we assume m*(E) < oo, by o-subadditivity of outer
measure, m*(0) < m*(O\ E) +m*(E) < oco. Thus, the series Y, ; m*(cj) converges
and there exists N s.t. Y72 v m*(cx) < €/100.

Claim: U = Ufj:l i, will satisfy m*(UAE) < e. Observe that

UAE = (U\E)U(E\U) C (O\E)U(0\U)

Thus, m*(UAE) <m*(O\ E) +m* (UpZn41 ) < 165 + 105 < €
e 5 — 1: By assumption, for all € > 0, there exists U = U,]f:1 cp st. m*(EAU) < 155
+ 159+ Let A = UNG,
since AANE C UAFE, we have m*(AAFE) < 155. Since AAE = (A\ E)U (E\ A),

m*(E\ A) < 1§g and m*(A\ E) < §g. This shows

Also, for all € > 0, there exists open G D F, s.t. m*(G) < m*(E)

m(E) < m*(E\ A) +m*(A4) < 1o +m"(4)
Also, m*(G \ E) < m*(G\ A) + m*(A\ E). Since A € M and m(A) < oo, by
Corollary 1.4, m*(G \ A) = m*(G) — m*(A) < m*(E) — m*(A) + 155- Therefore,
m*(G\ ) <m*(E) —m*(A) + 155 + 155 < € implies £ € M.
([

In Problem Set 1.4, Question 12. we will introduce another definition of Lebesgue measur-
able sets, which is well-known as Carathéodory property, and you will prove the equivalence of
Carathéodory property and Definition 1.7. In case you may need to use this property, we display

it here without proving it.

E € M ifand only if for all T C R", m*(T) = m*(T' N E) + m*(T N E°).

=, Problem Set 1.4 <>

1. Prove that if £ € M, then E°¢ € M.

2. If E € M, prove that for all ¢ > 0, there exists closed subset F' C E's.t. m*(E\ F) < ¢
3. If By € Mfork=1,2,..., prove that ()}, E} € M.

4. Let By, € Mfork € N, and Ej’s pairwise disjoint. Prove m (U2 Ex) = > ooy m(Ex).
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10.
11.
12.

13.

14.
. Prove that if £, € M for k € NT,

16.
17.

18.

19.

20.

21.

22.
23.

. Forall E, F € M suchthat F' C E, prove that m(E \ F')+m(F') = m(FE). Furthermore,

if m(F) < oo,then m(E \ F') = m(E) — m(F).

Supose E, € M forall k =1,2,..., prove

(a). f By CEy C -+ C By C Egqq C -+, then limy_, oo m(Ey) = m(limg 00 Ex).

(b). f £y D E3 D --- D Er D Egyq1 D --- and there exists kg > 1 such that
m(Ek,) < oo, then limy_,oo m(Ey) = m(limy_,00 Ek).

(c). Find a counter-example of (ii) if such kg in (ii) does not exist.

. Prove the Cantor set C' is Lebesgue measurable and m(C') = 0.

. Let C), be the Cantor-like set in Problem Set 1.2, Question 5.. Prove that C}, € M and

compute m(C)p).

. Recall the definition of F}, and G set, and answer the following questions:

(a). Let {fn(x)}52, be continuous on R. Prove that {z € R| lim, ,  fn(x) > 0} is
F,-type.

(b). Let f(x) be defined on R. Prove that {z € R| lim,,, f(y) < oo} is Gs-type.

Let E C R with finite m*(E) > 0. Prove that Va € (0, m*(E)), there exists A C E such

that m*(A) = a.

Let A1, Ay CR", A} C Ag, A1 € M, m(A;1) = m*(Az) < co. Prove that Ay € M.

Prove that £ € M ifand only if VT C R™, m*(T) = m*(T N E) + m*(T N E°).

Let A € M, B C R™ with m*(B) < co. Prove m*(AU B) + m*(AN B) = m*(A) +

m*(B).

Suppose m*(E) < oco. If m*(E) = sup{m(F) | F C E, F closed}, then E € M.

(). m (limy,_, . Ex) <lim;_, . m(Eg).
(b). If there exists kg > 1 such that m (UZO:kOEk) < oo, then m (E,HOO Ek) >
limy,_y00 m(Ey).

Let Ej, C [0,1], Ex, € M, m(Ey) = 1forall k € NT. Prove m(N32, E) = 1.
Let E; C [0,1], E; € M foralli = 1,...,k, and Zlem(Ez) > k — 1. Prove that
m(NE_, E;) > 0.
Let { £} }72, be a countable disjoint collection of measurable sets. Prove that for any set
A, m* (ANUrl, Ex) = > pey m* (AN Ey).
Let Ej, k € NT, be Lebesgue measurable, satisfying Y ,-; m(E)) < oco. Prove that
m (limg_o0 Ey) = 0. This is called Borel-Cantelli lemma.
Give an example of an open set O such that the boundary of the closure of it has positive
Lebesgue measure.
Let f be continuous on [0, 1]. Prove that the graph " of y = f(x), as a subset of R?, has
Lebesgue measure 0.
Does there exists a closed proper subset F of [0, 1] such that m(F') = 1?
Let £ € M with m(E) > 0. Prove that there exists x € E such that for all § > 0,
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m(E N Bs(x)) > 0, where Bj(x) is the ball centered at = with radius § > 0.

24. Let E C R™. Prove that there exists G5 set G D E such that for all A € M, we have
m*(ENA)=m(GnNA).

25. Let E ¢ M. Prove that there exists € > 0 such that whenever A,B € M, A D E,
B D E€, we always have m(A N B) > e.

26. Let E C R and E € M. Suppose there exists open intervals I, for k& € Nt such that
m(E N I;,) > 2m(Iy). Prove thatm (E N Uy I) > tm (Upsy In)-

1.5 Non-Lebesgue Measurable Sets

In this section we are going to explicitly construct a type of set which is not Lebesgue

measurable. However, before constructing it, we need some lemma to help us.

For all E € M with m(E) > 0, there exists § > 0s.t. E—E 2 {x —y|x,y € E} D
Bs(0), where Bs(0) is the open ball centered at the orgin with radius 6.

Since m(E) > 0, there exists £k > 1 s.t. m(Ng(0) ) > 0, where N (0) is the
open neighborhood of the origin with radius k. If m(Ng(0) ) = 0 for all & > 1, since
E = ;2 (Ng(0) N E), we have m(E) < Y 2, m(N(0) N E) = 0, which contradicts
m(E) > 0. Let F' = Ni(0) N E, then m(F') < oo and it suffices to show /' — F' O B;(0).

Claim: For all A € (0, 1), there exists open rectangle R s.t. m(F N R) > Am(R). To prove

nE
nEe

this, by definition of m*(F), for all ¢ > 0, there exists open Ry’s s.t. (Jiy—; Rr D F and
m(F) +e> > 22, m(Ry). For a given \, we can take ¢ = (A1 — 1)m(F) > 0, then we will
have A= m(F) > S°02, m(Ry). Also, F = [J72 (F N Ry), so m(F) < Y22 m(F N Ry).
This implies Y o m(F N Rg) > > 7o, Am(Ry). Thus, there exists at least one ko s.t.
m(F N Ry,) > Am(Ry,).

We can take A = % in the claim, and denote the rectangle we obtained as R, then we will have
m(F N R) > 3m(R). Note that we only need to show F'N R — F'N R contains By (0) for some
d > 0. It suffices to show there exists 6 > 0 s.t. forall z € Bs(0), (x + FNR)N(FNR) # @.

Take § > 0 small s.t. m((z + R) N R) > im(R) for all z € B;(0). If so, we have

m((z + R)UR) = m(z + R) +m(R) — m((z + R) N R) < gm(R)

If (x+ FNR)N(FNR) =@ forsome x € By, then by o-additivity and translation invariance

of Lebesgue measure,

m((z+FARUFAR) =2m(FAR) > 2- Zm(R) _ gm(R)

but since m((z + FNR) U (FNR)) < m((z+ R)UR) < 3m(R), we obtain a contradiction,
so there exists 6 > 0 s.t. forall z € Bs(0), (x + F N R) N (F N R) # @, and this is enough to

show the desired result. O

16
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To find § s.t. m((z + R) N R) > $m(R) for all z € Bs(0), we can take

V3\ .
5:( Vi min{by —ar |k =1,...,n}, R:kl:[l(ak,bk)

because if so, for z € Bs(0), denote x = (x1, ..., zy), we will have |z;| < dforalli =1,... n.
Also, (x + R) NR= szl[(ak, bk) N (ak + xp, b + {Bk)]

n

m((z+R) " R) = |(z+ R) N R| = [ (bx — ax — |zs]) > ZH (b — az) > 1m(R)
k=1 k=1

After we proved the famous Steinhauss theorem, we can use it to verify the non-Lebesgue

measurable set constructed below.

In R™, define equivalence relation x ~ vy if and only if x — y € Q™. This partitioned R
into many equivalence classes. For each class, pick one and only one element, and collect

all of the chosen elements to form a set S, then S is not Lebesgue measurable.

Suppose S € M, then there are two cases, i.e., m(S) > 0 or m(S) = 0. If m(S) > 0,
then by Steinhauss theorem, S — .S D Bs(0) for some § > 0. There exists ¢ € Q™ N Bs(0),
st. ¢ #0and g € S — 5, ie., there exists x,y € S s.t. x —y = g # 0. This contradicts
the construction of S, so m(S) > 0 is impossible. If m(S) = 0, then for all z € R", there
exists z € S and ¢ € Q" s.t. z = x + ¢. This implies R" = [J;>_,(S + ¢, if we denote

= {gm}5°_1. Thus, m(R"™) <>, m(S + ¢»,) = 0, which is impossible. O
It is easy to see that m*(.S) > 0, because if m*(S) then S € M is a contradiction.
Also, one can use the same argument to prove for all E C R™ with m*(E) > 0, there exists

SEQMandSECE.

At the end of this section, we want to resolve the problem raised in the note after Definition
1.7, that is, the outer measure of two disjoint sets may not satisfy additivity property. You have
seen that if these two disjoint sets are Lebesgue measurable, then they must satisfy additivity
property, so it is natural to construct some non-Lebesgue measurable sets to violate the additivity
property. Before we explicitly construct them, we will first show a proposition that will help you

understand the construction.

Proposition 1.2

Forall E € M with m(E) < oo, if E1,Ey C E, ExNEy = @, E = E1 U E», and

m(E1 U E'Q) = m*(El) + m*(EQ), then Eq, By € M. o

By the remark of Corollary 1.2, there exists G5 set G1,Go s.t. Gy D E, Go D FEo,
with m(G1) = m*(E1) and m(G2) = m*(E2). By monotonicity, m(G1 U Ga) > m(E).
Also, m(E) = m*(Ey) + m*(Es), so m(G1 UG2) > m*(Er) + m*(Ey) = m(G1) + m(Ga).
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However, m(G1 U G2) < m(G1) + m(Gz). This implies m(G1 U G2) = m(G1) + m(Ga).
Since G1 € M and m*(G2) = m*(E2) < m*(F) < oo, by Question 13. in Problem Set 1.4,
we have m(G1 N G2) = 0. Since G; \ E1 C (G1 UG2 \ E) U (G1 N E3), by monotonicity,
m*(G1\ E1) < m*(G1UG2\ E)+m*(G1NE3y). Since G1NEy; C G1NG2, m*(G1NE;y) = 0.
By subadditivity and m(E) < co, m*(G1 U G2 \ E) < m(G1 U G2) — m(E) = 0. Therefore,
m*(G1 \ E1) = 0and Gy \ E; € M. Since G; € M, Ey = G1 \ (G1 \ E1) € M. Also,
Ey; =FE\ E; € M. O

Conclusion We can construct two sets Ey, Ey C R" s.t. m*(E1 U Ey) < m*(E1) + m*(Es)
easily. Take R as unit cubes in R™, and by the remark of Theorem 1.3 there exists S C R s.t.
S & M. Simply let E1 = S and E3 = R\ Ey, then EyNEy = @ and E = Ey U Esy. If
m*(Ey U Ey) = m(R) = m*(E1) + m*(E2), then by Proposition 1.2, Ey,Ey € M. This
contradiction combined with subadditivity shows m*(Ey U Eq) < m*(E1) +m*(E2).

= Problem Set 1.5 <

1. Suppose E,FF C Rand E, F € M. If m(E) > 0 and m(F) > 0, then E + F contains

an interval.

1.6 Non-Borel Measurable Sets

In this section we are going to explicitly construct a type of set which is Lebesgue measurable
but not Borel measurable. This will directly show that Borel o-algebra B is strictly contained in
M. However, before constructing it, we need to introduce the famous Cantor function.

We recursively define a sequence of functions fy, : [0, 1] — [0, 1] for k € N. Let fo(z) = x
on [0, 1] and for all k > 0, define

5k (37) f0<wz <3
freri(x) =43 fi<z<?
3 +tafeBr—2) fi<z<l

Then f(x) = limy_,o fr(x) defined on [0, 1] is called Cantor function.

We need to verify f(x) is well-defined, so we have two things to check:

. Since at two end points T = % andx = % fr(z) is defined twice by using different formulae,
2

g-
This is equivalent to say fr(1) = 1 and f(0) = 0 for all k > 0. We can use induction

so we need to guarantee 3 f,(3z) =  atx = L and 5 + 3 fr.(3z —2) = Larz =

to prove this. For the base case, since fo(x) = x on [0, 1], so it is trivial that fy(0) = 0

and fo(1) = 1. Now suppose for some k, fr(1) = 1 and fr,(0) = 0, we tend to prove
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fer1(1) = 1 and fi41(0) = 0. This is also trivial because fi1(1) = 3 + 3 fx(1) = 1
and fi+1(0) = 5 fx(0) = 0. Therefore, we finish the induction.

2. After we proved each fi(x) is well-defined, we also need to prove f(x) is well-defined
since it is defined to be the pointwise limit of fi(x). To check the limit exists as a finite

number for each x, we claim that

1
— < = — f1._ k>1
wrél[%ﬁ] | frr1(z) — fr(z)] < 5 mrél[%ﬁ] |fru(x) = foo1(z)], YVE>

We can separate the LFS into three cases.

o) = @)l = 16 - firGol. Vo [o.g]

e = i) =0 Vare |5 3]

@) = Fol@)] = S22 — fiaBr =2, Voe [g 1]

Notice that | f,(3x) — fe—1(32)| < maxzepq [fr(@) — fe—1(z)| for all z € [0, 3].
fr(3x = 2) = fr-1(32 = 2)| < maxgeqo) | fi(@) = fro1(2)| forall x € [3,1].
Therefore, | fry1(x) — fu(x)] < §maxpeoq [fr(2) = fro1(2)] for all z € [0,1], and
thus our claim is proved. Since it is easy to see | f1(x) — fo(x)| < 1 forall x € [0, 1], by
frr1(x) = fe(z)| < 2ikforall:lﬁ € [0,1] and forall k > 1.
Note that fi(x) = fo(z) + X5 _ [ (fm(x) = fm_1(x)), s0 to prove limy o, fi(xx) exists,
we only need to prove Y > (fm () — fin—1(x)) converges. By Weierstrauss M-Test, since
S o gt < 00, Yo (fm(®) = fm—1(x)) < 00 on x € [0,1]. This shows fi(x)

converges to limy,_, oo fi.(z) uniformly on [0, 1].

Similarly,

inductively applying our claim,

After we verified that the Cantor function f(x) defined in Definition 1.11 is valid, we are
going to explore some properties of it.
Property
1. f(z) is uniformly continuous on [0, 1].
2. f(0)=0and f(1) = 1.

3. f(z) is increasing on [0, 1].

1. To prove this, it suffices to prove every fi(x) is continuous on [0, 1], because if so, since
f(z) is the uniform limit of fy (), it must be continuous on [0, 1]. Since [0, 1] is a compact
set, f(x) is uniformly continuous on [0, 1]. To prove f(z) is continuous on [0, 1] for k > 0,
again we use induction. Itis obvious that fy(x) = x is continuous on [0, 1]. Suppose fi(z)
is continuous on [0, 1] for some k > 0, then f(3z) is continuous on [0, 1] and f;(3z — 2)
is continuous on [2,1]. This shows fi1(x) is continuous separately on [0, 1], [1, 2],
and [2,1]. However, the continuity of fi11(z) on [0, 1] implies fii1(3—) = frs1(3)

where fi11(a—) means the left limit of fx,1(x) at z = a (Similarly, fxy1(b+) means
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the right limit of fi41(xz) at z = b). Also, the continuity of fi41(z) on [%, 2] implies
fre1(54) = frr1(3) and fry1(3—) = frr1(3). Finally, the continuity of fi,1(x) on
(3, 1] implies fr41(5+) = fir1(3). In conclusion, fri1(5-) = frs1(3) = fer1(3+)
and fr1(3—) = fer1(3) = frs1(3+), 80 fry1(z) is continuous at z = § and z =
This is enough to show fi1(z) is continuous on [0, 1] and we finish the induction.

2. Since in the note of Definition 1.11, we have shown f;(0) = O and f(1) = 1 forall £ > 0,
it is trivial that f(0) = limy_,~ f%x(0) = 0 and f(1) = limg o fx(1) = 1.

3. It suffices to show that for each k > 0, fi(z) is increasing on [0, 1], because if so, for

any fixed 0 < x1 < 29 < 1, fr(z1) < fr(zo) for all & > 0. Take limit as &k — oo

win

on both sides, we have f(z1) < f(x2), and this shows f(x) is increasing on [0, 1]. To
see fi(z) is increasing on [0, 1], we use induction again. For the base case, it is trivial
that fo(z) = x is increasing on [0, 1]. Suppose for some k& > 0, fi(z) is increasing on
[0, 1]. For z1,x2 € [0, %] suppose 21 < xg, then 3z; < 3z and since fj () is increasing
on [0,1], fr(3z1) < fr(3x2). Since fr(x) € [0,1], we have fri1(z1) < frt1(x2) by

definition of fy41(x) on [0, %]. This shows fiy1(z) is increasing on [0, §

fri1(3) = 5, we have fri1(21) < frpa(xo) if 21 € [0,5] and 22 € [3,3]. Now for

| and since

T1,%9 € [%, 1], suppose 1 < w2, 3x1 — 2 < 3wy — 2. Since 3x1 — 2 and 3xy — 2 are both
in [0, 1], fk<3x1 — 2) S fk(?)xg — 2). This shows fk+1(x1) < fk+1<1‘2) for xr1,T2 € [%, 1]

and thus fi41(z) is increasing on [2,1]. Note that fr41(3) = 3, so if z; € [0, 2] and

3 2°
To € [%, 1], we have fri1(x1) < fr+1(z2). In conclusion, we have shown fi1(z) is
increasing on [0, 1] and this finishes our induction.

O

Next we prove a lemma that reveals the relation between Cantor function f(z) and the

Cantor set C' we defined in the previous section.

Use the same notation as Definition 1.4, and define Gy, = Fy,_1 \ Fy, for k > 1. Since Gy,

consists of 2"~ disjoint subintervals, so we label them in ascending order of their left

end point and denote the m—th subinterval as G form =1,..., 2"=L. Then for every
nandm, f(z) = 2=t on G

By the proof of Exercise 1.4, it is not hard to see for any © € G}, we can write
x =2 ,a,3"", where a, € {0,2} for1 <n < k-1, a, =1, and a, € {0,1,2} for
n > k+1 excluding the case a,, = 0 and the case a,, = 2 foralln > k+ 1. Then we can observe
that G = (3G1) U (3 + 3Gy) for all k > 1. In this case, G,y = £G" if m < 2"~ ! and

mo = %+%G?‘2n71 if 27141 < m < 2". We claim that for each fixed &, fi,(z) = 27;;1 for

allz € G form =1,... .2n=1 whenever n < k. We use induction on k, for k = 1, it is trivial

2m—1
27L

that fi(x) = % for x € G1. Suppose this is true for some k, we need to prove fii1(x) =
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forallz e GI'form =1,... .27~ whenever n < k+ 1. When n = 1, this is true by definition
of fry1(x) on [%, %] When 2 < n < k+1, form < 2772, any & € G is less than %, SO
fer1 (G = $fr(3G™) = 3 f1.(G™ ). Since n — 1 < k, we can use induction hypothesis,
(G ) = 2271},_11, and thus fr1(G) = 2"21”_1 as desired. For 2" 24+ 1 < m < 21,
any x € G is larger than 2, so fr1(G) = 3 + 3 /(3G —2) = L + %fk(Gg__12n72). By

_on—2 _on—1_ _ _
induction hypothesis, f,(GI'—2" ") = 2mz2 =1 = Zml 1 and thus fi41(GT) = 227

as desired. This finishes our induction and the claim is proved. Therefore, consider for any n

and m, for every large enough k s.t. n < k, fr(G') = 27;;1, so we can take limit as & — oo
on both sides and we will obtain f(G7") = 221, O

We can see the Cantor function f(z) is increasing but not strictly increasing, so it is
not injective. We want to define an injective function which inherits its property. Thus, let
g(x) = x+ f(z), then by the properties we proved above, g(z) is continuous on [0, 1], g(0) = 0,
and g(1) = 2. Also, g(x) is strictly increasing on [0, 1]. By intermediate value property of

continuous function, ¢([0, 1]) = [0, 2].

1 1

Exercise 1.8 The inverse function of g, denoted as g~ exists on [0,2]. Moreover, g~ is

continuous on [0, 2].

Since strictly increasing function on [0, 1] must be injective and because g is surjective to

! exists on [0, 2]. Tosee g~ Lis

continuous, actually we don’t need to use the continuity condition of g. We can first prove g~ is

[0, 2], we can conclude g is bijective between [0, 1] and [0, 2], so g~

also increasing. This is because for any 0 < y; < yo < 2, there exists unique 0 < z; < x5 < 1
st g(21) = y1, g(w2) = y2,50 g7 (y1) = 21 < 22 = g~ (y2).

To prove for every yo € [0,2], g~!(y) is continuous at y = yo, we can divide yq into three
cases, that is, yo € (0,2), yo = 0 and yp = 2. If yo € (0,2), denote x9 = g~ *(y0) € (0, 1),
and for € > 0, there exists x1,z2 € [0,1] sit. g —€ < 21 < 29 < z3 < g + €. Since
g is strictly increasing, g(z1) = y1 < yo < y2 = g(x2). Take 6 > 0 small enough s.t.
Y1 <yo—0 <yo<yo+ 9 <ys Thenify € [0,2] and |y — yo| < J, we have y1 < y < ya.

!is also increasing, we have x1 < g7 1(y) < =2, so |[¢7*(y) — ¢~ (w)| < €. This

Since g~
shows g~ !(y) is continuous at yg. If yo = 0, then 5 = 0 and we only consider the RHS of
it, i.e., g < xo < xg + €. If yop = 2, then £y = 1 and we only consider the LHS of it, i.e.,

zg — € < x1 < xg. The details are omitted. O
The next lemma shows this function g actually maps Cantor set (whose measure is zero

by Problem Set 1.4, Question 7.) to a set with positive measure. Therefore, not all continuous

function maps a set with zero measure to a set with zero measure.
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Let C be the Cantor set and O = [0,1] \ C. Then g(O) € M, g(C) is closed and
m(g(C)) = 1, where f(x) is the Cantor function and g(x) = x + f(x).

Use the same notation as in Lemma 1.2, O = |2, Uf:;i Gy'. Thus, g(O) =
U=, U?:L:i g(G™). Since g(z) = z + f(z) and f(G) is a constant 221, we have g(G') =

G+ 27;; L Ttis easy to see the translation of an open set is still an open set, so g(G™) is an open

set. g(O) is the countable union of open sets, so it is also open and measurable. Since g([0,1]) =
g(OUC) =g(0)Ug(C)=10,2], g(C) is closed and measurable. By additivity of measurable
sets, m([0,2]) = m(g(0)) + m(g(C)) = 2, so it suffices to show m(g(O)) = 1. Since G}"’s
are pairwise disjoint, and g(x) is strictly increasing, so g(G}")’s are also pairwise disjoint. Thus,
by o-subadditivity, m(g(0)) = Y02, Yo I m(g(G) = o2 Yo m(Gr + 23t
By translation invariance of outer measure, m(g(0O)) = > 7, S22 lm(G™) = m(0) =

m=1

1 —m(C) = 1, where m(C') = 0 is proved in Problem Set 1.4, Question 7.. O

The following lemma tells us a nice property of Borel measurable set and continuous

function.

Suppose h(x) is continuous on |a,b]. Let B C R be Borel measurable set (B € B). Then

the preimage of B under h is also Borel measurable.

Let A = {E C R|h~Y(E) € B}, we want to show B € A. By definition of continuous
function, for all open sets G in R, h~!(G) is open, hence Borel measurable. This shows any
open set GG is in A. Now it suffices to show A is a o-algebra, because if so, then A is a o-algebra
containing all open sets in R, and since B is the smallest o-algebra contains all open sets in R, B
must be a subset of A. Since we always have h ' (s | Ei) = Ure; b1 (Eg), if Ej’s are in A,
h~1(Ey) € Bforall k € NT, then since B is closed under countable union, 2~ (|J;2; Ex) € B,
so Upe; Ex € A. By a similar idea, due to the fact that A1 (72, Ex) = oy b H(Eg),
A is closed under intersection. Finally, for E € A, h™1(E€) = [a,b] \ h~1(E). Since [a, b]
and h~!(E) are both Borel measurable, h~'(E¢) € B. This shows A is also closed under

complement, so it is a o-algebra. U

Finally, after so much arduous preparation, we can construct a set which is Lebesgue

measurable but not Borel measurable.

There is a set in M but not in B, i.e., B C M.

Since m(g(C)) = 1 in Lemma 1.3, by the remark of Theorem 1.3, there exists a set
S C g(0) st. S ¢ M. Notice that g=1(S) C C, so m*(g=*(S)) < m(C) = 0 and thus
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m*(g=1(S)) = 0, meaning that g~*(S) € M. We claim that g~!(S) is not Borel measurable.

1 1in Lemma

Suppose it is, since g~ is continuous on [0, 2] by Exercise 1.8, we can take h = g~
1.4, and thus h=*(g71(9)) = g(¢g~*(S)) = S is Borel measurable. However, if S is Borel
measurable then it must be Lebesgue measurable, which is a contradiction. This shows g~(S)
is not Borel measurable. Therefore, g~1(.9) is the desired Lebesgue measurable set that is not
Borel measurable. ]

Since g~1(9) is a Lebesgue measurable set and ! is continuous, the proof also shows

that continuous function may map a Lebesgue measurable set to non-Lebesgue measurable set.

Consider the above phenomenon, a natural question is: what kind of “nicer” function will
always map a set with zero measure to a set with zero measure and map a Lebesgue measurable

set to Lebesgue measurable set?

Let T : R™ — R" be Lipschitz continuous, i.e., there exists a constant C > 0 s.t.
|T(x) — T(y)| < Clz —y| forall x,y € R™. Then E € M implies T(E) € M and
m(E) = 0 implies m(T(E)) = 0.

We first prove that if m(E) = 0, then m(T(E)) = 0. Since m(E) = 0, for any
e > 0, there exists L-covering {Ry}7°, of E s.t. Y 2, |Ri| < e. Notice that here R,
can be closed cubes by the second remark after Definition 1.6. Thus, T'(E) C (Jp~; T(Ry).
Define the diameter of a set S to be diam(S) = sup{|x — y| : =,y € S}. Since for any
T(x) — T(y) (T'(Rg)) < Cdiam(Ry). Take arbitrary point
x in T(Ry,), then the closed ball centered at x with radius C'diam(Ry) must cover T'(Ry).

r,y € Ry,

Thus, we can construct a closed cube R with edge length 2Cdiam(R},) s.t. Rj, covers the
closed ball, and covers T'(Ry,). Notice that the diameter of R; is 2\/nCdiam(Ry,). This shows
m*(T(Ry)) < m*(R,) < (2Cdiam(Ry,))" = (2C+/n)" (dlam Rk)) — C'|Ry|, where (" is a
constant. Therefore, m*(T(E)) < C'> 72, |Ri| < C'e. Take € — 0, we have m*(T'(E)) = 0,
so T'(E) is measurable and m(7T'(E)) = 0.

Then we prove if £ € M, T(E) € M. If A is compact, then T'(A) is also compact, so
T(A) € M. If Ais closed, then let A, = AN By(0) for all k& > 1, then since Ay, is compact,
T(Ay) € M, weobtain T(A) = |Jr—; T(A) € M. For general measurable set E, by Theorem
1.1, there exists F,, set A C Es.t. m*(Z) = 0for Z = E'\ A. Since A = |J;—, I}, where F},
is closed, T'(Fy) € M. Note that T'(E) = T(A) UT(Z). By what we proved just now, since
m*(Z) =0,T(Z) € M; Since T(A) = Upey T(F)) € M, we finally have T'(E) € M. O

<=, Problem Set 1.6 <>

1. Define f : [a, b] — R such that for all E' C [a,b] and E € M, we have f(F) € M. Prove
that for all Z C [a, b] with m(Z) = 0, we have m(f(Z)) = 0.
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Chapter 2 Lebesgue Measurable Functions

2.1 Lebesgue Measurable Functions

In this section, we are going to introduce the concept of (Lebesgue) measurable function.
However, for that purpose, we need to first introduce extended real-valued functions, that is, a
function that can take +oo0 as its function values. Also, we need to make some agreement on the
arithmetics of +co with real numbers:

1. Forallz € RT,z-(+00) = +ocand 2+ (—o0) = —oo; forallz € R™, x - (+00) = —o0,
and z - (—o0) = —o0.

2.0 (+00)=0and 0 - (—o0) = 0.

3. (+00) + (+00) = 400 and (—o0) — (00) = —o0.

4. (400) - (+00) = 400, (+00) - (—o0) = —0o0, and (—o0) - (—00) = +00.

5. 400 — (+00) and —oco — (—o0) are not allowed and +oo can be abbreviated as oco.

Definition 2.1. Lebesgue Measurable Function

Let f(x) be an extended real-valued function defined on a Lebesgue measurable set

E C R™. We say f is measurable on E ifforallt € R, {x € E| f(z) >t} € M. &

Now we list some useful and general identities, and notice that the following identities hold
even if f is not measurable. The proof of them is left for you as exercise because they only
involve very basic set theory knowledge.

. {zeE|f(x)<t}=FE\{x € E|f(z) >t}
{z€B|f(x) 2t} =N\ {e € E| fa) >t — 1}
{zeE|f(z) <ty =E\{z € E|f(z) > 1}
{reB|f)=t}={z € E| f(x) >t} N {a € E| f(z) < 1}
{z € B| f(z) < 0o} = Ui {z € E| f(x) < K}
{re E|f(z) =00} = E\{z € E| f(x) < oo}
{x € E|f(z) > —oo} =Upli{z € E| f(z) > —k}
{re E|f(x) =—oc} = E\{z € E|f(x) > —o0}

® N A WD
\%

If f is measurable on E € M, then the left hand side of the above identities are all in M. ©

Proof By definition, for all ¢t € R, {z € F|f(x) > t} € M. Since E € M, E\ {x €
E|f(z) >t} € M,so{z € E| f(z) <t} € M. Sincetisarbitrary, {z € E| f(z) > t—1} €
M, and thus (2 {z € E| f(z) >t — 1} € M. This shows {z € E| f(z) > t} € M.




ya)

)

2.1 Lebesgue Measurable Functions

Then E\ {x € E|f(z) >t} € M and so {x € E|f(z) < t} € M. Therefore, it is
easy to see {x € E|f(z) = t} € M. Again, since t is arbitrary, let ¢ = k, we have
{zeFE|f(x)<k}eM,soUrp{z € E|f(z) <k} eMand{z € E|f(zx) <x}eM.
Thus, {z € E| f(x) = o0} = E\ {z € E|f(z) < oo} is in M. Similarly, we can prove
{r e E|f(z) > —occ}and {z € E| f(z) = —oo} are in M. O

Let D be a dense subset of R, then f is measurable on E € M if and only if forall d € D,
{r e E| f(z) >d} e M.

If f is measurable on £ € M, then for all t € R, we have {z € E| f(x) > t} € M,
so the desired result is trivial. Suppose for all d € D, {z € E| f(z) > d} € M. Since D is
dense, for all ¢ € R, there exists decreasing sequence d,, convergent to ¢t as n — oo. Note that
{xeE|f(x) >t} =Ur {z € E|f(x) > dn} € M, so f is measurable. O

Next we display some basic facts about measurable functions in the following exercises.
These facts are fundamental and also very handy for you to determine whether a function is

measurable or not without using definition directly.

Exercise 2.1 Suppose f is measurable on £y € M and E» € M separately, then f is measurable
on £ U Es.
Forallt e R, {zx € EyUEs| f(z) >t} ={z € E1| f(z) >t} U{x € Ea| f(z) > t}.

Therefore, by using definition, it is easy to see the desired result. O

Exercise 2.2 If f is measurable on E € M, thenforall A C E, A € M, f is also measurable
on A.
Forallt € R, {x € A| f(x) >t} = An{x € E|f(z) > t}. Therefore, by using

definition, it is easy to see the desired result. (]

Exercise 2.3 Suppose f and g are measurable on £ € M, then {x € F'| f(x) > g(x)} € M.
Note that {z € E|f(z) > g(z)} = U,_{z € E|f(x) > rn > g(x)}, where

Q = {rn}>2 . Furthermore,
{zeFB|flx)>r>g@)}={xcE|f(z)>r}n{zeE|g(z) <r,}

By Theorem 2.1, since f is measurable on E, {z € E'| f(x) > r,} € M; since g is measurable

on E,{z € E|g(x) < r,} € M. This shows {x € E| f(z) > r, > g(x)} € M and hence

{r e E|f(x)>g(x)} e M. O

#: Exercise 2.4 Suppose f is measurable on E' € M, then c¢f(z) and f(z) + c are also measurable
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on F, where ¢ € R is a constant.

Ifc=0,then {z € E|0 >t} =EnN{z e R"|0 >t} Foreveryt € R, ift <0,
then {x € R"|0 >t} = R";if t > 0, then {z € R"|0 > ¢t} = &. Since ENR" = E and
E N @ = @ are both measurable, 0 as a constant function is measurable on F. If ¢ # 0, then
forevery t € R, {z € E|cf(x) >t} = {x € E|f(z) > L} € M, so ¢f(x) is measurable on
E. Forallt € R,since {z € E|f(z)+c>t} ={zx € E|f(r) >t—c} € M when fis

measurable on F, we know f(x) + ¢ is also measurable on E. (]

#1  Exercise 2.5 Suppose f and g are measurable on E € M, then f + g is measurable on F.
By Exercise 2.4, take ¢ = —1, we can conclude —g(z) is measurable. For each fixed
t € R, —g(z) + t is measurable, so by Exercise 2.3, {z € E|f(z) > —g(x) +t} € M.
However, {x € E| f(z) > —g(z) +t} = {z € E| f(x) + g(x) > t}, so we proved f + g is
measurable on F if f 4 ¢ is well defined on FE. O

#: Exercise 2.6 Suppose f is measurable on 2 € M, then for any constant p > 0, | f|P is measurable
on E.
Fort <0,{z € E||f(z)P >t} =FE € M;fort >0,

{z e B||f(@)F >t} ={z € E| f(x) > "y U{z € E| f(z) < "7}

Since f is measurable on F, {x € F| f(z) < —t'/?} and {z € F| f(z) > t'/P} are in M by
Definition 2.1 and Theorem 2.1. Therefore, {x € E||f(x)|P >t} € M forall ¢ € R and hence

| f|P is measurable on E. O

#: Exercise 2.7 Suppose f and g are measurable on E € M, then f(z)g(x) is measurable on E.
Forallt e R, {z € E| f(z)g(z) >t} = AUBUC U D, where

A= {z € B| f(@)gx) > 1, (x)] < 00, |g(z)| < o0}
B ={xcE|f(x)g(x) >t,|f(x)] = 00, |g(x)| < o0}
C = {r € E| f@)g(a) > 1, |f(@)] < oo, |g(x)| = o0}
D ={z e E|f(2)g(x) > t,|f(x)| = o0, ]g(x)] = o0}

We need to prove A, B,C, D are all in M. For A, since f(x) and g(x) are finite, we can
write fg = 1[(f + 9)? — (f — 9)’]. By Exercise 2.5 and Exercise 2.6, we can conclude
fg is measurable on A = {x € E||f(z)] < oo} N{x € E||g(z)| < co}. By Theorem
21, {x € E||f(z)] < oo} ={z € E|f(zx) < oo} U{z € E|f(xr) > —o0} € M.
Similarly, {x € E||g(z)] < oo} € M. Thus, fg is measurable on A; € M. Therefore,
A={zc A | f(z)g(x) >t} € M.

For D, If f(x)g(x) = —o0, then it is impossible that f(z)g(x) > t;if f(z)g(z) = oo, then
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f(z)g(z) > tis always true. Therefore, D = D; U Dy, where
Dy = {x € E| f(z) = g(z) = o0} = {z € E| f(z) = 00} N {w € E|g(x) = o} € M
Dy ={z € E|f(z) = g(z) = —oo} = {z € E| f(z) = —oo}N{z € E[g(x) = —o0} € M

This finishes the proof of D € M.

For B and C, we only prove B € M here, because C' € M can be proved in exactly the
same way. Note B = By U By U B3, where

Br={z e E|0>1,[f(2)| = o0,g9(z) = 0}

By={x € E|0>t, f(x) =o00,9(x) >0}
Bs={z € E|0>t, f(zr) = —0o0,g(x) <0}

It is easy to see B1, B2, Bs € M. For example, B can be further decomposed into
Bi={zeE|0>t}n{zx e E||f(x)|=0c}N{z € E|g(x) =0} e M
Therefore, by using such decomposition, we can also prove By, B3 € M, so B € M. In
conclusion, A, B, C, D are all in M and hence f(x)g(x) is measurable on E. O

When we encounter a complicated set, we can decompose it into intersection or union
of several simple sets, and we try to prove each simple set is in M. If so, using the property of
M, we can prove the orginal complicated set is in M.

Exercise 2.8 Suppose f and g are measurable on £ € M. If g(z) # 0 on E, then % is
measurable on F.
Note forallt € R, {z € F| % >t} = AU B, where

A={ze E[f(z)>tg(x),g(x) >0}, B={xeE|f(x)<tg(x) g(x) <0}
Furthermore, we can write
A={zx € E|g(x) >0}n{z e E|f(x) >tg(x)} = A1 N Ay

By Theorem 2.1, A; € M. By Exercise 2.4, tg(x) is a measurable function on E for each fixed
t. Thus, by Exercise 2.3, As € M, and so A € M. Similarly, we can show B € M. Hence
{z e F| % >t} € M, and % is measurable on E. O
Exercise 2.9 Suppose f is continuous on R and g is measurable on E € M. Then (f o g)(z) =
f(g(x)) is measurable on E.

Forall t € R, let A, = f~1((¢,00)). Since f is continuous, A; must be an open set in
R. By Problem 1.1, 4; = (J2(af,bl), where (a},b})’s are pairwise disjoint open intervals.
Notice that

{z € E|f(9(x) >t} = {2 € E|g(x) € A} = [ J{z € E|aj, < g(x) <b}}
k=1
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and foreach k > 1,
{z € Elaj, < g(z) <t} = {z € B|g(z) <t} N{z € E|g(z) > a;.}
By Theorem 2.1, {z € E|g(z) < b} € M and {z € E|g(z) > al} € M, we can see

{z € E|dl, < g(z) < bl} € M. Therefore, the fact that M is closed under countable union
implies {z € E'| f(g(z)) >t} € M and so f(g(x)) is measurable on E. O

Exercise 2.10 Define fi(x) = max{f(x),0} and f_(x) = min{0, f(z)}. Then f(z) is
measurable on £ € M if and only if fi () and f_(x) are both measurable on E.

Suppose f(z) is measurable on E. Notice that
flx)|+ f(z flx)—1f(z
o < LOLHIE) ) S0 o)
By Exercise 2.6 with p = 1, | f(x)| is measurable on E. By Exercise 2.4, —| f(x)| is measurable
on E. By Exercise 2.5, |f(z)| + f(z) and f(z) — |f(x)| are both measurable on E. By
|f($)|2+f(w) and f(w)—2\f(m)\

Exercise 2.4 again, are both measurable on F, so f;(z) and f_(x)
are both measurable on E. Suppose fi(z) and f_(x) are both measurable on E. Notice that

f(z) = fy(x) + f-(z), so by Exercise 2.5, f(x) is measurable on E. O

Exercise 2.11 Let f,,(r) be measurable on E for all n > 1. Then F'(x) = sup,>1{fn(x)} and
G(z) = inf,>1{fn(x)} are both measurable on E.
Notice that for all t € M,
[e.e]
{zre E|F(z) >t} = | J{z € E| fulz) > t}

n=1

Therefore, since f,(x) is measurable, {z € E| f,(z) > t} € M for all n > 1. This implies
{r € E|F(z) >t} € M and hence F(z) is measurable on E.

Note that inf,,>1{ fn(z)} = —sup,>;{—fn(z)}. By Exercise 2.4, — f,, () is measurable
on E for all n > 1. Then, by what we proved just now, sup,,>1{— fn ()} is measurable on £.

Apply Exercise 2.4 again, we can see G(z) is measurable on F. O

Exercise 2.12 Let {f,}22, be a sequence of measurable function on E' € M. Then F(x) =
lim, . fn(z) and G(z) = lim,,—c0 fn(x) are measurable on E.

Note that F'(x) = inf,,>1 sup,, >, fn (), so if we let Fy,,(z) = sup,,>,, fn(z), then by
Exercise 2.11, F,,,(z) is measurable on E for each m > 1. Since F'(z) = inf,,,>1 Fy,(z), apply
Exercise 2.11 again, ['(x) is measurable on E. Similarly, G(x) = sup,,,~; inf,>m fn(7), so we
can use Exercise 2.11 twice to prove G(x) is measurable on F. (]

In particular, if F(z) = lim, o fn(x) exists on E, then F(z) is measurable on E.
This because if the limit exists, then F(x) = lim,, oo fn(z) = lim, . fn(z) and Exercise

2.12 can be applied.
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=, Problem Set 2.1 <>

1. Let f be defined on EE € M, and f be finite on E. Prove that the following are equivalent:
(a). f is measurable on F;
(b). f~1(G) € M for all open set G C R.
(¢). f~Y(F) € M for all closed set F' C R,
(d). f~Y(B) € M for all Borel set B C R.

2. Prove that monotone increasing function defined on [a, b] is measurable.

3. Let f be defined on [a, b]. Suppose for all [, 8] C (a,b), f is measurable on [« 3]. Prove
f is measurable on [a, b].

4. Let f be differentiable on [a, b]. Prove that f’(x) is also measurable on [a, b].

5. Define f : R? +— R such that f(z,y) is a measurable function of x € R for each
fixed y. Also, for each fixed z, f is a continuous function of y € R. Define F'(x) =
max,c(o,1] f(,y). Prove that F'(z) is measurable on R.

6. Let E C R". Prove that E' € M if and only if /g (z) is measurable on R", where /()
is the indicator function (see Definition 2.3) of set E.

7. Let f(x) be real-valued and measurable on E € M with m(E) < oo. Prove that
for all € > 0, there exists bounded measurable function g(z) defined on E such that
m({z € B| f(z) # g(@)}) < e.

8. Construct an example in which f is measurable and g is continuous, but f o g is not

measurable.

2.2 Simple Approximation

Definition 2.2. Simple Function

Let f(x) be an extended real-valued function on E € M. If f(E) is a finite set, i.e.,

F(E) ={y1,...,yp} where y; # y; for 1 <i # j < p, then f is a simple function. Iy

Definition 2.3. Characteristic Function

Let EE C R"™, then the characteristic function (indicator function) of E is defined to be

1 ifxeF
Ig(z) =
0 ifz¢FE

&

Simple function can be written as linear combination of characteristic function of
pairwise disjoint sets. Let f(x) is a simple function on F, and f(E) = {v1,...,yp} where
y;’s are distinct values for i = 1,...,p. Then define E; = f~!(y;) fori = 1,...,p, and
E = |J!_| E; where E;’s are pairwise disjoint. Thus, f(z) = Y7, yilp,(z) for z € E.

Furthermore, on different E;’s, f(x) has different values.



2.2 Simple Approximation

Definition 2.4. Measurable Simple Function

If f is measurable on E and f is a simple function, then f is called measurable simple

function.

&

#  Exercise 2.13 A simple function f is measurable on & € M if and only if E; € M, where E;’s
are defined in the remark of Definition 2.3.
Proof As we shown in the remark of Definition 2.3, f(z) = >0, y;I,(x), where E; =
f~Y(y;). If f is measurable on E, then by Theorem 2.1, E; = {z € E| f(z) = y;} € M. If
E; € M, then by Problem Set 2.1, Question 6., If;, (x) is measurable on R". By Exercise 2.2,
Ig, () is also measurable on any measurable subset of R”. Thus, I, () is measurable on E
forevery i = 1,...,p. By Exercise 2.6, y; I, (x) is measurable on E. By applying Exercise 2.5

p — 1 times, we can prove Y ©_; y; I, (x) is measurable on E, so f(z) is measurable on E. [J

Now we show the main theorem of this section, i.e., simple approximation theorem. This
theorem is a fundamental theorem in measure theory. It provides a theoretical foundation for
us to use simple function to explore some property and easily extend it to general measurable
function.

Theorem 2.3. Simple Approximation Theorem

Suppose f(x) is measurable on E € M.

1. If f(x) > 0 on E, then there exists a sequence of measurable simple functions
{or(2)}32, s.t. for each fixed x € E, {¢(x)};2, is a increasing sequence and
0 < ¢r(z) < oo for k € NT, and ¢p(x) — f(z) pointwisely. Moreover, if
|f(x)| < M forall x € E, then ¢(x) — f(x) uniformly on E with |y (z)| < M
forallz € E and k € NT,

2. There exists a sequence of measurable simple functions {¢y(x)}72, s.t. ¢p(x) —
f(x) pointwisely on E and |¢(z)| < oo for all x € E. Moreover, if |f(x)| < M
forall x € E, then ¢y(x) — f(x) uniformly on E with |¢py(x)| < M forallx € E
and k € NT. V)

Proof
1. For each fixed k € N7, let Ey,; = {$ € E|]2;k1 < flz) < 2]7} forj =1,...,k2* and
let By = {x € E| f(x) > k}. Then for each fixed k € NT, E = £} U <Ufik1 Ekj>. Let
Il w e By, i=1,... k2

or(z) =4 2
k r € By

Therefore, ¢y () is a simple function. Also, ¢x(x) = Zfikl jQ;klIEk]. (x) + klg, (x). By
construction of Ej,; and Ey, since f is measurable on F, Ey; € M and £}, € M. By using
a similar argument as in the proof of Exercise 2.13, we can prove ¢y (z) is measurable on

E. This shows {¢(z)} is a sequence of measurable simple functions on E s.t. for each
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fixedz € E,0 < ¢p(x) <
soon Ejj, pp41(x) > jT = ¢ (x). This shows ¢11(x) > ¢r(z) on E. By construction
of ¢x(), pr(z) < f(x) forall k > 1.

Now it remains to show ¢ (z) — f(x) pointwisely on E. Fix xg € F, then f(zg) —
¢r(ro) > 0. Suppose f(zp) < oo, there exists K s.t. f(zg) < k for all k£ > K.

oo for k € NT. Observe that Ey; = E(k+1)(2j71) UE(k+1)(2j),

Qk 35> we have

|f(zo) — dr(x0)| < 2% — 0 as k — oo. This shows limg_, o ¢x(zo) = f(z). Suppose

Thus, zg € Ej; for some j. Since ¢p(zg) = =1 and le < flxg) <

f(xo) = oo, then zp € Ey, for all k > 1. Thus, ¢(z9) = k — 0o as k — oo. In this case

we also have limy_,, ¢r(z9) = f(x¢). Therefore, ¢r(z) — f(x) pointwisely on E.

Finally, suppose there exists a constant M > 0 s.t. |f| < M on E. In this case when
k> M, E, = &,soforall z € E,if k > M, then x € Ej; for some j. Then
0 < f(x) — ¢p(z) < 55 forall z € E. Since 5
uniformly on E. Since 0 < ¢y (z) < f(z), itis trivial that |¢g(z)| < M forall z € F and
ke NT.

. For general measurable function f, recall f(x) and f_(x) defined in Exercise 2.10, and
we have f(2) = f+(a) + J—(2) = f+(2) — (—f—(x)). Since f1(z) and —f_(x) are
both nonnegative, by part 1., there exists measurable simple functions ¢ (x) — f4(x) and

Yr(x) — —f—(x) on E pointwisely. Therefore, ¢ (z) — ¢ (x) — f(z) on E pointwisely.

is independent of x, ¢y (x) — f(z)

Let ¢ (x) = pr(z) — ¢¥r(x), then it is easy to see ¢ () is also simple and measurable.
Since both ¢y (z) and i (x) are finite on E, ¢ (z) is also finite on E.

If |f(z)] < M forall z € E, then |fy(x)] < M and | — f_(z)| < M on E. By part
I., or(z) = fi(z) uniformly and ¢i(z) — —f_(z) uniformly. Therefore, it is easy to
see ¢r(x) — f(x) uniformly. Finally, we need to prove |¢x(x)| < |f(z)] for all x € E.
For each z € E, if f(x) > 0, then f(z) = fi(x) and —f_(z) = 0, so by construction
in part 1., we know ¢, () = 0 for all £k > 1. This shows ¢x(x) = @i (x), but by part 1.,
0 < pr(a) < f1 (x), we have |4 (2)] < | £(2)]. I £(x) < 0, then |f(x)] = —f_(x) and
f4(x) = 0. Similarly, we have ¢ (z) = 0 for all k£ > 1, so ¢y (x) = —t)i(x). By part 1.,
0 <vYp(z) < —f_(x)on E,so |pp(x)] < |f(z)| < M forall z € E.

(]

=, Problem Set 2.2 <

. Let I be a closed, bounded interval and £/ a measurable subset of I. Let ¢ > 0. Show that

there is a step function h on I and a measurable subset F' of I for which h = I on F' and

m(I\F) <e.
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2.3 Egorov’s Theorem

Definition 2.5. Almost Everywhere

Let E C R™. A statement S(x) involving points © € E is said to be almost everywhere
(abbreviated to a.e.) on E if there exists Z C E with m(Z) = 0, and S(x) is true for all

x€FE\Z. %

Example 2.1 Let f(z) and g(x) be defined on E. Suppose m({z € E| f(z) # g(z)}) = 0,
then f(z) = g(z) a.e. on E.

Example 2.2 Let f(x) and g(x) be defined on E € M. Suppose f(x) is measurable on F and
f(z) = g(x) a.e. on E. Then, g(z) is also measurable on E.
Proof Forallt € R,

{reFllglx)>t}uZ={xcE|f(z) >t} UZ
where Z = {z € E|f(z) # g(x)} with m(Z) = 0. Since f is measurable, we have
{r e E|f(x) >t} € M,and thus {z € E|g(x) >t} UZ € M. Notice that
{reFElglx) >t} UZ={x e E|lg(z)>t}U(Z\{r € E|g(x) >t}) =AUB
where A and B are disjoint. It is easy to see B € M because m*(B) < m(Z) = 0 implies that
m*(B) =0. Thus, A = (AUB)N B¢ € M, ie, {x € E|g(x) >t} € M. This shows g(x)

is measurable on E. U

Definition 2.6. Almost Everywhere Convergence

Let f(z) and {fn(x)}>2, be measurable functions defined on E € M. If Z C E
with m(Z) = 0, and for all x € E \ Z, we have lim,,_, fn(x) = f(x), then we say

fn(z) = f(x) almost everywhere on E.

&

Remark If we only assume f,(z)’s are measurable on E, then we can still show f(z) is
measurable on E. This is because by the remark of Exercise 2.12, f(x) is measurable on E \ Z.
Also, {z € Z| f(z) >t} C Z implies that {x € Z | f(x) > t} € M because its outer measure
is zero. This shows f(z) is also measurable on Z. By Exercise 2.1, f(z) is measurable on
(E\Z)UZ =E.

Definition 2.7. Almost Uniform Convergence

Let f(x) and {fn(x)}22, be measurable functions defined on E € M. Assume each

function is finite a.e. on E, i.e., for all n > 1, there exists Z,, C E with m(Z,) = 0 and

|fn(z)| < coforall x € E\ Z,. We say fn(z) — f(x) almost uniformly (abbreviated
toau.) on E asn — oo if for all § > 0, there exists Es C E with m*(Es) < 6, s.t.

fn(x) = f(x) uniformly on E \ E5 as n — oo.

&
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Example 2.3 Let fiy(z) = ¥ where z € E = [0,1]. Denote f(z) = 0 for z € [0,1) and
f(1) = 1. Then fi(z) — f(z) pointwisely on E as k — co. Note that fi(x) does not converge
to f(x) uniformly on F because f(x) is not continuous on E. However, fx(z) — f(z)a.u. on E.
For any small § > 0, let E5 = [1 — 6/2, 1], then m*(Ej;) < 6. Since |f(z)| < (1 —6/2)* =0
on E\ Ej, fr(z) — 0 uniformly on E \ Ej, and thus we can conclude f(xz) — f(x) almost

uniformly.

Recall in elementary mathematical analysis course, we have learnt that uniform convergence
implies pointwise convergence but not vice versa. Then, one may ask what is the relationship

between almost uniform convergence and almost everywhere convergence?

Let f(z) and { fn(2)}5°, be finite a.e. and measurable on E € M. Suppose f,(x) —

f(z) a.u. on E, then f,(x) — f(x) a.e. on E asn — <.

=

By definition of a.u. convergence, for all ¢ > 1, there exists F; C E s.t. m*(E;) < -
and f,(z) — f(x) uniformly on E \ E;. Now let Ey = (.2, Ej, then m*(Ep) < m*(E;) for
all © > 1. Take ¢ — oo, we have m*(Ep) = 0. Consider any € E'\ Ej, since
E\Ey=ENES=EnN (GE) = G(EmEf) = J(B\ E)
i=1 i=1 i=1

there exists at least one i, s.t. © € E'\ E;,. Since f,, — f on E\ E;, uniformly, f,(z) — f(x)
for this fixed z as n — oo. This shows f,(z) — f(z) pointwisely on E \ Ey, and thus
fn(x) = f(x)ae. on E. O

In general, almost everywhere convergence cannot implies almost uniform convergence.
For example, take fi(z) = I(_j ) (x) forallk > 1and E' = R. Let f(z) = 1 on E. Obviously,
fr(z) — f(x) pointwisely (hence almost everywhere) on E as k — oo. However, f(z) does
not converge to f(x) a.u. on E. Suppose fi(z) — f(x) a.u. on E, then there exists £y C E
with m*(E1) < 1s.t. fy(z) — f(z) uniformly on E'\ E;. Notice that there exists a sequence
{xn}02, st &, € E\ Ej and z,, — oo. To verify it, suppose not, then sup(E \ E;) < M
for some constant M > 0. Since £ = R, (M, 00) C E;. However, this is impossible because
m*(E) < 1 and m*((M,00)) = oco. For all k € NT, there exists nj s.t. z,, > k and

| f(2n,) — f(x)| = 1. This shows fi(z) does not converge to f(x) uniformly on £ \ Ej.

From the above theorem and its remark, we can see that just like the relation between point-
wise convergence and uniform convergence, a.e. convergence is weaker than a.u. convergence.
However, The more astonishing fact is that if we restrict the domain of the functions to be of
finite measure, i.e., m(F) < oo, then a.e. convergence is equivalent to a.u. convergence. This is

proved by the following great theorem - Egorov’s Theorem - which is also the title of this section.
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Let f(x) and { f,(x)}22 be finite a.e. and measurable on E € M. If m(E) < oo and
fn(z) = f(x) a.e. on E, then f,(x) — f(z) a.u. on E.

Let § = {z € E|[f(z)] = 00} U (UpZi{z € E[|fu(2)] = 00}), then m*(S) = 0.
Notice that f(x) and f,,(x)’s are all finite on £/ = E'\ S € M. Notice that it suffices to show
Jn(x) = f(x)a.u. on E because if so, then for all § > 0, there exists £ C E' and m*(E§) < ¢
st. fo(z) = f(x) uniformly on E' \ E§. Let E5 = E5U S, then m*(Es) = m*(Ej§) < ¢
and f,(xz) — f(z) uniformly on E \ E5 = E"\ Ej. Also, since f,(z) — f(z) ae. on E,
fn(x) = f(x)ae. on E.

Let Z = {x € E'| fo(x) 4 f(x)}, then m(Z) = 0. Observe for all x € Z, there exists
€z s.t. | fn(z) — f(x)| > €, for infinitely many n’s. This shows there exists an integer [, > 1
st | fu(z) = f(z)] > i for infinitely many n’s. Define E' = {z € E'||f,(z) — f(z)| > 1}.
Since E' € M and f,(z) — f(x) is measurable on E’, it is easy to show E]' € M. Then for
all z € Z, there exists [ s.t. € £y’ for infinitely many n’s. By Problem Set 1.2, Question
6., z € limy,_yo0 E} for some ;. Therefore, Z C Ufil(ﬁn%w El"). Also, we can prove

U2 (limy,—y00 EJY) C Z by using the same argument reversely. Thus, Z = ;2 (limy, 00 EJ).

Again, by Problem Set 1.2, Question 6., we can write Z = (J;°, (\o._; U,—,,, E*. Denote
F" = Jo2, El', then F/" € M. Since F/" is decreasing w.rt. m and m(F/") < oo
(because ;™" C E'), by continuity of Lebesgue measure, lim;,, oo m(F}™) = m(limy, 00 F]™).
Since limy, o0 F]™ = (oo_y F/" C Z, m(limy, 00 F{™) = 0 for all [ > 1. This shows
limy, 0o m(F]™) = 0 for all [ > 1. Therefore, for all 6 > 0, there exists m; > 1 s.t.
m(F™) < & foralll > 1. Let E5 = U2, F;™, then m(Es) < 372, & = 6. We claim that
fn(x) = f(z) uniformly on E’ \ Es. Forany x € E'\ Ej, since

) ¢ 00
E/\E(S :E,ﬁEg :Elﬂ (U Fv[’”ll) :Elﬁ <ﬂ(FVlml)C>

=1 =1
we have z € E' and z ¢ F/™ for all [ > 1. This shows |f,(z) — f(z)| < 7 when n > m.
Therefore, for all [ > 1, there exists m; > 1 s.t. |fn(z) — f(z)| < § for all n > my and
all z € E'\ Es. This means f,(z) converges uniformly to f(x) on E’\ Es. In conclusion,
fn(x) = f(x)au. on E'. O

= Problem Set 2.3 <

1. Let f(x) be measurable and finite a.e. on E with m(E) < oco. For each € > 0, show
that there is a measurable set F' contained in £ and a sequence {¢,(z)}°2 of simple
functions on FE such that ¢,,(x) — f(z) uniformly on F and m(E \ F) < e.

2. Let {fn(z)}72, be a sequence of measurable functions on E that converges to a real-

valued function f(z) pointwisely on E. Show that E' = | J;- ; Ej, where for each k, Ej is
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2.4 Convergence In Measure

measurable, and f,(z) converges uniformly to f(z) on each Ej if £ > 1, and m(E;) = 0.
3. Let { fx(x)}72 | be measurable on £ € M, where m(E) < oco. Suppose fi(x) — oo a.e.
on E as k — oo, then fx(x) — oo a.u. on E.
4. Let {fn(z)}52; be measurable on [0, 1] with |f,(x)| < oo for a.e. € E. Show that
fn(x)

there exists sequence of positive numbers c¢,, such that === — 0 a.e. on F as n — oo.
n

5. Let { fn(x)}52; be measurable on R and )\, be a sequence of positive numbers, satisfying

o0
Y m({z € R||ful@)| > Aa}) < o0
n=1
: |fn ()]
Prove that lim sup,,_,, *5— < lae. onR.

6. Let fx(z) be real-valued, measurable on E € M for all k € N*, with m(E) < oo. Prove

that fi(z) — O a.e. on E as k — oo if and only if

lim m ({x € E |sup|fp(x)| > 6}) =0
j—ro0 k>

7. Let fi () be real-valued and measurable on [0, 1] for all £ € Nt and ¢ € N* and satisfy

for all e > 0.

(a). Foreachfixed k > 1, fii(x) = fr(x)a.e. on[0, 1] as i — oo with some real-valued
fk(‘r) on [Oa ]-]
(b). fr(z) = g(x) a.e. on [0,1] as kK — oo, with some real-valued g(x) on [0, 1].

Prove that there exists k; and 4; such that fi ;. (z) — g(z) a.e. on [0,1] as j — oo.

2.4 Convergence In Measure

Definition 2.8. Convergence In Measure

Let f(z) and {fn ()}, be finite a.e. and measurable on E € M. If for all o > 0,
m({x € E||fn(z) — f(x)] > 0}) = 0as n — oo, then we say fn(x) — f(x) in

measure on E. &

Notice that here we can see the reason for restricting f(z) and f,,(x) to be finite a.e. on
E, because if not, say f,(x) = f(x) = oo on Awithm(A) > 0, then f,,(z) — f(z) is not defined
on A, and the definition fails to work. However, if f,,(x) — f(z) is only undefined on A with
m(A) = 0, then as long as m({x € E'\ A||fn(x) — f(z)| > o}) — 0, no matter you regard
|fn(z) — f(z)| > o for z € A as true or not, m({z € FE||fn(x) — f(x)| > o}) — 0 always
holds. That is to say, any set with zero measure can be ignored when we verify f,(z) — f(x) in
measure. Also, since we want to explore the relationship between convergence in measure and
a.u./a.e. convergence, we also require “finite a.e.” in the definition of them, although a.e. or a.u.

convergence solely doesn’t need this condition.

Problem 2.1 Let f(z) and {f,(x)}>2, be finite a.e. and measurable on £ € M. If f,(z) —

f(z) in measure on E, then for any measurable subset A C E, f,(z) — f(z)in measure on A.
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2.4 Convergence In Measure

Since convergence in measure is different from the usual convergence of sequence of
numbers, so we need to first verify it is well-defined, i.e., the limiting function is unique in some

sense. The following theorem shows the uniqueness of limit.

Theorem 2.6. Uniquess of Limit

Let f(x),g(x),{fn(x)}>2 be finite a.e. and measurable on E € M. If fp(x) — f(x)

in measure and f,(x) — g(x) in measure on E, then f(x) = g(x) a.e. on E.

v

Proof Observe |f(z) — g(z)| < |f(z) — fu(z)| + | fu(z) — gn(z)| forallz € E'\ A, where

A={ze El|f(z)] = oo} U{z € E[|f(2)| = 00} U (U{xEE||fn(x)|:oo}>

n=1

with m(A) = 0. Then Vo > 0,
{zr e E\A[|f(z) —g(x)| > 20} C{z € E\A[|fa(z) - f(2)] > 0}
Uf{z € E\Al|fa(z) — g(2)| > o}
Take measure (it is easy to see both sides are measurable sets) on both sides,
m({x € E\ Al|f(z) —g(x)| > 20}) <m({z € E\ A|[fu(z) - f(2)| > 0})
+m({z € E\ Al[fu(z) — g(x)] > 0})
Since f,(z) — f(x) in measure and f,,(x) — g(x) in measure on F, the RHS tend to zero as

n — oo. Thus, m({z € E\ A||f(z) — g(z)| > 20}) = 0 for all o > 0. Notice that

o0
1
(o€ E\ALS@) £ 0} = U {o € B\A [110) - ) > 1 }
k=1
Therefore, take o = ﬁ, we know every set inside the union on the RHS is of measure zero. By

o-subadditivity, we have
m({z € E\A|f(z) #g(z)}) <) 0=0
k=1
This shows f(z) = g(z) a.e. on E'\ A. However, since m(A) = 0, itcan also imply f(z) = g(x)

a.e. on . |

Now we are going to explore the relationship between a.u. convergence, a.e. convergence,

and convergence in measure.

Let f(z) and {f,(x)}>2 be finite a.e. and measurable on E € M. If f,(z) — f(x)

a.u. on E, then f,(x) — f(x) in measure on E.

Q©

Proof By the remark of Definition 2.8, we only need to prove f,(z) — f(x) in measure on
E' = FE\ A, where

A={zeE|[f(z)] = oo} U (U{wéEllfn(wN:OO})

n=1
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2.4 Convergence In Measure

because m(A) = 0. For all § > 0, there exists 5 C E s.t. m*(Es) < ¢ and f,,(x) — f(x)
uniformly on £\ Ej. For all ¢ > 0, there exists N(o) > 1s.t. |fu(z) — f(z)| < § for all
n > N(o) and z € E'\ Ej. Thus, for all ¢ > 0, there exists N (o) s.t. forall n > N(o),
{z € E'||fn(z) — f(z)| > 0} C Es. This shows m({z € E'||fn(x) — f(2)] > 0}) < ¢
by subadditivity. Take 6 — 0, m({z € E'||fn(z) — f(z)] > o}) = 0 for n > N(c). This
is even stronger than what we need, but anyway we can say for any fixed o > 0, as n — oo,
m({z € E'||fu(x) — f(z)| > 0}) = 0,50 fn(x) — f(x) in measure on E. O
Note that convergence in measure cannot imply a.u. convergence because it even fails
to imply a.e. convergence. For example, for all n € N7, define f,(x) fork =1,...,2" by
1 ze (55 4]

fnk(x) =

0 elsewhere on (0, 1]

Construct a sequence of function { f;(x)}:°, by letting fon_o41(z) = fni(x). It is obvious that
when i > 2", m({z € (0,1]||fi(z)| > 0}) = 5~. This shows f;(z) — 0 in measure on (0, 1].

However, f;(z) does not converge to 0 a.e., because for each n € N7,
antl_p

0.1 = |J {ze€0.1]]fi(z) =1}

i=2n—1
so for any fixed = € (0, 1], for each n, there exists iy, s.t. f;, () = 1. This shows f;(x) + 0 for
each fixed x € (0, 1]. Similarly, we can also find a subsequence of f;(z) s.t. it converges to 0 for

every x. This shows f;(z) cannot converge to any function a.e. on (0, 1].

One may think a.e. convergence is stronger than convergence in measure. Unfortunately,
this is only true when the domain is of finite measure. However, this is because Egorov’s
Theorem says a.e. convergence implies a.u. convergence, and it is a.u. convergence that can
imply convergence in measure. Thus, to construct a counter-example, we only need to consider
function defined on set with infinite measure.

Example 2.4 Let E = R and f,(v) = I(_p, ) (v) for all n > 1. Then it is obvious that
fn(x) — 1 pointwisely on R. However, f,(x) 4 1 in measure on R. This is because for all
€ (0,1),m{z e R||fn(z) — 1| > 0}) = cc forany n € N*.

Notice that in practice, sometimes we want to prove f,(x) — f(x) in measure on E for
some f(x), but f(x) is very hard to find or cannot be found. In this case, we shall consider

Cauchy criterion just like what we do in convergence of sequence of numbers.

Definition 2.9. Cauchy In Measure

Let { fn(z)}>2 be measurable on E and finite a.e. on E. We say { f,(z)}>2; is Cauchy

in measure if for every fixed o > 0, for all € > 0, there exists K € N* s.t.

m({zx € E||fu(x) — fj(x)| > 0}) <€, wheneverk,j> K
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2.4 Convergence In Measure

Let f(x) and {fn(x)}2, be measurable and finite a.e. on E. If f,(x) — f(z) in

measure on E as n — oo, then { f,,(x)}o2, is Cauchy in measure.

Define the same A as in Theorem 2.7, then m(A) = 0. Let E' = E \ A, then for all
o >0,

m({z € E'||fu(x) — f(z)| > 0/2}) = 0

Thus, for all € > 0, there exists N > 1 s.t. m({z € E'||fn(x) — f(x)| > 0/2}) < € for all
n > N. Observe that | fi,(z) — f;(z)| < |fr(z) — f(z)|+|f(x) — f;(x)| forall z € E’. Similar
to the proof of Theorem 2.6, we have
{z € E'||fu(z) — fj(2)| > o} C {z € E'||fu(z) — f(2)| > 0/2}
U{z € E'[If;(x) - f(x)| > o/2}
Therefore, by subadditivity, we have
m({z € E'||fr(z) = f;(x)| > o}) < m({z € E'||fu(z) — f(z)| > 0/2})
+m({z € E'|[f;(z) — f(x)| > 0/2})

Whenk, j > N,m({z € E'||fu(x)—fj(z)| > 0}) < 2¢,s0{fn(z)}>2; is Cauchy in measure.
O

Let {fi(x)}72, be measurable and finite a.e. on E € M. If {fi(x)}32, is Cauchy
in measure on E, then there exists measurable function f(x), finite a.e. on E and

fr(z) — f(x) in measure on E as k — oo. Moreover, there exists a subsequence

{fr; (@) }321 of { fu(2)}32, st fr,(x) = f(x) a.u. on E asi — oc.

Let A = (J2{z € E||fx(z)| = oo} and E' = E \ A, then m(A) = 0. Since
{fx(z)}32, is Cauchy in measure, for all € > 0, there exists K (e) > 1 s.t.
m({z € E'||fu(z) — f;(2)| > €}) <€, Vk,j=K(e) 2.1
Take € = %, let k1 = K(%), take € = 2%, let ky = K(Q%) s.t. ko > k1. Keep on doing this, let
ki = K(g) s.t. ki > k;_1 forall i > 2. Then we will have

m(fa € E'[[fi(z) = f(@)] > 27"} <27, Vij =k
In particular, for all i > 1, let E; = {z € E'||fx,,,(z) — fr,(z)] > 27"}, and we have
m(E;) < 27" Thus, > :2, m(E;) < oo and by Borel-Cantelli lemma, m (lim; o E;) = 0.

We first claim for all z € E' \ lim;_,o0 E;, fr, (z) — f(x) pointwisely for some f(x) as
i — oo. Notice that if z ¢ lim; oo E;, then z is in at most finitely many E;’s, so there exists
I, > 1st x ¢ E;forall i > I,. This shows |fy, ,(z) — fi,(z)| <2 ¢ forall i > I,. Thus,

>, (i () = fr;(2)) converges and { fy, ()}72, converges to some f(x) pointwisely on

i1
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2.4 Convergence In Measure

E'\ lim;_, E;. Tt is easy to extend f(z) to E’ because we can just let f(z) = 0 for all
x € lim; .o E;. In this case, f(x) is measurable on lim; . F; because m(lim; o F;) = 0.
By remark of Exercise 2.12, f(z) is measurable on E’ \ lim; o, F;. By Exercise 2.1, f(z) is

measurable on E’. Since f(x) is finite on E' \ lim; o E;, f() is finite a.e. on E’.
Next we claim that for each fixed o > 0, for each fixed k > 1,

{w € B'l|fi(z) = f(@)] > o} C lim {z € E'||fi() = fi,(2)| > o} U lim E;

1—00

If 2 € LHS, but = ¢ lim;_,o, F;, then by our first claim, lim; . fr;,(x) = f(x). Then there
exists M € Nt s.t. | fi, (x) — f(2)] < W for all i > M. Thus,

[fe(@) = f (@) = [ fu(@) = f(2)] = |foi(x) = f(2)] >0
This implies = € {x € E'||fi(z) — fr,(x)| > o} forall i > M, so for every fixed o > 0,

z € lim ({x € E'|[fp(z) — fi,(x)| > 0}), VE=>1

71— 00
This finishes the proof of our second claim. By subadditivity,

(e € B'|Ifu(o) - £@)] > o} < m 1 {0 € | ) = o (2] > )

11— 00

By Problem Set 1.4, Question 15.,
m <lirn{w € E'||fe(x) = fu,(x)] > G}> < lim m({z € E'||fx(z) — fr,(2)| > 0})

Note that for every fixed o > 0, for all € < o, there exists [(¢) > 1s.t. k; > K(e)if i > I(e).
Thus, for all £ > K (¢) and i > I(€), by Equation (2.1), we have

m({z € B |fu(@) — fiu(@)] > o}) < ml{z € B'| [fule) — fiu(@)] > e}) < e
This shows for each fixed o > 0, m({z € E'||fx(x) — f(z)| > o}) < eforall k > K(e).

Therefore, f(x) — f(z) in measure on E’ and hence on E.

Finally, we claim that fi, (x) — f(z) a.u. on E, so fi,(z) is just the desired subsequence.
For all § > 0, there exists 1(0) > Ls.t. 32725 271 < 8. Recall m(E;) < 35, so m(Ej) < &
where E5 = AU (U?i[(&) E;). Now we only need to prove fi (x) — f(z) uniformly on
E\ Es. Forx € E\ Es, since |fy, () — fr,(z)] < 2—12 for all © > I(d). By M-test,
> e 1(5)(friyr () — fr;(2)) converges uniformly on E'\ Es, so f,(x) converges uniformly on
E\ Es to some g(x). However, we have known fi, (z) — f(x) pointwisely on E’ \ lim;_,~ E;
and lim;_,, F; C Ufi]((;) Ei,s0 E\ Es C E'\ lim;_, F; and fy, (x) — f(z) pointwisely on

E\ Ejs. This shows f(z) = g(z) on E'\ Es and we are done. O

Conclusion Combined with Theorem 2.8 and Theorem 2.9, we know Cauchy in measure is equiv-
alent to convergence in measure. Furthermore, convergence in measure implies a.u. convergence

for a subsequence.
= Problem Set 2.4 -

1. Let E € M, fr — f in measure and g — ¢ in measure one F' as k — co. Prove that
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2.5 Lusin’s Theorem and Littlewood’s Three Principles

fx + g — f + g in measure on E as k — oo.

2. Let foo, fn, n € NT be measurable and finite a.e. on E € M, and suppose m(E) < oo.
Prove that if any subsequence f,, of f, contains a subsequence fnki which converges to
f a.e. on E as i — oo, then f,, — foo in measure on E as n — oo.

3. Let E € M and m(FE) < oco. Suppose f, — foo and g, — goo both in measure on E.
Prove that f,, g, — foogoo in measure as n — oco.

4. Suppose f, — fs in measure on £ € M; g is uniformly continuous on R. Prove that
go fn — go fin measure as n — 00.

5. Let fn; — fr in measure as i — oo on I € M. Also, f,, = fo in measure as n — o0.
Prove that there exists subsequence fy,,, i,, — foo a.u. as m — oo.

6. Suppose f, = fo inmeasureon £ € R, E € M. Assume f, is M-Lipschitz continuous

on F for all n > 1, prove that f,, — f a.e. asn — oc.

2.5 Lusin’s Theorem and Littlewood’s Three Principles

Up to now, you may still think measurable function is mysterious. Unlike continuous
function, which is very concrete and intuitive, measurable function is abstract and intangible. In
this section we will learn another very famous and great theorem which connect the continuous

function and measurable function.

Let f(x) be measurable and finite a.e. on E € M. Suppose f(x) is finite a.e. on E.
Then for all 6 > 0, there exists a closed set Fs C E s.t. m(E \ F5) < § and f‘Fg () (f

restricted on Fy) is continuous on Fj.

First, we show it suffices to prove the desired result for the case when m(E) < oco. If
m(E) = oo, then let B, = {z € E|k < |z| < k+ 1} for k € Nand E = (J;2, Ej with
m(Ex) < co. Suppose the desired result holds for the case when m(E) < oo, then forall 6 > 0,
there exists closed Fy, C Ej s.t. m(Ey \ Fy) < 2,5% and f| P (x) is continuous on F}, for all
k € N. Let F5 = ;- F. then Fj is closed by Problem Set 1.3, Question 4. and f‘Fa (x) is
continuous on Fj. Also, since E\ Fs = Jp—o(Ex \ Fi), m(E\ Fs) < > 02, 2,;% = 0. This
shows that the desired result is also true when m(E) = co. Therefore, from now on, we assume
m(E) < oo. Also, we can assume f(x) is finite on E because if we let Z C FE to be the set
where | f(z)| = oo, then m(Z) = 0. Let E' = E'\ Z, and if the desired result is true on E’,
i.e., we find the desired F5 C E’, then use this Fj, we still have the same result for F because
m(E \ Fs) = m(E'"\ Fs) < 0.

Then we prove the desired result for the case when f(x) is simple and measurable function.
Let f(z) = Zle yilg,(z), where y;,...,yr € R, E;’s are pairwise disjoint and measurable.
By Problem Set 1.4, Question 2., there exists closed F; C E; s.t. m(E; \ F;) < % for all
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2.5 Lusin’s Theorem and Littlewood’s Three Principles

1 =1,...,1. Let F§j = UZ 1 Fi, then Fj is closed and f‘F ) is continuous on Fj. Since
B\ Fs = Uiy (B \ Fi), m(B\ F5) < Sy m(E; \ F) < 6

Finally, we consider general measurable function f(z). By Simple Approximation Theorem,
there exists a sequence { ¢y (x) } 22 | of measurable simple functions.t. ¢y (x) — f(x) pointwisely
on E. Since gbk( ) is measurable simple function on FE, there exists closed F, C E s.t.
m(E\ F) < 2“1 and ¢y, ‘F ) is continuous on F}, for all k > 1. Define Fy = (), Fk, then
Fj is closed, and since E \ Fo = Uit (E\ Fy), m(E\ Fy) <> o2 m(E\ Fy) < 5. It is

also obvious that ¢y, ) is continuous on Fy for all k& > 1. Since ¢ (z) — f(x) pointwisely

| (@
on Fy and m(Fp) < oo, by Egorov’s theorem, ¢ (z) — f(x) a.u. on Fy. Thus, there exists
Fi C Fyst. m(Fy\ F}) < % and ¢p,(x) — f(z) uniformly on Fy. Notice that we can assume
Fl € M because in proof of Egorov’s theorem, the “FEs” we construct is indeed measurable.

) is continuous on Fy, ¢y ) is continuous on F, and thus its uniform limit

‘F ‘F
f ’ F ) is continuous on F1 Since F' 1 EM, by Problem Set 1.4, Question 2., there exists closed

Fs C Fyst. m(Fy \ Fs) < Z‘ Notice that

Since gbk

m@\%%ﬂﬂ@\%ﬂM%\EﬂMﬁ\%D<§+§+Z=5

and f ’ P ) is continuous on Fjs because f ‘ 7 ) is continuous on Fy. U

The last topic in this chapter is the famous Littlewood’s three principles of real analysis.

The statement of three principles is high-level idea of some theorem we have already proved.

1. Every measurable set is nearly the union of a finite collection of disjoint open
intervals.
2. Every measurable function is nearly continuous.

3. Every pointwise convergent sequence of functions is nearly uniformly convergent.

1. See Theorem 1.1, part 5.. Notice that closed cubes can be replaced by open cubes and the
results will not change.
2. See Lusin’s theorem.
3. See Egorov’s theorem.
O
The spirit of these principles lies in the word “nearly”. It means an approximation of a

general, abstract object by a simple, concrete object with desirable properties.
Example 2.5 Let f(x) be real-valued on R s.t. f(z +vy) = f(z) + f(y) for all z,y € R.

Suppose f(z) is measurable on R, then f(x) is continuous on R.
Notice that f(0) = f(0+0) = f(0) + f(0) implies f(0) = 0. If we want to prove f(z)
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2.5 Lusin’s Theorem and Littlewood’s Three Principles

is continuous at x, we need to verify for all € > 0, there exists 6 > 0s.t. |f(z+h) — f(z)] <€
forall |h| < 6. Since |f(x+ h) — f(x)| = |f(h) — f(0)], it suffices to show f(x) is continuous
atz = 0. Apply Lusin’s theorem on E = [—1, 1], and take § = %, there exists closed Fs C E's.t.
m(E\F5) < 3. Thenm(Fs) > Oand f‘Fa (x) is continuous on Fj. Since Fj is compact, f‘Fa (x)
is uniform continuous on Fjs. Thus, for all € > 0, there exists d; > 0s.t. | f(x) — f(y)| < e forall
x,y € Fsand |z —y| < 0. Since m(Fs) > 0, there exists a neighborhood (—d2, d2) C F5 — Fj
by Steinhauss theorem. Let 69 = min{dy, do}, then for all z € R s.t. |z| < dg, there exists
z,y € Fsand z = x —y st. |f(2)] = |f(x —y)| = |f(x) — f(y)] < e. This shows
f(z) = 0= f(0) as z — 0. Thus, f(z) is continuous at x = 0. O

Example 2.6 Prove that there exists a closed F' C [0,1] s.t. m(F) >0and FNQ = @.
Consider Dirichlet function D(x) defined on E = [0, 1] by

0 z€][0,1]\Q
1 z€[0,1]NQ

D(x) =

Let f(z) = 1 — D(x), then it is obvious that f(x) is measurable on £ = [0, 1] because
f(z) = Ijppo(z) where [0,1] \ Q € M. By Lusin’s theorem, take § = 3, then there exists
closed Fy C Es.t. m(E \ Fy) < 5. Thus, m(F}) > 3 and f‘Fl (x) is continuous on F. Note
(f}Fl)_l({l}) = F1 \ Q, and since {1} is closed, F} \ Q is also closed. Let F' = F \ Q, then
m(F) =m(F1) > 0, so F is the desired set. O

= Problem Set 2.5 <

1. Let f be real-valued and defined on £ € R", F € M, satisfying V& > 0, there exists
closed F5 C E's.t. m(E \ F5) < ¢ and f‘Fé is continuous. Prove f is measureable on E.
2. Let f be real-valued, measurable on a finite interval [a, b]. Prove that there exists sequence

hi st. hiy = 0, f(x + hg) — f(z) forae. = € [a,b] as k — oo.
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Chapter 3 Lebesgue Integration

3.1 Lebesgue Integrals of Nonnegative Measurable Functions

In this section, we are going to define a new type of integral which is different from
Riemann integral. Before we do that, let’s first do some review on Riemann integral and get

enough motivation to introduce a brand new integral.

Definition 3.1. Riemann Integral

Let f(x) be defined and bounded on [a,b] where a,b € R. Define a partition P =

{zo,...,zn} of [a,b]. Denote m; = infl,,_, .1 f(z), M; = sup, , . f(z), and
Ax; =x; —x;—1 fori = 1,...,n. Then the lower sum is 2?21 m;Ax; and upper sum
is Yoy MiAx;. Iflima_y0 >y miAx; and ima_o Y iy M;Ax; both exist and are
equal, where A = max{Ax;}!" |, then this limit is called Riemann integral of f(x) on

[a, b], denoted as ff f(z) du.

&

Remark In mathematical analysis, the Lebesgues Criterion for Riemann integrability says that

if f is Riemann integrable on [a, b], then f is continuous a.e. on [a, b].

It seems that Riemann integral has strong relation with continuity a function. However, since
we define a wider category of functions - measurable functions, we want to define an integration

that also works for some measurable but not continuous function, like Dirichlet function.

Definition 3.2. Lebesgue Integrals of Measurable Simple Functions

Let f(xz) > 0 be measurable simple function on E € M. Then f(x) = ZiI:1 yilg, (),
y; > 0 (y; can be o), E;’s pairwise disjoint and measurable, and E = UZ'I:1 E;. We

define the Lebesgue integral of f(x) on E as [, f(x) dx = Zle yim(E;). s

Example 3.1 Consider the function f(x) defined in the proof Example 2.6) on E = [0, 1]. Let
Ei=FEnNnQand E; = ENQC then f(z) =0 Ig, (z) + Ig,(z). Since B4 N E2 = & and
E = E1 U Es, by Definition 3.2, Lebesgue integral [, f(z) dz = 0- m(E1) + m(E2) = 1.

Exercise 3.1 Notice that for the same set F, there are infinitely many possible cases for E;’s in
E = UL, E;. For example, let E = [0,1] and f(z) = Ig(x), then f(z) = Ig, (x) + Ig,(x).
We can take Ey = [0, §) and E5 = [4, 1], but we can also take Ey = [0, 1) and E» = [,1]. Is
the Lebesgue integral defined in Definition 3.2 unique? Please verify that Lebesgue integral is
well-defined.

Proof  Suppose f(z) = Y21, yilg,(z) = ijl zjlF; (), where E = UL, E = U}']:1 F;,
E;’s are pairwise disjoint, F;’s are pairwise disjoint, and F;, F; € M forall: =1,...,landj =
1,...,J. Itsuffices to show Zfil yim(E;) = Z}-le zjm(F;). Notice that F; = U;-le(Ei NEj)
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foralli =1,...1 and F; = U,-Izl(Ei NF;)forallj=1,...,J. Thus,

I I J I 7 I
Zyim(Ei) = Zyim (U(Ez ﬂFj)) = Zyz (Zm(Ez‘ N Fj)) = Zzyim(Ei N F;)

i=1j=1

J I J I J
j=1 i= 1 j=1 1=1

j=1i=1
Since both of them are finite sum, we can exchange the order of summation, and it suffices to show
S E}]=1 ym(E; N Fy) = 321, Z}]:1 zim(E; N Fy). There are two cases, E; N Fj; = &
and E; N F; # @. If E; N F; = @, then z;m(E; N F;) = yy;m(E; N F;) = 0 is always
true. If E; N F; # o, then there exists 9 € F; N F;. By definition of E; and F} (see

remark of Definition 2.3), f(z¢) = y; and f(z9) = zj, so z; = y;. Since i, j are arbitrary,

S S (B N Fy) = Yo ST zym(E; N Fy) is proved. O

Property Let f(x) > 0 be measurable simple function on E € M. Then,
1 If f(x) < g(z) on E, then [ f( d:v<ng
2.IfACBCEand A, B e M, then [, f( J:<fB (x) dx.

If ¢ > 0 is a constant, then fch x) :U—cfE ) da.

If f(x) =0on E, then [ f( dac—Oevenlfm( ) = 0.

- Ifm(E) =0, then [, f(x) dv = 0 even if f(x) = co on E.

g f2) dz = [, I(2) f(x) dx.

S SRS IIE NJYE

p—

Suppose f(x) = ZiI—1 yilp,(x) and g(z) = Z‘-]_ zjlp, (z) where B = Uf_l E;, =
UJ 1 Fj, Ey’s are pairwise disjoint, F}’s pariwise disjoint, and Ej;, F; € M for all

t=1,...,7andj =1,...,J. By the same argument as in the proof of Exercise 3.1,
/f Vao =3 pm(E 0 F) . [ ot @) e =33 (BN E)
=1 j=1 E =1 j=1

For (i, ) pair s.t. E; N F; = @, yym(E; N Fj) = zym(E; N Fj). For (i,7) pair s.t.
E; N F; # @, there exists g € E; N F; s.t. f(xo) = y; and g(xg) = z;. Since
f(zo) > g(z0) > 0,y; > 2z; > 0. Thus, y;m(E; N Fj) > zym(E; N F;) for all (4, j) pair.
This shows
I J
f(z)de = Z Zyzm(El NF;) > ZZz]m(Ez NF;) = / g(x) dx
i=1 j=1 i=1 j=1 E

2. Suppose f(z) = Zi:l yilp,(x) where E = Ule E;, E;’s are pairwise disjoint, and

E,e Mforalli=1,...,1. Nowlet A;, = E;,NAand B; = E;NBforalli=1,... 1.

Then A = Ufil A; and B = UiI:1 B;. Furthermore, A;’s are pairwise disjoint, B;’s are
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3.1 Lebesgue Integrals of Nonnegative Measurable Functions

pairwise disjoint, and f(A4;) = f(B;) = {y;}. Therefore,

I I
/A f(z) dz = Zyimmi), / f(z) de = Zyim B

Since A C B, m(A;) < m(B;), thus [, f(z) dz < [5 f(z) dz.
3. Suppose f(z) = 21‘1:1 yilg, () where E = Ui:1 E;, E;’s are pairwise disjoint, and
E; e Mforalli=1,...,1. Then cf(x) = Y1, (cyi) I, (). Therefore,

/cf(x)dxzi@yz E) /f da:—cZyz
=1

Thus, [, cf(x) dz = c [, f(x) dz when ¢ > 0.

4. If f(x) = 0 on E, then f(a:) =0-Ig(z), and thus [ f(z) dv = 0-m(E) = 0 even if
m(E) = oo.

5. Suppose f(z) = 21‘1:1 yilg, () where E = Ufil E;, E;’s are pairwise disjoint, and
E;e Mforalli =1,...,I. Then m(E;) =0forall¢ =1,...,I because m(E) = 0.
Therefore, [, f(z) do = 3"1_, yim(E;) = 0evenif y; = oo foralli = 1,...,I.

6. Suppose f(z) = Zi:l yilp,(x) where E = U{:l E;, E;’s are pairwise disjoint, and
E; € Mforalli =1,...,1. Then let g(x) = Ig(x)f(x) be defined on R", and we
have g(z) = f(z) on E and g(x) = 0 on E°. This implies g(z) = ZZI+11 yilg, (z) where

Yr+1 = 0 and E[+1 = FE°. Thus,
I+1

1
(z) do = m(E;) = m(E;) = | f(x)dx

O

Definition 3.3. Lebesgue Integrals of Nonnegative Measurable Functions

Let f(x) be measurable and nonnegative on E € M. The Lebesgue integral of f(x) on
E is defined by [, f(x) dz = sup(S(f; E)), where set S(f; E) is

S(f:E) = {/Es(ﬂv) do

0 < s(z) < f(x), s(x) measurable simple on E}

&

#, Exercise 3.2 Use Definition 3.3 to generalize all six properties of Lebesgue integral for nonneg-
ative measurable simple functions to Lebesgue integral for nonnegative measurable functions.
Proof

1. By Definition 3.3, we claim S(f; E) C S(g; E). If the claim is true, then

/ f(x) dz = sup(S(f; E)) < sup(S(g; E)) = / o(z) de
E

E
To prove the claim, for all L € S(f; E), there exists nonnegative measurable simple s(x)

on Es.t. s(x) < f(z)and [, s(x) de = L. Since f(z) < g(z) on E, s(x) < g(x) on E,
so L € S(g; E). Therefore, S(f; E) C S(g; F) and we are done.

2. Take arbitrary element L € S(f;A), then there exists nonnegative measurable simple
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function s(z) on As.t. s(x) < f(x) and [, s(x) duz = L. Consider 5(x) on B defined by
5(z) = s(z) on Aand 5(z) = 0on B\ A. Then s(x) is a nonegative measurable simple

function on B s.t. §(x) < f(x). Notice that

L:/As(x) dx:/A§(a:) dasg/Bé(x) do

where the last inequality is due to property of Lebesgue integral for measurable simple
functions. This shows that for all L € S(f‘A) there exists L' > L s.t. L' € S(f; B).
This implies sup(S(f; A)) < sup(S( .50 [ f(z) dz < [ f(z) da.

. Take arbitrary L € S(cf; E), then there exists nonnegative measurable simple function
s(z) on E st. s(z) < ¢f(x) and [, s(x) de = L. Since ¢ > 0, —x < f(x). Note
that 5(z) = @ is also nonnegatlve measurable 51mple function on E. By property of
measurable 51mple function, [, §(z) do = L [, s(z) dv = Z. Thus, £ € S(f; E), and
soL < [ f(z) dz. Since Lis arbltrary, we have f pef(x) d:r < ¢ [z f(z) dz. Similarly,
take arbltrary L’ € S(f; E), then there exists nonnegative measurable function ¢(x) on E
s.t. t(x) < f(x) and [, t(x) dez = L'. Then t( ) = ct(:r) < ¢f(z) is also nonnegative
measurable simple function on E and [}, {(z) dz = ¢ [, t(x) do = cL'. Thus, cL’ €
S(cf; E) and cL' < [ cf(x) dx. Since I/ is arbitrary, cfE ) de < [pef(x

This shows [, cf(z) :E—cfE ) dx.

. If f(z) = 0 on E, then f(x) must be measurable simple function, so this one is the same
as the proof of the property for measurable simple function.

. If m(E) = 0, then S(f; E) = {0}, so [ f(x) dz = sup{0} = 0.

. Letg(z) = Ig(x) f(x) be defined on R", so g(a;) = f(z) on E'and g(z) = 0 on E°. This
shows [ g(x) dx = [, f(z) dz. By part 2., we have

/HIE(II,’)f(CU) d:c:/Rng(a:) de/g(a:) da;:/f(a;) dx

Now it suffices to show [o, Iz (x)f(x) dz < [ f(x) dx. For arbitrary L € S(g; R"),

there exists nonnegative measurable simple function s(a;) on R" s.t. s(z) < g(z) and

fR" ) dz = L. Notice that s ‘ E ) on E is also nonnegative measurable simple function

t. s] () < f(z), and by property of measurable simple function, I} E s’ p(x) dz =
fRnIE ‘E ) dx. Notice that I (z ‘E ) =0on E¢and Ig(x |E —3( ) on
E, but s(x) = 0 on E° because g(x) = 0 on E°. This shows Ig(z ‘E = s(x) on

R™, 50 [ s|,(x) do = [3, s(x) dz = L. Thus, LES(f E)and S(g;R™) C S(f; E).
Take supremum, and we obtain fRn ydr < [, f B ) dx.
O

Conclusion From property of Lebesgue integrals of nonnegative measurable simple functions

to Exercise 3.2, we can see that some properties of Lebesgue integrals can be generalized

from integrals for nonnegative simple functions to general nonnegative functions by definition.

However, in the next section, we will see that if we want to generalize some other properties, like
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linearity or integration term by term of Lebesgue integrals, from nonnegative simple functions
to nonnegative functions, we need to use the so called monotone convergence theorem (baby

version).
=, Problem Set 3.1 <~

1. Let f(z) be measurable and nonnegative on £ € M. Suppose [, f(z) dz = 0. Prove
that f = O a.e. on E.

2. Let f(x) > 0 be measurable on E € M, and positive a.e. on E with [, f(z) dz = 0.
Prove that m(E) = 0.

3. Let f(z) be measurable on [0,1] s.t. f (gc) > 0, for all z € [0,1]. Prove that for all
q € (0,1), there exists § > 0 s.t. fE ) dz > 9, whenever E C [0,1], E € M and
m(E) > q.

3.2 Monotone Convergence Theorem

In this section, we continue exploring properties of Lebesgue integrals for nonnegative
measurable functions. Similar to the last section, we first show the properties are true for

nonnegative measurable simple functions.

#1 Exercise 3.3 If f(z) and g(z) are nonnegative measurable simple functions on F, then
Jlr@ +g@lde= [ f@ ot [ o) ds
E E E

Let f(x) = 2L, yilp,(z), where E;’s are pairwise disjoint and E = J__, Ej;
g(z) = Z‘j]:l zjlp,(z), where Fj’s are pairwise disjoint and F = U‘j]:1 F;. By the same
argument in the proof of the first property of Lebesgue integrals for measurable simple function,
/f dx—ZZyl (BN Fy) / d:U—ZZz] (E; N Fy)
i=1 j=1 i=1 j=1
Notice that I, (x) = Zj:1 Ignr;(z) and I, (7) = Zi[:l Ig,np;(x) forany i = 1,..., I and

7=1,...,J,s0 we have
J I

I I
= Z Yi Z Ig,nF;(7) + Z Zj Z IginF;(x)
-1 =1 j=1 =1

This verifies that f(z) + g(z) is indeed a simple function, and thus,

/[f()+g dw—ZZymsz (E; N Fy) /f d:c+/()d

=1 j=1
O

) Exercise 3.4 Suppose F1, Fy € M, E = E1UE2 and F1, Eg are disjoint. If f ( ) is nonnegative

measurable simple function on E, then [, f(z) dz = [, f(x) dz + [, f(x) d.
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Proof By Exercise 3.2, part 6., we can write [, f(z) dx = [, Ip(x)f(x) dr and
f@do= [ In@f@ de, [ f@) o= [ 1@ d
El n E2 n
Notice that I (z) f(x) = I, (x) f(x) + Ig,(x) f(x) on R", so by Exercise 3.3,

/ () f(x) d = /R T, () (2) da + /R I, (0)f (@) do
This also shows [}, f(z) dz = [ f(z) dz + [g, f(z) da. O

Theorem 3.1. Monotone Convergence Theorem I (MCT-I)

Let { fn(2)}5° | be measurable simple and nonnegative on E € M. Foreach fixed x € E,

{fn(x)}22 is an increasing sequence in n. Let f(x) = lim,_ o0 frn(x), then

lim fn )da:z/ f(z) da:=/ lim f,(x) dz
E E’n*)OO

n—oo

Q@

Proof Since f,(z) is increasing for each fixed z, the pointwise limit of f,,(z) always exists
(perhaps equal to infinity), so f(x) is nonnegative measurable function (may not be simple).
Also, fn(z) < f(z) foralln > 1 on E, so by Exercise 3.2, part 1., [, fn(z) do < fE ) dx
for all n > 1. Take n — oo on both sides, we have lim,, f E fn(z) do < f B ) dzx. Notice
that this limit also exists because |’ 5 fn(z) dz is also an increasing sequence in n by applying

Exercise 3.2, part 1. to f,(x) < fuy1(x) forn > 1.

Now we only need to show lim, s [ fn(z > [ f(x) dz. It suffices to show
limy o0 [ fu(2) dz > Lforall L € S(f; E). Foreach L, there exists nonnegative measurable
simple function s(x) on E s.t. s(x) < f(x) and [, s(x) de = L. Let s(x) = Zle yilg, ()
where F;’s are pairwise disjoint and F = UZ 1 Ei. By repeatedly applying Exercise 3.4, we
have [, s(z) dx = S fE ) dz. Similarly, [, fn(z) do = S fEl fn(z) dz for all
n > 1. Therefore, we need to prove lim,, oo sz fo(z) dz > fEZ s(x) dx = y;m(E;) for all
i =1,...,I. Wediscuss three cases:

1. If y; = 0, then lim,, oo sz fn(z) dx > 0 = y;m(E;) is obvious.

2. If0 < y; < oo, then forall e > 0,let AS, = {z € E;| fn(x) > yi — €} € M. Since f,,(x)
is increasing, A{ C --- C Af, C ---. Notice that f(z) > s(z), and on E;, s(x) = y;, so
there exists large N s.t. foralln > N, f,,(x) > y; — €. This shows F; = lim,,_,o, AS,. By
continuity of Lebesgue measure, m(E;) = lim,,_,o, m(AS,). By Exercise 3.2, part 2. and
part 1., we have sz fn(z) dz > fA% fn(x) dz > fA yi —€) do = (y; —e)m(A,). Take
n — oo on both sides, we obtain limy, e [ fn(2) dv > (y; — €)m(E;). Take € — 0,
we have the desired result.

3. If y; = oo, then for all M > 1, define BM = {x € E;| f.(z) > M}. Since f,(z) is
increasing, BM < --- ¢ BM < -... Note that f(x) > s(x) = oo, so there exists large
N s.t. foralln > N, f,(z) > M. Thus, E; = lim,, o, BM. By continuity of Lebesgue
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measure, m(E;) = lim, o, m(BM). By Exercise 3.2, part 2. and part 1., we have
/ fn(x) dz > / fn(z) dx > M dx = Mm(BM)
E; B,A/I BJM

Take n — oo, we have lim,, 0 [ fu(x) dz > Mm(E;). If m(E;) > 0, then by taking
M — oo, we can obtain lim,,_, sz fu(z) do > oo = y;m(E;). If m(E;) = 0, then
yim(E;) = 0, so lim, sz fn(x) dz > y;m(E;) is trivial.

Combine all three cases, we finish the proof of this theorem. ([

Exercise 3.5 Prove the result in Exercise 3.3 and Exercise 3.4 is also true for general nonnegative
measurable functions.

For nonnegative measurable functions f(x) and g(z), by simple approximation theorem,
there exists sequences of nonnegative measurable simple functions {¢y}72, and {¢;}72 s.t.

or(x) — f(x) and ¥ (x) — g(z) pointwisely on E. By Exercise 3.3, for all £ > 1,

L)o@l o= [ o) dot [ i) do

Notice that ¢y (x) and vk (x) are increasing in k for each fixed z, so ¢x(x) + i () is also
increasing and converges to f(z) + g(x) pointwisely. Thus, by MCT-I, we have

[ 17@) + o) de = Jim [ [ou(a) + ula)] da

= klggo/Eqbk(x) dx + klggo/};/]k(x) dz

:/Ef(x) dx—l—/Eg(x) dx

To prove the result in Exercise 3.4 for general nonnegative measurable function, we can adopt

the same method as in the proof of Exercise 3.4. The details are omitted. (]

Exercise 3.6 Let f(z) be nonnegative measurable function on £ € M. If set Z satisfies
m(Z) =0, then [, f(x) dv = [p, , f()

By Exercise 3.2, part 5., we have fZ ) dx = 0. Since Z and E \ Z are disjoint, by
Exercise 3.5, [ f(z) dz = [, f(z) dox + fE\Zf ) dx = fE\Z f(z) dz. O

Problem 3.1 Let f(x) and g(z) be nonnegative measurable functions on E € M. Use the result
in Exercise 3.6 to prove

1. If f(z) = g(2) ae. onEthenfE z) dr = [, g(x)
2. If f(x) = Oae. on E, then [, f(z) dz = 0.

Exercise 3.7 Let f(z) be nonnegative measurable functions on £ € M. If [, f(z) dz < oo,
then f(x) is finite a.e. on E.
Let B={z € E| f(z) = co}. By Exercise 3.2, part 2., we have

/f m</f ) dz < 0o
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Since f(x) on B is a constant, so it is a simple function on B, and [, f(z) dz = oco-m(B) < oc.

If m(B) > 0, we will have co - m(B) = o0, so this contradiction shows m(B) = 0. O

Exercise 3.8 Let f ( ) be nonnegative measurable functions on £ € M. Prove that for all

a € (0,00), m(E, L[, f(z) dz, where E, = {z € E|f(z) > a}. This statement
corresponds to the famous Markov’s lnequallty in probability theory.

By Exercise 3.2, part 2., we have |’ g, [(2) de < [ f(x) dz. Since on Eq, f(x )
by Exercise 3.2, part 1., [, f(z) dz > [, adr=am(E, ) Thus, m(FE L f(

0

Recall we proved the linearity property of Lebesgue integrals for nonnegative measurable

functions in Exercise 3.5. By using induction, we can easily see that

/Eiz:;fi(w) dr = ;/Efi(x) dx

for nonnegative measurable functions { f;(z)}!"; on E € M. Now we want to prove this is
also true for sequence of nonnegative measurable functions { f;(z)}5°;. Such property is usually

called integration term by term property.

Let {fn(x)}22, be a sequence of nonnegative measurable functions on E € M. Let

f(z) 22211 fn(z) on E. Then fE )dz =73 30:1 fEfn(m) dx

For all fixed & > 1, S2F_ | fu(2) < f(z) on B, so [, 3F_| fula) dz < [, f(2) da
by Exercise 3.2, part 1.. By linearity property of Lebesgue integrals for nonnegative measur-
able functions in Exercise 3.5, 22—1 Jg fa(x) do < [ f(x) dz. Take k — oo, we have

S [ 5 fu(x) dx < Jef B ) dx. To verify the other direction, by simple approximation the-
orem, there exists nonnegative measurable simple functions { fy;(z)}32; s.t. fi;(x) — fi(z)
pointwisely and f;(x) is increasing in j on £ for each fixed & > 1. Let Sy, (z) = Zle fir(x),
then Sy () is nonnegative measurable simple function and Sy (x) < Sky1(x) on E forall £ > 1.
Also, f(x) > Sk(x), and we have limy_,~ Sg(z) < f(z). However, for each fixed m > 1,
if m <k, Sip(z) > >, fir(z). Take k — oo on both sides, limy_,~ Si(x) > > 1%, fi(x).
Take m — oo, we have limy_,o, Si(z) > f(x). Therefore, we have limy_, o Sx(x) = f(x).
By MCT-I, we have limy, o0 [ Sk(z) dz = [, f(z) dz. Since Sg(z) < S5, fi(z), b
Exercise 3.2, part 1., [, Sp(z) do < [, Zi:l fi a:) dz. By linearity property in in Exercise
3.5, [u o8 fi(a) de = SF_, [, fi(x) dz. In conclusion,

/f(x) dr = lim Esk ) da < hmZ/ﬁ dx_Z/fl

Therefore, [, f(z) de < 307 [ fu(x) dz and the proof is finished. O
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Suppose E = |z~ Ex, Ex, € M, E}’s are pairwise disjoint, and f(z) is a nonnegative
measurable function on E. Then [ f(z) dz = Y32, fEk f(x) dx

Notice that this is a further generalization of Exercise 3.4 because it allows union of
infinitely many sets. In this case, we can adopt the same method as in Exercise 3.4. Let

fx(z) = Ig, (z) f(x) be defined on E, then f(x) = > ;2 fi(x). By ITT-I, we have

[ as=32 [ i) ae=3 [ 15,611 o
By Exercise 3.2, part 6., we have [, I, (z)f(x) dx = fR” Ig(x)Ig, (x)f(z) dz. Notice that
Ip(x)Ig, (x) = Ig, (x), s0 [pn Ip(x)IE, (z)f(z) do = fRn Ig, (z)f(x) dz. Apply Exercise
3.2, part 6. again, we have [p, Ig, (x ) f ( ) dz = [ f(x) dz. Thus, we obtain the desired
result, ie., [ f(z) dz =322, [5, f O

Now we are going to see an interesting application of the above corollary. Recall in the
definition of Riemann integral, we partition the domain into many subintervals and define the
limit of the upper sum and lower sum to be the integral value. In fact, we can define Lebesgue
integral in a similar way as Riemann integral, just with domain partition replaced by codomain
partition. The following example shows the details and that such kind of definition is equivalent

to our previous definition of Lebesgue integral for nonnegative measurable function.

Example 3.2 Let f(z) > 0 and measurable on E € M. Also, let f(x) be finite a.e. on E with
m(E) <oo. Letyg=0<y; < -+ <yg <--- withygy; —yx < dforall k > 0and yr — oo
ask — oo. Let By, = {x € E'|yx < f(z) < Yg+1}, then

I. [ f(®) de < oo if and only if Zk Oykm(Ek) < 0.

2. limg_y Zk oyem(Er) = [5 f(
Let Z = {x € E f(z) = oo}, then m(Z) = 0. Observe that £\ Z = Uzo o Er where
E}’s are disjoint and measurable. By Corollary 3.1, fE\Z f(z) de =372, fE ) dx. By
Exercise 3.6, [ f(z) dx = fE\Z f(z) dx. By Exercise 3.2, part 1., we have

yrm(Ey) = / yp de < | f(z) dx < / Yk+1 dz = yrr1m(Ey)
Ey FE Ep

Take summation on both sides, we have

Zykm Ey) < /f dfﬂ<zyk+1m Ep) <) (5 + y)m(Ex)
k=0

By J—additwlty, we have

Zykm(Ek) < / f(z) dze < dm(E) + Zykm(Ek)
E k=0

If fE ) dz < oo, Zk o yem(Eyx) < oo; if Y 72 g ypm(E)) < oo, then since dm(E) < oo,

f B ) dz < oo. Furthermore, take lim;s_, on both sides of the first inequality and then take
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3.2 Monotone Convergence Theorem

lims_,, on both sides of the second inequality (upper and lower limit always exists, although may
be infinite), we have
oo

lim ypm(Ey S/f dx<0—|—hm ykm Ek

0—0 kZO (Ek) E (@) 60 ,;) )
Since we always have upper limit no less than lower limit, all of the inequality above becomes
equality and thus the limit exists and is equal to [, f E ) dx. (]

This example shows that when m(E) < oo, we can define Lebesgue integral in a similar

way as Riemann integral. The y;’s can be regarded as a partition on codomain. However, in fact,

even if m(E) = oo, we can still prove the same result (see Problem Set 3.2, Question 6.).

Now, we are ready to prove the monotone convergence theorem for general nonnegative

measurable functions (MCT-II).

Let {fn(x)}>°, be measurable and nonnegative on E € M. For each fixed x € E,

{fn(z)}>2 is an increasing sequence in n. Let f(x) = limy, o0 frn(x), then
lim fn x) dx :/ f(x) dx :/ lim f,(z) dx

If there exists kg > 1 s.t. m(Ag) > 0 where Ay = {z € E| fi,(z) = co}. Notice that

f(z) is also nonnegative measurable function on £, so m(A) > 0where A={z € FE|f(z) =

co}. Then by Exercise 3.2, part 2., [, f(z) dz > [, f(z) dz = oo - m(A) = oo. Since

f i Jn() dxis anincreasing sequence in n, forall n > ko, we have J i fo(z) dz > J 5 Jro () d

Take limit on both sides, we have lim,, o [ fn(z) dz > [}, fx,(x) dz. By Exercise 3.2, part

2., [ fio(x) de > on Jio(®) dz = 00 -m(Ag) = oo. This shows lim, o [ frn(z) dz = oo
so the desired property holds.

If foralln > 1, m(E,) = 0 where E,, = {z € E| f,(z) = oo}, thenlet Eo, = J,~ | Ey,

and by o-subadditivity, m(E.) = 0. Denote E =F \ E, then since we have Exercise 3.6,

it suffices to show limy, oo [ fu () dz = [4, f(z) dz. For x € E', let g1(x) = fi(x) and
gn(x) = fu(x) — fn_1(zx) for all n > 2, then gn(x) is nonnegative measurable on E’ forn > 1.

By ITT-L, [, Y07 gn(x) dz = >"07 [5 gn(@) dz. Observe that 3" | g, (2) = fin(x), s0

Yoo gn(®) = f(x) and [, f(z) dz = limp oo Y ny [5 gn(x) dx. By linearity property
in Exercise 3.5, Y 1", fE, gn(z) dox = fE, " () do = fE, fm ) dx. Thus, we obtain
fE/ ) dz = limy, 00 fE/ fm(z) dz. O

Example 3.3 Let f(z) be nonnegative measurable function on R. Then

dm [ @ de= [ (@) da

Notice that here all integrals are Lebesgue integrals.
Let fn(x) = Ig, (z)f(x) on R, where E,, = (—n,n). Then it obvious that { f,,(x)}5°

n=1
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3.2 Monotone Convergence Theorem

is an increasing sequence of nonnegative measurable function on R. Moreover, f,(z) — f(x)
pointwisely on R. By MCT-IL, limy, o0 [ fn() dz = f]R ) dz. By Exercise 3.2, part 6.,
I} g, f(x) de = [z fn(x) dz. Thus, we have hmTHoo i) p, [(x) de = Jg f() da. O

At the end of this pretty long section, we are going to introduce a very famous and handy

lemma of Lebesgue integral for nonnegative measurable functions, the so called Fatou’s lemma.

Let {fn(2)}52, be a sequence of nonnegative measurable functions on E € M. Then

Jplim, o fo(z) de <lim, , . [5 fu(x) da.

Let gi(x) = inf,,>1 fn(z), then gi(z) is nonnegative measurable function on E for all
k > 1. Also, gi(x) is increasing in k for each x € E and gi(z) — lim,,_, . fn(x) pointwisely
as k — co. Apply MCT-II to {g;.} 22, we have [ limy_ gi () dz = limy_,o [ gr(x) dz.
Thus, [, lim, o fo(z) = limg_eo [ gr(x) da. Since gi(x) < fi(x), by Exercise 3.2, part
L, [gor(x) de < [ fi(x) de. Hence, limy . [pgx(z) do < limy . [o fu(z) dz. In

conclusion, we obtain [, lim,, , fn(z) < limy o [ fe(z) da. O

Example 3.4 Let { fn( )}>°, be a sequence of nonnegative measurable function on E s.t.
[z fo(z) dz — fE ) dz < oo and f,,(z) — f(x) pointwisely. Thenforall A C F, A € M,
S fn(x) de — [, f(x) dz.

By Fatou’s lemma, we have

lim n(x) de > lim f,(x) dx = z) dx
i [ fu@)do> [t pe)de= [ f@

n—oo n—oo
f(x) dx = / lim f,(x)dx < lim fu(z) dz
E\A E\A n—00 n—oo JE\A
Thus, by Exercise 3.5, [, f(z) do = [ f(z) dz — | g f(@) dr. Notice that this is valid
because |’ E\A f(z) de < f s ) dr < oo by Exercise 3.2, part 2.. Combined the above

inequalities, we obtain

lim fn ) dax > / f(x) dx — lim fn(z) dz

n—r00 n—oo JE\ A
Recall that limy, e (ar, + by) < limy, 00 @y + limy, 00 by, for any two sequences {a,, }°°; and

{b,}22 . Also limy, o0 (—ay) = —lim,,_,

lim (/ fn(x) dx — fulx ) / f(x) de — lim fn(z) dz
n—o0 E\A n—oo J E\ A

Combine all inequalities above, we have

lim fn ) dx > / f(z) dz > lim fn( ) dx

n—00 n—00

Since upper limit is always no less than lower limit, all 1nequaht1es can be changed to equalities

an. Thus, we have

and upper or lower limit can be changed to limit. This shows lim,, f A fn(x) dx = f A ) d.

0
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3.3 Lebesgue Integrals of Measurable Functions

=, Problem Set 3.2 <>

1. Let f(z) be nonnegative, measurable on E € M satisfying [, f(z) dz < oo. Let
Ep={z € E|f(z) >k}, k> 1. Provethat ) ;> m(E}y) < oc.

2. Let f(x) > 0 be measurable on E € M, where m(E) < oo. Prove [, f(z) do < oo if
and only if Y%, 28m(Ey) < oo, where Ej, = {z € E| f(z) > k} for all k > 0.

3. Let fi(z) be nonnegative and measurable on [0, 1] s.t. fx(xz) — oo a.e. on [0, 1]. Prove
that fo fr(x) do — oco.

4. Let fr(x) be nonnegative and measurable on E € M, fy(x) — foo(x) in measure on E.
Prove that [, foo(x) do < limy_, o [, fu(x) dx.

5. Let By, C [0,1], B, € M, forall k > 1s.t. m(Eg) > 6 > 0 where ¢ is a constant.

(

Assume for a sequence ay we have Y - |ag|Ig, (z) < oo ae. on [0,1]. Prove that

> ket lak| < oo
6. Prove that Example 3.2 is true even if m(F) = cc.

3.3 Lebesgue Integrals of Measurable Functions

In the previous two sections, we have explored many useful properties of Lebesgue integrals
of nonnegative measurable functions. Now we are going to finish our goal to define a new integral
for all Lebesgue measurable functions in this section. Recall that in Exercise 2.10, we decompose
any measurable functions f(z) into positive part f; (=) and negative part f_(z) and we proved
they are both measurable. This implies that we can write f(z) = fi(z) — (—f—(x)) where
f+(z) and — f_(x) are both nonnegative. Thus, it is natural to use the integrals of f (x) and

f—(z) to define the Lebesgue Integrals of general measurable functions.

Definition 3.4. Lebesgue Integrals of Measurable Functions

Let f(x) be measurable on E € M. Ifat least one of [ f+(x) dx or [,(—f-(z)) dx is
finite, then the Lebesgue Integral of f(x) on E exists and is defined as

JEC d:c—/f+ o= [ (~1-(@) do

If both [, fy(x) dx and [,(—f—(x)) dx are finite, then we say f(x) is Lebesgue
integrable on E and denote f € L'(E), where L'(E) is the set of all Lebesgue integrable

unctions on E.
° &

In particular, if f(z) is nonnegative measurable, then f(z) € L'(FE) is equivalent to
Jz f(x) dz < oco. Notice that fi (z) = f(z) and f_(x) = 0 on E, so [(—f_(x)) dz =0,

thus finite automatically.

#:  Exercise 3.9 Let f(z) be measurable function on E € M. Prove that f € L'(E) if and only if
|f| € L*(E), thatis, [, |f(z)| dz < cc.
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3.3 Lebesgue Integrals of Measurable Functions

If f € LY(E), then [, fy(z) do < oo and [,(—f-(z)) dz < co. Since fi,—f_
are both nonnegative measurbale, by remark of Definition 3.4, f,, —f_ € L'(E). Recall that

|f(z)| = fr(z) x)), by linearity of nonnegative measurable functions,
/|f |d:v—/f+ dx+/(f(x))dx<oo
Since |f(x)| i f (E). O

Now we explore some basic properties of Lebesgue integral for general measurable function
in the following exercises. Notice that many properties have occurred in the previous sections,

but they are generalized from nonnegative measurable functions to general measurable functions.

#: Exercise 3.10 If f(z) = Oa.e. on E € M, then f(z) is measurable on £ and [, f(x) dz = 0.
For ¢t € R, we want to prove £, = {z € E|f(x) >t} € M. If t > 0, since
E,c{x e E|f(x) #0}, m"(Ey) <m({z € E|f(x)#0}) =0, and thus E; € M. Ift <0,
then E\ By = {z € E| f(x) <t} C {x € E| f(z) # 0}. Similarly, we will have E \ E; € M
because it has zero outer measure. Since £ € M, E; = E\ (E \ E¢) € M. Thus, f(z) is
measurable on E. If f(z) = 0 a.e. on E, then it is easy to verify fi(xz) = 0 a.e. on E. Since
fi(z ) is nonnegative measurable, by Problem 3.1, [, f4(x) dz = 0. Similarly, we can prove
J(—=f=(z)) dz = 0 because — =0 a.e. on E. Thus,

/f da:_/f+ d:p—/(—f())dsz—OzO

]

#:  Exercise 3.11 If f(x) is measurable on E € M and f € L!(E), then f(x) is finite a.e. on E.
By Exercise 3.9, |f| € L}(E). Let E, = {x € E||f(x)| = co}. Suppose f(z) is not
finite a.e. on £, then m(Ew) > 0. Thus, ono |f(z)] dv = 00 m(E) = co. By Exercise 3.2,
part 2., [ [f(x)| dz > [, |f(2)] dz = oo. Therefore, f(x) is finite a.e. on . O

Problem 3.2 Let f and g be measurable on E € M. If g € L'(E) and |f(x)| < g(x) for all
x € E, then f € LY(E). In particular, if m(E) < oo and |f(z)| < M on E, then f € LY(E).

#: Exercise 3.12 Let f(x) and g(x) be measurable on E € M and ¢ € R. Suppose f € L'(E)
and g € L' (E), then
1. cfeLl(E)ande(cf(x dx—cfE ) dx.
2. f4+g€LE)and [,[f(z)+ g(z) dx—fE z) dx + [ g(x)
Compared with Exercise 3.5 and Exercise 3.2, part 3., the result we want to prove is a
more general version of linearity property for Lebesgue integrals.

I. If ¢ = 0, then ¢f(z) = 0 is a simple function on F, and thus we have

/E(cf(g:))dx_o.m(E)_o_o-/Ef(x)dx_c/Ef(x)dx
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3.3 Lebesgue Integrals of Measurable Functions

Since cf(x) is also nonnegative, by Exercise 3.9, c¢f(z) € L'(E).

If ¢ > 0, then we have (cf(x))+ = cfy(x). Since fi(x) is nonnegative by Exercise

3.2, part 3., [pcfi(x) do = ¢y fo(x) dx. Since f € LY(E), [;fi(z) dz <
oo, and thus [, cfi(z) dz < oco. This shows [,(cf(x))s dz < oo. Slmllarly, we
have —(cf( )), =c(—f-(x )) Since — f_ () is nonnegative, by Exercise 3.2, part 3.,
[pe(=f=(2)) do = ¢ [,(=f-(z)) dz. [,(—f-(2)) dv < oo because f € L'(E).
Thus, fE ()] do = fE f—(z)) dz < oo. By Definition 3.4, we have

/<cf< ydo=c [ fil@)do—c [ (-1 (@) da
(/f+ dm—/ —x))dx)zc/Ef(x)dx

This shows cf € L'(E) at the same time.

If c <0, then (¢f(x))+ = cf—(z) = (—c)(—f-(x)) and —(cf(z))— = —cfy(x). Notice

that — f_(x) and f4 (x) are nonnegative, by Exercise 3.2, part 3., we have

[ s dz = (=0 /E (~1-@)da, | (lefta () [ futa

Since f € LY(E), [,(—f-(2)) dz < co and [}, f4(z) dz < oo, s0

/E(cf(x)) do = (—c)/E S () dm+c/Ef+(x) dz
:c<[Ef+(x) dx—/E(—f_(x)) da;) :c/Ef(a:) d

This shows cf € L'(E) at the same time.
- Notice that | f(z) + g(z)| < [f(x)[ +[9()],

L@ +o@ldr < [15@1+la@l de = [ |f@]do+ [ o) do <o

where the first inequality is by Exercise 3.2, part 1., the equality is by Exercise 3.5, and
the second inequality is by the fact that |f| € L'(E) and |g| € L'(E). Thus, we obtain

f+g € LY(E). Observethat f+g = (f+g)++(f+9)—. f = f++f-andg = g+ +9g_,
sowehave (f+¢)+ + (—f-)+ (—9-) = f+ + g+ + [ (f + g)—]. Take integration on

both sides over E, since each term on both sides is nonnegative, by Exercise 3.5, we obtain

/E (F(2) + g(2)s da + /E (—(x) da + /E (—g_(2)) dz
- /E fulw) dr+ /E g4 (x) d + /E ~(f(x) + g(a))_] da

Notice that the six terms above are all finite because of f,g,f + g € L'(E), so by

manipulating these terms, we have

/ (F(2) + g(x))y dz — / —(f(z) + g(z))_] da
E

:/Ef+(x) dx—/E(—f_E(x)) da:-i-/ g+() da:—/E(—g_(x)) dx

which is exactly equivalent to [,[f(z) + g(z)] dz = [, f(2) dz + [, g(x
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3.3 Lebesgue Integrals of Measurable Functions

Exercise 3.13 Suppose f(z) and g(x) are measurableon E € M andg € L*(E). If f(z) = g(x)
a.e. on F, then f € L'(E) ande z) de = [, g(x)

Since f(z) = g(z) ae. on E, f(z) — (w) = 0 ae. on E. By Exercise 3.10,
Jslf( (x)] dx = 0, and thus f — g € L'(E). Since g € L'(E), by Exercise 3.12, we have

(f—w+g=feL% ). Also,
[ @ de = [ (@) - @) + ()
E E
(

d
:Lm@—aﬂm+éﬂww=éﬂﬂw
O

Exercise 3.14 Suppose f(x) and g(z) are measurable on £ € M and f,g € LY (E). If

f(x) < g(x)onE, [, f(x)de < [, g(x) de.
Take ¢ = —1 in Exercise 3.12, we have — f € Ll(E), thusg— f =g+ (—f) € L'(E).

Since g = g — f + f, we have [, g(z) do = fE — f(z)) + f(2)] dz. By Exercise 3.12
again, [, g(z) dv = [4lg(z) — f(x)] dz + [ f(x) dx. Notice that g(x) — f( ) > 0, so by
Exercise 3.2, part 1., [5[g(x) — f(x)] dx > 0. This shows [, g(x) dx > [ f(x) dz. O

Exercise 3.15 Let f(x) and g(z) be measurable on E € M. Suppose f € L'(E) and g(z) is
bounded on E. Prove that f - g € L'(E).

Note that there exists M > 0 s.t. |g(x)] < M on E, and thus |f(z)g(z)| < M|f(z)]
on E. Since |f(x)g(x)| and M|f(z)| are both nonnegative measurable function on E, by
Exercise 3.2, part 1. and part 3., [ |f(z)g(x)| de < [, M|f(x)| de = M [, |f(x)| dz. Since
feLYE), [,|f(z)] dr < ooand [, |f(z)g(z)| dz < oo,s0 f-g € L' (E). O

Exercise 3.16 Let f(x) be measurable on E € M. Suppose f € L'(E), then similar to
Riemann integral, we have | [}, f(z) dz| < [, |f(z)| dx.

Notice that = f(x) < |f(x)|and =f € L'(E) (by Exercise 3.12), so by applying Exercise
3.14, Wehaveij:f da:<fE\f )| dz. By Exercise 3.12, [, +f(z) dv = £ [, f(x) d.
Thus, we have + [, f(x) do < [ |f(x)| dz, which is equivalent to the desired result. g

Exercise 3.17 Let f(z) be measurable on E € M. Suppose Jp f(x) dz existsand E = AU B

where A, B are disjoint measurable sets. Prove [, f(z) dz = f W f(x) de + [5 f(x) de.
Since [, f(x) do = [, f+(x) do — [L(—f- ) dz, by Exercise 3.5,
/f+ dl’—/f+ d$+/ fi(z (1)
/PLWW@M—/PﬁwDW+/Pﬁ@DM @)
E A B
Since [, f(x) dx exists, either [, fi(x) dx or [L(—f-(x)) du is finite. If [, fi(z) dz is

finite, then both [, fy(x) dz and [ fi(x) dx are finite . Thus, [, f(z) dz and [, f(z) dx
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3.3 Lebesgue Integrals of Measurable Functions

exist. If fE —f-(x)) dx is finite, then both [,(—f_(z)) dz and [5(—f-(x)) dz are finite.
Thus, [, f A ) dzand [4 f B ) dx also exist. In any case, we can use equation (1) minus equation
(2), and we will obtain the desired result. U
Exercise 3.18 Let f(z) be measurable on ' € M. Suppose [, f(x) dx exists. Prove

Iz f( da:—fE\Zf dmwhereZEMandm( ) =0.
By Definition 3.4, we have [, f(x) do = [, f+(2) de — [, —f—(x) dx. Since fi(x)

and — f_(x) are both nonnegative measurable, by Exercise 3.6,

/ fr@yde= [ pite) de | -r@a- [ I ds

Since [, f(x) dx exists, either [, f4(z) dzor [, —f_(x) dx is finite, so either [ Bz fo(z) dx
or fE\Z —f_( ) dz is finite. This shows fE\Z f(x) dx exists and

[ = / vt de / L
:/Ef+(x) da:—/E—f_(a:) da::/Ef(a:) dz
O

Notice that f(x) is measurable on E if and only if f(z) is measurable on E'\ Z when
E € M and m(Z) = 0. Thus, we can use exactly the same argument to prove if | 2t (z) dx

exists, then [}, f(z) dx also exists and [, f(z) dz = [, , f(x

Exercise 3.19 Let f ( ) be measurable on £ C R"™, E € M.

1. Suppose [y, f(x) dx exists. Prove that fR” Ig(z)f(x) dz exists and
/ ) dox = / f(z
2. Suppose [p, Ir(x)f(x) dz exists. Prove that [}, f(x) dx exists and

/Ef(x) dx—/RnIE(x)f(x) dx

. By Definition 3.4, we have [, f(z) dz = [ fi(x) dz — [ —f_(x) dz. Since f (z)

and — f_(x) are both nonnegative measurable, by Exercise 3.2, part 6.,

/ fi(z) do = /R In(2) f1 (2) da, / (@) dv= | —f (@)Ip(z)da

R
Similar to the proof of Exercise 3.18, either [, Ig(x)fy(z) dx or [, —f—(2)Ip(x) dx

is finite, s0 [, f(2)Ip(x) dz exists and

[ t@ls@) o= [ Tp@)fi@) do— [ - (@p(a) do

[ r@ar- [ ~r@a= [ f@)a

2. Since [, Ip(x)f(x) dx exists, either [o, [Ig(x)f(x)]+ dxor [5, —[Ip(x)f(2)]- dxis
finite. Notice that, [Ig(x)f(z)]+ = Ig(x)fr(x) and —[Ig(z)f(x)]- = —f—(x)Ig(z)
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on R". Thus, either [5, Ip(x)fy(x) dx or [g, —f—(x)Ig(x) d is finite. Notice that

f+(z) and — f_(x) are nonnegative measurable functions, by Exercise 3.2, part 6.,

/ fi(z) do = /IR In(2) 1 (2) da, / @) do= [ —f-(@)Ts(a) da

Therefore, either [ fy(x) dx or [, —f_(x) du is finite, so f 7 f(x) dz exists and
[ t@ o= [ f@ o= [ @)@
- [ @@ do— [ 1 @1s) da

= [ We@i@ o= [ ~lp@f@]do= [ f@)s) do
U

Problem 3.3 Let f(x) be function defined on Z. If Z € M with m(Z) = 0, then f(x) is

measurable on Z and [, f(z) dz = 0.

Problem 3.4 Let f(z) be measurable function on £ € M and f € L'(E). Suppose A C E
and A € M, then f € L'(A).

34

= Problem Set 3.3 <

. Let f(z) be nonnegative measurable on [0, 1]. Prove that if there exists constant A < oo

s.t. fo f¥(x) dx = Aforall k > 1, then f(2) = Ig(x) a.e. on [0, 1] for some E C [0, 1].
Suppose f € L'(R), £(0) = 0, f'(0) exists. Prove that ( ) ¢ L'(R).

. Let f(x) be measurable on R, ¢ € R\ {0} and @ € R. Suppose f € L!(R). Prove that

flcx +a) € LY(R) and [ f(cx + a) do = e L e f(y) dy.

. Let E C Rand E € M. Suppose f(z) is measurable on E and f € L'(E). Prove

fE,lfcm—{—a)dm—'c'fE ) dy forall c € R\ {0},a € R.

. Let f € LY(R), and a > 0. Define F(z) = >.°° __ f(z/a + n). Prove the series

n=—0oo

converges absolutely for almost all z € R, F € L([0, a]) and F is periodic with period a.

Dominated Convergence Theorem

In this section we are going to introduce another fundamental theorem in real analysis:

dominated convergence theorem (DCT). In addition, we are going to explore many useful prop-

erties of Lebesgue integral induced by DCT. Finally, we are going to introduce another mode

of convergence - L'-convergence - and the relation between it and other modes of convergence

discussed before.
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Theorem 3.4. Dominated Convergence Theorem

Let F(x) and { f(x)}32, be measurable functions on E € M s.t. |fi(z)] < F(x)
ae. on E. Suppose F € L*(E) and fy(x) — f(z) a.e. on E for some f(z). Then
Sz | fe(x)—f(z)] de — 0ask — co. Inparticular, limy,_,o [ fr(x) de = [ f(x) da. 0

Proof Let By = {x € E|fy(z) A f(2)} and E§ = {z € E||fu(x)] > F(x)} for
all k > 1. Also, let By = |2, ES, then we can show m(E;) = m(F2) = 0. Since
F € LY(E), by Exercise 3.11, F(z) is finite a.e. on E. Thus, if B3 = {z € E||F(z)| = o},
m(E3) = 0. Denote E' = E; U Ey U E3, and we have m(E’) = 0. Now, it suffices to
show fE\E, |fi(x) — f(z)| dz — 0 as k — oo because of Exercise 3.6. Notice that on £\ E’,
| fx(x)| < F(z)everywhere and since F'(x) is finite everywhere, each fj () is finite everywhere.

Furthermore, f;(z) — f(x) pointwisely on E \ E’.

Let A= E\ E', then A € M. Since F € L*(E), by Problem 3.4, F € L'(A). Notice
that | fx(z)| < F(x) on A forall k > 1, so by taking & — oo, | f(z)| < F(x) on A. By Problem
32, fr € L'(A) and f € L'(A). Let gp(x) = |fe(x) — f(x)| for each k > 1 on A, then
gr(z) — 0 pointwisely on A. Also, it is easy to show g (z)’s are nonnegative measurable on A
with gi(7) < 2F(z). By Exercise 3.12, 2F € L(A). Thus, by Problem 3.2 again, g € L*(A)
for all £ > 1. Apply Fatou’s lemma to 2F'(z) — gx(x) > 0 on A, we obtain

tiw [ (2F(@) — gula)) do > [ lim @F(@) - gu(o) = [ 2P(0) da

k—oo J A A k—oo

By Exercise 3.12,
lim [ (2F(z) — gr(z)) dx = lim </ 2F (z) dz —/
A

k—oo J A k—o0 A

:/2F(w)dx— hm/gk(ﬁ) dz
A k—oo J A

Thus, we obtain limy,_,o [, gx(x) dz < 0. This implies limy_,o [, gi(2) dz = 0. Therefore,

() diﬁ)

Jpve 1fr(@) = f(2)| dz — 0 as k — oo. Since m(E') = 0, by Exercise 3.6, we obtain
Sz | fe(x) = f(x)] de — 0 as k — oco.

To prove the claim after “In particular”, observe that

£ ([ a0 o [ f@as) = [ (o)~ @) do < [ 7o) - s0)] o

where the equality is by Exercise 3.12 and the inequality is by Exercise 3.14. Thus we have
| [ fr(x) dz — [, f(z) dz| — 0as k — oo, which is equivalent to the desired result. O

Example 3.5 Suppose f(z) is measurable on E C R, E € M, and f € L'(FE), prove that
lim f(z)dx = / f(z) dz
ENBy E

k—oo
where By, is the open ball with radius k centered at the origin.
Proof Since f € L'(E), and E N By, C E is measurable, by Problem 3.4, f € LY(E N By).
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3.4 Dominated Convergence Theorem

Thus, fEﬁBk f(z) dz exists. By Exercise 3.19,

/EmBk flw) de = /n Ieng, (z) f(z) do

Since [, IenB, () f(x) dx exists, by Exercise 3.17,

/n Igng, (z) f(z) do = /JEIEmBk($)f(CU) dx +/ Ipnp, (2) f(z) dz

R7\E
Notice that Ipp, (z)f(z) = 0on R™ \ E, so

[EmBk flw) do = /R Tenp, (@) f(w) dz = /E Ipnp, (2)f(x) do

Denote fi(z) = Ipnp,(x)f(x), then fi(x) is measurable, | fi(x)| < |f(z)|, and fx(z) = f(z)

pointwisely on E. By DCT with f(z) as dominating function, we have

lim f(z) dx = klgrolo/Efk(x) dr = /E f(x) dx

k—o00 ENBy,

Proposition 3.1. Differentiation Under the Integral Sign

Let f(x,y) be defined on E X (a,b), where x € E € M, y € (a,b) witha,b € R. If
o for each fixed y € (a,b), f(x,y) isin L'(E);
o for each fixed x € F, g—i(x, y) exists for all y € (a,b);
o there exists g € L'(E), yo € (a,b) and § > 0 s.. ‘g—g(x,y)’ < g(x) for each fixed
r € Eandally € (yo — 6,y0 +9) C (a,b).
Then we can exchange the order of differentiation and integration, i.e.,

B dw]y_y - [ L)

(0]

dx
Y=Yo ‘

Proof For small enough h € R, since for fixed y, f € Ll(E), by Exercise 3.12,

Jp f@,y0 +h) dz — [ f(z,90) dﬂf_/ f(@,y0 + h) = f(z,90)
h ~ h

Since g—i exists on (a, b) for each fixed z, f(x,y) is continuous on [y — d, yo + 0] for small § > 0

dx

s.t. h < 6. Then we can apply mean value theorem, i.e. there exists 6 € (0,1) s.t. h < § and
h) —
/ f@yoth) = J(@y0) 4 _ / OF (1. yo + 0m) da
E h E Oy

Pick arbitrary sequence hj, — 0 with hy, # 0 for all & > 1. Let uy(z) = f(m’yOJrh,’;z*f(x’yO),

then uy(z) is measurable on E and |ug(z)| < g(x) on E for all k > 1. Since g € L'(FE) and
ug(z) — %5(:6, Yyo) pointwisely on F, we can apply DCT to uy(z). Thus,
) + h dr — 9 d . 8
i Je (@Yot ) de = [ f(z,y0) de () dm:/ 7f($’y0) I

By definition of limit, this implies the desired result. U

Note Since the definition of f € L'(E) includes the condition that f(z) is measurable on
E € M, sometimes we only say f € L'(E) with E € M and omit the measurablity condition.
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3.4 Dominated Convergence Theorem

Theorem 3.5. Riemann Integral is Lebesgue Integral

If f(x) is Riemann integrable on bounded interval [a,b), then f € L'([a,b]) and

R) [ ’ fla) do = (£) / e

where (R) stands for Riemann and (L) stands for Lebesgue.

©

Proof Recall Lebesgue’s Criterion for integrablility, f(x) is Riemann integrable if and only
if f(z) is bounded and continuous a.e. on [a,b]. Let B be the set of discontinuous points of
f(z) on [a,b], then m(B) = 0. This implies f(z) is continuous on [a,b] \ B € M, so f(x)
is measurable on [a,b] \ B, hence measurable on [a b]. Since f(x) is bounded on [a,b], by
Problem 3.2, f € L'([a,b]). Let Py = {af,...,z

min}*, [#¥ — 2¥ || - 0as k — oo. Since f(x) is Riemann integrable, the Riemann sum

, be a sequence of partition of |a, b] s.t.
nk q P

converges, i.e., > 150 f(xF)(aF — aF) — ( fa f(x) dx as k — oco. Let

f(x5) = € 26, 2})

flah,) @€ lay _y o]
Then f;(z) is measurable simple and bounded by M on [a, b]. Also, fx(x) — f(z) a.e. on [a, b]
because for = € [a,b] \ B, fi(z) — f(x). We can verify this by using f(x) is continuous on
[a,b] \ B, 1i.e., forall € > 0, there exists 0 > 0 s.t. forall |y — z| <, |f(y) — f(x)| < e. Thus,
for all € > 0, we can find K s.t. for all k > K, min}*, [2¥ — zF || < 6, then fi(z) = f(y)
where |y — x| < ¢, and thus | fx(z) — f(x)| = | f(y) — f(x)| < e. This shows fi(x) — f(x)on
[a,b] \ B. Therefore, by DCT, (L) f; fi(z) de — (L) [, ® f(x) da. Notice that by definition of
Lebesgue integral for measurable simple function, ( f fi(@) do =Sk f(ak)(af, —2b),

so the two limits (£) f: f(x) dx and (R) f(f f(x) dx coincides with each other. O

Theorem 3.6. Integration Term by Term II (ITT-II)

Let fy(x) be measurable on E € M and f,, € LY(E) for all k > 1. Suppose
Sorey S | fr(@)| do < oo, then "3 | fr(x) convergesa.e. on Eandy oo, fi € L' (E).

Furthermore, . .
/E;fk(a:) dx = ;/Efk(x) dx

Q©

Proof Let g(z) = 352, | fr(@)|, by ITTL, [, g(x) dz = 3230, [ | fr(x)| dz < co. Thus,
g € L'(E) and by Exercise 3.11, g(z) is finite a.e. on E. Thus, Y 7o, | fx(z)| converges a.e.
on E, and so does >~ ; fr(z). Since [> 72 fu(z)| < > pey |fr(x)| = g(z), by Problem 3.2,
S0 fr € LY(E). Let hy(z) = D00 1fk( ), then hy,(z) = >_p2; fr(z) ae. on E. Also,
|hon (z)] < g(z) on E, sobyDCT Sz hm(x) de — [53°72 fe(x) daas m — oo. Notice that
by Exercise 3.12, [, hp(2) do = >0, f 1 fr(x) dz, so the desired property holds. O
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3.4 Dominated Convergence Theorem

At the end of this section, we introduce another mode of convergence besides a.e. conver-
gence, a.u. convergence, and convergence in measure, that is, L'-convergence. We will not go
deep into it because in the next chapter we are going to study LP-space systematically, and at that

time, we will generalize L'-convergence to LP-convergence and explore more properties of it.

Definition 3.5. L'-convergence
Let f(x) and fy(x) be measurable on E € M. Suppose f € L'(E) and fy, € L*(E) for
all k > 1. We say fi(z) = f(z) in L"(E) if [, |fe(z) — f(z)| dv — 0 as k — oo.

&

Notice that the conclusion in DCT can be regarded as Ll-convergence, so in short, DCT
says if a sequence of function is bounded by Lebesgue integrable function, then a.e. convergence

implies L'-convergence.

Let f(x), g(x), and f(x) be measurable function on E for all k > 1.
1. If fe(x) = f(x) in LYN(E) as k — oo, then fi.(z) — f(x) in measure.
2. If |fu(z)] < g(x) on E where g € LY(E), then fy(x) — f(x) a.e. implies
fr(@) = f(2) au

1. For all o > 0, recall Markov’s inequality in Exercise 3.8, we have

m({z € B||fulz) - [(z)] > o}) < /|fk (2)] da

Since fx(x) — f(x)in L*(FE), the RHS converges to zero, so LHS also converges to zero,
and this means fy(x) — f(z) in measure on E.

2. Since g € L'(E), by Exercise 3.11, g(z) is finite a.e. on F, and since |fy(z)| < g(x),
fr(z) is also finite a.e. on E. Thus, we can observe that this statement is quite similar
to Egorov’s theorem, so we want to prove this statement by using the proof of Egorov’s
theorem. Notice that the only missing condition is that Egorov’s theorem needs m(F) to
be finite, so we need to scrutinize the proof of Egorov’s theorem, find out at which step we
used m(FE) < oo and try to obtain the same conclusion without using m(E) < co. In fact
we use m(FE) < oo only once in the whole proof of Egorov’s theorem, that is, when we
use the continuity of Lebesgue measure to prove lim,, o, m(F;™) = 0. Thus, if we can
prove that m(F}') < oo without using m(E) < oo, but by some new conditions in this
question, i.e., fx(z) is bounded by Lebesgue integrable function for all k¥ > 1, then we are

done.

Now we adopt all notations in the proof of Egorov’s theorem. Since |fx(x)| < g(x)
for all k > 1, and fx(z) — f(z) pointwisely on E'\ Z, so |f(z)| < g(x) on E' \ Z.
Since m(Z) = 0, it suffices to show m(Fj' \ Z) < co. Forall z € F}' \ Z, there exists
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3.4 Dominated Convergence Theorem

10.

io st |fi, (@) = f(z)] > . Since |fi, = f(2)] < |fi,| + [f(2)] < 2g(x), we have
ze{x € E|g(z) > 4} Thus, '\ Z C {z € E|g(z) > 5;}. By Markov’s inequality,

1
m(EM\ Z) <m ({a: € Elg(x) > QZ}) < 21/ lg(z)| dz < o0
E
som(F!) = m(F}'\ Z) < oo and we can use exactly the same proof of Egorov’s theorem.

O

=, Problem Set 3.4 <>

. Let fi(z) be measurable on E € M s.t. |fr(z)] < F(x) ae. on E, where F € L'(E)

and fi,(z) = foo(x) in measure on E. Prove that [, |fx(x) — foo(x)| dz — 0 as k — oo.
In particular, [, fi(z) dz — [} foo(x) dx as k — oc.

Let fi(z) be measurable and nonnegative on £ € M, where m(E) < oco. Prove that

fr(z) — 0 in measure on E iff [}, % dz — 0.

. Let fx(z) be nonnegative measurable on E € M. Let f € L'(E) s.t. fi(z) — f(x)in

measure on F and [}, fix(z) do — [, f(x) dz. Prove that [ |fi(x) — f(z)| dz — 0.

. Suppose f € LY(E), E € M. E = ;2| Ex, Ex € M, pairwise disjoint. Prove that

Jp F(@) da =32, [ f(a) de.

. Prove that for all f € L'(E), E € M, there exists a sequence f,(z) € L'(E), s.t. f is

bounded on E and f; — fin L'(E) as k — oco.

. Prove that for all f € LY(E), E € M, there exists simple functions fi(z) € L'(E) s.t.

fr — fin LY(E).

. Use “=" to denote “implies” and “—" to denote “after passing to a subsequence

implies”, complete the following diagram

converge a.u.

converge a.ce. ’ converge in measure

converge in L'(E)

in general case, special case when m(E) < oo, and special case when |f| < g € LY(E)

respectively.

. Suppose f € LI(E). Prove that for all € > 0, there exists § > 0s.t. foralle C E,e € M,

with m(e) < 8, we have [ |f(z)| dz < e.

. Let f, € L'(E)bes.t. fr, — fsoa.e. on E. Suppose m(E) < oo. Prove that fo, € L'(E)

and f, — foo in L' (E) if and only if for all € > 0, there exists d > 0s.t. [ |fi(x)| dz < e
for all K > 1 whenever e C E, e € M and m(E) < 4.

Recall there are two types of improper integral. One type is (Z) f; f(x) dz, which
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3.5 Fubini-Tonelli Theorem

can be regarded as lim,_,,+(R) fcb f(z) dx. If such a limit exists as a finite number,
then we say the improper integral (Z) fab f(x) dx is convergent. Also, the other type
T) [7 f(z) dx, which can be regarded as limg— — oo p—s00(R) ff f(z) dz. If such

a limit exists as a finite number, then we say the improper integral (Z) [~ f(x) dx is

convergent.

(a). Suppose the improper integral (Z) f; f(x) dx is absolutely convergent. Prove that
f e L'([a,b]) and (L) [° f(z) dx = (T) [* f(x) da

(b). Suppose (Z fa f(x) dzx is an improper integral and f € L'([a,b]). Prove that
7) f; f(z) dx is absolutely convergent.

(¢). Prove the same result for improper integral (Z) [ _OOOO f(z) dz asin (a). and (b)..

I1. Let o > —1. Define I'(c) = (L) [~ e~ “t**! dt. Prove Lebesgue integral

[e.9]

(o4 _
(ﬁ)/o T e =T(0) ) ——
n=1
Is the improper integral (Z) [;° = 2®™! dz convergent absolutely?

3.5 Fubini-Tonelli Theorem

Recall in calculus, for Riemann integrable function f(z,y) defined on [a, b] X [c, d] where

a, b, c,d € R, we can calculate the double integral by the iterated integral, i.e.,

g eten= ([ [ ([ o0 8)

However, this property is too restricted because f(x,y) needs to be bounded and a.e. continuous
on a closed rectangle. To make it more handy in practice, we want to generalize this property to
any Lebesgue integrable functions.

@ Throughout this section, we let R = R™ x R™2, where n = ni + no. Denote point

€ R as & = (x,y), where x € R™ and y € R"2.

Definition 3.6. Fubini Condition

Let f(x,y) be nonnegative measurable on R". f(x,y) satisfies Fubini condition if

(a). For almost every fixed v € R™, f(x,y) is measurable on R™2.
(b). Let g(x) = [gny f(,y) dy, then g(x) is measurable on R™.
() Jgn 9(x) dx = [ f(2,y) d(z,y).

Furthermore, the set of all nonnegative measurable functions on R" satisfying Fubini

condition is denoted as F. &

Notice that for the second part, for those = s.t. f(z,y) is not measurable on R"2, g(x)
is not well-defined by the formula because Lebesgue integral is only defined for measurable
function. To resolve this problem, we can simply define g(z) = 0 for those x and it will not

affect the value of [., g(z) dx by Exercise 3.6.
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3.5 Fubini-Tonelli Theorem

If f € F, thenc- f € F forall constant ¢ > Q.

If f1, fo € F, then f1 + fo € F.

Iffi,fo € F, fo € LY(R™), and f1 — fo > 0 on R™, then f1 — fo € F.

Suppose fr, € F for all k € N and fy(x,y) is increasing in k for all fixed
(z,y) € R™ If fp(z,y) — f(z,y) pointwisely on R", then f € F.

5. Suppose fr, € F for all k € Nt and fi(z,y) is decreasing in k for all fixed
(z,y) € R™ If fr(xz,y) — f(z,y) pointwisely on R™ and there exists ko > 1 s.t.
fry € LY(R™), then f € F.

RN b~

1. Since f € F, f(z) is nonnegative measurable function on R™. By Exercise 2.4, c¢f(z) is
also nonnegative measurable function on R". To prove cf € F, it remains to check the
three conditions in Definition 3.6.

(a). Since f € F, for almost every fixed x € R™, f(z,y) is measurable on R™2. Denote
A = {x € R™| f(x,y) is not measurable on R"2}, then m(A) = 0. By Exercise
2.4, cf(x,y) is also measurable on R™2 for z € R™ \ A.

(b). Let g1(x) = [gn, cf(z,y) dy and g(z) = [gn, f(z,y) dy, then g(z) and g1 ()
is well-defined on R™ \ A. Since f(z,y) is nonnegative, by Exercise 3.2, part 3.,
g1(z) = cg(x) on R™ \ A. Notice that g(x) is measurable on R, so by Exercise
2.2, g(x) is measurable on R™ \ A. By Exercise 2.4, g1 (x) is measurable on R\ A.
Since m(A) = 0, by Problem 3.3, g1 () is measurable on A. Therefore, by Exercise
2.1, g1(z) is measurable on R™.

(c). Since g(z) is nonnegative on R™!, by Exercise 3.2, part 3.,

/ g1(z) doe = / cg(z) doe = c/ g(z) dz
R™1 R™1 R™1
= C/Rn fz,y) dz,y) = /}Rn cf (z,y) d(x,y)
where the third equality is because f € F; the last equality is because f(z,y) is
nonnegative measurable on R™ and thus Exercise 3.2, part 3. applies.

2. See Problem Set 3.5, Question 1..

3. Since f1, fo € F, fi(x,y) and fo(z,y) are nonnegative measurable on R™. Notice that
fi — fo > 0 is well-defined on R”, then by Exercise 2.5, fi(x,y) — fa(z,y) is also
nonnegative measurable on R™. To prove f; — fo € F, it remains to check the three
conditions in Definition 3.6.

(a). Since f1, fo € F, for almost all z € R™, fi(z,y) and fo(z,y) are measurable
functions on R™2. Denote A; = {x € R™ | f;(x,y) is not measurable on R™2} for
Jj =1,2,then m(A;) = m(Az) = 0. Let A = Ay U Ay, then m(A) = 0. Notice
that f; — fo is well defined on R", so by Exercise 2.4 & 2.5, fi(z,y) — fo(x,y) is
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3.5 Fubini-Tonelli Theorem

(b).

(c).

also measurable function on R"2 for z € R™ \ A.

Let gj(2) = fany £3(,9) dy for j = 1,2 and g(z) = fyy [f1(2,) — fa(, )] dy.
Since fo € F, [pn, 92(2) do = [, f2(2,y) d(x,y). Combined with the assump-
tion fo € L*(R™), we have [p,., g2(2) dz < co. By Exercise 3.11, go(x) is finite a.e.
onR™. Let B = {z € R™ | g2(x) = oo} UA, thenm(B) = 0 and g (z) — g2(z) is
well-defined on R™ \ B. Since g;(x) and go(x) are measurable on R™*, by Exercise
2.2, they are measurable on R \ B. By Exercise 2.4 & 2.5, g1(z) — g2(x) is also
measurable on R \ B. Now we want to prove g(z) = g1(x) — g2(x) on R™ \ B.
Write f1 = (f1 — f2) + fo, then since f; — fo > 0and f2 > 0 on R™2 for each fixed
x € R™ \ B, by Exercise 3.5,

filay) dy= [ (few) = falw)) dy+ [ falay) dy
R"2 R"2 R"2

which is exactly g1 () = g(x) 4+ g2(z). On R™ \ B, since ga(z) is finite, we have
g(x) = g1(z) — g2(x). Thus, g(z) is measurable on R™ \ B. Since m(B) = 0, by
Problem 3.3, g(z) is measurable on B. By Exercise 2.1, g(z) is measurable on R"!.
Write g1 = (91 — g2) + g2. Since g1 — g2 > 0 and g2 > 0 on z € R™ \ B, by

Exercise 3.5,

[ a@d= [ la@-p@lds [ pd
R™\B R™M\B R™M\B
Notice that m(B) = 0, so by Exercise 3.6,

/ o1(z) do = / (g1(2) — g(@)] da + / go(z) do
R™1 R™ R™1
Since [pn, g2(2) dz < co, we can move it to the LHS, and we will have
[ @ -p@i=[ a@d- [ a@d 6D
R"1 R™1 R™1
Since f1, fo € F, we have
[ a@d- [ a@d= [ fwydoy- [ ) dey
Rnl ]Rnl Rn Rn
3.2)
Write fi1 = (f1 — f2) + fa. Since f1 — fo > 0 and fo > 0 on R", by Exercise 3.5,
& f1(96,y) d(x,y) = /]R [fl(l',y) - f2(x7y)] d($7y) + /]R f2($>y) d(:c,y)
Since [p, f2(2,y) d(x,y) < co, we can move it to the LHS, and thus we have

f](-T,y) d(SL‘,y) _/ [f1(1:7y) - f2(137y)] d(ﬂ?,y) = an f2($7y) d(l’,y)
3.3)

n

Rn
Combine Equation (3.1), (3.2), and (3.3), we have

| @) = m@ldo= [ [AG) = folwn)] do.y)
ny n
Recall g(z) = g1(x) — g2(x) on R™ \ B, so by applying Exercise 3.6 twice, we have

/R g(x) do = /R [91(%) — ga(x)] da

This shows the third condition holds, and so f; — f € F.
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3.5 Fubini-Tonelli Theorem

4. See Problem Set 3.5, Question 2..
5. Notice that f(z,y) is also nonnegative measurable on R"™ by the remark of Exercise 2.12.

It remains to show the three conditions in Definition 3.6.

(a). Since fi € F, for almost every fixed x € R™, fi(x,y) is measurable on R"2.
Let Ay = {z € R™| fx(z,y) is not measurable on R"2}, then m(Ay) = 0 for all
k > 1. Denote A = |J;2 | Ay, then m(A) = 0 and f;(x,y) is measurable on R"?
for all z € R™ \ A. By the remark of Exercise 2.12 again, f(z,y) is measurable on
R™ forx € R™ \ A.

(b). Let gp(x) = Jgns fu(@,y) dyand g(x) = [pn, f(x,y) dy, then g (z) is measurable
on R™. Since fi, € F, [gn, Gko(x) dx = [pn fio(z,y) d(z,y). Combined with
the assumption fi, € L*(R™), gr, € L'(R™). By Exercise 3.11, gy, () is finite
ae. on R". Let B = {z € R™ | g, (z) = oo} U A, then m(B) = 0. Thus, for
each fixed v € R™ \ B, fi,(z,y) isin L' (R™2). Since 0 < fx(x,y) < fi,(x,y) on
R™ for all k > kg for each fixed x € R"™ \ B, and fi(x,y) — f(z,y) pointwisely
on R™ for each fixed z € R™ \ B, by DCT, g(x) — g(z) pointwisely on R™ \ B.
Therefore, g() is also measurable on R™ \ B by the remark of Exercise 2.12. Note
that m(B) = 0, so by Problem 3.3, g(x) is measurable on B. By Exercise 2.1, g(x)
is measurable on R™!.

(c). Since 0 < fr(z,y) < fi,(x,y) on R™ for each fixed x € R™ \ A, by Exercise
3.2, part 1., 0 < gr(z,y) < gg,(x,y) on R™ \ A. Since gr(x) — g(x) ae.
on R™ and gy, € L*(R™), by DCT, [pn, gk(z) dz — [pn, g(z) dz. Now
consider fi(x,y) — f(z,y) pointwisely on R” and 0 < fi(z,y) < fi,(z,y) on
R™ for all k > ko with f, € L'(R™), we can apply DCT to fi(x,y), and we will
obtain [o, fx(z,y) d(x,y) — [g f(z,y) d(z,y). Notice that f € F implies
Jom 91(x) dx = [ fr(z,y) d(z,y), 50 [gn, 9(z) dz = [pu fr(z,y) d(z,y).

U

IfE CR"and E € M, then Ig(x,y) is in F where x € R™ and y € R"2.

Notice that I (z,y) is always measurable on R" because of Problem Set 2.1, Question
6.. We are going to divide the whole proof in five steps.

1. Suppose Ef = Ry X Ry, where R; is closed rectangle in R™ for j = 1,2. In this case
we can write Ig(x,y) = Ig,(z)Ig,(y). Now it remains to prove the three conditions in
Definition 3.6.

(a). Foreach fixed z € R™, Ig(x,y) = Ig,(y) or Ig(z,y) = 0 on R™2. Thus, Ig(z,y)
is measurable on R"? for each fixed z € R™. This proves the first condition.

(b). Letg(x) = [gn, IE(2,y) dy, then g(z) is well-defined on R™*. By Exercise 3.2, part
3., g(x) = Ir, () fgns IR, (y) dy = |Ra|Ig, (x). Since Ig, (x) is measurable on
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R™, by Exercise 2.4, g(x) is measurable on R"™*. This proves the second condition.

(c). By Exercise 3.2, part 3., [pn, 9() dz = |Ry| [gn, Ir,(z) dz = |Ry||R:1| = |E|.
Since E is also a rectangle in R”, [, Ig(x,y) d(z,y) = m(E) = |E|. This proves
the third condition.

2. Suppose E is open. Then by Exercise 1.3, E = |Jr; ¢k, where ¢;’s are almost disjoint

closed cubes. Thus, Ig(z,y) = > ioq I, (x,y) a.e. on R™ (the equality may not hold on
the boundary of each c;). Since ¢y, is closed cubes, it can be written as ¢, = R; X Ry
where R;’s are closed rectangles in R"7 for j = 1,2. Thus, by step one, I, € F for
all £ > 1. By Lemma 3.2, part 2., g, = » 4, I, € F for all m > 1. Notice that
gm(z,y) — Ig(x,y) pointwisely on R™ and g,,(z,y) is increasing in m for all fixed

(z,y) € R™, so by Lemma 3.2, part 4., Ig(z,y) € F.

. Suppose E is G set, then E = ()2, Gj, where G; is open. If G; is bounded, let

F, = ﬂle (. Notice that F}, decreases to E as k increases to 00, 80 I, (2, y) — Ig(z,y)
pointwisely on R™ and I, (z,y) is decreasing for each fixed (z,y) € R™. Since F}, is
open, by step two, F}, € F for all k > 1. Also, F} is bounded, so I, € L'(R™). Thus,
by Lemma 3.2, part 5., Ip € F. If G is not bounded, let G7" = G; N B,,,, where B,, is
the open ball centered at the orgin with radius m. Denote E,,, = (;2, GI", since E,, is a
bounded Gy set, I, € F for all m > 1. Notice that I, (z,y) is increasing to Ig(x,y)
as m — oo for each fixed (z,y) € R™, so by Lemma 3.2, part 4., [ € F.
Suppose m(E) = 0. By Theorem 1.1, there exists Gs set H D E and m(H \ E) = 0.
It is easy to see m(H) = 0, 0 [pn, I (2, y) d(z,y) = m(H) = 0. By step three,
Iy € F. By Definition 3.6, [pn, gr(z) dz = [gn, Iu(z,y) d(z,y) = 0, where
g (x) = Jgn, Ir(x,y) dy. Notice that gg(z) is nonnegative, so by Problem Set 3.1,
Question 1., gg(xz) = 0 a.e. on R™. Let A = {z € R™ | gy (x) # 0}, then m(A) = 0.
Since Iy (x,y) is also nonnegative, for all x € R™ \ A, Iy(z,y) = 0 a.e. on R" by
using Problem Set 3.1, Question 1. again. Note that I(z,y) < Iy (x,y) on R™, so for all
x € RM\ A, Ig(z,y) = 0a.e. on R™. Then we check the conditions in Definition 3.6.
(a). For each fixed z € R™ \ A, Ig(x,y) = 0 a.e. on R™. Thus, for each fixed
x € R™ \ A, by Exercise 3.10, Ig(z,y) is measurable on R
(b). Let g(x) = [gn, IE(2,y) dy, then for each fixed z € R™ \ A, g(x) = 0. This
means g(z) = 0 a.e. on R™, so by Exercise 3.10, g(z) is measurable on R™!.
(c). Since m(E) =0, [, I(x,y) d(z,y) = m(E) = 0. Since g(x) = 0 a.e. on R™,
by Exercise 3.10, [pn, g(z) dz = 0.
Therefore, we have proved I € F when m(E) = 0.

. Suppose E € M. By Theorem 1.1, we can take G5 set H s.t. H O Eand m(H \ E) = 0.

Write £ = H \ (H \ E), then I(2,y) = Iy (%,y) — I p(7,y). By step three, Iy € F.
By step four, I\ g € F. Also, Iy p € L'(R™). By Lemma 3.2, part 3., I € F.
O
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Theorem 3.8. Fubini-Tonelli Theorem I (FTT-I)

If f(z,y) is nonnegative and measurable on R", then f € F. In particular,
L[ sena)e=[ jenden=[ ([ rood)a
R”1 R”2 Rn Rn"2 R”1

Proof By simple approximation theorem, there exists measurable simple functions ¢y (x,y)

v

s.t. dr(x,y) — f(z,y) pointwisely on R™ as k — oo and ¢y (x,y) is increasing in k for each
fixed (z,y) € R™. Since every simple function can be written as a finite linear combination of
indicator function of measurable sets, by Lemma 3.3 and Lemma 3.2, part 1. & 2., ¢, € F for

all k > 1. By Lemma 3.2, part 4., f € F.

By Definition of F, it is easy to see [gn, (Jgns f(2,y) dy) dz = [ f(z,y) d(z,y). To
prove the second equality, we only need to exchange the “character” of x and y, i.e., regard y
here as the x in Definition 3.6 and z here as the y in Definition 3.6. We can do this because x

and y have no order and n1, ny can be arbitrary as long as n; + ny = n. O

Theorem 3.9. Fubini-Tonelli Theorem II (FTT-II)

Let f € LY(R™), then even if f is not nonnegative, it still satisfies all three conditions in

Definition 3.6. In particular,
/ ( f(z,y) dy) de = | f(z,y)d=z,y) = / ( fz,y) dw) dy
R \JRn2 R” R"2 \JR™

Proof  Write f(z,y) = f+(z,y) — (—f-(2,y)), where fi(z,y) and —f_(z,y) are both
nonnegative measurable. Thus, f, € F and —f_ € F. Since f € L'(R"), by Definition 3.6,

we have f, € L'(R") and —f_ € L'(R").
1. Since —f_ € Fand —f_ € L'(R"),let g_ () = [gn, —f—(x,y) dy, and we have

/ g-(x)de = | —f (z,y)d(z,y) <oo

Rnl Rn

By Exercise 3.11, g_(z) is finite a.e. on R™. Let A = {x € R™ | g_(x) = oo}, then for
each fixed x € R™ \ A, g_(x) < oo. This further implies for each fixed z € R™ \ A,
—f-(x,y) is finite a.e. on R™. Let A, = {y € R" | — f_(z,y) = oo}, then for each
fixedz € R™ \ A, fi(z,y) — (—f=(z,y)) is well-defined on R™2 \ A,. Denote

Q©

By = {z € R™ | fy(x,y) is not measurable on R"?}

By = {z € R™ | — f_(x,y) is not measurable on R"?}

then m(B;1) = m(Bz) = 0. Let B = BiUByUA, and we have m(B) = 0. For each fixed
x € R™ \ B, since fy(z,y) and —f_(z,y) are measurable and —f_(x,y) is finite on
R™ \ A,, by Exercise 2.4 & 2.5, fi(x,y) — (—f—(z,y)) is well-defined and measurable
onR"2\ A,. Thus, f(x,y) is measurable on R"2 \ A, for almost all x € R™. Notice that
m(A;) = 0, so by Problem 3.3 and Exercise 2.1, f(x,y) is measurable on R™2 for almost
allz € R™.
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2. Let g4 (x) = Jgno fo(z,y) dy and g(x) = [gn, f(z,y) dy. Since g_(z) < oo on
R™ \ A, by Definition 3.4, g(z) = g4 (x) —g—(z) on R" \ A. Since g4 (x) and g_(z) are
both measurable on R™ \ A, by Exercise 2.4 & 2.5, g(x) is also measurable on R"! \ A.
Note that m(A) = 0, so by Problem 3.3 and Exercise 2.1, g(x) is measurable on R"*.

3. Since f € LY(R"), fy € F,and —f_ € F, we have

[ tew ey = [ faw)den - [ @ day)

n

= /]R"l g+ () dac—/w1 9-(z) dx

Also notice that g, € L'(R™) and —g_ € L*(R™), so by Exercise 3.12,

/Rnl g+ (x) dx — /Rn1 g—(x) dx = /Rm (94 () — g—(2)] da

Since g(z) = g4 (x) — g—(z) a.e. on R™, by Exercise 3.13,

faw) day) = [ lov@) =g @) da= [ g(a) do
Rn R”1 R™1
In conclusion, f satisfies all three conditions in Definition 3.6 even if f is not nonnegative on

R™. Thus, by the same reason in Theorem 3.8,

L[ sena)a= [ sepden=[ ([ rwo)d
O

Example 3.6 Suppose F; C R™ and Ey C R™ are both measurable. Then F; x Fy C R" is
measurable and m(E; X Es) = m(E1)m(Es2).

First we prove if we have known E; x Ey € M, then m(E; x Ey) = m(Ey)m(Es). If
E; x Ey € M, by Problem Set 2.1, Question 6., I, x g, (z, y) is measurable on R". By FTT-I,

/ </ Ipy < i, (2,y) dy> dx —/ Ip,xB,(2,y) d(z,y) = m(E1 x Es)
R™1 R"™2 n

Notice that I, « g, (x,y) = Ig, (2)Ig,(y), so we have

/]Rn1 (/an Ig, xE,(2,y) dy) dr = /]Rn1 (/RHQ I, () I, (3) dy) o

[ @ ([ tmwa)do= [ oEm e
R™1 R™2 R™1
= m(E?) /]Rn1 Ig, (x)dx = m(E1)m(Es)
where the second and the fourth equality is by Exercise 3.2, part 3.. Thus, we have shown
m(E; x Ey) = m(Ey)m(E>), given that £y X Fy € M.

Then we prove Ey X Ey € M. Let Ay = (E1 x Ea) N Cy, where Cy, = [} [—Fk, k]
for all £ > 1. Since Fy X By = Ugozl Ay, it suffices to show each A, € M. Notice that
Ax = EY x E§ where Ef = By N [[,[~k, k] and E§ = E> N [[12,[—Fk, k]. Thus, Ef and
Eé‘/’ are bounded for all £ > 1. Since Ef , Eé“ € M, by Definition 1.7, for all € > 0, there exists
open Gf C R™ and G5 C R™ st. Ef C G} and E§ C G5 with m(G} \ E}) < 15 and
m(G5 \ E%) < 1. Also, by Problem Set 1.4, Question 2., there exists closed F{" C R™ and
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Ff c R™ st Ff C EY and F} C E§ with m(EY \ Ff') < 1& and m(E \ FY) < 1&.
Obviously G} x G% > Ef x E¥ > FF x F¥, then we have
m* (G x G5\ Bf x E5) <m* (G} x G5\ Ff x Fy)
<m*((GY \ Ff)) x G5) +m* (G} x (G5 \ Fy))
Notice that G§ and G \ F¥ are both open, so by definition of product topology, G} x (G& \ F¥)
is also open, hence measurable. Thus, m(G% x (G5 \ F¥)) = m(G¥)m(G% \ FF). Similarly,
since (G \ FF) x G5 € M, m((GF\ Ff) x G§) = m(G¥ \ FF)m(G%). Therefore,
m*(GY x G5 \ BY x E5) <m(GY \ F{)m(G5) + m(G)m(G5 \ Fy)
Also, notice that G¥ \ FF = (G} \ EY) U (B} \ FF) and G5 \ F§ = (G5 \ E5) U (E5\ F¥),
so we have m(G§ \ FF) < & and m(G5 \ F§) < &. Since Ef and E5 are bounded,

50 50°
m(EY) < oo and m(E%) < oco. This implies m(G¥) < oo and m(G%) < oo. Therefore,
m*(GY x G5\ EY¥ x E¥) — 0as e — 0, and this shows Ef x E§ € M. O

Example 3.7 Let E; C R™ and F3 C R™ be measurable. Suppose f € L'(E; x E5), then
/ fla,y) d(z,y) = / ( f(z,y) dy) do = / ( f(z.y) dm) dy
E1 ><E2 E1 E2 E2 El

By Example 3.6, Ey x Ey € M. Consider f(z,y)Ir, x5, (x,y) on R™, we want to show
fIg, g, € LY(R™). Since f(z,y) g, x5, (7,y) = f(x,y) on By x By and f(z,y) is measurable
on By x Es, f(x,y)IE, x5, (x,y) is measurable on £} x Es. Since f(z,y)Ig, xg,(z,y) =0
on R™\ (Ej x Eby), by Exercise 3.10, f(z,y)Ig, xg,(2,y) is measurable on R" \ (E; x E»).
Thus, by Exercise 2.1, f(z,y)Ig, x5, (x,y) is measurable on R". By Exercise 3.2, part 6.,

/n ‘f(x7y)IE1><E2(may)’ d(xay) = / |f(x7y)|IE1><E2(x7y) d(.’L‘,y)

Rn
- / 1 (@,9)] d(z,y)
FE1x FEso

Since f € L'(FE; x E3), by Exercise 3.9, we obtain the desired result fIp, x g, € L'(R"). By
FTT-II, with the fact that I, « g, (z,y) = Ig, ()1, (y),

fateeton) dea) = [ ([ i@ ) ds

R R™

Since f € LY(R"), by Exercise 3.19,

/ fny) dzy) = | @) I (@) dz,y)
FE1xFEo Rn

By FTT-II, there exists set A with m(A) = 0 and g(z) = [gn, f(2,y)IE, (2)IE,(y) dy exists
for x € R™ \ A. Notice that for z € E; \ A, by Exercise 3.19,
gle)= [ fley)le ) dy= [ flzy)dy
R"2 B
Denote E{ = R"2 \ Ej, then for z € Ef \ A, g(x) = 0. Thus, by Exercise 3.18,

/Rn1 ( - (@, y) e (x) 15, (y) dy> dr = /RM\A g(z)dz
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By Exercise 3.17,

/ S = / RCCE / e = / . ( [ 1) dy> i

By the remark of Exercise 3.18, we obtain

/EI\A< Ezf(w,y) dy> al:r:/E1 < Ezf(:r,y) dy) dx

Combine all above equalities, [ B xmy 1 (T Y) = B ( [e f B, (@ Y) dy) dx. Similarly, we

can prove the other equality |’ B, L (@) f Ey ( o f 5 [(@,y) dx) dy. O

»on

= Problem Set 3.5 <

. Prove Lemma 3.2, part 2..

Prove Lemma 3.2, part 4.
Let f(z,y) € L'(Ey x Es), where x € By C R™, By € Mand y € By C R™,
Ey € M. Prove that [, f(z,y) dy € L'(E1) and [, f(z,y) do € L'(Ey).

. Let f(z) be nonnegativeon E € M, E C R™. Let A = {(z,y) € ExR|0<y < f(x)}.

Prove that f is measurable on E iff A C R"*! is measurable. Also prove if f(x) is
measurable on E, then [, f(z) dz = m(A).

. Suppose f(x) is measurable on E C R", E € M. For all A\ > 0, define the distribution

function F(\) = m({z € E||f(z)| > A}). Prove that if | f|? € L'(E) where p > 1,
then [,. |f(x)| dz = p [ NP"LF(A) dA.
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Chapter 4 LP-space

4.1 Basic Properties of LP-space

Definition 4.1. LP-norm

Let E C R", E € M, and m(E) > 0. For 0 < p < oo, define LP-norm of any

measurable function f(x) on E to be

nﬂuz(év@WdQUp

Furthermore, define L°°-norm of any measurable function f(x) on E to be

| flloc = inf{C > 0]|f(z)| < C a.e. on E}

Definition 4.2. LP-space

Let ECR", E € M, and m(E) > 0. For 0 < p < oo, define LP(E) to be the set of all

measurable functions on E s.t. || ]|, < oo.

&

Exercise 4.1 Let f(x) be measurable function on E € M, then |f(x)| < ||f|| a.e. on E.

Proof Take decreasing sequence ¢y s.t. ¢ — ||f|lco @as & — oo and |f(z)| < ¢, a.e. on E.
Then there exists By, € M s.t. m(By) = 0 and |f(x)| < ¢; on E'\ By. Consider E \ |z~ Bx,
on which | f(z)| < ¢ forall k > 1. Take k — oo, | f(z)] < || flloo. Since m(Uz—; Bx) = 0,
[f(@)] <[ flloc ae. on E. O

Exercise 4.2 Let f(x) be measurable function on £ € M with m(E) < oo. Prove || f|, —
1l a5 p — 00.

Proof 1If || f|lec = O, then by Exercise 4.1, |f(x)] < 0 a.e. on E, and so f(z) = 0 a.e. on
E. Since |f(z)? = 0 a.e. on E, by Exercise 3.10, ||f||, = 0 for all p > 0. This shows

1f1lp = [ lloc as p — oc.

If || flloo > 0, thenforall 0 < M < ||f|loc, m(A) >0, where A= {z € E||f(x)] > M}.
For 0 < p < oo, by Exercise 3.2, part 2. & 1.,

1/p 1/p
(Lir@ran) "> ([ r@pdc) " = arm)s = arm(a)
E A
Take lower limit as p — oo on both sides, since m(E) < oo, we have lim,, , || f||, > M. Take

M — || flloo> lim,_, o [[ f[lp > [ floc. For the other direction, by Exercise 4.1, 3.2, part 1., and

3.18 with its remark,

(/E |f ()P dx>1/p < (/E\IfH’;O dx)l/p 1 oo (m(E)) P
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Take upper limit as p — oo, since m(E) < oo, we have lim, || f|, < || f||co- Thus,
< li < lim <
[flloo < pl%o\lfﬂp < i [[f]lp < [/l

This implies limy, o0 || f||p = || flco- O

The above conclusion is not true in general if m(E) = oo. Consider f(z) = 1 on
R, then || f|lcc = 1 but || f]|, = oo forall 0 < p < oco. However, if in addition, there exists
0 <r <oos.t ||f]l < oo, then the conclusion always holds even if m(E) = oo (See Problem

Set 4.1, Question 7.).

Example 4.1 Let f(z) = —Inz on E = (0,1). Prove f € LP(FE) but f ¢ L*>°(F), and
|| fllp — oo asp — oo.

Notice that lim, o4 °(—Inz) = 0 for all € > 0, so there exists constant C > 0 s.t.
0 < —lnz < Cex € forall x € (0,1). Note that [ = fol(C’ex_E)p dz is improper integral
and if we take e small enough s.t. ep < 1, then I < oo. This means Ccz™¢ € LP(0,1) and
so f € LP(0,1). Also, it is easy to see || f||oc = 00, s0 f ¢ L°(E). Since m(E) < oo, by

Exercise 4.2, || f||, — oo as p — oc. O

Now we make an agreement as follows: if f,g € LP(F), 0 < p < oo, and f(z) = g(x)
a.e. on F, then we identify f(z) and g(z) as the same element in LP(E). For example, the
Dirichlet function Ig(z) = 0 a.e. on R, so the Dirichlet function and the constant function 0 is
the same element in LP(R). Thus, if f(z) is defined a.e. on FE, then we can define f(z) to be
any number you like at those z’s where f(x) is not defined, and we can regard the new function

and old function as the same element in LP(E).

Exercise 4.3 Let £ € M. Prove for all 0 < p < oo, LP(F) is a linear space, i.e., for all
fog € LP(E), forall c¢1,c2 € R, we have 1 f + cag € LP(E).

Since f,g € LP(E), f(z) and g(z) are finite a.e. on E, so ¢1 f(x) + cag(x) is finite a.e.
on E. Notice that it is possible that ¢; f(x) 4+ c2g(x) is not well-defined on a set with measure
zero, but by our agreement, we can define the function value at those points to be any number
we like, so ¢1 f(z) + cag(x) is defined everywhere on E. When p < oo, recall for all a,b € R,
la + b|P < (Ja| + |b|)P < 2P|a|P + 2P|bP. By Exercise 3.2, part 1., we have

[ let@) +e@p de < [ 2larii@l + @) de
By Exericse 3.2, part 3. & 3.5, we have
/E?p[|01|p|f($)|p + [c2Plg(@)[P] dz = 2°|ea [P £} + 2P [e2lPllgll} < oo
This shows ||c1 f + cag||p, < 00,50 c1f + cag € LP(E).

Now consider p = oo, since f,g € LP(FE), there exists constant K, Ky s.t. |f(x)| < K3
and |g(z)| < Kq a.e. on E. Thus, |c1 f(z) + cag(x)| < |c1| K7 + |c2| K2 a.e. on E. This shows
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||le + C2gHoo < ’ClyKl + |CQ|K2 <ooandcyf 4 cag € LOO(E) O

Exercise 4.4 Let 1 < p < oo, and f(z), g(x) are measurable on E € M. Then,

e de < ([ 1@ as) ([ s i)
E ) .

where ]% + % = 1. This implies || fg|[1 < ||f|pll9]lq-

First consider if either || f||, or ||g||, is zero, then || f||,||g||; = 0. Problem Set 3.1,
Question 1. or Exercise 4.1 implies either f(z) = Oa.e. or g(x) = 0a.e. on E, so f(z)g(z) =0
Exercise 3.10, and || fg[[1 < ||f|lp]lg|lq holds.

From now on, suppose both || ||, > 0 and ||g||; > 0. Then we consider if either || f||, or

lgllg is infinity, [| f{[,[lglly = oo. In this case || fg[+ < [|f]5[lgllq always holds.

From now on, suppose both || f||, and ||g||, are positive and finite. If p = 1, then ¢ = oo,

and by Exercise 4.1, | f(z)g(z)| < ||g]lco|f(x)| a.e. on E. By Exercise 3.2, part 1. & 3.,
1f9llx —/ [f(x)g()| dz < Hgloo/ [f (@) dz = [ fll1llgll

If p = oo, then ¢ = 1, and the proof is very similar.

From now on, suppose both || f||, and ||g||, are positive and finite and p,q € (1, 00).
By taking logarithm on both sides and using concavity of logarithmic function, we can prove

1 1
arbas < % + g for all a,b > 0. Now consider

1/p /g
ot =shal [ (M) (M) as
p q
<11l |, (57 i)

1 1
—<p+q)wmmm—uwmmq

where the first equality is by Exercise 3.2, part 3.; the inequality is by Exercise 3.2, part 1.; and

the second equality is by Exercise 3.5 and Exercise 3.2, part 3.. (]

The inequality in the conclusion is called Holder’s inequality.

Example 4.2 Suppose m(E) < oo, and 0 < p; < p2 < oo. Prove LP?2(FE) C LP'(FE) and

| fllpe < [m(E)]m b ||f|]p2 for any measurable function f(z) on E.

Letp = p 2 and g = Holder’s inequality to | f(x)|P* and 1, we have

P1 pP2—P1
P2 P2 1—P1
wmzévmW¢ms<émmm@)(Lmﬁ AR (B
Take p;-th square root on both sides, we obtain the desired result. O
Example 4.3 Suppose f € LP(0,1) with 1 < p < oo. Let F(z) = [; f(t) dt forallz € (0,1).

Prove that F'(x) = ( 1/4) as © — 04 where ¢ satisfies < —|— = =1.
By Example 4.2, f € L'(0, 1), so we can apply Exer01se3 16, and |F(z)| < [ |f(2)] dt
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on (0, 1). By Holder’s inequality,

wenas ([l 'pdt>1/p</o 1dt>l/q:x1/q(/Ox|f(:c)|pdt>l/p

Therefore, we have )
F() v e
< P
= ([ a)

Since f € LP(0,1), |f|P € L*(0,1). By Problem Set 3.4, Question 8., [ |f(x)[P dt — 0 as
x — 0+. This shows F'(z) = o (:cl/q) as x — 0+. O

Exercise 4.5 Suppose 1 < p < oo, f(z), g(z) are measurable on E € M, and f(z) + g(x) is
well-defined a.e. on E. Prove || f + gll, < ||fllp + l9]lp-

By our argeement, we can simply define f(z) + g(x) = 0 where f(x) + g(x) is not
well-defined and || f + g||,, will be the same. When p = 1, since |f(z) + g(z)| < |f(x)| + |g(z)]
on F, by Exercise 3.2, part 1. & 3.5,

I+l = [ 1@ +a@ldo < [ 17@]do+ [ I da =171+ ol
When p = oo, let A = {c||f(x) + g(z)| < cae. on E}, Ay = {c1||f(z)| < ¢1 ae. on E},
and Ay = {¢2||g(2)] < ez ae. on E}. To prove || f + glleo < || flloo + [|g]loos We only need to
prove inf A < inf A; + inf Ay. Forany ¢; € A; and ¢3 € Ay, we have |f(x) + g(z)| < 1+ ¢
a.e. on F by triangular inequality. Thus, inf A < ¢; + co for all ¢; € Aj and ¢y € Ay. Take

infimum on ¢; over A1, and then on ¢ over Ao, we will obtain the desired result.
When p € (1, 00), by triangular inequality, Exercise 3.2, part 1., & 3.5,
/E |f(z) + g(@)|P do < /E (@) + g(@)[P (| f(@)] + |g(=)]) da

- / (@) + g(@) P~ ()] do + / (@) + g(@) P~ |g()] du
FE FE
By Holder’s inequality,

[ @+ g do < ( [ 11+ o6 ‘pdx> (/’f ypd@)””
/\f )+ g(2) [P~ g(z) !dx<(/|f )+ gz de) (/’g |7’dx>1/p

Therefore, we obtain || + glI5 < [Lf + glI5™(Ifllp + lgll,)- I£ Lf + gll, = 0, then the desired
inequality trivially holds. If || f + g||, # 0, we can cancel out || f + gHg_1 on both sides, and we
will obtain the desired properties. ([

The inequality in the conclusion is called Minkowski inequality.
In Exercise 4.3, we have shown LP(FE) is a linear space. In fact, we can further show it is

a complete normed space, i.e., Banach space. However, we shall first introduce some definition

about that.
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4.1 Basic Properties of LP-space

Definition 4.3. Normed Space

A normed space X over field R is a linear space in which we have a “norm” satisfying:
1. Forallz € X, ||z|| > 0.
2. Forallz,y € X, ||z +y|| < |lz|| + ||yl
3. Forallc e Rand x € X, |cx| = |c|||z]|.
4. Ifx € X and ||z|| = 0, then x = 0.

Theorem 4.1
If1 < p < oo, then LP(E) is a normed space. ©

Proof Consider the LP-norm defined in Definition 4.1, we need to check whether it satisfies the

four conditions in Definition 4.3.
1. Itis obvious that || f||, > 0 for all f € LP(E) by the Definition 4.1.
2. Forall f,g € LP(E), it is obvious that |f|P € L(E) and |g|P € L'(E), so by Exercise
3.11, |f(x)|P and |g(x)|P are finite a.e. on E. This shows f(z) and g(z) are finite
a.e. on E, so f(z) + g(z) is well-defined a.e. on E. Thus, by Minkowski inequality,

1+ gllp < 1 £1lp + gllp-
3. For p < oo, since f € LP(E), | f|P € L*(E), so by Exercise 3.12,

</E o dw) - </E e dx) " (’C'p |ls@r dx> :

Thus, we have [|cf{l, = |c|[|f]lp-

For p = o0, if ¢ = 0, then for all f € L>®(E), c¢f(z) = 0 on E, so |lcf]|ec = 0.
It is obvious that |c|||f|l« = 0, so ||cf|, = |c|||f]l, holds. Now we only consider
c#0. Let A= {k||f(z)] < kae.onE} and A; = {k1||cf(z)] < ki ae. on E},
then ||cf|loc = inf A; and ||f||lcc = infA. Forall k € A, |f(z)] < k ae. on E,
so |ef(x)] < |c|k a.e. on E. This shows |c|k € Aj, and thus |c|k > ||cf]|o. Since

¢ # 0, we have k > %, and by taking infimum over A on both sides, we obtain

1 flloo > % This is equivalent to |¢||| f|lco = [|¢f||co- On the other hand, for all

k1 € Ay, |ef(x)] < ki ae. on E implies |f(z)| < % ae. on E. Thus, & € A and

lcl
ky
lc|

sides, ||cf|co = |¢|]| f]|co- Therefore, we proved ||cf]loc = ||| f]]oo-
4. For p < oo, if || f||, = 0, by Problem Set 3.1, Question 1., |f|? = 0 a.e. on £. Thus

f(z) = 0a.e. on E. By our agreement, f(x) is just the zero element in LP(E)).

> ||fllco- This is equivalent to k1 > |c||| f|lo- By taking infimum over A; on both

For p = o0, if || f||sc = 0, by Exercise 4.1, | f(x)| < 0 a.e. on E, so f(z) = 0a.e. on E.
By our agreement, f(x) is just the zero element in LP(E).

]
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Definition 4.4. Cauchy Sequence

Let X be a normed space. A sequence {x1}7°, C X is Cauchy if for all € > 0, there

exists K. > 1s.t. ||z — ;|| < € whenever k,1 > K..

&

Definition 4.5. Banach Space

A normed space in which every Cauchy sequence converges with respect to this particular

norm is called a complete normed space or Banach space. &

Definition 4.6. LP-convergence
Let f(z) and fi(z) be measurable on E € M. Suppose f € LP(E) and f, € LP(E) for
all k > 1. We say fi(x) — f(x) in LP(E) if | fx — fllp, = 0as k — oo.

&

Remark From now on, if we say fi(z) — f(z) in LP(E), then it implicitly indicates that
f € LP(FE) and f;, € LP(FE) for all large enough k.

Theorem 4.2
If 1 < p < o0, then LP(E) is a Banach space. 0

Proof  First consider when p = oco. Let {f;}72, C L°°(F) be Cauchy in L>°(E). Define
A =A{x € E||fx(z) — fi(x)| > | fx — filloo} forall k,1 > 1. By Exericise 4.1, m(Ag;) = 0.
Let A = Uy =1 A then m(A) = 0. Since {fx}72, is a Cauchy sequence, for all € > 0, there
exists K¢ > 1s.t. || fi — fil| < eifk,l > K.. Thus, forall fixedx € E'\ A, | fx(z) — fi(z)] <€
if k,1 > K.. This implies for each fixed z € E'\ A, {fi(x)}?2, is a Cauchy sequence. Since

Cauchy sequence in R must converge, fr(x) — f(z) on E'\ A and by the remark of Exercise
2.11, f(z) is measurable on E'\ A. Since m(A) = 0, we can define f(z) = 0 on A, and by
Exercise 2.1, f(z) is measurable on E. Take [ — oo, | fx(x) — f(z)| < eon E'\ A. By definition,
we have || fr, — f|loo < €if &k > K. Since each f, € L>°(E), by Minkowski inequality, it is easy
to see f € L°°(F). This also shows fi(z) — f(z)in L>°(FE), so L*°(F) is a Banach space.

Then we consider when p < co. Let {f};2, be Cauchy in LP(FE) for all i > 1. There
exists K; > 1s.t. if k, 1 > K, || fx — fillp < % We can take {K;}9°, s.t. Kj is increasing to
infinity and || fr,,, — fr;llp < % Define g(x) = > ;2 | fr,y, (x) — fx, ()] and for all & > 1,
gr(x) = S8 | fri () — fr,(2)]. Then, gi(x) is increasing in k for each fixed = € F and
gr(x) — g(x) pointwisely on E. By Minkowski inequality, || gx ||, < ZleﬂfKiH —frillp < 1.
Now since |gi(x)|P — |g(x)|P pointwisely on E and |gi(x)|P is increasing in k, by MCT-II,
Jilg@)P do = limp_oo [5; |gr(2)[P dz < 1. This shows |g|P € L'(E) and by Exercise
3.11, |g(x)|P is finite a.e. on E, so g(z) is finite a.e. on E. Thus, Z?:_ll(me(m) — [r,(x))

converges absolutely for a.e. * € E. Since on R, absolute convergence implies convergence,

79



4.1 Basic Properties of LP-space

Z?;ll (frio1(x) — fr,(x)) converges for a.e. x € IJ. However,
n—1

Z(fKH-l (‘T) - sz(x)) = fKn('/E) - le (:E)

i=1
so fk,(z) converges to some f(z) a.e. on E. By a similar argument to the p = oo case,
f(x) is measurable. Since { fj(x)}72, is Cauchy in LP(E), for all € > 0, there exists K, > 1

st if k1 > K, || fx — fillp < oo. Take | = K; for large enough ¢ s.t. K; > K., then

fE | fx(x K, (z)|P dz < € for all large 7. By Fatou’s lemma,
/ lim [fu(2) — frc, (@) do < Tim [ [fe(e) = frc, (@) do < €@
E 1—00 i—ooJE

Thus, [ |fr(z) — f(2)|P do < € and || fr — f||p, < eforall k > K.. Since each f; € LP(E),
by Minkowski inequality, it is easy to see f € LP(E). This also shows fi(z) — f(x)in LP(E),
so LP(FE) is a Banach space. O

Recall in the previous chapter, we have shown that L!-convergence implies convergence in

measure. Now we generalize it to LP-convergence implies convergence in measure.

Let f(x) and fr(x) be measurable on E € M. If fi(x) — f(x) in LP(E), then
fr(x) — f(z) in measure on E.

By Markov’s inequality on | fx(z) — f(x)|P, for all a € (0, 00), we have
m({a € Blfufe) = @ > o)) < [ [fula) = @) do

For all o > 0, take o s.t. /P = o, then we have

m({a € B |fule) — F@)P > a}) < i~ fI -0
Therefore, fi(x) — f(z) in measure on E. O

=, Problem Set 4.1 <>

. Let0<p<landqg= p%l. Assume that if g = 0 on E then ||g|| a5y = 0.

(a). Proved for f, g measurable on £ € M and m(E) > 0, we have the reversed Holder’s
inequality, i.e., || fgll1 () > || fll ez 9] a)-

(b). Prove reversed Minkowski inequality, i.e., for measurable f,g s.t. f >0, g > 0 on
E, we have || fllLog) + 19llLes) < I + 9l ()

(c). Construct f and g s.t. ||f|zem) + 9llzom) < |f + 9llLe ()

2. Let X be a normed space. Suppose ro, € X and z € X for all £ > 1. Prove
that if ||zp — Zoo|| — 0 as k — oo, then |lzx|| — ||7oof. In L'(—1,1), construct a
counterexample s.t. || fx|l .1 — || foollr2 but fr 4 foo in Lt

3. Let E C R™, F C R", and f(x,y) be measurable on E x F', where x € E,y € F. For
1< p < oot [yl £(x.9) |z d < oc. prove
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4.2 Dense Subsets of LP-space

(a). For almost every fixed x € FE, f(x,y) € L;(F)
(b). [r f(x,y) dy is a measurable function of 2 on E and [, f(z,y) dy € LE(E).
©- N[ fp F(2.9) dyl 1o gy < Sell £ (@ )l o ey dy-
4. Let1 < p < co. Forall f € LP(0,00), define Tf = 2 [ f(y) dy for z € (0, 00). Prove
that | T'f | 20 (0,00) < 557 11| 2(0,00)-
5. Let f(x) be measurable on R”.
(a). Prove that f(x — y) as a function of (z,y) € R"™ x R™ is measurable.
(b). Prove that for all f € L}(R"), g € LP(R"),1 < p < o0, f * g € LP(R"™) where
frg= Jgn flx—=y)g(y) dy.
(c). Prove ||f * gllLo@ny < [ fllLrwn) 19l 2o @®n)-
6. Let f be continuous on the interval (0, 1). Prove that || f|| o (0,1) = SuPae(0,1) |f(2)]-
7. Let f be measurable on E and there exists » > 0 s.t. f € L"(E). Prove that
hmp—>OOHf”LP(E) = HfHLOO(E)~
8. Let f € L*(0,1) and [ f(z)a" dz = 0,¥n € N. Prove f(z) = 0 a.. on (0,1).
9. Let f be positive and measurable on (0, 1). Prove that 1 < ( fol f(x) dm) ( fol ﬁ dx).
10. Let fi(z) be measurable on (0, 1) for all £ > 1. Suppose f — f a.e. on (0, 1) and for
some 7 € (0,00), fol | fx(x)|" de < M for constant M and for all £ > 1. Prove that for
al0<p<m, fol |fr(z) = f(z)|P dz — 0 as k — oo.

4.2 Dense Subsets of LP-space

In this section we are going to explore several density theorems for LP-space. The main
idea of these theorems is to use a sequence of “good” functions to approximate a general function

in LP-space.

Suppose 1 < p < oo, then for all f € LP(E) with E € M, there exists a sequence of
measurable simple function fi(z) on E s.t. fi(x) — f(z) in LP(E).

We first consider the case when p < oo. Recall by simple approximation theorem, there
exists a sequence of measurable simple function { fj, ()}, on E's.t. fi,(z) — f(x) pointwisely
on E with fi(z) finite on E for all £ > 1. Furthermore, if we scrutinize the proof of simple
approximation theorem, we can see |fi(z)| < |f(z)| on E. Notice that |fx(z) — f(z)|P — 0
pointwisely on E, and |fi.(z) — f(z)[P < 2P(|f(2)|P + |fr(z)[P) < 2PFY f(z)[P. Since f is
in LP(E), | f|P € L*(E). By Exercise 4.3, L*(E) is a linear space, so 27! f|P € L'(E). By
DCT, limg o0 [ [ fr(z) = f(2)|P dz = [ limp—oc | fi(2) — f(2)[P dw = 0.

Then we consider the case when p = co. By Exercise 4.1, |f(z)| < [|f]lcc < o0 ace.
on E. Thus, we can find a measurable set A s.t. m(A) = 0 and |f(z)| < ||f]le for all

x € E\ A. By simple approximation theorem, there exists a sequence of measurable simple
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4.2 Dense Subsets of LP-space

function { f(x)}32 and fi(x) — f(x) uniformly on £\ A. For all € > 0, there exists K. > 1
st. |fe(z) — f(z)| < eforall z € E\ Aand k > K. This implies || fx — f|lcc < € for all
k > K., which shows fi(z) — f(x) in L>(FE). O

This theorem shows that the set of measurable simple functions in L? is a dense subset

of LP forall1 < p < <.

Suppose 1 < p < oo, then for all f € LP(E) with E € M, there exists a sequence
of measurable simple function fi.(z) on E s.t. fr(z) — f(z)in LP(E) and fi(x) has
bounded support, i.e., {x € E| fi(x) # 0} is bounded, for all k > 1.

For | > 1, let [}(z) = Ip,(o)(x), where B;(0) is the ball centered at the origin with
radius [. Notice that for each fixed k, [;(z)fr(z) — fir(x) pointwisely as [ — oco. Also,
[T (2) fe(2)|P < |fr(z)P € LY(E), so by DCT, as | — oo,

[ 15@Pi) - 1P do = [ [0 5@P - @) do -0
E E
This shows for each fixed k, there exists [ > 1 s.t. ||, f — fx|lp < 7. By Theorem 4.4, there

exists a sequence of measurable simple functions {gx ()}, s.t. gr(z) — f(x)in LP(E). Let

fr(x) = I, (x)gx(z), then fi(x) is measurable simple function with bounded support. Thus,

1fx(2) = f(@)llp < [[fr(x) = gr(@)llp + llgr(x) = f(@)llp < % + llgr(z) = f(2)]lp = 0
as k — oo. (]
This theorem shows that the set of measurable simple functions with bounded support
in L? is a dense subset of LP for all 1 < p < oo. Notice that this is not always true for L™ (FE).

To find a counter-example, one can consider f(z) = 1 on R.

Suppose 1 < p < oo, then for all f € LP(E) with E € M, there exists a bounded
continuous function g(x) on R" s.t. ||f — gll, < e. There also exists a sequence of
bounded continuous functions {gi(x)};>, on R" s.t. g, € LP(E) for all k > 1 and
gr(x) = f(z) in LP(E).

We are going to prove this theorem in two steps. We first prove that for all € > 0, there
exists bounded measurable function h(z) s.t. h € LP(E) and ||f — h||, < e. Then we apply
Lusin’s theorem to A(z) to obtain the desired bounded continuous function.

Step 1: For all & > 1, define fi(z) on E by
f(z) if[f(z)] <k
fo@)=qk  iff(z) >k
—k  if f(x) < -k
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In this case, | fr(x)| < |f(z)|forall z € E and fi(z) — f(x) a.e. on E. Notice that

[fu(@) = F@)P < (Ifu(@)] + |f(2)])P < 22| f(2)P € L' (E)

By DCT, | fi(z) — f(z)[P — 0in L' (E), so there exists ko s.t. || fx, — flp < €. Since fx,(z) is
bounded measurable, we take h(z) = fi, ().

Step 2: By Lusin’s theorem, there exists closed ' C E s.t. m(E \ F) < ¢ and h|(z) is
continuous on F'. By Tietze extension theorem (a famous theorem in general topology), there
exists continuous function g(z) on R" s.t. g plT) = h| () and g(x) preserves boundedness of
f(zx). Thus, we have

£ = gllp < 11 = Bl + I = glly < €+ [@MPm(E\ FYY

This proves the first part of the theorem. The second part is trivial by simply taking € = % U

This theorem shows that the set of bounded continuous functions in L? is a dense
subset of LP for all 1 < p < oo. Notice that this is not always true for L*>°(FE). To find a
counter-example, one can consider f(x) = I(o1)(z) — I|_1 g (x) on E' = [~1, 1]. If the theorem
is true, then there exists kg > 1 s.t. ||f — gkolloe < 15 S0 /(@) — gro(2)| < 155 for all
x € E\ B with m(B) = 0. Since g, () is continuous, by intermediate value property, there
exists zg € [—1, 1] s.t. gg,(x0) = 0. Since m(B) = 0, there exists x,, — g s.t. z,, ¢ B for all
n. Notice that if g € [—1, 0], we can pick z,, < x¢ for all n; if 29 € (0, 1], we pick =, > x( for
all n. In this case, | f(zn) — gk, (n)| < 155 for all n > 1. Take n — oo, by one-side continuity

of f and continuity of gi,, we have |f(zo) — gk, (20)| < 75 which is a contradiction because

£ (x0) = gro(20)| = [f(x0) — O] = 1.

The set of all polynomial functions on |a,b] is dense in LP([a,b]) with a,b finite and
1<p<oo.

First, polynomial functions on [a, b] are always in LP([a, b]). For all f € LP([a, b]), for
all € > 0, there exists bounded continuous function g defined on R s.t. || f — g||, < e. Since g
is continuous on [a, b], by Weierstrass Approximation theorem, there exists polynomial /() s.t.

maxi, ) |g(x) — h(w)| < e. Consider
1f = Pllp < I = gllp + llg = hllp < e+ (P(b—a)'/? = Ke
where K is a positive constant. (]

Notice that this is not always true for L°>°([a, b]). To see this, consider polynomials on

bounded interval [a, b] as a special type of bounded continuous functions and use Theorem 4.6.

Definition 4.7. Step Function

Step function is a function that can be written as a finite linear combination of indicator

functions of disjoint intervals. &
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The set of all step functions in L ([a, b)) is dense in LP([a, b]) with a, bfinite andp € [1, 00).

By Theorem 4.4, for all ¢ > 0, there exists a simple measurable function g(x) s.t.
|f —gllp < e. Denote g(z) = Zle Cilg,(z), where E; € M and E; C (a,b) for all
i=1,..., k. It suffices to show I, (x) can be approximated by step function. By Theorem 1.1,
since m(FE;) < b— a, forall € > 0, there exists finitely many closed intervals I, ..., Iy s.t. they
are almost disjoint, I; C (a,b) for all j, and if U = U}]:1 I;, we have m(E;AU) < e. If two
intervals are almost disjoint but not disjoint, then we denote the union of them as a new closed
interval and replace the orginal two by this new closed interval. In this way, we can assume all I;’s
are disjoint. Let S(z) = ijl I;;(x), and we can observe that [S(x) — Ig,(z)| = Ig,av (7).
This shows ||S — I, ||, = [m(E;AU)]MP < €'/P, and thus, I, (x) can be approximated by step
function S(z). U

Notice that this is not always true for L>°([a, b]). See Problem Set 4.2, Question 1..

<=, Problem Set 4.2 <

1. Prove that step functions are not dense in L>°([0, 1]).
2. Let f(x) be measurable and bounded on R and periodic with period 7" > 0. Consider
g € L'(0,a), where 0 < a < oo. Prove that as € — 0+,

[ starswr e =) [ o ae, =1 [ s a

3. Consider Fourier transform:
(0@
= / fx)e 2™ dy
—00

Prove that if f € L*(R), then f(£) — 0 as |€] = oc.

4. In Step 2 of the proof of Theorem 4.6, we use Tietze extension theorem. In fact, we
only need to use a special version of it, that is, for every bounded continuous real-valued
function g(z) on a closed set F' C R", there exists a bounded continuous real-valued
function G(x) on R" s.t. G|F(:L') =g(x). If |g(z)] < M on F, |G(x)| < M on R". To
prove this special case of Tietze extension theorem, show that

(a). there exists a continuous function h : R” — R s.t.
o |h(z)| < fMforallz € F,
o |h(z)| < M forall z € F°,
o |g(x) — h(z)| < M forallz € F.
(b). there exists bounded continuous function G(z) on R" s.t. G| () = g(x) on F and
|G(z)| < M onR™.
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4.3 Applications of Density Theorems in L”-space

In this section we are going to apply the density theorems studied in the last section to
verify some more advanced but essential properties of LP-space. In short, we will first show the
generalized Riemann-Lebesgue lemma. After that, we will discuss the continuity and separability

of LP-space.

Theorem 4.9. Generalized Riemann-Lebesgue Lemma

Suppose {gn(z)}>2, are measurable and uniformly bounded on bounded interval |a, b],

i.e., there exists constant M > 0 s.t. |gn(x)| < M for all x € [a,b] and n > 1. Assume
for all ¢ € [a,b], [7gn(z) dz — 0asn — oo, then fab f(@)gn(z) dx — 0 for all
f € L([a, b]).

Q©

Proof Step 1: Suppose f is a step function, then we can write f(x) = Zle ¢ilr,(x), where
interval I; C [a.b]. Denote ¢; < d; as the two end points of interval I;, then we have

b k b k d;
f(@)gn(z)de = ¢ | I (x)gn(z)de=") ¢ n(z) dz

Since for each 4, fc‘fi gn(z) do = f;h gn(x) dz — [ gn(z) dz. Both terms on the right hand
side converge to zero as n — oo because ¢;, d; € [a, b]. This shows f; f(@)gn(x) de — 0.
Step 2: For any f € L'(a,b), by Theorem 4.8, for all ¢ > 0, there exists step function g s.t.
|l f — glli < e. Consider

[ 1)

b b
<| [ 7@) = s@)gula) de|+ | [ s@)gn(a) da

/a " g(@)gn () da

b
SM/ (@) — g(a)| do +
b

< Me+

[ s@ono) da

a

Take lim sup,,_,., on both sides, since g(x) is step function, by Step 1,
lim sup

wow| [ s@nte) de

Since this is true for all ¢ > 0, by taking ¢ — 0, we obtain the desired result. U

< Me

Theorem 4.10. Continuity in LP-space
Let1 < p <oo. Forall f € LP(R"), || f(z +h) — f(z)| 12y = O as b — 0.

Proof Recall Theorem 4.6, for all ¢ > 0, there exists bounded continuous function g(x) s.t.

|lf — gllp < e. Define function ¢(r) for r > 0 to be
1 if r € [0, 1]
o(r)=q—r+2 ifre(1,2

0 ifr>2

85



4.3 Applications of Density Theorems in LP-space

Let gi(z) = g(z)¢ (%) for all k£ > 1, then

g(z) if |z| <k
ge(z) =<0 if |z| > 2k
ke (0,g(x) ifk<|z| <2k
Thus, g () is uniformly continuous on Boy(0), where B,.(x) is the closed ball centered at x

with radius r. Abbreviate |[®[|,p zn) as [|o|,. Consider

1f(x+h) = f@)lp < lf (@ + 1) = g(z+ D)l + l9(z + h) = g(@)llp + |lg(x) = F (@)l

N~

I 1T i1
Notice that ITT < € by construction. By applying FTT-II n — 1 times (properly choosing objective

function to apply),

W = [ 1@+ =gla+nl do

:// ‘f(l'l—i-hl,"',.Tn—th)—g(Jfl—Fhl,"',$n+hn)‘pd$1"'dxn
N

n copies

—_—

n copies

= [ 5@ = g(@) dz = (y
where the third equality is by appying change of variables technique in Problem Set 3.3, Question

3.. Thus, I < e. Now we only need to focus on part 11, where

I = [lg(z +h) = gr(z +h)llp+ llgr(z + h) — ge(@)|lp + lgx(x) — g(2)]lp

vV
a b c

Similarly, we can prove a = c. Since g and g are all bounded continuous function, and

gr(x) — g(zx) pointwisely, by DCT, ¢ — 0. Thus, there exists K s.t. ||gx — gl|, < €. Fix this
K, and consider when |h| < 1,

W= l9r(z +h) — gi (2)|P dx
Bar+1(0)

because gx () = gr(x + h) = 0 when || > 2K + 1 by definition of gx. Up to now we have
| f(z+h)— f(x)|p, < 4e+0b. As h — 0, since gx () is continuous, g (z + h) — gk (z) — 0.
Also note that g (z + h) — gi () is bounded, so by DCT, b — 0 as h — 0. Thus, by taking
limy,_,( on both sides, we obtain limy,_,o|| f(x + h) — f(x)|, < 4e. Take € — 0, we have shown
that || f(z 4+ h) — f(z)||, = 0asp — 0. O

Example4.4 Let E C R", E € M withm(E) < oco. Prove limy,_,o m((E+h)NE) = m(E).

Note that it suffices to show as h — 0,

/ Iipinyne(r) dz — Ig(x) doe < oo
R™ R™
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Since I( g1 p)ne(*) = Ip1n(z)IE(x), consider

/ Ip(@) (T e(x) — () da

< [ Mpano) ~ In(o)] da
= /n [Ig(x —h) — Ig(z)| dz

Since m(E) < oo, apply continuity of L!-norm with f(z) = Ip(x) € L}(R"),
/ Ip(z — h) — Ig(z)| de = || Ig(x — h) — Ig(z)||1 — 0
U

Example 4.5 Let E C R", E € M with m(E) > 0. Prove E — E D Bs(0) for § > 0, where
B;(0) is the open ball centered at the origin with radius J.

Proof Recall the first paragraph of the proof of Lemma 1.1, it suffices to show the desired result
holds for the case when m(E) < co. Inthis case, by Example 4.4, m((E+h)NE) — m(E) > 0
as h — 0. Thus, there exists 6 > 0s.t. m((E + h) N E) > 0 when |h| < §. Thus, there exists
re€ B, y+he E+hst x=y+ h,and hence z — y = h. This shows h € E — E for all
|h| < 6. Thus, B5(0) C E — E. O
Remark This is exactly the Steinhauss Theorem we proved in Chapter 1 (see Lemma 1.1).
In Chapter 1, we provided an elementary but rather tedious proof. However, with continuity

property of LP-space, we can prove it within a few lines.
At the end of this section, we are going to introduce a topological property, called “Separa-

bility”, of a topological space (here we restricted to normed space). This property may be widely

used in your graduate study.
Definition 4.8. Separability of Normed Space
Normed space X is separable if it has a countable dense subset. I ’
Example 4.6 Let X = R, then X is separable because Q is a countable dense subset of it.

Theorem 4.11
For1 < p < oo, LP(R) is separable. O

Proof Let D be the set of all functions in the form of p(z)Ip, (o)(z) on z € R", where p(z) is

the polynomial with rational coefficient and » € Q. In this case, it is easy to see D is countable.
Claim: D is dense in LP(R"™). Take arbitrary function f € LP(R™). For all € > 0, by Theorem

4.6, there exists bounded continuous function g s.t. || f — gl|, < 155- Consider

o= sT5,0lls = [ 19~ In, o) do

We want to show ||g — gIp, ()ll, — 0 as r — oo. This is done by applying DCT because
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91, 0)(r) — g(x) pointwisely and g is bounded. Thus, there exists large R € Q so that

19 — 91B,0)llp < 155+ Fix this R and consider g(z) on Br(0). By Weierstrass approximation

theorem, there exists polynomial p(z) s.t. [p(z) — g(x)| < 155z for all z € Bgr(0), where
constant ¢ is the volume of Br(0). WLOG, we can assume p(z) has only rational coefficients
because the set of polynomials with rational coefficients on Br(0) is also a dense subset of
polynomials with real coefficients on Br(0) (because rational number is dense in real number

and Bg(0) is compact). Thus, [|g1g,,0) — PIp,0)llp < 155- In conclusion,

17 = Dlaalp = 1 = gllp + 19~ 01500 I + 91550 ~ Panoyllp < 1 <
This shows exactly D is dense in LP(R"™). O
For 1 < p < oo, LP(E) is separable for any E C R", E € M. To prove this, let D’
denote the set of all functions in the form of p(z)Ip,(oy(z)[g(z) on R™ and check D’ is dense
in LP(E).

For p = oo, LP(E) is not separable for E C R" and E € M.

Define f(r) = m(E N B,(0)) for » > 0. Then f(0) = 0 and f(r) — m(E) asr — oo
(by continuity of measure). Also, f(r) is increasing on r € [0, c0). Furthermore, we claim that
f(r) is continuous on [0, c0). To prove it, consider any 0 < r < ¢ < oo,
0 < f(t) = £(r) = m(E N B(0)) — m(E (1 B, (0))
=m(E N (B:(0) \ Br(0))) <m(B:(0) \ B(0)) = 0
as [r — t| — 0. Thus, f(r) is continuous. Define
A = {closed nondegenerate interval I s.t. f ‘ ; is constant, and [ is maximal }
Then for I,J € A, if I # J, INJ = @. Since f(U;eq ) C [0,m(E)] is countable and
f([0,00)) D [0,m(£)) is uncountable, S = [0,00) \ [J;c4 ! is uncountable. This is because
f maps countable set to countable set. Note that for s < t with s,¢ € S, f(s) < f(t) because
if f(s) = f(t), then f is a constant on (s,t), and (s,t) € A. Now, for all s € S, define
Is(x) = Ignp,(0)(7), then |[Is — I}||oc = 1 for t > s because m(B;(0) \ Bs(0)) > 0. Suppose
L>(E) is separable, then there exists dense countable set { g, }7° ;. Forall s € S, pick k(s) > 1
st s = gy llos < -
Claim: k(s) is injective mapping. If k(s) = k() but s # ¢, then || I; — I;||co = 1. However, this
is impossible because
1
4 4 2
This shows k(s) is injective. Notice that k(s) maps uncountable set S to countable set N,

1 1
s — Itlloo < 115 — gr(s)lloo + 19r(s) — Ltlloo = s — gr(s)lloo + Ngr()y — Ltlloo < + 7 =

but injective mapping cannot map a set to another set with smaller cardinality, so we obtain a

contradiction. Thus, L>°(E) is not separable. O
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=, Problem Set 4.3 <>

1. Recall the heat equation
ur(z,t) = ugg(x, 1) reR, t>0
u(z,0) = ¢(x) reR

whose solution is given by
oo
u(e.t) = [ T y.00() dy

— 0o

where I'(x, t) is the fundamental solution of heat equation given by
1 o2
e, zeR t>0

VAant
which is the solution of heat equation with ¢(x) equal to delta function J(x).

[(z,t) =

(a). Prove for any fixed y € R,
62
aF@ —y,t) = wr(:v —y,t), VzeR, Vi>0
(b). Suppose ¢ € L*(R) from now on, and prove u(x, t) satisfies the equation uy(z,t) =
Uge (2, t) forz € R, t > 0.
(c). Prove |lu(-,t) — ¢(- )|l L1 m) — 0ast — 0+.
(d). Prove that |u(z,t)| < \/%MHMU(R)’ for all x € R, all ¢ > 0. Give physical
intepretation of this result.
2. Answer the following questions:

(a). For all measurable subset A C [0, 27|, prove that

lim [ cos(tx) dx =0
t—o0 A

(b). Letty — ocoask — oo. Define E = {x € [0, 27] | sin(txx) converges as k — co}.
Prove m(E) = 0.
3. Suppose f € L'(0,1). Let g(x) = f; @ dt, 0 < x < 1. Prove that g € L'(0,1),
lim, 04 zg(x) = 0, and fol g(x) de = fol f(t) dt.
4. Let f € LY(R™), g € L°°(R™). Prove that
(a). (f * g)(x) is uniformly continuous in x on R™.
(b). If g € L*(R™), then (f * g)(z) — 0 as || — oc.
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Chapter 5 Lebesgue Differentiation

5.1 Differentiability of Monotone Functions

In this section, we are going to focus on the differentiablity of monotone functions. Our
ultimate goal is to introduce two main theorems related to the differentiablity of monotone
functions, namely, the Lebesgue’s theorem for the differentiability of monotone functions and
Fubini’s theorem on differentiation. However, before going into that, we need to introduce some

new concepts and useful tools.

Definition 5.1. Dini’s Derivatives

Suppose f(x) is real-valued on (xo — 0, o + 9) for § > 0, then the four types of Dini’s

derivatives are given by

Dt f(x9) = lim M, D™ f(zo) = lim f(@) = f(zo)
T—x0+ T — X0 Toxo— T — 7o
Dy f(zo) = lim M, D_f(zo) = lim f(@) = f(zo)
T—x0+ T — Zo Mol p— .

Example 5.1 Let f(z) = |z| on (—1,1). We can compute D" f(0) = 1 = D4 f(0) and
D™ f(0) = D_f(0) = —L.

Exercise 5.1 Consider four types of Dini’s derivatives, and show that D" f(x) > D4 f(xo)
and D~ f(z0) > D f(zo). Also, D* f(z0) = D f(20) = D™ f(z0) = D— f(20) < oo if and

only if f is differentiable at x.

Example 5.2 Suppose f is continuous on bounded interval [a,b] and D f(z) > 0 for all
x € (a,b), then f is increasing on [a, b]. The same conclusion holds if D~ f(x) > 0 on (a, b).
Special case: Dt f(z) > 0 on (a,b). Suppose there exists a < z1 < xy < b s.t.
f(z2) < f(z1), fix a € (f(z2), f(x1)). Let B, = {z € (z1,22) | f(z) = a}. By intermediate
value theorem, F, # &. Since f is continuous, F,, is closed and bounded, hence compact.
Thus, there exists ¢ € E, s.t. ¢ > x for all z € E,. Note that ¢ € (z1,x2), so f(z) < f(c)
for x € (¢, x2). Suppose not, then there exists zg s.t. f(zo) > f(c) and z¢ € (¢, x2). Note that

f(e) > f(x2), so by intermediate value theorem, there exists d € (zg, z2) s.t. f(d) = a. Then
f@)=f(0) <.

d € E, and d > ¢ leads to a contradiction. Thus, we have D f(c) = limg_,cq &5

This contradicts D f(c¢) > 0 and so we can conclude that f(x) must be increasing on (a, b).
Since f(z) is continuous on [a, b], f(z) is also increasing on [a, b].

General case: DT f(x) > 0 on (a,b). For any € > 0, define f(z) = f(z) + ex. Itis easy to
see DV fe(z) = DT f(z) + € > 0 given D f(x) > 0. Thus, by special case f.(z) is increasing
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on [a,bl, ie., f(x1) + ex; < f(x2) + exy forall a < z7 < 29 < b. Take € — 0 on both sides,

) b]’
f(x1) < f(xg) forall a < z7 < z9 < b, which means f(z) is increasing. O

Definition 5.2. Vitali Covering
Let E C R andT be a set of intervals I in R. If for all x € E and all ¢ > 0, we can find

I'eTandx € I with0 < |I| < € thenT is called a Vitali covering of E.

&

Example 5.3 Let Q = {r,}22,, ' = {[r, — %,rn + %] |n,k =1,2,...}. Then I is a Vitali

covering of Q.

Theorem 5.1. Vitali Covering Theorem

Let E C R with m*(E) < oo and T is a Vitali covering of E. Then for all ¢ > 0, there

exists a finite disjoint collection {I,}N_, of intervals in T s.t. m*(E \ U'{‘val I,) <e o

Proof Notice that if we prove the desired result for the case when all intervals I € I are closed,
we can easily prove the general case. If T'is a Vitali covering of E, we candefine ' = {I | I € T'}
and I is also a Vitali covering of E because |I| = |I|. Then by closed interval case, for all € > 0,
there exists {1, }\_, s.t. m*(E\UY_, I,) < e. Thus, {I,}N_, satisfies m*(E\ UY_, I,) < e.

This proves the general case. Thus, WLOG, we can assume all I € I" are closed.

Since m(F) < oo, there exists open set G st. G D E and m(G) < oo. Define
' ={I €T'|I C G}, thenT';y C I isalso a Vitali covering of E. To see this, for all z € F,
consider for all € > 0, there exists neighborhood N (x) of z with radius € s.t. N¢(z) C G. Since
I' is a Vitali covering, there exists I € I's.t. |I| < § and x € I. Notice that I C Nc(x), so
I € T';. This shows foralle > 0andz € E,wecanfind ] € I'; s.t. z € Tand 0 < |I] < e.

Thus, I'; is indeed a Vitali covering of E and it suffices to choose the desired {In}nN:1 from I'y.

We choose {In}f:/:1 inductively. Choose I; € T'; arbitrarily. Forn > 2,1etT’,, .1 = {I| ] €
N, Inly=ofork=1,...,n}. IfT',1; = @ (called “finite termination”), then denote the
current index n as NV and claim that {/, n},]z\f:1 satisfies the desired property. Actually, in this case
EcUY_ | L,som*(E\UY_, I,,) = 0. This is because if there exists z € E \ |JY_, I,,, then
we can find § > 0s.t. N5(z) € G\ UL_, I, because I,,’s are closed and G\ |JY_, I, is open.
Then there exists I € I'y s.t. || < g and I C Nj(z). Thisshows INI, =@ forn=1,..., N,
i.e., I € I';,11, which is a contradiction. If I';,11 # &, then let k,, = SUPrer, . |I], and k,, > 0.
There exists I,,11 € Ty 1 with |I,41] > %kn, and we can continue to choose I,, 2 by the same

procedure.

If '), is noempty forall n > 1, we will obtain a sequence of disjoint closed intervals {1, } > ;.
Since I, C G, > 72 |I| = m(U,—; In) < m(G) < co. Thus, for all € > 0, we can find N s.t.
Y omen+1 Mn| < €. Weclaim {1y, ..., Iy} is the desired collection, i.e., m*(E'\ UML) <e
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Letz € £ \Ufj:1 I,,, then by the same argument as the finite termination case, there exists I € I';
st.x € TandINI, = @foralln =1,...,N. Foralln > 1, wehave |I| < k,, < 2|I,,41|. Since
|I,| — 0asn — oo, k, — 0. We can always find the smallest Ny > N s.t. |I| > kn,. This
shows |I| < kn,—1 < 2|In,|. Note that |I| > kn, but |I| < ky,—; implies that I N Iy, # @.

Since z € I, the distance of  to the midpoint of I,, is at most |I| + 3|In,| < 3|In,|. Let

Jn, be the interval with the same midpoint of Iy, but |Jn,| = 5|1y, |, then z € Jy,. Thus,
N * N
E\U,=1 In C U%—&-l Jn and m*(E\ U, In) < EZO:N-H |Jn| = 5220:N+1 I, <e O

The theorem may not be true if m*(E) = oo. Consider
1 1
={lz——,2+-]|Vr eR,VneN'}
n n

is a Vitali covering of R. However, for any finitely many intervals {[z — L, 2 + 1]}

N

From the proof of this theorem, one can easily show there exists at most countable
disjoint intervals {1,,}5°; C T ({I,,}Y_, for finite termination case) s.t. m*(E \ |22, I,) =0
(m*(E\ ngl I,,) = 0 for finite termination case).

Interestingly, the above remark is still true even if m*(E) = oco. We can define
Ey={xz € E|k < |z]| <k+1}forall k > 0, then E = (|J, Ex) U Z with m(Z) = 0.
DefineI'y ={I € ' |k < |z| < k+ 1forall x € I}. We claim that Iy, is a Vitalli covering of
FE) for all £ > 0. It can be verified by using exactly the same method as in the second paragraph
of proof of the theorem. Apply the theorem, there exists {I5}°° | s.t. m*(E \ U2, IF) =0
for all k > 0. Notice that I¥ N I¥, = @ if (k,n) # (K, n’). Thus,

o o0 (o9} o o oo o0
E\ (U UI,’;) c [ Ee\ (U Ufjj) uzc |/ <Ek\ UI{:) uz
k=0n=1 k=0 k=0n=1 k=0 n=1
By taking outer measure on both sides together with monotonicity and o-subadditivity, we obtain

m*(E\ Urzo Unzy Iﬁ) <D hom™ (B \ Upiy L’i) =0.

Before we state and prove the main theorem in this section, there is one more crucial lemma

that will be very helpful for the proof of our main theorem.

Let F : [a,b] — R be an increasing function defined on bounded interval [a,b]. For two
real numbers r < R, the set E = {z € (a,b)| D_F(z) < r < R < DYF(x)} has

measure zero.

Let m*(E) = s. For any € > 0, there exists open set O D E s.t. m(O) < s + €. Let

x € E. Then D_F(x) < r implies for all 6 > 0, there exists 0 < h < J s.t. w

<r.
Collect all of such intervals [x — h,z] C O, we obtain a Vitali covering of E. By Vitali
covering theorem, there exists disjoint intervals Iy,..., Iy, where I = [xy — hg,xg] s.t

m*(E\ Uéy:l I;) < e. Denote If = (x — hy,xy), then m*(E \ U]kV:1 I?) < e. Define
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A=FEnN (Uff:1 I7), then m*(A) > s — e. Moreover, we have
N N
> (F(xx) = Flag — hi)) <Y hy <rm(0) <r(s+e)
k=1 k=1
Lety € A. Then DT F(y) > R implies there exists arbitrarily small k¥ > 0 s.t. [y,y + k] C I},

F(y+k£:—F(y)

for some k and > R. The collection of such intervals is a Vitali covering of A, so

by Vitali covering theorem again, there exists disjoint .Jy, ..., Jys with J; = [y;,y; + kj] s.t
m*(A\ U] 1 Jj) < e. It further implies m* (A N (U] 1Jj)) > s — 2e. Moreover,
M
> (Fly; +kj) — F(y;) > RZ kj > R(s — 2e)
j=1 j=1

Also, each J; is contained in some I, so for each fixed n, by increasing property of F',

Z (F(yj +kj) — F(y;)) < Fzn) — F(zn — hy)

j:JjCln
Sum both sidesovern =1,..., N,
N N
D (Flwn) = Fap —hn)) > ) F(yj + kj) — F(y;))
n=1 n=1j: JJCIn

tnqs

(F(yj +kj) — F(yj)) > R(s — 2¢)
1

Thus, we have r(s + €) > R(s — 2¢) for all ¢ > 0. Take ¢ — 0, we obtain s > Rs. Since

<.
Il

r < R, s = 0 and we are done. O

Theorem 5.2. Lebesgue’s Theorem

Suppose real-valued function f(x) is increasing on [a,b]. Then f’'(x) exists a.e. in (a,b).

Moreover, f'(x) is measurable, nonnegaitve, and the Lebesgue integral of f'(x) satisfies

b
/ (@) de < £(b) - (a)

Proof Notice that

{z€(a,b)|D_fz) <D f(x)} = |J {z€(a,b)|D_f(x) <r < R< D' f(x)}

r,ReEQ
By Lemma 5.1, m({z € (a,b)|D_f(z) <r < R < Dtf(z)}) = 0forall ,R € Q, so

m({z € (a,b)| D_f(z) < DY f(z)}) = 0, ie., D_f(z) > D' f(z) ae. on (a,b). Now
consider function — f(—x), it is also increasing. Thus, we can apply the same argument on
g(x) = —f(—x) on (=b, —a) and obtain D_g(z) > DT g(x) a.e. on (a,b). Notice that

(

D_g(z) = lim g(y;—g(:v) ~ tim f(=y y) (f )ﬂf)
y—x— - y—x -y — X
S T L . N TP ) e L C YT

o=t Y= (=) eser z-w
Similarly, we can obtain D" g(z) = D~ f(w), so D4 f(w) > D~ f(w) for all w = —z where
x € (=b,—a). Thus, Dy f(x) > D™ f(x) for x € (a,b). Note that D~ f(x) > D_ f(z) and
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DT f(x) > D, f(x) is always true by Exercise 5.1. Therefore, for almost all x € (a, b),

Dy f(x) = D™ f(z) = D_f(x) = D¥ f(x) = Dy f(x)
which implies D, f(z) = D~ f(x) = D_f(x) = D" f(x) a.e. on (a, b). Then we can conclude
() = limp_yq W exists (possibly infinity) a.e. on (a,b). Define f(z) = f(b) for all
x >b. Let gn(a:) =n(f(z+ 1) — f(x)), then g,(z) is measurable, nonnegative on [a, b] and
gn(z) = g(z) a.e. on (a,b). This shows f’(x) > 0 is measurable. By Fatou’s lemma,

/f dxgn%o abgn()d:v—nlijgon/b[f<x+l> f(:c)] dx
@nhj;o”</ab+l dx—/f d:c>
=nggon</bb+f<>dx—/a “f()dx)

i o (10 - 1) — 1) - s

n n

<

n—o0

Since f(a) and f(b) are both real value and f(z) is increasing on [a, b], f(x) is bounded on
[a,b]. Since [a,b] is also bounded interval, f € L!(a,b). Thus, (1) follows from change of
variable of integrable function (see Problem Set 3.3, Question 3.). The above inequality shows

f'(x) € L'(a,b), so f'(z) is finite a.e. on (a,b). Thus, f(z) is differentiable a.e. on (a,b). O

Theorem 5.3. Fubini’s Theorem on Differentiation

Suppose fn(x) is increasing on [a,b] for allm > 1 and S(z) = Y"°° | f(x) is convergent
for all x € [a,b]. Then S(z) is differentiable a.e. on (a,b), > 7 fr(x) is convergent

a.e. on (a,b), and S'(z) = > >2, fl(x) a.e. on (a,b). @

Proof Let Sy(z) = YN | fu(z) and Ry(z) = 320° vy fu(z) forall N > 1. Then S(x),
Sn(x),and Ry (x) are all increasing on [a, b] and hence differentiable a.e. on (a, b) by Lebesgue’s
Theorem (Theorem 5.2). Thus, there exists A C (a,b) withm((a,b)\ A) = 0and S(z), Sn(z),
and Ry (x) are all differentiable at every x € A for all N > 1. From Lebesgue’s Theorem, we
also know Ry (z) > 0 on A. Also, §'(z) = Sy (z) + Ry (x) > Siy(z) = SN fi(z) >0
on A, where the last equality is because each f,,(z) = Sy, (z) — Sp—1(z) (Define So(z) = 0)
is differentiable on A. Also, f/(z) > 0 for all n > 1 on A. Since S’(x) is finite and
SN fi(x) < S'(x) forall N > 1, take N — oo, SN f/ () converges to 320 | f (z) < oo
for each fixed x € A. Thus, Y 2 | f1 () is convergent a.e. on (a, b).

Now it remains to show S’ (z) = >~ | f} (z) a.e. on (a,b). It suffices to show R/ (z) — 0
as N — oo a.e. on (a,b). Notice that Ry (x) = Ry, (z) + fy,1(z) > Ry (), so Riy(x)
is decreasing in NV for any fixed x € A. Thus, R\ (x) is convergent because it is bounded
below by zero. Now we only need to show there exists a subsequence R?Vi () > 0asi — oo
a.e. on (a,b). Since > 7, fn(b) and Yo7 | f,(b) converges, Ry (b) — 0 and Ry (a) — 0 as

N — oo. This also shows Ry (b) — Ry(a) — 0 as N — oo. Take subsequence N; — oo as
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5.2 Function of Bounded Variations

i —oost. 0 < Ry, (b) — Rn,(a) < % Since f,(x) is an increasing function for all n > 1,
0 < Ry, (x) — Ry, (a) < % for all z € [a,b]. This implies R(z) £ Y22 (Rn,(z) — Ry, (a))

converges.

Itis easy to see R(z) is increasing on [a, b, so by Lebesgue’s Theorem, R(x) is differentiable
a.e. on (a,b) and R'(x) > 0. There exists B C (a,b) s.t. m((a,b) \ B) = 0 and R(x) is
differentiable at every point in B. Also, define Uy/(z) = Ef\i 1(Ry, () — Ry,(a)) and
Var(x) = 372 01 (B, () — R, (a)), then Ups () is differentiable at all = € A forall M > 1
and hence Vj/(z) = R(x) — Up(z) is differentiable at all z € AN B for all M > 1. Thus, on
AN B, R'(z) = Uy () + Vi(z) > Up(x) = M, Rly.(x) > 0. Take M — oo, we have
R(x) > 372, Ry, (x). Since R'(x) is finite, Y 7%, Rl () < oo, and thus Rl (z) — 0 for all
x € AN B. Notice that m((a, ) \ (AN B)) = 0,s0 Ry (z) — 0ae. on (a,b). O

<=, Problem Set 5.1 <>

1. Let f(x) be increasing on [a, b]. Prove that the set of discontinuous points of f is at most
countable.

2. Let f(z) = asin i for z # 0 and f(z) = 0 for z = 0. Find Dini’s derivative D= f(0)
and Dy f(0).

3. Let f(z) be real-valued on (a,b). Define E = {z € (a,b) | D" f(z) < D_f(z)}. Prove
that E is at most countable.

4. Let f(x) be increasing on (a,b). Let E C (a,b) s.t. E € M and for all € > 0, there exists
open G C (a,b), G D Es.t. > ,(f(b;) — f(ai)) < €, where G = |J,(a;, b;). Prove that
f'(x)=0forae. z € E.

5. Suppose f(z) is continuous on I. Prove that it is impossible that D" f(z) > ¢ > D_ f(x)
for all x € I, where c is a constant and [ is an interval.

6. Find a function f(x) that is strictly increasing on R, discontinuous at and only at every
g€ Q,and f'(z) =0ae. onR.

5.2 Function of Bounded Variations

Definition 5.3. Total Variation
Suppose f(x) is defined on [a,b] and it is real-valued. Let A be a partition of |a, b,
ie, A ={a=x0,21,...,Tn-1,T, = b}. Defineva = - |f(xi) — f(zi—1)| and
VE(f) = sup{va | A is a partition of [a,b]}. We call V’(f) the total variation of f over
[a, b].

&

Recall our definition of positive part and negative part of any real numbers, i.e., for all

t € R, tT = max{0,t} > 0and {~ = min{0,¢t} < 0. Also, t = ¢+ + ¢ and [t| = tT —¢".

95
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Thus, we can define positive variation and negative variation respectively as follows:

Definition 5.4. Positive & Negative Variation

Suppose f(x) is defined on [a,b] and it is real-valued. Let A be a partition of |a,b).
Define pa = > (f(xi) — f(zi—1))" and PE(f) = sup{pa | A is a partition of [a, b]}.
Then we call P°(f) the positive variation of f over [a,b]. Similarly, we can define
na = —> 0 (f(@;) = f(wi—1))” and N2(f) = sup{na | A is a partition of [a,b]}. We
call NX(f) the negative variation of f over [a, b].

&

Definition 5.5. Functions of Bounded Variation

Suppose f(x) is defined on [a,b] and it is real-valued. If the total variation of f is
finite, i.e., V2(f) < oo, then we say f has bounded variation on [a,b] and denote it as

f € BV([a, b]). &

Example 5.4 Suppose f is monotone on [a, b], then V2(f) = | f(b) — f(a)|.

Example 5.5 Suppose f is continuous on [a, b] and differentiable on (a, b) with |f/(z)| < M
for some constant M > 0, then f € BV([a, b]).

Proof Take any partition A of [a,b], we have va = > " | | f(xi) — f(zs-1)|. By mean value
theorem on [z;_1, 2], there exists ¢; € (zj—1,2;) s.t. f(z;) — f(zic1) = f/(e) (2 — wi1).
Thus, we have va = > 0" | f'(¢i)||wi — zi—a| < MY o — 21| = M(b— a). This
shows for all A, vo < M(b — a), so by taking supremum over all A on both sides, we have
V2(f) < M(b— a) < co. Therefore, f € BV([a, b]). O

Example 5.6 Let f(z) = 2*sin L for z € (0,1] and f(0) = 0, where o > 0 is a constant.
It is easy to see f(x) is continuous on [0, 1]. Discuss on [0, 1], for which value of «, we have
feBV([0,1)).

Proof Case 1: a > 2. Compute |f/(z)| = |az® Isind + 2972 cos 2| < o+ 1. Since f(z)
is continuous on [0, 1] and differentiable on (0, 1) with |f'(z)| < a+ 1 for all z € (0, 1), by
Example 5.5, f € BV([0, 1]).

Case 2: a € (0,1]. For all m > 2, define partition A,,, = {0, (2m3—1)7r’ (sz_l)w, ce %, 1}.
Note that | f ({5;:5557) = f(@nzms)| = @niness + @mtjaza for allm > 2. Thus,
- 2% & 1
p— _— > [E— R
VA, kz_o\f(%kﬂ) flzr)| > —a ; 2k + 1)

Since a € (0, 1], the series diverges by comparing it with harmonic series. Thus, va,, — 00 as

m — 00, s0 V3 (f) = oc and f is not of bounded variation.

1

Case3: o € (1,2). In this case, the first term of f’(z), namely, ax® !sin 1 is bounded

on [0,1]. We focus on the second term, i.e., % 2 cos % When z — 0, this term can be
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arbitrarily large. However, we can check the improper integral of it is absolutely convergent,

7) fol |z 2 cos 1| dz < (T) fol 272 dr = lim, 5 (R) fll/n 2272 dr = L < o,
where the last equality is by using Fundamental Theorem of Calculus for Riemann inte-
gral. Knowing this, it is not hard to show ( fo |f'(x)] de < oo. Notice that for any
partition A = {0 = z¢,21,...,2, = 1}, for all i > 2, f/(z) is bounded continuous on

[€i—1,x;], hence Riemann integrable so Fundamental Theorem of Calculus for Riemann in-

tegral implies |f(z;) — f(zi—1)| = (R)| [;" f'(t) dt| < (R) [;", |f’( )| dt. In addition,
flx1) — f(zo) = limn%oo[f(xl) - f(xo + ;)] = lim, (R f ) dt. Therefore, we
have va < limn_m fll/n /()] dt = (Z fol |f/(t)| dt. Take supremum over all A, and we
obtain Vj' (f fo |f/(t)| dt < oo, s0 f € BV([0,1]). O

Exercise 5.2 If f € BV([a, b]), then f is bounded on [a, b].

Forallx € [a,b],let A, = {a,z,b}. Sinceva, = |f(x)—f(a)|+|f(b)—f(x)| < VE(f)
for all z € [a,b], by triangular inequality, |f(x)| — |f(a)| + |f(z)| — |f(b)| < V2(f). This
impiles that | f(z)| < $(V2(f) + |f(a)] + [f(b)]) & M. Since f € BV([a,b]), M is a finite
number, and this shows f is bounded by M on [a, b]. O

Exercise 5.3 If f,g € BV([a,b]), then ¢1f + cag € BV([a,b]) for any constants c;, c2 and
f g € BV([a,b]). Moreover, if |g(x)| > ¢ for constant ¢ > 0 on [a, b], then € BV([a, b]).
First we prove ¢1 f + c2g € BV([a, b]). For any partition A, con51der

valerf +cag) = > leaf (i) + cag(wi) — 1 f(wi1) — cag(wio1)|

i=1
< lallf(@) = fri)| + ) leallg(a) — g(aia)]
i=1 i=1

= |erloa(f) + lezlvalg) < lea[ VR (f) + le2l Vi (9)

Take supremum over all partition A, we have V.’(c1f + c2g) < |e1|V2(f) + |e2|VE(g) < o0,
and this shows ¢; f + cag € BV([a, b]).

Next we prove f - g € BV([a, b]). For any partition A, consider

= Z |f(z3)g(ws) — f(wio1)g(wio1)|
i=1

= Z |f(zi)g(zi) — f(zi)g(zi-1) + [(@i)g(@iz1) — f(zi-1)g(@iz1)]
i=1

<Y 1 @)llg(a) — g(zioa) |+Z\g (@i-1)|[f (zs) — f(@i-1)]
i=1

By Exercise 5.2, |f(;)| < M and |g(z)| < N on [a, b] for some constant M, N > 0.
valfg) MY lg(xi) — glaim)| + N Y 1f (@) = f(zima)l < MV;(9) + NVJ(f)

Take supremum over all partition A, we have V'(fg) < MV?2(g) + NV’(f) < oo, and this
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5.2 Function of Bounded Variations

shows fg € BV ([a, b]).

Finally, we prove g ; € BV([a,b]) when g(x) is bounded away from zero. By product

case, it suffices to show 2 € BV([a b]). For any partition A, consider

n

1) _yo[ 1 Z l9(@i) —g(zi-y)| _ 1 Va(9)
Al — | = < —vA < < 00
<g> i—1 g(xz) ‘T’L 1 ’g xz xz 1)’ c? (g) c?
Thus, % € BV({a, b]) and it further 1mphes € BV({a, b]) by the previous conclusion. O

#: Exercise 5.4 If f € BV([a,b]), V2(f) = P2(f) + Nb(f) and £(b) — f(a) = P2(f) — N2(f).

Proof By definition, for any partition A, we have

pa—na =Y (fl@) = fle)t +> (fl@) = flwi))”
i=1 i=1
= Z f(wia)) = f(b) = f(a)

Thus, po = na + f(b) — f (a). Take supremum over A on both sides, it is easy to see
PY(f) = N2(f) + f(b) — f(a). Since it is easy to see na < va, N°(f) < V’(f) < oo. Thus,
by subtracting N2( f) on both sides, we obtain P?(f) — N2(f) = f(b) — f(a). To prove the other
equality, consider va = pa+na = 2na+ f(b) — f(a). Take supremum over all A on both sides,
we have V2 (f) = 2Nb(f) + f(b) — f(a). Since we have proved P?(f) — N2(f) = f(b) — f(a),
by eliminating f(b) — f(a), we have V.°(f) = Pb(f) + N2(f). O

Exercise 5.5 The functions V' (f), P¥(f) and NZ(f) are all increasing in x on [a, b].
Proof Consider a < 1 < w9 < b, for any partition A,, of [a, x1], there is a partition A,, of
[a, z2] satisfying Ay, = A, U {z2}. Notice that
VA, S A, T+ f(@2) = flz1)| = va,, < V2(S)
so by taking supremum over all A, we have V"1 (f) < V*2(f). Thus, V;7(f) is increasing on

[a, b]. The other two can be proved in exactly the same way, so we omit the proof. (]

Theorem 5.4. Jordan Decomposition for BV Function
A function f € BV ([a,b]) if and only if f = g — h where g and h are real-valued

increasing functions on [a, b).

Q@

Proof  First we prove the “If” part. Since g,h are increasing on [a,b], by Example 5.4,
g,h € BV([a,b]). By Exercise 5.3, f = g — h € BV([a, b]). Then we prove the “only if” part.
Since f € BV([a, b]), by Exercise 5.5, for all € [a,b], f € BV([a, z]). Thus, by Exercise 5.4,
f(z) = fla)+PX(f)— NI (f). By Exercise 5.5, P¥(f) and N7 (f) are increasing on [a, b]. Let
g(x) = f(a) + P¥(f) and h(z) = NZX(f), then f(x) = g(x) — h(z) where g, h are increasing
functions on [a,b]. Since PZ(f) is increasing, 0 < PZ(f) < P’(f). Note that N°(f) > 0,
together with V2(f) = P2(f) + Nb(f), we have P°(f) < Vb(f) < oo, so g(z) is real-valued

98



5.2 Function of Bounded Variations

on [a, b]. Similarly, we can prove h(x) is real-valued on [a, b]. O

If f € BV([a,b]), then f is differentiable a.e. on [a, b].

The proof follows directly from Jordan decomposition for function of bounded variations

and Lebesgue’s theorem for the differentiability of monotone functions. U

Suppose € L(a,b). Define indefinite integral F(x f f@t) dt for x € [a,b]. Then

@)

(ii)

(i) F is continuous on |a, b]

(ii) F € BV([a,b]) and V2(F f |f(z)| dx.

We prove the above two parts separately:

Fix zg € [a,b]. Let A = [a:o, ] or [z, z0), thenm(A) — Oasz — x. Since f € L!(a,b),

|F(x) — F(zo)| = | [, f(t) dts| — 0 as m(A) — 0 by Problem Set 3.4, Question 8..
Thus, we obtain |F'(z) — F'(z9)| — 0 as  — x. This shows F'(x) is continuous at x.
For any partition A = {a = x¢,...,Zn_1,2, = b}, compute

zgyp(xi)_ x11|<2/ dx—/|f )| dz < oo

where the first inequality is due to Exercise 3.16. Take supremum over all A, we have
b(F) < f; |f(z)| dz. Tt remains to show V.*(F) > f |f(2)] dx.

Let Bt = {z € (a,b)| f(z) > 0} and E~ = {z € (a,b)| f(z) < 0}. We define
I(z) = Ig+(x) — Ig-(x), then I(x)f(z) = |f(z)| on (a,b). By Theorem 4.8, there
exists sequence of step functions S, (z) — I+ () in L'(a,b) as n — oo. According
to the proof of Theorem 4.8, we can assume S, (z) only take value 1 or 0 on (a,b).
Similarly, there exists sequence of step functions S, (¥) — Iy () in L!(a,b), where
S (z) =0orlon (a,b). Let Sp(x) = S, (x)— S, (z). Then S, (x) is a step function and
Sp(x) € {1,0,—1} on (a, b). Furthermore, it is easy to show by Minkowski inequality that
Sp(z) — I(z) in L'(a,b). Thus, by Theorem 3.7, S,,(x) — I(z) in measure and so there
exists a subsequence S,,, — I(z)a.e. on (a,b). Since f € L'(a,b), by Exercise 3.11, f(z)
is finite a.e. on (a, b). This shows for almost all fixed = € (a, b), Sy, (z) f(x) — I(z)f(z)
as p — 00, 50 Sy, (z) f(x) — I(x)f(x) a.e. on (a,b). Note that |S,, (z)f(x)| < |f(x)]
where f € L'(a,b), so by DCT, fab Sn, () f(x) de — f: I(z)f(z) dx = fab |f(2)] d.
Also, we can assume Sy, (z) = Z?il cnjlR, ;(x) where R, ;’s are disjoint intervals and

cn,j € {0, £1} for each fixed n. Notice that

b kn b kn
/ Su(@)f(z) dz =Y / eniln,, (@) f(@) dz < Y
a j=17a J=1

Define partition A of [a, b] as the collection of two end points of each interval R, ;, then
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5.3

by definition of F'(x), for each n,
b kn
[ Su@)s(@) do = 30 IF(RL) ~ (R, < 0oa(F) < VAE)
a j=1

Thus by considering n = n,, and taking p — oo, fab |f(z)| dz < V?(F). Combined with
the previous result, V(F) = f; |f(z)| dz and F € BV({a, b]) because f € L!(a,b).
(]

= Problem Set 5.2 <

. Let Ag = {a = xg,x1,22,23,b = x4}. Then if a continuous function f(z) defined

on [a,b] is increasing on [a,z1] and [z, x3], decreasing on [z1,z2] and [x3,b], then
Vab (f) = VAg-

Observe that va < va, if A; is a finer partition of [a, b] than A. Use this observation to
prove if f is real-valued on [a, b] and ¢ € (a, b), then V2(f) = VE(f) + V2(f).

. Find V#™(sin 2z) by using Question 2. in this Problem Set.

Let fx(x) € BV([a,b]) for all k > 1. Suppose V2(f) < M forall k > 1, and f — f
pointwise on [a, b] as k — oco. Prove f € BV([a,b]) and V() < M.

. Denote v : [0,1] — C by ~(t) = z(t) + iy(t), where x(t) and y(t) are real-valued

continuous functions on [0,1]. A curve 7 is rectifiable if V() < oco. In this case,
the length of « is defined to be Vil (7). Prove that if x(t) and y(¢) are continuously
differentiable on [0, 1], then Vi () = fol V(@ ()2 + (¥ (1))? dt.

Suppose f € BV([0,1]). Define F(z) = 1 [V f(t) dt for z € (0,1] and F(0) = 2020.

Tz

Prove that F' € BV([0, 1]) and lim,_,o+ F'(x) exists as a finite number.

. Let f(z) be real-valued on [a, b], satisfying that for all € > 0, V.2, (f) < M, where M is

a constant. Prove that f € BV([a, ]).

Fundamental Theorem of Calculus and Absolutely Continuous

Function

In this section, we are going to derive a sufficient and necessary condition for Fundamental

Theorem of Calculus (FTC) for Lebesgue integrable function. This is a huge extension for the

basic FTC for Riemann integral that you should learn in any basic calculus course. FTC for

Lebesgue integral consists of two parts. The first part is relatively easier and only requires the

following lemma as an extra prerequisite:

If f € L*(a,b) and [ f(t) dt =0 for all x € [a,b], then f(z) = 0 a.e. on (a,b).

Let I be an interval s.t. I C [a,b], then [; f(z) dz = 0 by using the assumption. Recall

Problem 1.1, for any open G C [a, b], we can write G = |J;—; I), where I};’s are disjoint open
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intervals. Thus, by Problem Set 3.4, Question 4., [, f(z) dz = 37,2, [} f(z) dz = 0. Let
Et ={z € (a,b)| f(z)>0}and E~ = {x € (a,b)|f( ) < 0}.

We want to show m(E*) = 0. Suppose m(E*) > 0. Since for all § > 0, there exists
closed F C ET s.t. m(ET\ F) < 4. Take § = mngEO ), we have m(ET) — m(F) < &, so

m(F) > 2m(ET) > 0. However, since (a,b) \ F is open,

0—/f dx—/f dx+/ab\F dac—/f

This shows [, f(z) dz = 0. Notice that f(z) > 0 on F' with m(F) > 0, by using Problem

Set 3.1, Questlon 2., we obtain a contradiction. Therefore, m(FE Jr) = 0. Similarly, we can show

m(E~) = 0. This shows that f(z) = 0 a.e. on (a,b). O

Theorem 5.6. Fundamental Theorem of Calculus I (FTC-I)

Suppose f € L'(a,b) and define F(x f f(t) dt, then F'(x) exists and F'(x) = f(x)

a.e. on (a,b).

Q©

Proof Special case: Assume f is bounded, i.e., | f(z)| < C for all x € [a,b]. WLOG, define
f(z) = f(b) for all 2 > b. Define F,(z) = n(F(z + L) — F(x)) for all z € [a,b], then
F.(z)=n ffr% f(t) dt. By Theorem 5.5, each F),(z) and F'(x) are continuous with bounded
variation on [a, b]. By Corollary 5.1, F(x) is differentiable a.e. on (a,b), so F'(z) exists a.e.

n (a,b). By definition, F},(x) — F’(x) a.e. on (a,b). Note that |F,,(z)| < C on [a, b] for all
n > 1, so for each ¢ € [a, b], by DCT,

/ F'(z) dz = lim F,(x) dx = lim n/ [F <:U—i— 1) - F(m)} dx
a n—oo /. n—00 a n
*) . c+% c
= lim n F(x)dx— | F(z)dz
n—oo a_"_% a
c+d a+t
/ F(z) dz — / F(x) d:n]

=F(c)— F(a) = F(c) = /C f(z) dz

where (%) is due to change of variable for Riemann-integral (we can regard it as Riemann-integral

= lim n
n—oo

because F'(x) is continuous and [a, b] is bounded).

We tend to conclude that [*(F'(x) — f(x)) dz = 0 for all ¢ € [a,b] by using Exercise
3.12 but it requires us to show F’ € L!(a,b). Since F' € BV([a, b]), by Jordan Decomposition,
F = g — h where g and h are increasing on [a, b] and F’ = ¢’ — 1/ a.e. on (a,b). By Lebesgue’s
Theorem, f; g (z) dz < g(b) — g(a) < oo, so g’ € L'(a,b). Similarly, /' € L'(a,b), so
F' € L'(a,b). Therefore, we can conclude [7(F'(z) — f(z)) de = 0 for all ¢ € [a,b]. B
Lemma 5.2 we just proved, F'(z) = f(z) a.e. on (a, b).

General case: Assume f € L'(a,b) only. Consider f* € L'(a,b) and —f~ € L'(a,b), we
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can write F(z) = [ f*(t) dt — [7(—f~(t)) dt. Thus, if we can prove the desired result
for nonnegative f € L'(a,b), then we can prove the most general case easily. Now assume
f € L'(a,b) is nonnegative on [a, b]. Define

f(@) if f(z) <n

n if f(z) >n

fa() =

then f,,(z) < f(z) is nonnegative, measurable and bounded. Since f(z) > 0, F'(x) is increasing
on [a, b]. By Lebesgue’s Theorem, for all ¢ € [a,b], [ F'(z) de < F(c) — F(a) = [¢ f(z) da.
Similar to the argument in special case, we have [(F'(z) — f(z)) dz < 0 for all ¢ € [a,b)].
Now it suffices to show F'(z) — f(x) > 0 a.e. on (a,b). Let Fy(z) = [ fu(t) dt, then by
special case, F () exists and F) (z) = f,(z) a.e. on (a,b). Finally, notice that F'(x) — F,(x)
is increasing on [a,b] because F(z) — F,(z) = [(f(t) — fa(t)) dt and the integrand is
nonnegative. Thus, by Lebesgue’s Theorem, it is differentiable and its derivative is nonnegative
a.e. on (a,b), ie., (F(x) — Fy(x)) = F'(x) — F/(x) = F'(z) — fao(x) > 0 ae. on (a,b).
Since f,(x) — f(x) ae. on (a,b), by taking n — oo, F'(z) — f(x) > 0 a.e. on (a,b).
This shows [“(F'(x) — f(x)) dz > 0. Combined with the previous result, we actually have
JS(F'(z) = f(z)) de =0 forall ¢ € [a,b]. By Lemma 5.2, F'(z) = f(z) ae. on (a,b). O

Having FTC-I, we can prove the 1-dimensional version of the well-known Lebesgue’s

Differentiation Theorem easily. You will learn the general version of it in Harmonic Analysis.

Theorem 5.7. Lebesgue’s Differentiation Theorem

Suppose f € L(a,b), where (a,b) may be unbounded, e.g. R. We have
1. For almost all x € (a,b), limj,_,q+ |Bh—1(x)| th(x) f(y) dy = f(=).
2. Furthermore, limy, o+ |Bh—1(z)\ th(x) |f(y) — f(z)| dy = 0 a.e. on (a,b).

where By, () is the open ball centered at x with radius h.

Proof
1. Define Ej, = (a,b) N {x € R|k <z < k+ 1} forall £ € Z. Notice that each E, is a
bounded interval, so we denote the two end points of E}, as ay, bx (ar < by). If ap = by,
then ignore such Ey. Let Fy(z) = [, f(t) dt, since F}, € L'(ax,by), by FTC-I on

(ak, by,), for almost all z € (ag, by,),

. 1 . Fk($+h)—Fk($—h)
lim ————— dy = 1
hg(r)l+ |Bi(2)| JB, () fy) dy hg(r)l+ 2h
B 1 lim Fk(11+h)—Fk(l') Fk(x)—Fk(l‘—h)
T 2 hs0+ h h

= S (FLw) + F(@) = F{(x) = f(2)
Since the above result holds a.e. on each Ej, and (a,b) = (J;—_ . Ej, the desired result
holds a.e. on (a, b).
2. For all fixed r € Q, consider the function |f(z) — r|, it is in L'(a,b). Apply part 1 to
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|f(x) — 7|, for almost all z € (a,b),

1
im —— —rldy=|f(x)—r
S ) 1) =y = 11w (*

Thus, there exists £, C (a,b) s.t. m(E,) = 0 and (x) holds for all z € (a,b) \ E,. Let
E =,¢q Er thenitis easy to show m(E) = O and forall z € (a,b) \ Eandr € Q, (x)
holds. Now fix x € (a,b) \ E, forall € > 0, pick r, € Qs.t. |f(z) —rz| < €, and we have

1 1
1Bu(@)] /5, ) 1f(y) = f(x)] dy < 1Ba(@)] Bh(x)(|f(y)—T:c|+\rx—f(x)\)dy
< [ —rildy+e

= Bu(®)| JB, (@)

Take lim;,_,+ on both sides,

hg& m B, (s) If(y) = f(2)| dy < |f(x) —ra| +€ < 2

Take ¢ — 0, we obtain the desired result for all € (a,b) \ E, hence a.e. on (a,b).
]

The following theorem is a special case of 1-dimensional Lebesgue’s Differentiation Theo-
rem. It tells us that for any measurable set F', almost all points in F is has “density” 1, and the

set of points on the boundary of E, which has density less than 1, can be ignored.

Suppose E C R, B € M. Then

lim M B 1 foralmostallx € E
ho0t m(Bh(2)) 0 foralmost all x € E°

where By, (x) is the open ball centered at x with radius h.

For any z € R, we can write
m(E N Bp(z)) 1

m(Ba@)  1Bu@)] g, E W

Similar to the proof of Lebesgue’s Differentiation Theorem, we can define Ey, = E N [k, k + 1)

for all £ € Z. Notice that Ig, € L'(k,k + 1), so we can apply Lebesgue’s Differentiation

Theorem to conclude
’ m(E N By (z))
im ————————%

hsot  m(Bp(z)) Io(x) ()

for almost all © € [k, k + 1). Since R = [J;—___[k, k + 1), () holds for almost all z € R, and

this proves the desired results. (]

Next we are going to derive the second part of FTC. However, before that, we will first
introduce an essential concept, that is, absolutely continuous function and derive some properties

of it. These results would be helpful for us to prove the second part of FTC.
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5.3 Fundamental Theorem of Calculus and Absolutely Continuous Function

Definition 5.6

Let f(x) be real-valued on |a,b]. The function f is absolutely continuous on [a,b)

if for all € > 0, there exists § > 0 s.t. for any finite collection of disjoint open in-

. (@, Yn) contained in (a,b) satisfying Y ;| (yi — x;) < 9, we have

Yoy | f (i) — f(24)| < €. Inaddition, denote f € AC([a, b]) ifand only if f is absolutely
].

continuous on [a,b

tervals (r1,y1), - - -

Problem 5.1 If f € AC(]a, b]), then f is uniformly continuous on [a, b].
Problem 5.2 If f is Lipschitz continuous on [a, b], then f € AC({a, b]).

Exercise 5.6 If f € AC([a,b]), and f'(x) = 0 a.e. on [a,b], then f(x) = ¢ on [a, b] for some
constant c.

We prove by contradiction, and it suffices to show if f'(x) = 0 a.e. on [a,b] and f
is not a constant, then there exists ¢g > 0 s.t. for all § > 0, there exists a finite collection of
disjoint open intervals (z1,91), ..., (Zn, y,) containted in (a, b) satisfying Z;-Ll(yi —x;) <0
and >0 [ f(yi) — f(z:)] = eo

Pick ¢ € (a,b] s.t. f(c) # f(a). Let E. = {z € (a,c)| f'(z) = 0}, then m(E,) = ¢ — a.
Fix r > 0, for all x € E., since f’(x) = 0, there exists small interval [x,x + h;] C (a,c) s.t.
|f(x+hy) — f(x)| < rhy, Now consider I' = {[x,x + h] |z € E., 0 < h < h,}, we can easily
see it is a Vitali covering of F.. By Vitali Covering Theorem, for all § > 0, there exists a finite
collection of disjoint intervals {[z;, x; + |}, C I's.t. m(E. \ Ui~ [2i, i + hi]) < d. This
implies m((a, ¢) \ Ui~ (i, ;i + hi]) < 6. Let g = a and 2,11 = ¢, then WLOG, assume
ro<zT1<T1H+h < - <Xy < Ty + by < xp1. Let hg = 0, then

F(e) = Fla)| <D 1f(wivn) = fli+ )| + Y |f (i + i) — f ()]
=0

i=1

<D (i) = flai+h)l+r Y hi
=0 i

i=1
<Y U f(@iwa) = fl@i+ hi) +r(b—a)
=0

Take €9 = 1[f(c) — f(a)| and r = ;<= we have > | f(2i1) — f(zi + hi)| > €o. Now let
Yit1 = xi41 and z;41 = x; + h; forall i = 0,... m. Itis easy to see {(zz,y,)}?:{l is a finite
collection of disjoint open intervals satisfying > (y; —2:) = m((a, ) \UI"; [ws, zi+hi]) < &
and -7 | F(y;) — f(2:)] > €0, so the desired result holds. O

This may be the most intuitive reason for introducing a new concept of absolutely
continuous function. Recall in Lebesgue’s Theorem, we have [ f'(t) dt < f(b) — f(a). If the
equality holds, then we obtain FTC. However, the strict inequality may holds if f/(z) = 0 a.e.
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5.3 Fundamental Theorem of Calculus and Absolutely Continuous Function

on (a,b) cannot imply f(z) is a constant. Let f(z) be Cantor function, then f'(z) = 0 a.e. on
(0,1) but 0 = [ f'(t) dt < f(b) — f(a) = 1. Thus, FTC does not hold for Cantor function.
On the contrary, if we impose absolutely continuity, then such a strange case will be eliminated

(we will see this later).

Exercise 5.7 Let f € L'(a,b) and F(z) = [ f(t) dt, then F € AC([a, b]).
Recall Problem Set 3.4, Questron 8., for all € > 0, there exists § > 0 s.t. for any subset
C (a,b) if m(e) < 0, [ |f(x)| dz < e. Now consider any finite collection of disjoint open
intervals {(x;,y;)}?_, contained in (a, b) satisfying > " | (y; — ;) < 0, lete = J"_; (@i, vi),
then since m(e) = Z?:l(yi — ;) <9, fUn (i) ]f(x)| dx < e. Notice that

> P (y) — F( m— dt’ Z/ ()] dt = / |f(z)] do <€
i=1 U?:l(xi:yi)

Thus, F' € AC([a, b]). O

Exercise 5.8 If f € AC([a,b]) and g € AC([a,b]), then ¢; f + cag € AC([a, b]), where c1, c2
are two constants. Furthermore, fg € AC(][a, b]).

By assumption, forall e > 0, there exists & > 0s.t. for any finite collection of disjoint open
intervals {(z;, y;)}_; contained in (a,b), if > | (y; —x;) < d,then ;" | [f(yi) — f(zi)| <e
and Z:L 119(yi) — g(xi)| < e. Let h = ¢1 f + c2g, by triangular inequality,

Zlh yi) — h(z;)| < |01|E|f yi) — f ()| + !@!Zlg yi) — g(i)| < (Jex] + |e2|)e
=1

Thrs 1mp11es that h € AC(]a, b] ) Furthermore, by Problem 5.1, f and g are uniformly continuous
on [a, b], hence they are bounded on [a, b], i.e., |f(x)| < M and |g(x)| < N on [a, b] for some

constant M, N > 0. Let ¢ = fg, then

D o) — ¢l <> 1Fwi)g(yi) — Flyig(as) + Flyi)g(as) — fwi)g(:)]
=1 =1

<D 1 wallg(ys) = 9@l + Y la@a)|lf (wi) — £ ()]
=1

i=1
< MZ l9(yi) — g(xi)] +NZ [f(yi) = flai)| < (M + N)e

Thus, fg € AC([a,b]). O

Exercise 5.9 If f € AC(]a, b)), then f € BV([a, b]).

By assumption, there exists § > 0 s.t. for any finite collection of disjoint open intervals
{(,y;)}?_, contained in (a,b),if > | (y; —x;) < d,then Y ;" | |f(yi) — f(xi)| < 1. Choose
N > 1st b_Ta < §. Define a partition of [a,b] by Ay = {a = xo,21,...,xnx = b}. Let A
be any partition of [a, b], and define Ay = Ag U A = {20, 21,...,2K}. By Problem Set 5.2,
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Question 2., since A is finer than A, we have va < va,. However,

K N
vay, = Y IF @) = fla-) =D > |f(zk) = flze—1)| <N
k=1 =1 (2 _1,28) C(Ti—1,24)

This shows for any partition A, va < N. Thus, by taking the supremum over all partition A on
both sides, V.?(f) < N, which shows f € BV ([a, b]). O

Theorem 5.9. Fundamental Theorem of Calculus II (FTC-II)

If f € AC([a,b)), then f'(x) exists a.e. on (a,b) and f' € L'(a,b). Furthermore,

f(x) = fa) = [T f/(t) dt for all x € [a,b]. @

Proof By Exercise 5.9, f € BV([a,b]), so by Corollary 5.1, f’(x) exists a.e. on (a,b).
Moreover, by Jordan Decomposition, f = g — h for some increasing function ¢ and h. By
Lebesgue’s Theorem, 0 < f(f g (z) dv < g(b)—g(a),so g’ € L*(a,b). Similarly, b’ € L'(a,b),
thus f’ € L'(a,b). Define f(x) £ f(a) + [ f'(t) dt, we want to show f(z) = f(z) on [a, b].
By FTC-I, f/(x) = f'(x) ae. on (a,b), so (f — f)/(x) = 0 a.e. on [a,b]. By Exercise 5.7,
f € AC([a, ]). By Exercise 5.8, f — f € AC([a,b]). By Exercise 5.6, f — f is a constant on
[a, b]. However, it is obvious that f(a) — f(a) = 0, so f(z) = f(x) on [a, D). O
Remark The converse of FTC-II is also true, i.e., if f(z) — f(a) = [ g(t) dt for some
g € L'(a,b), then f € AC([a,b]) and f'(x) = g(z) a.e. on (a, b).

A direct application of FTC-II is called “integration by parts”’, a famous and classical

technique that is widely used in Riemann integration.

Theorem 5.10. Integration by Parts

Suppose f,g € AC((a,b), then [, ['(x)g(2) dw = f(@)g(@)], = [, F(2)g'(@) dw.

Proof Since f,g € AC([a,b]), by Exercise 5.8, fg € AC([a,b]). By FTC-II, f(x), g(x),
and f(x)g(z) are all differentiable a.e. on (a, ). By FTC-II, ff(f(x)g(:v))’ dr = f(a:)g(x)|z
By product rule for differentiation, (f(x)g(z))" = f'(x)g(z) + ¢'(x)f(z) a.e. on (a,b), so
ff(f(x)g(:v))' dr = f; f(z)g(x) dx + f: d'(z)f(z) dz. To be rigorous, we need to argue
f'(x)g(z) and ¢'(x) f(x) are in L'(a,b). This is because FTC-II guarantees f', ¢’ € L'(a,b)

and Exercise 5.1 guarantees f, g are bounded on [a, b]. O

Our final task for this section is to connect measurablity preserving property with absolute
continuity. This is because in general, verifying a function is absolutely continuous is quite
hard. After connecting them, we can derive some user-friendly criteria for checking absolute

continuity.

#1 Exercise 5.10 If f € AC([a,b]) with E C [a,b] and m(E) = 0, then m(f(E)) = 0.
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Proof By assumption, forall e > 0, there exists > 0 s.t. if any finite collection of open intervals
{(z;,y;)}?, contained in (a,b) satisfies Y ;" | (y; — x;) < &, then > " | |f(yi) — f(x:)| < e
Since m(FE) = 0, there exists open set G C (a,b) s.t. G O E and m(G) < §. By Problem 1.1,
write G = J,— (ak, by) where {(ag, by)}72, is a collection of disjoint open intervals. Thus,
f(E) C f(G) C UpZ, f(lak, br]). Let my = ming,, 4,; f(x) and M, = max(, 5, f(x). Also

let ¢, = argminy,, 5,1 f(7) and dj, = arg max|g, ) f(z). Therefore,
[ee] oo

m*(f(B)) <D (Mg —my) = > (f(di) = f(ck))

1 k=1
For any fixed N, Zszl(dk — i) < Y opey(br —ar) = m(G) < 4, so by using the definition
of absolute continuity, Z,ivzl(f(dk) — f(ex)) < e. Take N — 00, > 22 (f(dy) — f(ew)) < e
Take € — 0, we have m*(f(E)) = 0. O

Suppose f(x) is continuous on |a,b]. Then f is measurability preserving, i.e., E € M

implies f(E) € M, if and only if m(E) = 0 implies m(f(E)) = 0. 0

Proof For “if” part, use the same argument as the second paragraph in the proof of Theorem
1.5. For “only if” part, suppose there exists £ C [a,b] s.t. m(E) = 0 but m(f(E)) > 0.
Then by the remark right after Theorem 1.3, there exists S C f(F) with S ¢ M. However,
f7YS)N E € M because m(E) = 0 implies m(f~1(S) N E) = 0. By assumption, f is
measurability preserving, so f(f~1(S) N E) = S is measurable. This is a contradiction, so the

desired property is proved. U

If f € AC([a, b)), then f is measurability preserving.

Now we display our main theorem for connecting absolute continuity and measurability
preserving. However, since its proof is too complicated, we will not prove it immediately;
instead, we shall verify it progressively by first introducing two useful lemmas.

Suppose f(x) is continuous on [a,b] and f'(x) exists a.e. on (a,b). Furthermore,
f' € L'(a,b) and for any subset E C [a,b], m(E) = 0 implies m(f(E)) = 0. Then
[ € AC([a.b]) and FTC-1I holds for all x € [a, b).

v

Suppose f(x) is measurable on [a,b], E C (a,b) and E € M. Furthermore, f'(x) exists
and | f'(x)| < ¢ for some constant c on |a,b|. Then m*(f(E)) < em(E).

Q©
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For all € > 0, there exists open G st. £ C G C (a,b) and m(G) < m(E) + e.
By assumption, for all x € E, |f'(x)| < ¢+ e. Thus, there exists small enough h, > 0 s.t.
lf(y) — f(x)| < (c+€)ly — x| forally # z and y € [x — hy,x + hy] C G. This implies
|f(y) — f(z)| < (c+e)hforally € [x — h,x + h] with any 0 < h < h,. This further implies
F(9) € (F(@)—(c+e)h, F(@)+(crelh), s0 f([w—h, o+h]) C (F(2)—(celh, F(2)+(ce)h)
forany 0 < h < hy. LetI' = {[f(z) — (c+ €)h, f(z) + (c+€)h] |z € E, 0 < h < hg}. Ttis
easy to see I is a Vitali covering of f(FE). By the second remark following Theorem 5.1, there
exists a countable collection of disjoint intervals {[f (z;) — (c+ €)hi, f(z;) + (c+€)hi]}32, C T
st. m*(f(E)\ Ui [f(xi) — (c+ €)hi, f(zi) + (¢ + €)h;]) = 0. Therefore,

) < Zm — (c+€)hy, f(xi) + (c+ €)hi])

:ZQ(c+e) (c+e€) Zm — hi, 2 + hil)

Note that {[x; — h;, z; + h] ©, should be a collectlon of disjoint intervals. If not, then
f(li — hiyxi + hi]) N0 f([xj — hj,xj + hj]) # &. However, this is a contradiction because
f([zi — hiyzi + hi]) € (f(zi) — (¢ + €)hi, f(x;) + (¢ + €)h;) for any i € N and we pick
{lf(zs) = (c+ €)hs, f(xi) + (c+ €)hi]}52, to be a collection of disjoint intervals. Thus,

m*(f(E)) < (c+e Zm hl,xl—kh]):(c+e)m<U[a§i—hi,xi+hi]>
i=1
This shows m*(f(FE)) < (c+e) (G) < (c+¢€)(m(E)+e)forall e > 0. By taking ¢ — 0 and
using m(E) < oo, m*(f(E)) < em(E). O

Suppose f( )is measurable on [a,b] and f'(z) exists forallz € E C (a,b) with E € M.
Then m*(f(E)) < [ |f'(z)| da.

LetO=gyo<y1 < -+ < Yp < --- withy, — coasn — co. Assume Yp+1 — yYp <
for all n > 0. Also, define E,, = {x € FE|y,—1 < |f'(z)| < yn} for all n > 1. Notice that
E =, E, implies f(E) = U,2, f(Epn), som*(f(E)) < >>°, m*(f(E,)). By Lemma
53, m*(f(En)) < ynm(Ey). Thus, m*(f(E)) < >0° ynm(E,) for any 6 > 0. Recall in
Example 3.2, we have limgﬁo Yoreyynm(Ey) = [ |f'(x)| d. Therefore, by taking § — 0 on
both sides, m* ) < Jg |f/(x)] de. O

After so much preparation, we can finally prove our main theorem on absolute continuity
and measurability preserving. In addition, several corollaries following the main theorem will

give some user-friendly versions of it.

[Theorem 5.12] Consider any finite collection of disjoint open intervals {(z;,y;)}i,

contained in (a,b), define Ey, = {z € [zk,yx] | f/(x) exists as a finite number}. Since f'(x)
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exists a.e. on (a,b), m([xg, yx] \ Ex) = 0. By assumption, m(f([zx, yx] \ Ex)) = 0, so
m*(f(Er)) < m*(f([zx, ye])) < m*(f(Er) +m”(f ([wr, vl \ Ex)) = m*(f(Ex))

Thus, m*(f(Ex)) = m*(f([xk,yx])). Now by intermediate value property of continuous
function, |f(yx) — f(a:k)| < m*(f([zr, yx])). By Lemma 5.4, m*(f(Ey)) < fE |f'(z)| d.
Therefore, | f(yx) — f(xr)| < fE |f'(x)| dx for k = 1,...,n. By summing over k on both

sides and since F;’s are almost disjoint,

< )| dz = f dr < ! d
S 17(0k) = ) Z/ (@) do = /UE\ () x_/UZ_lm,kaf(xM v

Since f' € L'(a, b), by Problem Set 3.4, Question 8., for all € > 0, there exists § > 0 s.t. for any
subset e C [a,b] and e € M, if m(e) < 4, then [ |f'(z)| dw < e. Let e = (Jj_ [xx, yx), then

if > 5t (Y — 2) <6, 35 | fyn) — flan)| < fugzl[a;k,yk] [f'(z)] dz < e 0

Suppose f(x) is continuous on [a,b] and f'(x) exists a.e. on (a,b) with f' € L'(a,b).

Then f € AC([a, b)) ifand onlyif m(f(E)) = 0forany subset E C (a,b) withm(E) = 0. 0

Proof The “if” and “only if” parts follow from Theorem 5.12 and Exercise 5.10. (]

Corollary 5.4

Suppose f(x) is continuous on [a,b] and f € BV([a,b]). Moreover, m(f(E)) = 0 for

any subset E C (a,b) withm(E) = 0. Then f € AC([a,b]). 0

Proof If f € BV([a,b]), by Corollary 5.1, f/(z) exists a.e. on (a,b). To show f € L(a,b),
we can use exactly the same argument as in the second paragraph in the proof of FTC-I. Then

Theorem 5.12 gives the desired result. (]

Suppose f(x) is continuous on [a, b] and differentiable on (a,b) with f' € L*(a,b). Then
f € AC([a, b]) and FTC-II holds for all = € |a, b).

v
Proof Since f(x) is differentiable on E' C (a, b), by Lemma 5.4, m* ) < S f'(x)] d.
If m(E) = 0, then [, |f'(z)] dz = 0, so m*(f(E)) = 0. Therefore, we can apply Theorem
5.12 to conclude the desired result. g

Example 5.7 Let f(z) = 2®sin 1 for z € (0,1] and f(0) = 0. Then f € AC([0,1]) if o > 1.

Proof It is easy to see f(x) is continuous on [0,1] and differentiable on (0,1). To see
1 - _ “1g 1 2 e 1 - “1gin 1

f € L'(0,1), consider f'(x) = ax® "sin s — 2% *cos 1. Notice that [z* " sin | < 1 on

[0,1], so 2*tsind € L(0,1). Also, [z 2 cos 1| < 2272 € L'(0,1). Thus, ' € L*(0,1).

By Corollary 5.5, f € AC([0, 1]). O
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In the following problem set, all (a,b) or |a, b] are assumed to be bounded intervals.
= Problem Set 5.3 <

I. Let f(z) be continuous and increasing on [a, b]. Prove f € AC([a,b]) if and only if for
all € > 0, there exists § > 0 s.t. whenever £ C (a,b), E € M, m(E) < 6, we have
m(F(E)) < e

2. Let f € L'(a,b) and f; 2" f(x) dz = 0 for all n > 0. Prove that f(z) = 0 a.e. on [a, b].

3. Let f be increasing on [a, b], satisfying f(f f'(x) dx = f(b) — f(a). Prove that f is
absolutely continuous on [a, b].

4. Suppose f is differentiable on R and f, f’ € L*(R). Prove that [, f'(z) dz = 0.

5. Let fx(z) be increasing and absolutely continuous on [a,b] for all & > 1. Suppose
Y ney fu(x) converges pointwise on [a, b]. Provethaty .~ ; fi(x)is absolutely continuous
on [a, b].

6. Let E € M be a subset of [0, 1] s.t. 3 constant o > 0 satisfying m(E N [a,b]) > a(b—a)
forall 0 < a < b < 1. Prove that m(FE) = 1.

7. Let f be continuous on [a, b] and differentiable at every x € (a,b) \ S, where S is at most

countable. Suppose f’(x) € L(a,b). Prove that

fla) = @)+ [ £ it Vaclad 1)
8. Suppose f € AC([a,b]) and f(0) = 0. Prove that

/|f Idassf/ da

9. Let {gx}72, € AC([a,b]). Assume
o |g}.(z)] < F(z) ae. on (a,b) forall k > 1, where F' € L'(a,b).
o there exists ¢ € [a, b] s.t. limg_, o g (c) exists as a finite number.
o limy_, g () exists and equal to some finite f(x) a.e. on (a,b).
Prove
(a). limg— 00 gx () exists and equal to some finite g(x) for every x € [a, b].
(b). Show g € AC([a,b]) and ¢’ = f a.e. on (a,b).
10. Let f € BV([a,b]). Define v(z) = V.*(f). Prove that f € AC([a,b]) if and only if
v € AC([a, b]).

5.4 Change of Variables

In this section, we are going to derive another useful technique that has already been widely
used in the Riemann integral, that is, the change of variables technique, in the context of Lebesgue
integral. After that, we will also introduce some user-friendly versions of it and illustrate how to

use it by some concrete examples.
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Throughout this section, we are going to use the notation and assumption below. Let
GCR"and ¢ : G+— R ie.,z = (z1,...,2,) and ¢(x) = (¢1(2), ..., ¢n(x)). Suppose ¢

is C'-smooth (continuously differentiable) and injective. Denote its Jacobian matrix as

1 Ty
8(y17"‘7yn)
do(x) = | D =
¢( ) ’ ’ 8(331,...,1'”)

On . O¢n

o1 OTn

We assume d¢(x) is nonsingular at every = € G, i.e., det(d¢(x)) # 0 for all z € G. By Inverse

Function Theorem, D = ¢(G) is open and ¢! : D ~ G is also C'-smooth.

We first recall the baby version (for Riemman integral) of change of variables technique,
which should be learnt in any calculus or mathematical analysis course. In addition to the above
assumption, we also assume

o d¢(x) is bounded on G;
o m(0G) =0 = m(9D) where JS denotes the boundary of S for any set .S;
o f: D — Ris continuous and bounded;
o G is bounded
Then we conclude that (R) [, f(y) dy = (R) [ f(¢(x)) det(do(x)) dx where y = ¢(z).

From the baby version of change of variables technique, we can see that the situations for
using such technique are usually:
1. f(y) is too complicated but f(¢(x)) det(d¢p(z)) has a nicer form;

2. D is too compliacted but G has a nicer form.

Next we are going to introduce the statement of grown-up version (for Lebesgue integral)
of change of variables technique. However, we will not give a proof of it until we derive an

important lemma.

Assume the conditions in the second paragraph of this section hold. In addition, suppose
f(y) € LY(D). Then f(¢(x)) det(do(z)) € L*(G) and

/f dy = (£ /f )) det(de(x)) da

Forany E C D with E € M, we have ¢~(E) € M. If E C D with m(E) = 0, then
m(¢~!(E)) = 0.

Forall k > 1, let D, = {x € D||z||> < k, dist(z,dD) > 1} where the distance

function dist(z,0D) £ inf,cppllz — z|2. It is a standard exercise to check Dy, is open.
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5.4 Change of Variables

Also, the closure Dy C D is compact, and D = |J;2; Dg. Then E = [J72 (D N E) and
o~ HE) =2, ¢ YDk N E). Forall z € Dy, C D, there exists closed ball B, C D with x
as the center of it. Thus, {BI}IEDT. is an open cover of Dy,. Since Dy, is compact, there exists a
finite collection { By, }/%y C {Bz}, ;- s-t- ULy Ba; D Dy. Then, EN Dy, C UL, (By, N E)
implies ¢~ (E N Dy) = U, 971 (B, N E N Dy). Consider ¢~ : B, — R™ is C!-smooth,
¢~ is Lipschitz continuous on compact set B,. By (slightly modifying the domain of function)
Theorem 1.5, ¢~ (B, N E N Dy,) € M. Therefore, ¢~1(EN D) € M and ¢~ 1(E) € M.
Since ¢! is continuous and measurability preserving, by using the same argument (except that
the domain is different) as in Theorem 5.11, for any E C D with m(E) = 0, m(¢~1(E)) = 0.
O

Now we are going to prove the Change of Variables theorem. To make this complicated
proof easier to follow, we divide the whole proof into five steps.

[Theorem 5.13] Step 1: For simplicity, denote .J(x) = d¢(x) and det(do(z)) = |J(z)|.

For any rectangle I (can be open, closed, or half-open half-closed) so that its closure (a closed

rectangle) I C D,
m(l) = (L ldy=(R) [ 1dy=(R J(x)| de = (L J(x)| dx
=@ [1ay=® [1ay=®) [ @l [ 1)

where the third equality is by change of variables for Riemann integration. If {I;}3°, are

rectangles, almost disjoint and their closures are contained in D, then

m I; | = m(l;) = L J(x)| dz = L J(x)| dx
<L:J ) > it = >/¢m| @)ldr =3 >/¢w)| ()|

where I¢ denotes the interior of rectangle I;. The last equality is because ¢~ (I;) = ¢~ (I?)UZ
with Z C ¢~1(01I;), and by Lemma 5.5, m(91I;) = 0 implies m(¢~1(9I;)) = 0 and m(Z) = 0.
Since ¢! is injective and maps set with zero measure to set with zero measure, that I;’s are

almost disjoint implies ¢~ (I;)’s are almost disjoint. Thus,

m L =(L J(x)| dx = (L J(x)| dx
(Z:LJl > ( )/LJ?31¢‘1(1§’) ) ( )/Ufilcb‘l(fi)| )

Consider any open set Q C D, by Exercise 1.3, Q = (J;2; ¢ where ¢;’s are almost disjoint
cubes. Therefore,
m(2) = (£) |/ (2)| dv = (ﬁ)/ | ()] d
Urzy ¢~ tew) o~ HUrZ1 k)
In conclusion, for any open set Q@ C D, m(Q) = (£) fdfl(Q) |J(z)| dz. From now on, all

integrals (except for specially declared) are Lebesgue integral, so we will drop the symbol (R)

and (L) in front of the integral sign.

Step 2: Prove for any £ C D with E € M and m(E) < oo, m(E) = f¢_1(E) |J(z)| dz.
By Theorem 1.1, there exists a G5 set H = ();—, Dy so that H D E, D C D open,
m(D1) < m(E)+ 1, and m(H \ E) = 0. Claim that m(H) = fdfl(H) |J(x)| dz. Define
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5.4 Change of Variables

E, = ﬂ,’f:l D; for all k > 1, then Ej decreases to H as k — oo. Since ¢~ (E}) € M and
¢~ H(H) € M, ¢~ (E}) decreases to ¢~ L(H). Since E}, is open, by Step 1,

mB) = [ @) e = [ @) do
d~1(Ey) R™
Take limit as £ — oo on both sides, by Continuity of Lebesgue Measure,
m(H) = kli)rgo /]R" | J(2)[1y-1 (g, (7) dx
Since |J(2)[14-1(g,)(¥) < |J(@)[L4-1(p,)(z) and

/ T sy () e = / ()| dz = m(Ey) < 0o
Rn ¢~1(E1)
By DCT, m(H) = [pn |J(2)[Ip-1(g)(x) dz = fdfl(H) |J(x)| dz, which proves the claim.

Now we can conclude that

mlE)=m(t) = [ @) ds

:/ |J(x)]dx—i—/ J(x)\dx:/ J(2)] da
o~ H(E) ¢~ (H\E) ¢~ (E)
where the last equality is because m(H \ E) = 0 with Lemma 5.5 implies m(¢~*(H \ E)) =

Step 3: Suppose f(y) € L'(D) is simple function. Write f(y) = Y ;v cxlp, (x) where

E}’s are measurable (with 0 < m(E) < 00), disjoint, and ¢;’s are nonzero. Observe

/f dy—chmEk—ckZ/ |d:1:—/|J |ch1¢ 15y (%) do

where the second equality is because of Step 2. Notice that I;-1(p,)(7) = I £, (¢(2)), so
[ 1) ay= [ @Y alnow) = [ el
D a —1

Step 4: Suppose f(z) > 0 with f € L' (D). By simple approximation theorem, there exists
measurale simple function f; > 0 s.t. fi(z) increases to f(y ) on D as k — oo. Thus, fi(¢(x))
increases to f(¢(x)) on G. By Step 3, [, fr(y) dy = fG x))|J(x)| dx for all k > 1. Take
k — oo on both sides, by MCT, [, f(y) dy = [ f( )]J( )| d.

Step 5: Suppose f € L'(D), then f(y) = fH(y) — (—f (y)) with f¥(y) > 0 and
f~(y) <0on D. By Step 4, we have

/D F(y) dy = / 1 (y) dy — / —F () d
/f+ NI (@ |dw—/ —F (@) ()] da
/f 7)) da

Thus, the Change of Variables theorem is proved. ([

Since f(y) € L'(D), we implicitly assume f(y) is measurable on D. To be rigorous,
we need to prove f(¢(x)) is measurable on G, i.e., forallt € R, {z € G| f(p(x)) > t} € M.
Notice that z € ¢~ {y € D|f(y) > t} if and only if ¢(x) € {y € D| f(y) > t}. Thus,

113



5.4 Change of Variables

{z € G| f(p(x)) >t} = ¢~y € D| f(y) > t}. Since f(y) is measurable on D, for all
t € R, {y € D|f(y) >t} € M, soby Lemma 5.5, ¢~'{y € D|f(y) >t} € M and
{zeG|f(o(x)) >1} e M.

Next we derive some user-friendly versions of the Change of Variables theorem. For all
of the following Corollaries, we always assume the same conditions on sets GG, D, function ¢
as in Theorem 5.13. After that, we also give some examples to illustrate how to invoke those

user-friendly versions of theorem to solve practical problems.

Suppose E C D, E € M and f(y) € LY(E), then
[ o= @) d
E d~1(E)

Since f(y) € L'(E). f(y)Ie(y) € L'(D). By Theorem 5.13, f(¢(2))Ip(¢(x))|J (2)]
is in L' (G). Notice that I (¢(x)) = Is-1(p)(2), so by Theorem 5.13 again, we have
| risty @—/f Doy @)1 2| d

Since E C D implies ¢~ }(E) C ¢! = (G, the desired result follows immediately. (]

If F($(x))|J(2)] € L)(G), then f(y) € L}(D) and
/f @—/f 2)| de

Let g(z) = f(¢(x))|J(z)| for z € G. By assumption, g(z) € L'(G). Consider
¢! : D+ G defined by z = ¢~ (y) for y € D, it is bijective and C*-smooth (by In-
verse Function Theorem). Thus, applying Theorem 5.13 to g and ¢!, we can conclude
9(¢~'(y)) det(d¢~'(y)) € L'(D) and [, g(z) dz = [}, g(¢™"(y)) det(d¢p~'(y)) dy. Note
that g(6~ (y)) det(dd™ () = F(y) det(do(z)) det(dd(y)) = F(y) because by Inverse
Function Theorem, d¢~*(y) = (d¢(x))~t. Therefore, f(y) € L'(D) and

/f |M—Ammwzém¢mmww¢w»@=éﬂwd

which gives the desired result.

If f(y) > 0 and measurable on D, then f(p(x))|J(x)| is measurable on G and

/f @—/f 2)| de
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5.4 Change of Variables

For all k£ > 1, define

fly) it fly) <k

k if fy) >k
Let D, = D N By(0) and Gy, = ¢~ '(Dy), then fi(y) is bounded on D, with Dy bounded.
By the remark right after the proof of Theorem 5.13, f(¢(z))|J(x)| is measurable. Thus,
fr. € L'(Dy). By Theorem 5.13, we conclude that [, fi(y) dy = [ fu(d(2))]J(z)| dz.
This implies [, fx(¥)Ip, (v) dy = [pn fu(é(2z))Ig, ()| J(x)| dz. Notice that as k — oo, for
any fixed z € G, fi(¢(x)) and Ig, (x) are nonnegative increasing to f(¢(z)) and I(z); for

fe(y) =

any fixedy € D, fi(y) and Ip, (y) are nonnegative increasing to f(y) and Ip(y). Therefore, by
MCT, [pn f(W)ID(Y) dy = [gn [(d(2))Iq(2x)|J(x)] dz, which gives the desired result. O

Example 5.8 Let A be n x n real matrix with det(A) # 0. Then for all £ C R" with £ € M,
A(E) ={y e R"| Az = y, z € E} is measurable and m(A(E)) = m(E)| det(A)|.

Let G = R", ¢(z) = A~ 'z, D = R"and f(y) = Ig(y). Since E € M, f(y) is mea-
surable. By Corollary 5.8, f(¢(2))|J(2)| = Ig(A7 )| det(A™1)| = Ig(A~12)|det(A)| L is

measurable on R". Furthermore, since Ip(A™" ) = I4(p)(x),

/nIE(y) dy = /nIE(Alx)]det(A)\l dx = /A( m

Also, that Ip(A~'z)|det(A)|~! is measurable implies Iz(A~'x) is measurable, because

|det(A)| 7! dx =
E)

| det(A)| " is a finite constant. Then Iy (z) is measurable, so A(E) is measurable. O

Example 5.9 Let a4, ...,a, € R" be linearly independent. Define parallelepiped P C R"
spanned by a1,...,a, as P = {37 | za;|z; € [0,1], Vi = 1,...,n}. Prove that P is
measurable and m(P) = | det(A)| where the i-th column of A is a;.

Let F = {z € R"|z; € [0,1], Vi = 1,...,n}, then F is a closed cube in R",
hence measurable. Notice that P = A(E) with det(A) # 0, so by Exercise 5.8, P € M and
m(P) = | det(A)|m(E). Itis trivial that m(E) = |E| = 1, so m(P) = | det(A)|. O

Example 5.10 Let A be a 3 x 3 positive definite real matrix (symmetric) with eigenvalues \; = i
fori = 1,2,3. Define H(x) = ¥ Az on x € R3. Compute fffH(y) VHY) qy.

Since A is symmetric positive definite, by eigenvalue decomposition, there exists or-

<1€¢

thogonal matrix Q s.t. A = QAQ" where A = diag(1,2,3) is a diagonal matrix with its
diagonal elements 1, 2 and 3. Denote v/A = diag(1,v2,v/3) and VA = QvVAQT. Define
D ={y € R¥H(y) < 1}, ¢(z) = (VA) 'z, H(y) = ||V Ay|j3. It is also easy to see
G = ¢ YD) = {z € R®|||z2 < 1}. Since f(y) = eV®) is continuous and nonnegative,

we can apply Corollary 5.8 to obtain

e et o
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5.4 Change of Variables

Now we use polar coordinate to do change of variables again. Define

x1 psiny cos 6
za| = d(p,,0) = | psinesind | , where ¢ € (0,7),6 € (0,27),p € (0,1)
3 pCcos Y

G = {(,0,’(/),9) € R3|¢ € (Oaﬂ-)ag € (07277)’:0 € (Oal)}

Then D = ¢(G) = {z € R3|||z||]2 < 1} \ Z where m(Z) = 0. Therefore, by Corollary 5.8,

///lm i [l [[ i

Since G is a rectangle, by FTT-II,

///G e/l sin gl dp v df = /0% /0 S“”ﬁ/o1 e p? dp dip d
2(6—2)/02W/0Wsin¢d¢de

:/%2(6—2) df = 4r(e — 2)
0

///H(y)<1 VI dy = 47r(e\/6;2)

Thus, the final answer is

116



Chapter 6 Version History

We revised our lecture notes now and then. This section shows the version story of this

lecture notes.

2020/12/28  Updates:release of Version 1.0

(1) The first version of this lecture notes was released!
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