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Chapter 1 Lesbegue Measurable Sets

1.1 Rectangles

Definition 1.1. Closed & Open Rectangles

♣

A closed rectangle R in Rn is a subset of Rn with the form R = [a1, b1]× · · · × [an, bn].

An open rectangle R in Rn is a subset of Rn with the form R = (a1, b1)× · · · × (an, bn).

Here ak, bk are real numbers for k = 1, . . . , n.

Remark Give real numbers ak, bk for k = 1, . . . , n, we can define more general rectangles in a

similar way, i.e., a rectangleR in Rn has the form of Ib1a1 × I
b2
a2 ×· · ·× Ibnan , where Iyx is any kinds

of bounded intervals in R (open, closed, or half-open half-closed) with two end points x ≤ y.�
Note In fact we can define even more general rectangles (e.g. [0, 1] × [0, 1] rotated by 30◦),

but it is meaningless for our study. Therefore, unless specified, the most general case we need to

consider whenever we talk about rectangles is the one defined in the above remark.

Definition 1.2. Volume of Rectangles

♣
The volume of any rectangles R = Ib1a1 × · · · × Ibnan in Rn is |R| =

∏n
i=1(bi − ai).

Definition 1.3. Almost Disjoint Union of Rectangles

♣

A rectangle is the almost disjoint union of a collection of rectangles if the interior of the

rectangles in this collection are pairwise disjoint. We can also say the rectangles in this

collection are almost disjoint.

� Exercise 1.1 If a rectangleR is the almost disjoint union of finitely many rectanglesR1, . . . , RM ,

prove that |R| =
∑M

m=1 |Rm|.
Proof Let R = I1 × · · · × IJ , where Ij’s are intervals (1-dim rectangles) for j = 1, . . . , J .

Special case: If Rm’s form a grid (each cell of the grid is a rectangle Rm) of R, i.e., for

each j, there exist almost disjoint intervals Ij,1, . . . , Ij,Nj s.t. Ij =
∪Nj

n=1 Ij,n and for each

Rm, we can find 1 ≤ nmj ≤ Nj for j = 1, . . . , J s.t. Rm = I1,nm
1
× · · · × IJ,nm

J
. By

Definition 1.2, |Rm| =
∏J

j=1 |Ij,nm
j
|. This implies

∑M
m=1 |Rm| =

∑M
m=1

∏J
j=1 |Ij,nm

j
|.

Since all Rm’s form a grid of R, M =
∏J

j=1Nj and summation over nmj is equivalent to

the following form
M∑

m=1

J∏
j=1

|Ij,nm
j
| =

NJ∑
nJ=1

· · ·
N2∑

n2=1

N1∑
n1=1

J∏
j=1

|Ij,nj | (1.1)



1.1 Rectangles

For almost disjoint intervals, |Ij | =
∑Nj

n=1 |Ij,n| for each fixed j. This implies that
NJ∑

nJ=1

· · ·
N2∑

n2=1

N1∑
n1=1

J∏
j=1

|Ij,nj | =
NJ∑

nJ=1

· · ·
N2∑

n2=1

J∏
j=2

|Ij,nj |
N1∑

n1=1

|I1,n1 | (1.2)

= |I1|
NJ∑

nJ=1

· · ·
N2∑

n2=1

J∏
j=2

|Ij,nj | (1.3)

Inductively, we can finally obtain
∑NJ

nJ=1 · · ·
∑N2

n2=1

∑N1
n1=1

∏J
j=1 |Ij,nj | =

∏J
j=1 |Ij |.

Therefore,
∑M

m=1 |Rm| =
∏J

j=1 |Ij | = |R|.
General case: In general,Rm’s themselves may not be able to form a grid ofR, but we can

partition eachRm into smaller rectangles so that the finer partition forms a grid ofR. This

can be done by simply extending each side of each Rm until they intersect the edge of R.

Then each of the orginal small rectangles Rm is the almost disjoint union of some (may

be just one) smaller rectangle(s), denoted as Rm =
∪im

k=1R
k
m for m = 1, . . . ,M . Apply

special case onR, |R| =
∑M

m=1

∑im
k=1 |Rk

m|. Also notice that for each fixedm,Rk
m’s form

a grid of Rm (why?). By applying special case to each Rm, we have |Rm| =
∑im

k=1 |Rk
m|.

This implies the desired result |R| =
∑M

m=1 |Rm|.
□

� Exercise 1.2 Let R,R1, . . . , Rm be rectangles s.t. R ⊂
∪m

k=1Rk, then |R| ≤
∑m

k=1 |Rk|.
Proof Take a large rectangleR′ that containsR,R1, . . . , Rm. Extend all sides ofR,R1, . . . , Rm

until they intersect the edge of R′ to obtain smaller rectangles R̃1, . . . , R̃n. In this way, R′ is the

almost disjoint union of R̃1, . . . , R̃n; each of R,R1, . . . , Rm is also the almost disjoint union of

some of R̃1, . . . , R̃n. By Exercise 1.1, |R| =
∑

R̃j⊂R |R̃j |. Note that each R̃j ⊂ R must be

contained in one of R1, . . . , Rm. Therefore,
∑

R̃j⊂R |R̃j | ≤
∑m

k=1

∑
R̃⊂Rk

|R̃| =
∑m

k=1 |Rk|.
□�
Note Actually for each of R′, R,R1, . . . , Rm, we can find a subset of R̃1, . . . , R̃n to form a grid

of it.

Corollary 1.1. of Exercise 1.2

♡

Let R be a rectangle, {Rk}∞k=1 be almost disjoint rectangles, and R ⊃
∪∞

k=1Rk. Then

|R| ≥
∑∞

k=1 |Rk|.

Proof For each fixed n, R ⊃
∪n

k=1Rk, so similar to the proof of Exercise 1.2, extend all sides

of Rk for k = 1, . . . n until they intersect the edge of R to obtain almost disjoint rectangles

R̃n
1 , . . . , R̃

n
Mn

s.t. R =
∪Mn

l=1 R̃
n
l . By Exercise 1.1, |R| =

∑Mn
l=1 |R̃n

l |. Note that each Rk is the

almost disjoint union of some R̃n
l , so we have

∑n
k=1 |Rk| ≤

∑n
k=1

∑
R̃n

l ⊂Rk
|R̃n

l | ≤
∑Mn

l=1 |R̃n
l |.

This implies |R| ≥
∑n

k=1 |Rk| for all n ∈ N+. Take n→ ∞, we have |R| ≥
∑∞

k=1 |Rk|. □

Problem 1.1 Prove that every open setO of R is the countable union of disjoint open intervals.

� Exercise 1.3 Any open set G in Rn can be decomposed into almost disjoint countable union of

2



1.2 Cantor Set

closed cubes (closed rectangles with equal-length edges).

Proof Divide Rn into cubes [k1, k1 + 1]× · · · × [kn, kn + 1] (k1, . . . , kn are integers). Denote

P1 to be the collection of all these cubes. Now divide each of the cubes in P1 into 2n closed

subcubes s.t. all subcubes are almost disjoint, and denote the collection of all such subcubes as

P2. Keep doing such kind of subdivision, and we will obtain Pk for all k ∈ N+. Note that all

cubes in Pk are almost disjoint, any cubes in Pk is the union of 2n cubes in Pk+1, and Pk is

countable. Let H1 be the set of all cubes in P1 and contained in G; Hk to be the set of all cubes

in Pk but not in any cubes in H1, . . . , Hk−1 and contained in G for any k ≥ 2.

Claim: G =
∪∞

k=1

∪
c∈Hk

c where c represents cube. Since each c ∈ G, it is easy to see∪∞
k=1

∪
c∈Hk

c ⊂ G. Fix arbitrary x ∈ G, denote x = (x1, . . . , xn). Then for each fixed k ≥ 1,

there exists integer al,k for l = 1, . . . , n s.t. al,k
2k

≤ xl ≤
al,k+1

2k
. Let

ck =

[
a1,k
2k

,
a1,k + 1

2k

]
× · · · ×

[
an,k
2k

,
an,k + 1

2k

]
Then x ∈ ck ∈ Pk for all k ≥ 1. Since x is an interior point of G, there exists large enough

K s.t. cK ⊂ G. If cK is not in H1, . . . , HK−1, then since it is in PK and contained in G, it

must be inHK , This shows cK ∈
∪K

k=1

∪
c∈Hk

c, so x ∈
∪∞

k=1

∪
c∈Hk

c and the claim is proved.

Note that each Hk is countable because Hk ⊂ Pk and Pk is countable, so
∪K

k=1

∪
c∈Hk

c is a

countable union. Also notice that cubes in different Hk’s are almost disjoint, and since all cubes

in Pk are almost disjoint, cubes in Hk are also almost disjoint. □

1.2 Cantor Set

Definition 1.4. Cantor Set

♣

Let F0 = [0, 1]. Divide F0 into 3 equal-length subintervals and remove the center

interval (13 ,
2
3). Let F1 = [0, 13 ] ∪ [23 , 1] be the remaining set. Divide each interval in F1

into 3 equal-length subintervals and remove the center intervals (19 ,
2
9) and (79 ,

8
9). Let

F2 = [0, 19 ]∪ [29 ,
1
3 ]∪ [23 ,

7
9 ]∪ [89 , 1] be the remaining set. Repeat the removing process to

obtain F3, . . . , Fn, . . ., and the Cantor set is defined to be C =
∩∞

n=1 Fn.

Property The Cantor set C

1. is a closed set

2. contains all end points of the subintervals

3. is nowhere dense in R

4. is a perfect set

Proof
1. Since Fk is finite union of closed sets, Fk is closed for all k ≥ 1. Since the intersection of

closed sets is always closed, C is closed.

2. Trivial.

3



1.2 Cantor Set

3. For every x ∈ C, we want to show that for all δ > 0, (x − δ, x + δ) ̸⊂ C. Since x ∈ C,

x ∈ Fn for all n, and thus x is in one of the closed subinterval(s) In of length 1
3n . Take

n large s.t. In ⊂ (x − δ, x + δ). When we construct Fn+1, center part of In needs to be

removed from In, so (x− δ, x+ δ) ̸⊂ Fn+1 and this shows (x− δ, x+ δ) ̸⊂ C.

4. Denote C ′ as the set of all limit points of C. Since C is closed, C ′ ⊂ C, so we only need

to prove C ⊂ C ′. For each x ∈ C, x ∈ Fn for all n, so x is in some closed subinterval In
of length 1

3n . Let xn be an end point of In, then as n → ∞, xn → x. Since xn ∈ C for

all n, x is a limit point of C and x ∈ C ′. Since x is arbitrary in C, C ⊂ C ′.

□
Now we want to prove a very famous proposition about Cantor set. We will first state this

proposition, then prove two useful facts in the exercises following with it, and at last, we will

provide a proof of the proposition.

Proposition 1.1. Cardinality of Cantor Set

♠The Cantor set C is equivalent to [0, 1] in cardinality.

� Exercise 1.4 Let D = {
∑∞

k=1
ak
3k

| ak ∈ {0, 2}, ∀ k ∈ N+}. Prove that C = D.

Proof Recall C =
∩∞

k=1 Fk where Fk is defined in Definition 1.4. First we use induction to

prove for all k ≥ 1, if a is the left end point of one subinterval constituting Fk, then a can be

written as
∑∞

n=1 an3
−n, where an ∈ {0, 2} for 1 ≤ n ≤ k and an = 0 for n > k. If k = 1,

then a = 0 or a = 2
3 . If a = 0, then just let an = 0 for all n ≥ 1; if a = 2

3 , let a1 = 2 and

an = 0 for n ≥ 2, so our claim is true for k = 1. Now we assume our claim is true for some k

and we want to prove it is also true for k + 1. Suppose a is the left end point of one subinterval

([a, b]) constituting Fk+1, if it is also the left end point of one subinterval constituting Fk, then

by induction hypothesis we have already proved our claim for k + 1. If a is not the left end

point of one subinterval in Fk, then there exists [c, b] in Fk s.t. [a, b] ⊂ [c, b]. By construction

a = c + 2/3k+1, and combined with induction hypothesis on c, a =
∑k

n=1 an3
−n + 2/3k+1.

This shows a =
∑∞

n=1 an3
−n s.t. an ∈ {0, 2} for 1 ≤ n ≤ k + 1 and an = 0 for n > k + 1,

and this finishes our induction.

Note that for each fixed k ≥ 1, the number of left end point of subinterval constituting

Fk is exactly 2k. However, the number of cases that an ∈ {0, 2} for 1 ≤ n ≤ k and an = 0

for n > k is also 2k. This shows if a =
∑∞

n=1 an3
−n where an ∈ {0, 2} for 1 ≤ n ≤ k

and an = 0 for n > k must be a left end point of one subinterval constituting Fk. Also, by

construction, each subinterval in Fk is of length 1/3k, so if a is the left end point of some

subinterval, then b = a + 1/3k is the right end point of that subinterval. Since 1/3k can be

written as
∑∞

n=k+1 2/3
n, b =

∑∞
n=1 bn3

−n s.t. bn = an for 1 ≤ n ≤ k and bn = 2 for n > k if

a =
∑∞

n=1 an3
−n. This implies that if x =

∑∞
n=1 xn3

−n and y =
∑∞

n=1 yn3
−n are in the same

subinterval of Fk, xn = yn for 1 ≤ n ≤ k.

4



1.2 Cantor Set

Now if x ∈ D, then x =
∑∞

n=1 an3
−n, and it must lie in [sk, tk] where sk =

∑k
n=1 an3

−n

and tk =
∑k

n=1 an3
−n +

∑∞
n=k+1 2/3

n. Since we have shown that such sk must be a left end

point of some subinterval in Fk, x ∈ Fk. Here k is arbitrary, so x ∈ C and D ⊂ C. Conversely,

pick x ∈ C, then for each k, there is an subinterval [xk, yk] in Fk containing x, so xk → x.

Also note that [xk+1, yk+1] ⊂ [xk, yk] for all k. Since xk is the left end point, it has the form

of
∑k

n=1 an3
−n where an ∈ {0, 2}, thus we have x = limk→∞

∑k
n=1 an3

−n =
∑∞

n=1 an3
−n

where an ∈ {0, 2}. This shows x ∈ D and C ⊂ D, so C = D. □

� Exercise 1.5 Prove that for allx ∈ [0, 1], there exists an ∈ {0, 1} for alln ≥ 1 s.t. x =
∑∞

n=1
an
2n .

Proof For x = 0, we let an = 0 for all n ≥ 1; for x = 1, we let an = 1 for all n ≥ 1, then it

is easy to see x =
∑∞

n=1
an
2n . Now let E1 = (0, 1), and divide (0, 1) into two subintervals with

equal length 1/2. If x ∈ (0, 12), set a1 = 0 and an for n ≥ 2 is to be determined; if x = 1
2 ,

set a1 = 1 and set an = 0 for all n ≥ 2; if x ∈ (12 , 1), set a1 = 1 and an for n ≥ 2 is to be

determined. It is easy to see a1
2 ≤ x ≤ a1+1

2 for all x ∈ E1. Denote E2 = (0, 12) ∪ (12 , 1),

and keep on doing the same procedure, i.e., for each subinterval in Ek = (0, 1) \ {m
2k
}2k−1
m=1 , we

divide it into two subintervals with equal length 1/2k and if x is in the left subinterval (open),

we let ak = 0 and an for n ≥ k + 1 to be determined; if x is the middle point, we let ak = 1

and an = 0 for n ≥ k + 1; if x is in the right subinterval (open), then let ak = 1 and an for

n ≥ k + 1 to be determined. By this procedure, if x = m
2k

for some k and 1 ≤ m ≤ 2k − 1,

then x =
∑k

n=1
an
2n ; if x is not of such form, then after k steps, we can determine the value

of a1, . . . , ak but an for n ≥ k + 1 cannot be determined. The most important observation is

that
∑k

n=1
an
2n ≤ x ≤

∑k
n=1

an
2n + 1

2k
. Since the LHS and RHS converges to the same value as

k → ∞, they both converge to x, and thus x =
∑∞

n=1
an
2n where an ∈ {0, 1}. □

�
Note Notice that different from Exercise 1.4, the an we find in expression x =

∑∞
n=1

an
2n may

not be unique. Think of number in the form of m
2k

for some k and m = 1, . . . , 2k − 1.

After all of the above tedious preparations, we are finally ready to prove Proposition 1.1 by

using the above two exercises.

Proof [Proposition 1.1] Since it is trivial that Cantor set C is a subset of [0, 1], the cardinality of

C is less than or equal to [0, 1], so we if we can construct a surjective map from C to [0, 1], it is

enough to show the cardinality of C is larger than or equal to [0, 1], and thus we proved that they

have the same cardinality. By Exercise 1.4, it is equivalent to construct a surjective map from D

(defined in Exercise 1.4) to [0, 1]. Consider the mapping f : D 7→ [0, 1],

f

( ∞∑
n=1

an
3n

)
=

∞∑
n=1

an/2

2n
, an ∈ {0, 2} (1.4)

It is surjective because by Exercise 1.5, each number in [0, 1] can be expressed as
∑∞

n=1
bn
2n

where bn ∈ {0, 1}, and by letting an = 2bn ∈ {0, 2} for all n ≥ 1, we can find the preimage

5



1.2 Cantor Set∑∞
n=1

an
3n , which is a number in C. The only thing we need to do is to prove f is well-defined.

Suppose
∑∞

n=1
an
3n =

∑∞
n=1

cn
3n , where an, cn ∈ {0, 2} for all n ≥ 1. If a1 ̸= c1, WLOG, let

a1 = 0 and c1 = 2, then
1

3
=

∞∑
n=2

2

3n
≥

∞∑
n=1

an
3n

=
∞∑
n=1

cn
3n

≥ 2

3
(1.5)

which is obviously impossible, so a1 = c1. Inductively, we can show an = cn for all n ≥ 1, so

f is well-defined. □

K Problem Set 1.2 k

1. Let p be a natural number greater than 1, and x a real umber, 0 < x < 1. Show that there

is a sequence {an} of integers with 0 ≤ an < p for each n such that x =
∑∞

n=1
an
pn and

that this sequence is unique except when x is of the form q/pn, in which case there are

exactly two such sequences. Show that, conversely, if {an} is any sequence of integers

with 0 ≤ an < p, the series
∑∞

n=1
an
pn converges to a real number x with 0 ≤ x ≤ 1.

2. Let A andB be sets. Suppose there exists injective mappings f : A 7→ B and g : B 7→ A.

Prove that A ∼ B.

3. Let Gk (k ∈ N+) be open and dense in R. Prove that
∩∞

k=1Gk is uncountable.

4. Prove that 1
4 is in Cantor set C.

5. Let 3 ≤ p < ∞. The Cantor-like set is constructed as follows: On the interval [0, 1], first

pick the middle point 1/2 and remove the 1/p neighborhood of it. Denote the remaining

part of [0, 1] by F1. Now in the second stage, from each subterval in F1, remove the 1/p2

neighborhood of its middle point. Denote the remaining part as F2. Repeat this process we

get Fn, which consists of 2n closed subintervals of equal length. Define Cp =
∩∞

n=1 Fn.

Prove that

(a). Cp is nowhere dense;

(b). Cp is a perfect set;

(c). the total length of all open inverals removed is equal to 1
p−2 .

6. Let {En}∞n=1 be a sequence of sets. Define

lim
n→∞

En =
∞∩
k=1

∞∪
n=k

En, lim
n→∞

En =
∞∪
k=1

∞∩
n=k

En

(a). Prove limn→∞En is equal to the set of points who belong to infinitely many En’s,

and

lim
n→∞

En = {x | ∃ integer nx ≥ 1, s.t. x ∈ En whenever n ≥ nx}

(b). Suppose E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ · · · , find limn→∞En and limn→∞En.

(c). Suppose En ∩ Em = ∅, if n ̸= m. Find limn→∞En and limn→∞En.

(d). Let all En ⊂ RN . Prove that(
lim
n→∞

En

)c
= lim

n→∞
(En)

c,

(
lim
n→∞

En

)c

= lim
n→∞

(En)
c

6



1.3 Outer Measure

(e). Let f(x), {fn(x)}∞n=1 be defined on a set E ⊂ RN . Prove that

Z ≜ {x ∈ E | fn(x) ̸→ f(x) as n→ ∞} =

∞∪
l=1

(
lim
k→∞

Ek
l

)
where Ek

l =
{
x ∈ E | |fk(x)− f(x)| ≥ 1

l

}
.

7. Let E be a bounded closed subset of Rn. Suppose {fk}∞k=1 are continuous on E and

fk → f uniformly for some f as k → ∞. Prove that

f(E) =
∞∩
j=1

(∪∞

k=j
fk(E)

)

1.3 Outer Measure

Definition 1.5. Lebesgue Covering

♣

Let E ⊂ Rn, a sequence of open rectangles {Rk}∞k=1 is called a Lebesgue covering

(L-covering) of E if E ⊂
∪∞

k=1Rk.

Definition 1.6. Outer Measure

♣

For all E ⊂ Rn, define outer measure of E by

m∗(E) = inf

{ ∞∑
k=1

|Rk|

∣∣∣∣∣ {Rk}∞k=1 is a Lebesgue covering of E

}

Example 1.1 Let x0 ∈ Rn, E = {x0}, then one can check by definition that m∗(E) = 0.

Next we will see two seemingly intuitive remarks, while they are not easy to prove and will

be very handy in the future study.

Remark If we require Rk’s to be closed rectangles in the definition of L-covering, then m∗(E)

defined in Definition 1.6 does not change.
Proof For simplicity, we denote m∗

o(E) to be the outer measure defined in Definition 1.6, and
m∗

c(E) to be outer measure newly defined in this Remark. For any open L-covering {Rk}∞k=1 of
E, there exists closed L-covering {R̄k}∞k=1 of E and

∑∞
k=1 |Rk| =

∑∞
k=1 |R̄k|, then{ ∞∑

k=1

|Rk|

∣∣∣∣∣ {Rk}∞k=1 open L-covering of E

}
⊂

{ ∞∑
k=1

|Rk|

∣∣∣∣∣ {Rk}∞k=1 closed L-covering of E

}

so by property of infimum, m∗
o(E) ≥ m∗

c(E).

Also, for all ϵ > 0, there exists closed L-covering of E, {Fk}∞k=1 s.t. m∗
c(E) + ϵ ≥∑∞

k=1 |Fk|. Expand each side of each Fk by a factor 1+ ϵ to obtain a larger rectangle R̃k s.t. the
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1.3 Outer Measure

interior of R̃k, R̃◦
k, contains Fk. Furthermore, |R̃◦

k| = (1 + ϵ)n|Fk|, thus,

m∗
c(E) + ϵ ≥

∞∑
k=1

|R̃◦
k|

(1 + ϵ)n
≥ m∗

o(E)

(1 + ϵ)n

Take ϵ→ 0, we have m∗
c(E) ≥ m∗

o(E), and so m∗
o(E) = m∗

c(E). □

Remark If we require Rk’s to be closed cubes in the definition of L-covering, then m∗(E)

defined in Definition 1.6 does not change.

Proof For simplicity, we denote m∗
re(E) to be the outer measure defined in Definition 1.6,

and m∗
cu(E) to be outer measure newly defined in this Remark. Since cube is a special type of

rectangle, it is obvious that m∗
cu(E) ≥ m∗

re(E).

Ifm∗
re(E) = ∞, thenm∗

cu(E) ≥ ∞, som∗
cu(E) = m∗

re(E) = ∞. Supposem∗
re(E) <∞,

for all ϵ > 0, there exists open rectangular covering {Rk}∞k=1 ofE s.t. m∗
re(E)+ϵ >

∑∞
k=1 |Rk|.

Since Rk is an open set, by Exercise 1.3, Rk =
∪∞

i=1 ck,i where ck,i’s are almost disjoint closed

cubes. Rk =
∪∞

i=1 ck,i implies Rk ⊃
∪∞

i=1 ck,i, so by Corollary 1.1, we obtain |Rk| ≥∑∞
i=1 |ck,i|. This impliesm∗

re(E)+ ϵ >
∑∞

k=1

∑∞
i=1 |ck,i| ≥ m∗

cu(E), where the last inequality

is because {ck,i}∞k,i=1 forms aL-covering defined by using closed cubes. Take ϵ→ ∞, we obtain

m∗
re(E) ≥ m∗

cu(E), so m∗
re(E) = m∗

cu(E). □

Thanks to the above two remarks, from now on, we don’t need to clarify the outer measure

or L-covering is defined by open rectangles or closed rectangles or closed cubes. Although

by default, we will still follow the open rectangle version, the next two exercises illustrate that

sometimes it is convenient to use other versions.

� Exercise 1.6 Prove that m∗(R) = |R| for closed rectangle R.

Proof Obviously, m∗(R) ≤ |R| if we treat the outer measure here as the closed rectangle

version, because R itself is a closed rectangular covering of itself. Now we treat the outer

measure as open rectangle version, then for all ϵ > 0, there exists L-covering (open rectangles)

{Rk}∞k=1 of R s.t. m∗(R) + ϵ >
∑∞

k=1 |Rk|. Since R is compact, there exists finite subcover

{Rki}mi=1 s.t.
∪m

i=1Rki ⊃ R. By Exercise 1.2,
∑m

i=1Rki ≥ |R|. Therefore, m∗(R) + ϵ >∑∞
k=1 |Rk| ≥

∑m
i=1Rki ≥ |R|. Take ϵ→ 0, we obtain m∗(R) ≥ |R|, so m∗(R) = |R|. □

� Exercise 1.7 Prove that m∗(R) = |R| for open rectangle R.

Proof This time if we regard the outer measure as the open rectangle version,R is anL-covering

(open) of itself, so m∗(R) ≤ |R|. Take small δ > 0 and define Rδ = [a1 + δ, b1 − δ] × · · · ×
[an + δ, bn − δ], where R = (a1, b1) × · · · × (an, bn). Since R is an L-covering (open) of Rδ,

|R| ≥ m∗(Rδ). Since any L-covering of R is also an L covering of Rδ, so m∗(R) ≥ m∗(Rδ).

By the Exercise 1.6, m∗(Rδ) = |Rδ| since Rδ is closed rectangle. Take δ → 0 on both sides of

m∗(R) ≥ |Rδ|, we obtain m∗(R) ≥ |R|, so m∗(R) = |R|. □
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1.3 Outer Measure

Problem 1.2 If E1 ⊂ E2 ⊂ Rn, prove that m∗(E1) ≤ m∗(E2). Hence, prove that the outer

measure of general rectangle R (defined in the Remark after Definition 1.1) is also equal to the

volume of R.

Let’s end this section by taking a closer look at some fundamental properties of outer

measure. Note that you may have already seen or proved some of them.

Property
1. m∗(E) ≥ 0, ∀E ⊂ Rn and m∗(∅) = 0. This is called nonnegativity of outer measure.

2. IfE1 ⊂ E2 ⊂ Rn, thenm∗(E1) ≤ m∗(E2). This is called monotonicity of outer measure.

3. If Ek ⊂ Rn for k ∈ N+, then m∗(
∪∞

k=1Ek) ≤
∑∞

k=1m
∗(Ek). This is called σ-

subadditivity of outer measure.

4. LetE ⊂ Rn and y ∈ Rn, thenm∗(E+y) = m∗(E). This is called translation invariance

of outer measure.

5. If E ⊂ Rn, then m∗(E) = inf{m∗(O) |O ⊃ E, O is open}.

6. Suppose E1, E2 ⊂ Rn, and there exists disjoint open set G,H s.t. G ⊃ E1, H ⊃ E2.

Then m∗(E1 ∪ E2) = m∗(E1) +m∗(E2).

7. LetE =
∪∞

k=1Rk whereRk’s are almost disjoint rectangles. Thenm∗(E) =
∑∞

k=1 |Rk|.
Proof

1. Trivial. Please prove it by yourself.

2. Has been proved in Problem 1.2.

3. For each fixed k, by definition of outer measure of Ek, for every ϵ > 0, there exists an L-

covering ofEk, {Rk,l}∞l=1, s.t.
∪∞

l=1Rk,l ⊃ Ek and
∑∞

l=1 |Rk,l| ≤ m∗(Ek)+ϵ/2
k. Notice

that {Rk,l}∞k,l=1 is an L-covering of
∪∞

k=1Ek, so m∗(
∪∞

k=1Ek) ≤
∑∞

k=1

∑∞
l=1 |Rk,l|.

This implies m∗(
∪∞

k=1Ek) ≤
∑∞

k=1(m
∗(Ek) + ϵ/2k) =

∑∞
k=1m

∗(Ek) + ϵ. Take

ϵ→ 0, we will obtain m∗(
∪∞

k=1Ek) ≤
∑∞

k=1m
∗(Ek).

4. Let {Rk}∞k=1 be an L-covering of E, then {Rk + y}∞k=1 is also an L-covering of E + y.

This implies m∗(E + y) ≤
∑∞

k=1 |Rk + y| =
∑∞

k=1 |Rk|. Take infimum over all L-

covering {Rk}∞k=1 of E, and we obtain m∗(E + y) ≤ m∗(E). Now we proved for all

F ⊂ Rn and x ∈ Rn, m∗(F + x) ≤ m∗(F ). Let F = E + y and x = −y, then we have

m∗(E) = m∗(E + y + (−y)) ≤ m∗(E + y). Thus, m∗(E) = m∗(E + y).

5. By monotonicity of outer measure, m∗(O) ≥ m∗(E) for any open set O ⊃ E. Take

infimum over all open set O, we obtain m∗(E) ≤ inf{m∗(O) |O ⊃ E, O is open}.

By definition of m∗(E), for all ϵ > 0, there exists {Rk}∞k=1 s.t.
∪∞

k=1Rk ⊃ E and

m∗(E) + ϵ ≥
∑∞

k=1 |Rk|. Let G =
∪∞

k=1Rk, then since Rk’s are all open, G is open.

This implies m∗(G) ≥ inf{m∗(O) |O ⊃ E, O is open}. By σ-subadditivity of outer

measure, m∗(G) ≤
∑∞

k=1 |Rk|. Thus, m∗(E) + ϵ ≥ inf{m∗(O) |O ⊃ E, O is open}.

Take ϵ→ 0, we have m∗(E) ≥ inf{m∗(O) |O ⊃ E, O is open} and we are done.

6. By σ-subadditivity of outer measure,m∗(E1∪E2) ≤ m∗(E1)+m
∗(E2) is trivial. For all
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1.3 Outer Measure

ϵ > 0, there existsL-covering {Rk}∞k=1,Rk closed rectangles s.t.
∪∞

k=1Rk ⊃ E1∪E2 and

m∗(E1 ∪ E2) + ϵ ≥
∑∞

k=1 |Rk|. Since G,H are open, by Exercise 1.3, G =
∪∞

m=1 Im

and H =
∪∞

m=1 Jm, where Im’s, Jm’s are closed and almost disjoint cubes. Since

G∩H = ∅, Im∩Jm′ = ∅ for anym,m′ ≥ 1. By definition of rectangles, it is easy to see

the intersection of two rectangles is either empty or again a rectangle (maybe a rectangle in

lower dimension). Therefore, for each fixed k ≥ 1, {Rk∩Im}∞m=1 and {Rk∩Jm}∞m=1 are

closed almost disjoint rectangles (for any Rk ∩ Im or Rk ∩ Jm with zero volume, we can

ignore it) contained inRk. By Corollary 1.1, |Rk| ≥
∑∞

m=1 |Rk∩Im|+
∑∞

m=1 |Rk∩Jm|.
Sum over k on both sides,

∑∞
k=1 |Rk| ≥

∑∞
k=1

∑∞
m=1 |Rk∩Im|+

∑∞
k=1

∑∞
m=1 |Rk∩Jm|.

Since
∪∞

k=1Rk ∩ G ⊃ E1, {Im ∩ Rk}∞k,m=1 is an L-covering (closed) of E1, we have∑∞
k=1

∑∞
m=1 |Rk ∩ Im| ≥ m∗(E1). Similarly,

∑∞
k=1

∑∞
m=1 |Rk ∩ Jm| ≥ m∗(E2). This

shows
∑∞

k=1 |Rk| ≥ m∗(E1) + m∗(E2). Therefore, m∗(E1 ∪ E2) + ϵ ≥ m∗(E1) +

m∗(E2). Take ϵ→ 0, we obtain m∗(E1 ∪ E2) ≥ m∗(E1) +m∗(E2).

7. By σ-subadditivity of outer measure, m∗(E) ≤
∑∞

k=1 |Rk|. For each fixed n ≥ 1,∑n
k=1 |Rk| =

∑n
k=1 |R◦

k| and m∗(E) ≥ m∗(
∪n

k=1R
◦
k). Since all Rk’s are open disjoint

rectangles, we can apply Property 6 inductively (n − 1 times) on
∪n

k=1R
◦
k to obtain

m∗(
∪n

k=1R
◦
k) =

∑n
k=1 |R◦

k|. Thus, m∗(E) ≥
∑n

k=1 |Rk| and we are done.

□

Corollary 1.2. of Property 5

♡

For E ⊂ Rn, there exists {On}∞n=1 s.t. On is open for n ≥ 1 and
∩∞

n=1On ⊃ E and

m∗(E) = m∗(
∩∞

n=1On).

Proof Since m∗(E) = inf{m∗(O) |O ⊃ E, O is open}, for n ≥ 1, there exists On s.t. On

is open, On ⊃ E and m∗(E) + 1
n ≥ m∗(On) ≥ m∗(E). Since m∗(On) ≥ m∗(

∩∞
n=1On) ≥

m∗(E) (by monotonicity of outer measure), we have m∗(E) + 1
n ≥ m∗(

∩∞
n=1On) ≥ m∗(E).

Take n→ ∞, by squeeze theorem, m∗(E) = m∗(
∩∞

n=1On). □
Remark Note that

∩∞
n=1On is a Gδ-type set (Gδ stands for Gebiet Durchschnitt in German), so

we can restate the corollary as: for E ⊂ R, there exists a Gδ set G ⊃ E and m∗(G) = m∗(E).

Corollary 1.3. of Property 7

♡

Let G be open in Rn, then we have G =
∪∞

k=1 ck, where ck’s are almost disjoint closed

cubes and m∗(G) =
∑∞

k=1 |ck|.

K Problem Set 1.3 k

1. Let B be the set of rational numbers in the interval [0, 1], and let {Ik}nk=1 be a finite

collection of open intervals that covers B. Prove that
∑n

k=1m
∗(Ik) ≥ 1.

2. Prove that if m∗(A) = 0, then m∗(A ∪B) = m∗(B).
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3. Let A and B be bounded sets for which there is an α > 0 such that |a − b| ≥ α for all

a ∈ A, b ∈ B. Prove that m∗(A ∪B) = m∗(A) +m∗(B).

4. Let Fk for k ∈ N+ be nonempty closed subsets of Rn s.t. dist(x0, Fk) → ∞ as k → ∞
for a fixed point x0 ∈ Rn. Prove that

∪∞
k=1 Fk =

∪∞
k=1 Fk.

5. Let E ⊂ R and define outer Jordan content of E by

J∗(E) = inf

{
N∑
i=1

|Ii|

∣∣∣∣∣ Ii intervals,
N∪
i=1

Ii ⊃ E

}
(a). Prove that J∗(E) = J∗(Ē).

(b). Find a countable set E ⊂ [0, 1] such that J∗(E) = 1, and m∗(E) = 0.

6. Let A,B ⊂ Rn with finite outer measure. Prove |m∗(A)−m∗(B)| ≤ m∗(A△B).

1.4 Lebesgue Measurable Sets

Definition 1.7. Lebesgue Measurable Sets (Inner regularity)

♣

We say E ⊂ Rn is Lebesgue measurable if ∀ ϵ > 0, there exists open G ⊃ E s.t.

m∗(G \ E) < ϵ. Denote the collection of all Lebesgue measurable sets as M and the

Lebesgue measure of E is m(E) = m∗(E).

�
Note We want to define such a new collection of sets because there exists E1, E2 ⊂ Rn s.t.

E1 ∩E2 = ∅, but m∗(E1 ∪E2) < m∗(E1) +m∗(E2). We don’t like such kind of strange sets,

and this phenomenon can only happen when the sets do not satisfy Definition 1.7.

The following are some basic and fundamental properties of Lebesgue measurable sets. For

some of them, we will leave the proof as an exercise in Problem Set 1.4, but you can use these

properties freely when you prove other statements.

Property
1. If O ⊂ Rn is open, then O ∈ M.

2. If E ⊂ Rn and m∗(E) = 0, then E ∈ M.

3. If Ek ∈ M for all k ≥ 0, then
∪∞

k=1Ek ∈ M.

4. If F ⊂ Rn is closed, then F ∈ M.

5. If E ∈ M, then Ec ∈ M.

6. If Ek ∈ M for all k ≥ 1, then
∩∞

k=1Ek ∈ M.

7. If Ek ∈ M for all k ≥ 1, and Ek’s pairwise disjoint, then m(
∪∞

k=1Ek) =
∑∞

k=1m(Ek).

This is called σ-additivity of Lebesgue measure.

Proof
1. Trivial.

2. Trivial.

3. Since Ek ∈ M, for all ϵ > 0, there exists open Gk ⊃ Ek s.t. m(Gk \ Ek) <
ϵ
2k

. Since
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1.4 Lebesgue Measurable Sets∪∞
k=1Gk \

∪∞
k=1Ek ⊂

∪∞
k=1(Gk \ Ek), by monotonicity and σ-subadditivity of outer

measure, m∗ (
∪∞

k=1Gk \
∪∞

k=1Ek) ≤ m∗ (
∪∞

k=1(Gk \ Ek)) ≤
∑∞

k=1m
∗(Gk \ Ek).

This implies m∗ (
∪∞

k=1Gk \
∪∞

k=1Ek) <
∑∞

k=1
ϵ
2k

= ϵ. Let G =
∪∞

k=1Gk, then G is

the desired open set to prove
∪∞

k=1Ek is Lebesgue measurable.

4. Special case: If F is bounded, then F is compact andm∗(F ) <∞. By Property 5 of outer

measure, for all ϵ > 0, there exists open G ⊃ F s.t. m∗(G) ≤ m∗(F ) + ϵ. Since G \ F
is open, by Exercise 1.3, G \ F =

∪∞
k=1 ck where ck’s are almost disjoint closed cubes.

Observe that
∪k

n=1 cn is compact for any fixed k ≥ 1. Note that two disjoint compact sets

in Rn can be separated by two disjoint open sets (This is a famous fact in basic topology).

Therefore, by Property 6 and monotonicity of outer measure,

m∗(F ) +m∗

(
k∪

n=1

cn

)
= m∗

(
F ∪

(
k∪

n=1

cn

))
≤ m∗(G)

By Property 7 of outer measure, m∗(
∪k

n=1 cn) =
∑k

n=1 |cn|. This shows m∗(G) −
m∗(F ) ≥

∑k
n=1 |cn| for all k ≥ 1. Send k → ∞, m∗(G)−m∗(F ) ≥

∑∞
n=1 |cn|. Again

by Property 7, m∗(G \ F ) =
∑∞

k=1 |ck|. Therefore, m∗(G \ F ) ≤ ϵ and F ∈ M.

General case: Note that any closed set F in Rn can be decomposed as countable union of

compact sets (F =
∪∞

k=1 F ∩ Bk, where Bk is the closed ball with radius k centered at

the orgin). For each compact set F ∩Bk, we can use special case to prove it is in M, and

then by Property 3, F is in M.

5. Question 1. in Problem Set 1.4.

6. Question 3. in Problem Set 1.4.

7. Question 4. in Problem Set 1.4.

□

The following are two extremely handy corollaries of the above properties. We only display

the statement here and leave the proof as exercise in Problem Set 1.4, Question 5. and 6..

Corollary 1.4. of σ-additivity

♡Suppose E,F ∈ M, F ⊂ E with m(F ) <∞, then m(E \ F ) = m(E)−m(F ).

Corollary 1.5. Continuity of Lebesgue Measure

♡

Suppose Ek ∈ M for all k ≥ 1,

1. E1 ⊂ E2 ⊂ · · · ⊂ Ek ⊂ · · · , then m(limk→∞Ek) = limk→∞m(Ek) where

limk→∞Ek =
∪∞

k=1Ek.

2. E1 ⊃ E2 ⊃ · · · ⊃ Ek ⊃ · · · and there exists k0 ≥ 1 s.t. m(Ek0) < ∞, then

m(limk→∞Ek) = limk→∞m(Ek) where limk→∞Ek =
∩∞

k=1Ek.

Next, we introduce some basic concepts that we will use in our later study.
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Definition 1.8. σ-algebra

♣

A collection of sets in Rn which is closed under countable unions, intersections and

complement are called σ-algebra.

�
Note By Property 5, 6 and 7 above, we can see M is a σ-algebra.

Definition 1.9. Borel σ-algebra

♣

Borel σ-algebra B is the smallest σ-algebra that contains all open sets in Rn. Any sets in

B are called Borel measurable sets.

�
Note Later we will study a famous example which indicates that B is strictly contained in M.

Recall in the Remark of Corollary 1.2, we have mentioned the so-called Gδ set. Now let’s

give a formal definition of it and another type of set: Fσ set.

Definition 1.10. Fσ & Gδ Set

♣

An F σ set is the countable union of closed sets. A Gδ set is the countable intersection of

open sets.

At the end of this section, we will show our main result which illustrates the relation between

Lebesgue measurable set and Borel measurable set.

Theorem 1.1

♡

For all E ⊂ Rn, the following are equivalent:

1. E ∈ M
2. For all ϵ > 0, there exists closed F ⊂ E s.t. m∗(E \ F ) < ϵ.

3. There exists Gδ set s.t. G ⊃ E and m∗(G \ E) = 0.

4. There exists Fσ set s.t. F ⊂ E and m∗(E \ F ) = 0.

5. If m∗(E) < ∞, for all ϵ > 0, there exists finitely many closed cubes c1, . . . , ck s.t.

U =
∪k

i=1 ci satisfies m∗(U△E) < ϵ, where the symmetric difference U△E =

(U \ E) ∪ (E \ U).

Proof
1 → 2: Question 2. in Problem Set 1.4.

2 → 4: By assumption, for all k ≥ 1, there exists closed Fk ⊂ E s.t. m∗(E \ Fk) <
1
k .

Take F =
∪∞

k=1 Fk, then F ⊂ E and F is Fσ-type. Note that E \ F ⊂ E \ Fk for all

k ≥ 1. Therefore,m∗(E\F ) ≤ m∗(E\Fk) <
1
k . Take k → ∞, we havem∗(E\F ) = 0.

4 → 1: Since m∗(E \ F ) = 0, then by Property 2, E \ F ∈ M. Since F is the countable

union of closed set, by Property 3 and 4, F ∈ M. Since E = F ∪ (E \ F ), by Property 3

again, E ∈ M.

1 → 3: For k ≥ 1, there exists open Gk s.t. Gk ⊃ E and m∗(Gk \ E) < 1
k . Let

13



1.4 Lebesgue Measurable Sets

G =
∩∞

k=1Gk, then G is Gδ-type and G ⊃ E. Note that G \ E ⊂ Gk \ E, so

m∗(G \ E) ≤ m∗(Gk \ E) < 1
k for all k. Take k → ∞, we have m∗(G \ E) = 0.

3 → 1: Note that Ec = (G \ E) ∪ Gc. Since m∗(G \ E) = 0, G \ E ∈ M. Also, G is

the countable intersection of open sets, so G ∈ M by Property 6, G ∈ M. By Property

5, Gc ∈ M. Therefore, Ec ∈ M and E ∈ M.

1 → 5: For all ϵ > 0, there exists open O ⊃ E s.t. m∗(O \ E) < ϵ
100 . By Corollary

1.3 and Exercise 1.6, we have O =
∪∞

k=1 ck, where ck’s are almost disjoint closed cubes

and m∗(O) =
∑∞

k=1m
∗(ck). Since we assume m∗(E) <∞, by σ-subadditivity of outer

measure,m∗(O) ≤ m∗(O \E)+m∗(E) <∞. Thus, the series
∑∞

k=1m
∗(ck) converges

and there exists N s.t.
∑∞

k=N+1m
∗(ck) < ϵ/100.

Claim: U =
∪N

k=1 ck will satisfy m∗(U△E) < ϵ. Observe that

U△E = (U \ E) ∪ (E \ U) ⊂ (O \ E) ∪ (O \ U)

Thus, m∗(U△E) ≤ m∗(O \ E) +m∗(
∪∞

k=N+1 ck) <
ϵ

100 + ϵ
100 < ϵ.

5 → 1: By assumption, for all ϵ > 0, there exists U =
∪N

k=1 ck s.t. m∗(E△U) < ϵ
100 .

Also, for all ϵ > 0, there exists openG ⊃ E, s.t. m∗(G) < m∗(E)+ ϵ
100 . LetA = U ∩G,

since A△E ⊂ U△E, we have m∗(A△E) < ϵ
100 . Since A△E = (A \ E) ∪ (E \ A),

m∗(E \A) < ϵ
100 and m∗(A \ E) < ϵ

100 . This shows

m∗(E) ≤ m∗(E \A) +m∗(A) <
ϵ

100
+m∗(A)

Also, m∗(G \ E) ≤ m∗(G \ A) + m∗(A \ E). Since A ∈ M and m(A) < ∞, by

Corollary 1.4, m∗(G \ A) = m∗(G) − m∗(A) < m∗(E) − m∗(A) + ϵ
100 . Therefore,

m∗(G \ E) < m∗(E)−m∗(A) + ϵ
100 + ϵ

100 < ϵ implies E ∈ M.

□

In Problem Set 1.4, Question 12. we will introduce another definition of Lebesgue measur-

able sets, which is well-known as Carathéodory property, and you will prove the equivalence of

Carathéodory property and Definition 1.7. In case you may need to use this property, we display

it here without proving it.

Theorem 1.2. Carathéodory Property

♡E ∈ M if and only if for all T ⊂ Rn, m∗(T ) = m∗(T ∩ E) +m∗(T ∩ Ec).

K Problem Set 1.4 k

1. Prove that if E ∈ M, then Ec ∈ M.

2. If E ∈ M, prove that for all ϵ > 0, there exists closed subset F ⊂ E s.t. m∗(E \F ) < ϵ.

3. If Ek ∈ M for k = 1, 2, . . ., prove that
∩∞

k=1Ek ∈ M.

4. LetEk ∈ M for k ∈ N+, andEk’s pairwise disjoint. Provem(∪∞
k=1Ek) =

∑∞
k=1m(Ek).

14
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5. For allE,F ∈ M such that F ⊂ E, prove thatm(E \F )+m(F ) = m(E). Furthermore,

if m(F ) <∞, then m(E \ F ) = m(E)−m(F ).

6. Supose Ek ∈ M for all k = 1, 2, . . ., prove

(a). If E1 ⊂ E2 ⊂ · · · ⊂ Ek ⊂ Ek+1 ⊂ · · · , then limk→∞m(Ek) = m(limk→∞Ek).

(b). If E1 ⊃ E2 ⊃ · · · ⊃ Ek ⊃ Ek+1 ⊃ · · · and there exists k0 ≥ 1 such that

m(Ek0) <∞, then limk→∞m(Ek) = m(limk→∞Ek).

(c). Find a counter-example of (ii) if such k0 in (ii) does not exist.

7. Prove the Cantor set C is Lebesgue measurable and m(C) = 0.

8. Let Cp be the Cantor-like set in Problem Set 1.2, Question 5.. Prove that Cp ∈ M and

compute m(Cp).

9. Recall the definition of Fσ and Gδ set, and answer the following questions:

(a). Let {fn(x)}∞n=1 be continuous on R. Prove that {x ∈ R | limn→∞ fn(x) > 0} is

Fσ-type.

(b). Let f(x) be defined on R. Prove that {x ∈ R | limy→x f(y) <∞} is Gδ-type.

10. Let E ⊂ R with finite m∗(E) > 0. Prove that ∀ a ∈ (0,m∗(E)), there exists A ⊂ E such

that m∗(A) = a.

11. Let A1, A2 ⊂ Rn, A1 ⊂ A2, A1 ∈ M, m(A1) = m∗(A2) <∞. Prove that A2 ∈ M.

12. Prove that E ∈ M if and only if ∀T ⊂ Rn, m∗(T ) = m∗(T ∩ E) +m∗(T ∩ Ec).

13. Let A ∈ M, B ⊂ Rn with m∗(B) < ∞. Prove m∗(A ∪ B) +m∗(A ∩ B) = m∗(A) +

m∗(B).

14. Suppose m∗(E) <∞. If m∗(E) = sup{m(F ) |F ⊂ E,F closed}, then E ∈ M.

15. Prove that if Ek ∈ M for k ∈ N+.

(a). m (limk→∞Ek) ≤ limk→∞m(Ek).

(b). If there exists k0 ≥ 1 such that m
(
∪∞
k=k0

Ek

)
< ∞, then m

(
limk→∞Ek

)
≥

limk→∞m(Ek).

16. Let Ek ⊂ [0, 1], Ek ∈ M, m(Ek) = 1 for all k ∈ N+. Prove m(∩∞
k=1Ek) = 1.

17. Let Ei ⊂ [0, 1], Ei ∈ M for all i = 1, . . . , k, and
∑k

i=1m(Ei) > k − 1. Prove that

m(∩k
i=1Ei) > 0.

18. Let {Ek}∞k=1 be a countable disjoint collection of measurable sets. Prove that for any set

A, m∗ (A ∩
∪∞

k=1Ek) =
∑∞

k=1m
∗(A ∩ Ek).

19. Let Ek, k ∈ N+, be Lebesgue measurable, satisfying
∑∞

k=1m(Ek) < ∞. Prove that

m
(
limk→∞Ek

)
= 0. This is called Borel-Cantelli lemma.

20. Give an example of an open set O such that the boundary of the closure of it has positive

Lebesgue measure.

21. Let f be continuous on [0, 1]. Prove that the graph Γ of y = f(x), as a subset of R2, has

Lebesgue measure 0.

22. Does there exists a closed proper subset F of [0, 1] such that m(F ) = 1?

23. Let E ∈ M with m(E) > 0. Prove that there exists x ∈ E such that for all δ > 0,
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m(E ∩Bδ(x)) > 0, where Bδ(x) is the ball centered at x with radius δ > 0.

24. Let E ⊂ Rn. Prove that there exists Gδ set G ⊃ E such that for all A ∈ M, we have

m∗(E ∩A) = m(G ∩A).
25. Let E /∈ M. Prove that there exists ϵ > 0 such that whenever A,B ∈ M, A ⊃ E,

B ⊃ Ec, we always have m(A ∩B) ≥ ϵ.

26. Let E ⊂ R and E ∈ M. Suppose there exists open intervals Ik for k ∈ N+ such that

m(E ∩ Ik) ≥ 2
3m(Ik). Prove that m (E ∩

∪∞
k=1 Ik) ≥

1
3m (

∪∞
k=1 Ik).

1.5 Non-Lebesgue Measurable Sets

In this section we are going to explicitly construct a type of set which is not Lebesgue

measurable. However, before constructing it, we need some lemma to help us.

Lemma 1.1. Steinhaus Theorem

♡

For all E ∈ M with m(E) > 0, there exists δ > 0 s.t. E − E ≜ {x − y |x, y ∈ E} ⊃
Bδ(0), where Bδ(0) is the open ball centered at the orgin with radius δ.

Proof Since m(E) > 0, there exists k ≥ 1 s.t. m(Nk(0) ∩ E) > 0, where Nk(0) is the

open neighborhood of the origin with radius k. If m(Nk(0) ∩ E) = 0 for all k ≥ 1, since

E =
∪∞

k=1(Nk(0) ∩ E), we have m(E) ≤
∑∞

k=1m(Nk(0) ∩ E) = 0, which contradicts

m(E) > 0. Let F = Nk(0) ∩ E, then m(F ) <∞ and it suffices to show F − F ⊃ Bδ(0).

Claim: For all λ ∈ (0, 1), there exists open rectangle R s.t. m(F ∩ R) > λm(R). To prove

this, by definition of m∗(F ), for all ϵ > 0, there exists open Rk’s s.t.
∪∞

k=1Rk ⊃ F and

m(F ) + ϵ >
∑∞

k=1m(Rk). For a given λ, we can take ϵ = (λ−1 − 1)m(F ) > 0, then we will

have λ−1m(F ) >
∑∞

k=1m(Rk). Also, F =
∪∞

k=1(F ∩ Rk), so m(F ) ≤
∑∞

k=1m(F ∩ Rk).

This implies
∑∞

k=1m(F ∩ Rk) >
∑∞

k=1 λm(Rk). Thus, there exists at least one k0 s.t.

m(F ∩Rk0) > λm(Rk0).

We can take λ = 3
4 in the claim, and denote the rectangle we obtained as R, then we will have

m(F ∩R) > 3
4m(R). Note that we only need to show F ∩R−F ∩R contains Bδ(0) for some

δ > 0. It suffices to show there exists δ > 0 s.t. for all x ∈ Bδ(0), (x+F ∩R)∩ (F ∩R) ̸= ∅.

Take δ > 0 small s.t. m((x+R) ∩R) > 1
2m(R) for all x ∈ Bδ(0). If so, we have

m((x+R) ∪R) = m(x+R) +m(R)−m((x+R) ∩R) < 3

2
m(R)

If (x+F ∩R)∩ (F ∩R) = ∅ for some x ∈ Bδ, then by σ-additivity and translation invariance

of Lebesgue measure,

m((x+ F ∩R) ∪ (F ∩R)) = 2m(F ∩R) > 2 · 3
4
m(R) =

3

2
m(R)

but since m((x+F ∩R)∪ (F ∩R)) ≤ m((x+R)∪R) < 3
2m(R), we obtain a contradiction,

so there exists δ > 0 s.t. for all x ∈ Bδ(0), (x+ F ∩R) ∩ (F ∩R) ̸= ∅, and this is enough to

show the desired result. □
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Remark To find δ s.t. m((x+R) ∩R) > 1
2m(R) for all x ∈ Bδ(0), we can take

δ =

(
1−

n
√
3

n
√
4

)
min{bk − ak | k = 1, . . . , n}, R =

n∏
k=1

(ak, bk)

because if so, for x ∈ Bδ(0), denote x = (x1, . . . , xn), we will have |xi| < δ for all i = 1, . . . , n.

Also, (x+R) ∩R =
∏n

k=1[(ak, bk) ∩ (ak + xk, bk + xk)], so

m((x+R) ∩R) = |(x+R) ∩R| =
n∏

k=1

(bk − ak − |xk|) >
3

4

n∏
k=1

(bk − ak) >
1

2
m(R)

After we proved the famous Steinhauss theorem, we can use it to verify the non-Lebesgue

measurable set constructed below.

Theorem 1.3. Non-Lebesgue Measurable Set

♡

In Rn, define equivalence relation x ∼ y if and only if x− y ∈ Qn. This partitioned Rn

into many equivalence classes. For each class, pick one and only one element, and collect

all of the chosen elements to form a set S, then S is not Lebesgue measurable.

Proof Suppose S ∈ M, then there are two cases, i.e., m(S) > 0 or m(S) = 0. If m(S) > 0,

then by Steinhauss theorem, S − S ⊃ Bδ(0) for some δ > 0. There exists q ∈ Qn ∩ Bδ(0),

s.t. q ̸= 0 and q ∈ S − S, i.e., there exists x, y ∈ S s.t. x − y = q ̸= 0. This contradicts

the construction of S, so m(S) > 0 is impossible. If m(S) = 0, then for all z ∈ Rn, there

exists x ∈ S and q ∈ Qn s.t. z = x + q. This implies Rn =
∪∞

m=1(S + qm) if we denote

Qn = {qm}∞m=1. Thus, m(Rn) ≤
∑∞

m=1m(S + qm) = 0, which is impossible. □
Remark It is easy to see that m∗(S) > 0, because if m∗(S) then S ∈ M is a contradiction.

Also, one can use the same argument to prove for all E ⊂ Rn with m∗(E) > 0, there exists

SE ̸∈ M and SE ⊂ E.

At the end of this section, we want to resolve the problem raised in the note after Definition

1.7, that is, the outer measure of two disjoint sets may not satisfy additivity property. You have

seen that if these two disjoint sets are Lebesgue measurable, then they must satisfy additivity

property, so it is natural to construct some non-Lebesgue measurable sets to violate the additivity

property. Before we explicitly construct them, we will first show a proposition that will help you

understand the construction.

Proposition 1.2

♠

For all E ∈ M with m(E) < ∞, if E1, E2 ⊂ E, E1 ∩ E2 = ∅, E = E1 ∪ E2, and

m(E1 ∪ E2) = m∗(E1) +m∗(E2), then E1, E2 ∈ M.

Proof By the remark of Corollary 1.2, there exists Gδ set G1, G2 s.t. G1 ⊃ E, G2 ⊃ E2,

with m(G1) = m∗(E1) and m(G2) = m∗(E2). By monotonicity, m(G1 ∪ G2) ≥ m(E).

Also, m(E) = m∗(E1) +m∗(E2), so m(G1 ∪G2) ≥ m∗(E1) +m∗(E2) = m(G1) +m(G2).
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However, m(G1 ∪ G2) ≤ m(G1) +m(G2). This implies m(G1 ∪ G2) = m(G1) +m(G2).

Since G1 ∈ M and m∗(G2) = m∗(E2) ≤ m∗(E) < ∞, by Question 13. in Problem Set 1.4,

we have m(G1 ∩ G2) = 0. Since G1 \ E1 ⊂ (G1 ∪ G2 \ E) ∪ (G1 ∩ E2), by monotonicity,

m∗(G1\E1) ≤ m∗(G1∪G2\E)+m∗(G1∩E2). SinceG1∩E2 ⊂ G1∩G2,m∗(G1∩E2) = 0.

By subadditivity and m(E) <∞, m∗(G1 ∪G2 \ E) ≤ m(G1 ∪G2)−m(E) = 0. Therefore,

m∗(G1 \ E1) = 0 and G1 \ E1 ∈ M. Since G1 ∈ M, E1 = G1 \ (G1 \ E1) ∈ M. Also,

E2 = E \ E1 ∈ M. □

Conclusion We can construct two sets E1, E2 ⊂ Rn s.t. m∗(E1 ∪ E2) < m∗(E1) +m∗(E2)

easily. Take R as unit cubes in Rn, and by the remark of Theorem 1.3 there exists S ⊂ R s.t.

S ̸∈ M. Simply let E1 = S and E2 = R \ E1, then E1 ∩ E2 = ∅ and E = E1 ∪ E2. If

m∗(E1 ∪ E2) = m(R) = m∗(E1) + m∗(E2), then by Proposition 1.2, E1, E2 ∈ M. This

contradiction combined with subadditivity shows m∗(E1 ∪ E2) < m∗(E1) +m∗(E2).

K Problem Set 1.5 k

1. Suppose E,F ⊂ R and E,F ∈ M. If m(E) > 0 and m(F ) > 0, then E + F contains

an interval.

1.6 Non-Borel Measurable Sets

In this section we are going to explicitly construct a type of set which is Lebesgue measurable

but not Borel measurable. This will directly show that Borel σ-algebra B is strictly contained in

M. However, before constructing it, we need to introduce the famous Cantor function.

Definition 1.11. Cantor Function

♣

We recursively define a sequence of functions fk : [0, 1] 7→ [0, 1] for k ∈ N. Let f0(x) = x

on [0, 1] and for all k ≥ 0, define

fk+1(x) =


1
2fk(3x) if 0 ≤ x ≤ 1

3

1
2 if 1

3 ≤ x ≤ 2
3

1
2 + 1

2fk(3x− 2) if 2
3 ≤ x ≤ 1

Then f(x) = limk→∞ fk(x) defined on [0, 1] is called Cantor function.

�
Note We need to verify f(x) is well-defined, so we have two things to check:

1. Since at two end pointsx = 1
3 andx = 2

3 , fk(x) is defined twice by using different formulae,

so we need to guarantee 1
2fk(3x) = 1

2 at x = 1
3 and 1

2 + 1
2fk(3x − 2) = 1

2 at x = 2
3 .

This is equivalent to say fk(1) = 1 and fk(0) = 0 for all k ≥ 0. We can use induction

to prove this. For the base case, since f0(x) = x on [0, 1], so it is trivial that f0(0) = 0

and f0(1) = 1. Now suppose for some k, fk(1) = 1 and fk(0) = 0, we tend to prove
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fk+1(1) = 1 and fk+1(0) = 0. This is also trivial because fk+1(1) =
1
2 + 1

2fk(1) = 1

and fk+1(0) =
1
2fk(0) = 0. Therefore, we finish the induction.

2. After we proved each fk(x) is well-defined, we also need to prove f(x) is well-defined

since it is defined to be the pointwise limit of fk(x). To check the limit exists as a finite

number for each x, we claim that

max
x∈[0,1]

|fk+1(x)− fk(x)| ≤
1

2
max
x∈[0,1]

|fk(x)− fk−1(x)|, ∀ k ≥ 1

We can separate the LFS into three cases.

|fk+1(x)− fk(x)| =
1

2
|fk(3x)− fk−1(3x)|, ∀x ∈

[
0,

1

3

]
|fk+1(x)− fk(x)| = 0, ∀x ∈

[
1

3
,
2

3

]

|fk+1(x)− fk(x)| =
1

2
|fk(3x− 2)− fk−1(3x− 2)|, ∀x ∈

[
2

3
, 1

]
Notice that |fk(3x) − fk−1(3x)| ≤ maxx∈[0,1] |fk(x) − fk−1(x)| for all x ∈ [0, 13 ].

Similarly, |fk(3x− 2)− fk−1(3x− 2)| ≤ maxx∈[0,1] |fk(x)− fk−1(x)| for all x ∈ [23 , 1].

Therefore, |fk+1(x) − fk(x)| ≤ 1
2 maxx∈[0,1] |fk(x) − fk−1(x)| for all x ∈ [0, 1], and

thus our claim is proved. Since it is easy to see |f1(x)− f0(x)| ≤ 1 for all x ∈ [0, 1], by

inductively applying our claim, |fk+1(x)−fk(x)| ≤ 1
2k

for all x ∈ [0, 1] and for all k ≥ 1.

Note that fk(x) = f0(x) +
∑k

m=1(fm(x)− fm−1(x)), so to prove limk→∞ fk(x) exists,

we only need to prove
∑∞

m=1(fm(x)−fm−1(x)) converges. By Weierstrauss M-Test, since∑∞
m=1

1
2m−1 < ∞,

∑∞
m=1(fm(x) − fm−1(x)) < ∞ on x ∈ [0, 1]. This shows fk(x)

converges to limk→∞ fk(x) uniformly on [0, 1].

After we verified that the Cantor function f(x) defined in Definition 1.11 is valid, we are

going to explore some properties of it.

Property
1. f(x) is uniformly continuous on [0, 1].

2. f(0) = 0 and f(1) = 1.

3. f(x) is increasing on [0, 1].

Proof
1. To prove this, it suffices to prove every fk(x) is continuous on [0, 1], because if so, since

f(x) is the uniform limit of fk(x), it must be continuous on [0, 1]. Since [0, 1] is a compact

set, f(x) is uniformly continuous on [0, 1]. To prove fk(x) is continuous on [0, 1] for k ≥ 0,

again we use induction. It is obvious that f0(x) = x is continuous on [0, 1]. Suppose fk(x)

is continuous on [0, 1] for some k ≥ 0, then fk(3x) is continuous on [0, 13 ] and fk(3x− 2)

is continuous on [23 , 1]. This shows fk+1(x) is continuous separately on [0, 13 ], [
1
3 ,

2
3 ],

and [23 , 1]. However, the continuity of fk+1(x) on [0, 13 ] implies fk+1(
1
3−) = fk+1(

1
3)

where fk+1(a−) means the left limit of fk+1(x) at x = a (Similarly, fk+1(b+) means
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the right limit of fk+1(x) at x = b). Also, the continuity of fk+1(x) on [13 ,
2
3 ] implies

fk+1(
1
3+) = fk+1(

1
3) and fk+1(

2
3−) = fk+1(

2
3). Finally, the continuity of fk+1(x) on

[23 , 1] implies fk+1(
2
3+) = fk+1(

2
3). In conclusion, fk+1(

1
3−) = fk+1(

1
3) = fk+1(

1
3+)

and fk+1(
2
3−) = fk+1(

2
3) = fk+1(

2
3+), so fk+1(x) is continuous at x = 1

3 and x = 2
3 .

This is enough to show fk+1(x) is continuous on [0, 1] and we finish the induction.

2. Since in the note of Definition 1.11, we have shown fk(0) = 0 and fk(1) = 1 for all k ≥ 0,

it is trivial that f(0) = limk→∞ fk(0) = 0 and f(1) = limk→∞ fk(1) = 1.

3. It suffices to show that for each k ≥ 0, fk(x) is increasing on [0, 1], because if so, for

any fixed 0 ≤ x1 ≤ x2 ≤ 1, fk(x1) ≤ fk(x2) for all k ≥ 0. Take limit as k → ∞
on both sides, we have f(x1) ≤ f(x2), and this shows f(x) is increasing on [0, 1]. To

see fk(x) is increasing on [0, 1], we use induction again. For the base case, it is trivial

that f0(x) = x is increasing on [0, 1]. Suppose for some k ≥ 0, fk(x) is increasing on

[0, 1]. For x1, x2 ∈ [0, 13 ], suppose x1 ≤ x2, then 3x1 ≤ 3x2 and since fk(x) is increasing

on [0, 1], fk(3x1) ≤ fk(3x2). Since fk(x) ∈ [0, 1], we have fk+1(x1) ≤ fk+1(x2) by

definition of fk+1(x) on [0, 13 ]. This shows fk+1(x) is increasing on [0, 13 ] and since

fk+1(
1
3) = 1

2 , we have fk+1(x1) ≤ fk+1(x2) if x1 ∈ [0, 13 ] and x2 ∈ [13 ,
2
3 ]. Now for

x1, x2 ∈ [23 , 1], suppose x1 ≤ x2, 3x1− 2 ≤ 3x2− 2. Since 3x1− 2 and 3x2− 2 are both

in [0, 1], fk(3x1−2) ≤ fk(3x2−2). This shows fk+1(x1) ≤ fk+1(x2) for x1, x2 ∈ [23 , 1]

and thus fk+1(x) is increasing on [23 , 1]. Note that fk+1(
2
3) = 1

2 , so if x1 ∈ [0, 23 ] and

x2 ∈ [23 , 1], we have fk+1(x1) ≤ fk+1(x2). In conclusion, we have shown fk+1(x) is

increasing on [0, 1] and this finishes our induction.

□

Next we prove a lemma that reveals the relation between Cantor function f(x) and the

Cantor set C we defined in the previous section.

Lemma 1.2

♡

Use the same notation as Definition 1.4, and define Gk = Fk−1 \Fk for k ≥ 1. Since Gn

consists of 2n−1 disjoint subintervals, so we label them in ascending order of their left

end point and denote the m−th subinterval as Gm
n for m = 1, . . . , 2n−1. Then for every

n and m, f(x) = 2m−1
2n on Gm

n .

Proof By the proof of Exercise 1.4, it is not hard to see for any x ∈ Gk, we can write

x =
∑∞

n=1 an3
−n, where an ∈ {0, 2} for 1 ≤ n ≤ k − 1, ak = 1, and an ∈ {0, 1, 2} for

n ≥ k+1 excluding the case an = 0 and the case an = 2 for all n ≥ k+1. Then we can observe

that Gk+1 = (13Gk) ∪ (23 + 1
3Gk) for all k ≥ 1. In this case, Gm

n+1 = 1
3G

m
n if m ≤ 2n−1 and

Gm
n+1 =

2
3+

1
3G

m−2n−1

n if 2n−1+1 ≤ m ≤ 2n. We claim that for each fixed k, fk(x) = 2m−1
2n for

all x ∈ Gm
n form = 1, . . . .2n−1, whenever n ≤ k. We use induction on k, for k = 1, it is trivial

that f1(x) = 1
2 for x ∈ G1

1. Suppose this is true for some k, we need to prove fk+1(x) =
2m−1
2n
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for all x ∈ Gm
n form = 1, . . . .2n−1, whenever n ≤ k+1. When n = 1, this is true by definition

of fk+1(x) on [13 ,
2
3 ]. When 2 ≤ n ≤ k + 1, for m ≤ 2n−2, any x ∈ Gm

n is less than 1
3 , so

fk+1(G
m
n ) = 1

2fk(3G
m
n ) = 1

2fk(G
m
n−1). Since n − 1 ≤ k, we can use induction hypothesis,

fk(G
m
n−1) = 2m−1

2n−1 , and thus fk+1(G
m
n ) = 2m−1

2n as desired. For 2n−2 + 1 ≤ m ≤ 2n−1,

any x ∈ Gm
n is larger than 2

3 , so fk+1(G
m
n ) = 1

2 + 1
2fk(3Gn − 2) = 1

2 + 1
2fk(G

m−2n−2

n−1 ). By

induction hypothesis, fk(Gm−2n−2

n−1 ) = 2m−2n−1−1
2n−1 = 2m−1

2n−1 − 1, and thus fk+1(G
m
n ) = 2m−1

2n

as desired. This finishes our induction and the claim is proved. Therefore, consider for any n

and m, for every large enough k s.t. n ≤ k, fk(Gm
n ) = 2m−1

2n , so we can take limit as k → ∞
on both sides and we will obtain f(Gm

n ) = 2m−1
2n . □

We can see the Cantor function f(x) is increasing but not strictly increasing, so it is

not injective. We want to define an injective function which inherits its property. Thus, let

g(x) = x+f(x), then by the properties we proved above, g(x) is continuous on [0, 1], g(0) = 0,

and g(1) = 2. Also, g(x) is strictly increasing on [0, 1]. By intermediate value property of

continuous function, g([0, 1]) = [0, 2].

� Exercise 1.8 The inverse function of g, denoted as g−1 exists on [0, 2]. Moreover, g−1 is

continuous on [0, 2].

Proof Since strictly increasing function on [0, 1] must be injective and because g is surjective to

[0, 2], we can conclude g is bijective between [0, 1] and [0, 2], so g−1 exists on [0, 2]. To see g−1 is

continuous, actually we don’t need to use the continuity condition of g. We can first prove g−1 is

also increasing. This is because for any 0 ≤ y1 < y2 ≤ 2, there exists unique 0 ≤ x1 < x2 ≤ 1

s.t. g(x1) = y1, g(x2) = y2, so g−1(y1) = x1 < x2 = g−1(y2).

To prove for every y0 ∈ [0, 2], g−1(y) is continuous at y = y0, we can divide y0 into three

cases, that is, y0 ∈ (0, 2), y0 = 0 and y0 = 2. If y0 ∈ (0, 2), denote x0 = g−1(y0) ∈ (0, 1),

and for ϵ > 0, there exists x1, x2 ∈ [0, 1] s.t. x0 − ϵ < x1 < x0 < x2 < x0 + ϵ. Since

g is strictly increasing, g(x1) = y1 < y0 < y2 = g(x2). Take δ > 0 small enough s.t.

y1 < y0 − δ < y0 < y0 + δ < y2. Then if y ∈ [0, 2] and |y − y0| < δ, we have y1 < y < y2.

Since g−1 is also increasing, we have x1 < g−1(y) < x2, so |g−1(y) − g−1(y0)| < ϵ. This

shows g−1(y) is continuous at y0. If y0 = 0, then x0 = 0 and we only consider the RHS of

it, i.e., x0 < x2 < x0 + ϵ. If y0 = 2, then x0 = 1 and we only consider the LHS of it, i.e.,

x0 − ϵ < x1 < x0. The details are omitted. □

The next lemma shows this function g actually maps Cantor set (whose measure is zero

by Problem Set 1.4, Question 7.) to a set with positive measure. Therefore, not all continuous

function maps a set with zero measure to a set with zero measure.
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Lemma 1.3

♡

Let C be the Cantor set and O = [0, 1] \ C. Then g(O) ∈ M, g(C) is closed and

m(g(C)) = 1, where f(x) is the Cantor function and g(x) = x+ f(x).

Proof Use the same notation as in Lemma 1.2, O =
∪∞

n=1

∪2n−1

m=1 G
m
n . Thus, g(O) =∪∞

n=1

∪2n−1

m=1 g(G
m
n ). Since g(x) = x+ f(x) and f(Gm

n ) is a constant 2m−1
2n , we have g(Gm

n ) =

Gm
n + 2m−1

2n . It is easy to see the translation of an open set is still an open set, so g(Gm
n ) is an open

set. g(O) is the countable union of open sets, so it is also open and measurable. Since g([0, 1]) =

g(O ∪C) = g(O)∪ g(C) = [0, 2], g(C) is closed and measurable. By additivity of measurable

sets, m([0, 2]) = m(g(O)) +m(g(C)) = 2, so it suffices to show m(g(O)) = 1. Since Gm
n ’s

are pairwise disjoint, and g(x) is strictly increasing, so g(Gm
n )’s are also pairwise disjoint. Thus,

by σ-subadditivity, m(g(O)) =
∑∞

n=1

∑2n−1
m=1 m(g(Gm

n )) =
∑∞

n=1

∑2n−1
m=1 m(Gm

n + 2m−1
2n ).

By translation invariance of outer measure, m(g(O)) =
∑∞

n=1

∑2n−1
m=1 m(Gm

n ) = m(O) =

1−m(C) = 1, where m(C) = 0 is proved in Problem Set 1.4, Question 7.. □

The following lemma tells us a nice property of Borel measurable set and continuous

function.

Lemma 1.4

♡

Suppose h(x) is continuous on [a, b]. Let B ⊂ R be Borel measurable set (B ∈ B). Then

the preimage of B under h is also Borel measurable.

Proof Let Λ = {E ⊂ R |h−1(E) ∈ B}, we want to show B ∈ Λ. By definition of continuous

function, for all open sets G in R, h−1(G) is open, hence Borel measurable. This shows any

open set G is in Λ. Now it suffices to show Λ is a σ-algebra, because if so, then Λ is a σ-algebra

containing all open sets in R, and since B is the smallest σ-algebra contains all open sets in R, B
must be a subset of Λ. Since we always have h−1(

∪∞
k=1Ek) =

∪∞
k=1 h

−1(Ek), if Ek’s are in Λ,

h−1(Ek) ∈ B for all k ∈ N+, then since B is closed under countable union, h−1(
∪∞

k=1Ek) ∈ B,

so
∪∞

k=1Ek ∈ Λ. By a similar idea, due to the fact that h−1(
∩∞

k=1Ek) =
∩∞

k=1 h
−1(Ek),

Λ is closed under intersection. Finally, for E ∈ Λ, h−1(Ec) = [a, b] \ h−1(E). Since [a, b]

and h−1(E) are both Borel measurable, h−1(Ec) ∈ B. This shows Λ is also closed under

complement, so it is a σ-algebra. □

Finally, after so much arduous preparation, we can construct a set which is Lebesgue

measurable but not Borel measurable.

Theorem 1.4

♡There is a set in M but not in B, i.e., B ⊊ M.

Proof Since m(g(C)) = 1 in Lemma 1.3, by the remark of Theorem 1.3, there exists a set

S ⊂ g(C) s.t. S ̸∈ M. Notice that g−1(S) ⊂ C, so m∗(g−1(S)) ≤ m(C) = 0 and thus
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m∗(g−1(S)) = 0, meaning that g−1(S) ∈ M. We claim that g−1(S) is not Borel measurable.

Suppose it is, since g−1 is continuous on [0, 2] by Exercise 1.8, we can take h = g−1 in Lemma

1.4, and thus h−1(g−1(S)) = g(g−1(S)) = S is Borel measurable. However, if S is Borel

measurable then it must be Lebesgue measurable, which is a contradiction. This shows g−1(S)

is not Borel measurable. Therefore, g−1(S) is the desired Lebesgue measurable set that is not

Borel measurable. □
Remark Since g−1(S) is a Lebesgue measurable set and h−1 is continuous, the proof also shows

that continuous function may map a Lebesgue measurable set to non-Lebesgue measurable set.

Consider the above phenomenon, a natural question is: what kind of “nicer” function will

always map a set with zero measure to a set with zero measure and map a Lebesgue measurable

set to Lebesgue measurable set?

Theorem 1.5

♡

Let T : Rn 7→ Rn be Lipschitz continuous, i.e., there exists a constant C > 0 s.t.

|T (x) − T (y)| ≤ C|x − y| for all x, y ∈ Rn. Then E ∈ M implies T (E) ∈ M and

m(E) = 0 implies m(T (E)) = 0.

Proof We first prove that if m(E) = 0, then m(T (E)) = 0. Since m(E) = 0, for any

ϵ > 0, there exists L-covering {Rk}∞k=1 of E s.t.
∑∞

k=1 |Rk| ≤ ϵ. Notice that here Rk

can be closed cubes by the second remark after Definition 1.6. Thus, T (E) ⊂
∪∞

k=1 T (Rk).

Define the diameter of a set S to be diam(S) = sup{|x − y| : x, y ∈ S}. Since for any

x, y ∈ Rk, |T (x) − T (y)| ≤ C|x − y|, diam(T (Rk)) ≤ Cdiam(Rk). Take arbitrary point

x in T (Rk), then the closed ball centered at x with radius Cdiam(Rk) must cover T (Rk).

Thus, we can construct a closed cube R′
k with edge length 2Cdiam(Rk) s.t. R′

k covers the

closed ball, and covers T (Rk). Notice that the diameter of R′
k is 2

√
nCdiam(Rk). This shows

m∗(T (Rk)) ≤ m∗(R′
k) ≤ (2Cdiam(Rk))

n = (2C
√
n)n

(
diam(Rk)√

n

)n
= C ′|Rk|, where C ′ is a

constant. Therefore, m∗(T (E)) ≤ C ′∑∞
k=1 |Rk| ≤ C ′ϵ. Take ϵ→ 0, we have m∗(T (E)) = 0,

so T (E) is measurable and m(T (E)) = 0.

Then we prove if E ∈ M, T (E) ∈ M. If A is compact, then T (A) is also compact, so

T (A) ∈ M. If A is closed, then let Ak = A ∩ Bk(0) for all k ≥ 1, then since Ak is compact,

T (Ak) ∈ M, we obtain T (A) =
∪∞

k=1 T (Ak) ∈ M. For general measurable setE, by Theorem

1.1, there exists Fσ set A ⊂ E s.t. m∗(Z) = 0 for Z = E \ A. Since A =
∪∞

k=1 Fk where Fk

is closed, T (Fk) ∈ M. Note that T (E) = T (A) ∪ T (Z). By what we proved just now, since

m∗(Z) = 0, T (Z) ∈ M; Since T (A) =
∪∞

k=1 T (Fk) ∈ M, we finally have T (E) ∈ M. □

K Problem Set 1.6 k

1. Define f : [a, b] 7→ R such that for all E ⊂ [a, b] and E ∈ M, we have f(E) ∈ M. Prove

that for all Z ⊂ [a, b] with m(Z) = 0, we have m(f(Z)) = 0.
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Chapter 2 Lebesgue Measurable Functions

2.1 Lebesgue Measurable Functions

In this section, we are going to introduce the concept of (Lebesgue) measurable function.

However, for that purpose, we need to first introduce extended real-valued functions, that is, a

function that can take ±∞ as its function values. Also, we need to make some agreement on the

arithmetics of ±∞ with real numbers:

1. For all x ∈ R+, x · (+∞) = +∞ and x · (−∞) = −∞; for all x ∈ R−, x · (+∞) = −∞,

and x · (−∞) = −∞.

2. 0 · (+∞) = 0 and 0 · (−∞) = 0.

3. (+∞) + (+∞) = +∞ and (−∞)− (+∞) = −∞.

4. (+∞) · (+∞) = +∞, (+∞) · (−∞) = −∞, and (−∞) · (−∞) = +∞.

5. +∞− (+∞) and −∞− (−∞) are not allowed and +∞ can be abbreviated as ∞.

Definition 2.1. Lebesgue Measurable Function

♣

Let f(x) be an extended real-valued function defined on a Lebesgue measurable set

E ⊂ Rn. We say f is measurable on E if for all t ∈ R, {x ∈ E | f(x) > t} ∈ M.

Now we list some useful and general identities, and notice that the following identities hold

even if f is not measurable. The proof of them is left for you as exercise because they only

involve very basic set theory knowledge.

1. {x ∈ E | f(x) ≤ t} = E \ {x ∈ E | f(x) > t}
2. {x ∈ E | f(x) ≥ t} =

∩∞
k=1{x ∈ E | f(x) > t− 1

k}
3. {x ∈ E | f(x) < t} = E \ {x ∈ E | f(x) ≥ t}
4. {x ∈ E | f(x) = t} = {x ∈ E | f(x) ≥ t} ∩ {x ∈ E | f(x) ≤ t}
5. {x ∈ E | f(x) <∞} =

∪∞
k=1{x ∈ E | f(x) < k}

6. {x ∈ E | f(x) = ∞} = E \ {x ∈ E | f(x) <∞}
7. {x ∈ E | f(x) > −∞} =

∪∞
k=1{x ∈ E | f(x) > −k}

8. {x ∈ E | f(x) = −∞} = E \ {x ∈ E | f(x) > −∞}

Theorem 2.1

♡If f is measurable on E ∈ M, then the left hand side of the above identities are all in M.

Proof By definition, for all t ∈ R, {x ∈ E | f(x) > t} ∈ M. Since E ∈ M, E \ {x ∈
E | f(x) > t} ∈ M, so {x ∈ E | f(x) ≤ t} ∈ M. Since t is arbitrary, {x ∈ E | f(x) > t− 1

k} ∈
M, and thus

∩∞
k=1{x ∈ E | f(x) > t − 1

k} ∈ M. This shows {x ∈ E | f(x) ≥ t} ∈ M.
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Then E \ {x ∈ E | f(x) ≥ t} ∈ M and so {x ∈ E | f(x) < t} ∈ M. Therefore, it is

easy to see {x ∈ E | f(x) = t} ∈ M. Again, since t is arbitrary, let t = k, we have

{x ∈ E | f(x) < k} ∈ M, so
∪∞

k=1{x ∈ E | f(x) < k} ∈ M and {x ∈ E | f(x) < ∞} ∈ M.

Thus, {x ∈ E | f(x) = ∞} = E \ {x ∈ E | f(x) < ∞} is in M. Similarly, we can prove

{x ∈ E | f(x) > −∞} and {x ∈ E | f(x) = −∞} are in M. □

Theorem 2.2

♡

LetD be a dense subset of R, then f is measurable onE ∈ M if and only if for all d ∈ D,

{x ∈ E | f(x) > d} ∈ M.

Proof If f is measurable on E ∈ M, then for all t ∈ R, we have {x ∈ E | f(x) > t} ∈ M,

so the desired result is trivial. Suppose for all d ∈ D, {x ∈ E | f(x) > d} ∈ M. Since D is

dense, for all t ∈ R, there exists decreasing sequence dn convergent to t as n → ∞. Note that

{x ∈ E | f(x) > t} =
∪∞

n=1{x ∈ E | f(x) > dn} ∈ M, so f is measurable. □

Next we display some basic facts about measurable functions in the following exercises.

These facts are fundamental and also very handy for you to determine whether a function is

measurable or not without using definition directly.

� Exercise 2.1 Suppose f is measurable onE1 ∈ M andE2 ∈ M separately, then f is measurable

on E1 ∪ E2.

Proof For all t ∈ R, {x ∈ E1 ∪E2 | f(x) > t} = {x ∈ E1 | f(x) > t} ∪ {x ∈ E2 | f(x) > t}.

Therefore, by using definition, it is easy to see the desired result. □

� Exercise 2.2 If f is measurable on E ∈ M, then for all A ⊂ E, A ∈ M, f is also measurable

on A.

Proof For all t ∈ R, {x ∈ A | f(x) > t} = A ∩ {x ∈ E | f(x) > t}. Therefore, by using

definition, it is easy to see the desired result. □

� Exercise 2.3 Suppose f and g are measurable on E ∈ M, then {x ∈ E | f(x) > g(x)} ∈ M.

Proof Note that {x ∈ E | f(x) > g(x)} =
∪∞

n=1{x ∈ E | f(x) > rn > g(x)}, where

Q = {rn}∞n=1. Furthermore,

{x ∈ E | f(x) > rn > g(x)} = {x ∈ E | f(x) > rn} ∩ {x ∈ E | g(x) < rn}

By Theorem 2.1, since f is measurable on E, {x ∈ E | f(x) > rn} ∈ M; since g is measurable

on E, {x ∈ E | g(x) < rn} ∈ M. This shows {x ∈ E | f(x) > rn > g(x)} ∈ M and hence

{x ∈ E | f(x) > g(x)} ∈ M. □

� Exercise 2.4 Suppose f is measurable on E ∈ M, then cf(x) and f(x)+ c are also measurable
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on E, where c ∈ R is a constant.

Proof If c = 0, then {x ∈ E | 0 > t} = E ∩ {x ∈ Rn | 0 > t}. For every t ∈ R, if t < 0,

then {x ∈ Rn | 0 > t} = Rn; if t ≥ 0, then {x ∈ Rn | 0 > t} = ∅. Since E ∩ Rn = E and

E ∩ ∅ = ∅ are both measurable, 0 as a constant function is measurable on E. If c ̸= 0, then

for every t ∈ R, {x ∈ E | cf(x) > t} = {x ∈ E | f(x) > t
c} ∈ M, so cf(x) is measurable on

E. For all t ∈ R, since {x ∈ E | f(x) + c > t} = {x ∈ E | f(x) > t − c} ∈ M when f is

measurable on E, we know f(x) + c is also measurable on E. □

� Exercise 2.5 Suppose f and g are measurable on E ∈ M, then f + g is measurable on E.

Proof By Exercise 2.4, take c = −1, we can conclude −g(x) is measurable. For each fixed

t ∈ R, −g(x) + t is measurable, so by Exercise 2.3, {x ∈ E | f(x) > −g(x) + t} ∈ M.

However, {x ∈ E | f(x) > −g(x) + t} = {x ∈ E | f(x) + g(x) > t}, so we proved f + g is

measurable on E if f + g is well defined on E. □

� Exercise 2.6 Suppose f is measurable onE ∈ M, then for any constant p > 0, |f |p is measurable

on E.

Proof For t < 0, {x ∈ E | |f(x)|p > t} = E ∈ M; for t ≥ 0,

{x ∈ E | |f(x)|p > t} = {x ∈ E | f(x) > t1/p} ∪ {x ∈ E | f(x) < −t1/p}

Since f is measurable on E, {x ∈ E | f(x) < −t1/p} and {x ∈ E | f(x) > t1/p} are in M by

Definition 2.1 and Theorem 2.1. Therefore, {x ∈ E | |f(x)|p > t} ∈ M for all t ∈ R and hence

|f |p is measurable on E. □

� Exercise 2.7 Suppose f and g are measurable on E ∈ M, then f(x)g(x) is measurable on E.

Proof For all t ∈ R, {x ∈ E | f(x)g(x) > t} = A ∪B ∪ C ∪D, where

A = {x ∈ E | f(x)g(x) > t, |f(x)| <∞, |g(x)| <∞}

B = {x ∈ E | f(x)g(x) > t, |f(x)| = ∞, |g(x)| <∞}

C = {x ∈ E | f(x)g(x) > t, |f(x)| <∞, |g(x)| = ∞}

D = {x ∈ E | f(x)g(x) > t, |f(x)| = ∞, |g(x)| = ∞}

We need to prove A,B,C,D are all in M. For A, since f(x) and g(x) are finite, we can

write fg = 1
4 [(f + g)2 − (f − g)2]. By Exercise 2.5 and Exercise 2.6, we can conclude

fg is measurable on A1 = {x ∈ E | |f(x)| < ∞} ∩ {x ∈ E | |g(x)| < ∞}. By Theorem

2.1, {x ∈ E | |f(x)| < ∞} = {x ∈ E | f(x) < ∞} ∪ {x ∈ E | f(x) > −∞} ∈ M.

Similarly, {x ∈ E | |g(x)| < ∞} ∈ M. Thus, fg is measurable on A1 ∈ M. Therefore,

A = {x ∈ A1 | f(x)g(x) > t} ∈ M.

ForD, If f(x)g(x) = −∞, then it is impossible that f(x)g(x) > t; if f(x)g(x) = ∞, then
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f(x)g(x) > t is always true. Therefore, D = D1 ∪D2, where

D1 = {x ∈ E | f(x) = g(x) = ∞} = {x ∈ E | f(x) = ∞} ∩ {x ∈ E | g(x) = ∞} ∈ M

D2 = {x ∈ E | f(x) = g(x) = −∞} = {x ∈ E | f(x) = −∞}∩{x ∈ E | g(x) = −∞} ∈ M

This finishes the proof of D ∈ M.

For B and C, we only prove B ∈ M here, because C ∈ M can be proved in exactly the

same way. Note B = B1 ∪B2 ∪B3, where

B1 = {x ∈ E | 0 > t, |f(x)| = ∞, g(x) = 0}

B2 = {x ∈ E | 0 > t, f(x) = ∞, g(x) > 0}

B3 = {x ∈ E | 0 > t, f(x) = −∞, g(x) < 0}

It is easy to see B1, B2, B3 ∈ M. For example, B1 can be further decomposed into

B1 = {x ∈ E | 0 > t} ∩ {x ∈ E | |f(x)| = ∞} ∩ {x ∈ E | g(x) = 0} ∈ M

Therefore, by using such decomposition, we can also prove B2, B3 ∈ M, so B ∈ M. In

conclusion, A,B,C,D are all in M and hence f(x)g(x) is measurable on E. □
Remark When we encounter a complicated set, we can decompose it into intersection or union

of several simple sets, and we try to prove each simple set is in M. If so, using the property of

M, we can prove the orginal complicated set is in M.

� Exercise 2.8 Suppose f and g are measurable on E ∈ M. If g(x) ̸= 0 on E, then f(x)
g(x) is

measurable on E.

Proof Note for all t ∈ R, {x ∈ E | f(x)g(x) > t} = A ∪B, where

A = {x ∈ E | f(x) > tg(x), g(x) > 0}, B = {x ∈ E | f(x) < tg(x), g(x) < 0}

Furthermore, we can write

A = {x ∈ E | g(x) > 0} ∩ {x ∈ E | f(x) > tg(x)} = A1 ∩A2

By Theorem 2.1, A1 ∈ M. By Exercise 2.4, tg(x) is a measurable function on E for each fixed

t. Thus, by Exercise 2.3, A2 ∈ M, and so A ∈ M. Similarly, we can show B ∈ M. Hence

{x ∈ E | f(x)g(x) > t} ∈ M, and f(x)
g(x) is measurable on E. □

� Exercise 2.9 Suppose f is continuous on R and g is measurable on E ∈ M. Then (f ◦ g)(x) =
f(g(x)) is measurable on E.

Proof For all t ∈ R, let At = f−1((t,∞)). Since f is continuous, At must be an open set in

R. By Problem 1.1, At =
∪∞

k=1(a
t
k, b

t
k), where (atk, b

t
k)’s are pairwise disjoint open intervals.

Notice that

{x ∈ E | f(g(x)) > t} = {x ∈ E | g(x) ∈ At} =
∞∪
k=1

{x ∈ E | atk < g(x) < btk}
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and for each k ≥ 1,

{x ∈ E | atk < g(x) < btk} = {x ∈ E | g(x) < btk} ∩ {x ∈ E | g(x) > atk}

By Theorem 2.1, {x ∈ E | g(x) < btk} ∈ M and {x ∈ E | g(x) > atk} ∈ M, we can see

{x ∈ E | atk < g(x) < btk} ∈ M. Therefore, the fact that M is closed under countable union

implies {x ∈ E | f(g(x)) > t} ∈ M and so f(g(x)) is measurable on E. □

� Exercise 2.10 Define f+(x) = max{f(x), 0} and f−(x) = min{0, f(x)}. Then f(x) is

measurable on E ∈ M if and only if f+(x) and f−(x) are both measurable on E.

Proof Suppose f(x) is measurable on E. Notice that

f+(x) =
|f(x)|+ f(x)

2
, f−(x) =

f(x)− |f(x)|
2

By Exercise 2.6 with p = 1, |f(x)| is measurable on E. By Exercise 2.4, −|f(x)| is measurable

on E. By Exercise 2.5, |f(x)| + f(x) and f(x) − |f(x)| are both measurable on E. By

Exercise 2.4 again, |f(x)|+f(x)
2 and f(x)−|f(x)|

2 are both measurable on E, so f+(x) and f−(x)

are both measurable on E. Suppose f+(x) and f−(x) are both measurable on E. Notice that

f(x) = f+(x) + f−(x), so by Exercise 2.5, f(x) is measurable on E. □

� Exercise 2.11 Let fn(x) be measurable on E for all n ≥ 1. Then F (x) = supn≥1{fn(x)} and

G(x) = infn≥1{fn(x)} are both measurable on E.

Proof Notice that for all t ∈ M,

{x ∈ E |F (x) > t} =
∞∪
n=1

{x ∈ E | fn(x) > t}

Therefore, since fn(x) is measurable, {x ∈ E | fn(x) > t} ∈ M for all n ≥ 1. This implies

{x ∈ E |F (x) > t} ∈ M and hence F (x) is measurable on E.

Note that infn≥1{fn(x)} = − supn≥1{−fn(x)}. By Exercise 2.4, −fn(x) is measurable

on E for all n ≥ 1. Then, by what we proved just now, supn≥1{−fn(x)} is measurable on E.

Apply Exercise 2.4 again, we can see G(x) is measurable on E. □

� Exercise 2.12 Let {fn}∞n=1 be a sequence of measurable function on E ∈ M. Then F (x) =

limn→∞ fn(x) and G(x) = limn→∞ fn(x) are measurable on E.

Proof Note that F (x) = infm≥1 supn≥m fn(x), so if we let Fm(x) = supn≥m fn(x), then by

Exercise 2.11, Fm(x) is measurable on E for each m ≥ 1. Since F (x) = infm≥1 Fm(x), apply

Exercise 2.11 again, F (x) is measurable on E. Similarly, G(x) = supm≥1 infn≥m fn(x), so we

can use Exercise 2.11 twice to prove G(x) is measurable on E. □
Remark In particular, if F (x) = limn→∞ fn(x) exists on E, then F (x) is measurable on E.

This because if the limit exists, then F (x) = limn→∞ fn(x) = limn→∞ fn(x) and Exercise

2.12 can be applied.
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K Problem Set 2.1 k

1. Let f be defined onE ∈ M, and f be finite onE. Prove that the following are equivalent:

(a). f is measurable on E;

(b). f−1(G) ∈ M for all open set G ⊂ R.

(c). f−1(F ) ∈ M for all closed set F ⊂ R.

(d). f−1(B) ∈ M for all Borel set B ⊂ R.

2. Prove that monotone increasing function defined on [a, b] is measurable.

3. Let f be defined on [a, b]. Suppose for all [α, β] ⊂ (a, b), f is measurable on [α, β]. Prove

f is measurable on [a, b].

4. Let f be differentiable on [a, b]. Prove that f ′(x) is also measurable on [a, b].

5. Define f : R2 7→ R such that f(x, y) is a measurable function of x ∈ R for each

fixed y. Also, for each fixed x, f is a continuous function of y ∈ R. Define F (x) =

maxy∈[0,1] f(x, y). Prove that F (x) is measurable on R.

6. Let E ⊂ Rn. Prove that E ∈ M if and only if IE(x) is measurable on Rn, where IE(x)

is the indicator function (see Definition 2.3) of set E.

7. Let f(x) be real-valued and measurable on E ∈ M with m(E) < ∞. Prove that

for all ϵ > 0, there exists bounded measurable function g(x) defined on E such that

m({x ∈ E | f(x) ̸= g(x)}) < ϵ.

8. Construct an example in which f is measurable and g is continuous, but f ◦ g is not

measurable.

2.2 Simple Approximation

Definition 2.2. Simple Function

♣

Let f(x) be an extended real-valued function on E ∈ M. If f(E) is a finite set, i.e.,

f(E) = {y1, . . . , yp} where yi ̸= yj for 1 ≤ i ̸= j ≤ p, then f is a simple function.

Definition 2.3. Characteristic Function

♣

Let E ⊂ Rn, then the characteristic function (indicator function) of E is defined to be

IE(x) =

1 if x ∈ E

0 if x /∈ E

Remark Simple function can be written as linear combination of characteristic function of

pairwise disjoint sets. Let f(x) is a simple function on E, and f(E) = {y1, . . . , yp} where

yi’s are distinct values for i = 1, . . . , p. Then define Ei = f−1(yi) for i = 1, . . . , p, and

E =
∪p

i=1Ei where Ei’s are pairwise disjoint. Thus, f(x) =
∑p

i=1 yiIEi(x) for x ∈ E.

Furthermore, on different Ei’s, f(x) has different values.
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Definition 2.4. Measurable Simple Function

♣

If f is measurable on E and f is a simple function, then f is called measurable simple

function.

� Exercise 2.13 A simple function f is measurable on E ∈ M if and only if Ei ∈ M, where Ei’s

are defined in the remark of Definition 2.3.

Proof As we shown in the remark of Definition 2.3, f(x) =
∑p

i=1 yiIEi(x), where Ei =

f−1(yi). If f is measurable on E, then by Theorem 2.1, Ei = {x ∈ E | f(x) = yi} ∈ M. If

Ei ∈ M, then by Problem Set 2.1, Question 6., IEi(x) is measurable on Rn. By Exercise 2.2,

IEi(x) is also measurable on any measurable subset of Rn. Thus, IEi(x) is measurable on E

for every i = 1, . . . , p. By Exercise 2.6, yiIEi(x) is measurable on E. By applying Exercise 2.5

p− 1 times, we can prove
∑p

i=1 yiIEi(x) is measurable on E, so f(x) is measurable on E. □

Now we show the main theorem of this section, i.e., simple approximation theorem. This

theorem is a fundamental theorem in measure theory. It provides a theoretical foundation for

us to use simple function to explore some property and easily extend it to general measurable

function.

Theorem 2.3. Simple Approximation Theorem

♡

Suppose f(x) is measurable on E ∈ M.

1. If f(x) ≥ 0 on E, then there exists a sequence of measurable simple functions

{ϕk(x)}∞k=1 s.t. for each fixed x ∈ E, {ϕk(x)}∞k=1 is a increasing sequence and

0 ≤ ϕk(x) < ∞ for k ∈ N+, and ϕk(x) → f(x) pointwisely. Moreover, if

|f(x)| ≤ M for all x ∈ E, then ϕk(x) → f(x) uniformly on E with |ϕk(x)| ≤ M

for all x ∈ E and k ∈ N+.

2. There exists a sequence of measurable simple functions {ϕk(x)}∞k=1 s.t. ϕk(x) →
f(x) pointwisely on E and |ϕk(x)| < ∞ for all x ∈ E. Moreover, if |f(x)| ≤ M

for all x ∈ E, then ϕk(x) → f(x) uniformly on E with |ϕk(x)| ≤M for all x ∈ E

and k ∈ N+.

Proof
1. For each fixed k ∈ N+, let Ekj =

{
x ∈ E | j−1

2k
≤ f(x) < j

2k

}
for j = 1, . . . , k2k and

let Ek = {x ∈ E | f(x) ≥ k}. Then for each fixed k ∈ N+, E = Ek ∪
(∪k2k

j=1Ekj

)
. Let

ϕk(x) =


j−1
2k

x ∈ Ekj , j = 1, . . . , k2k

k x ∈ Ek

Therefore, ϕk(x) is a simple function. Also, ϕk(x) =
∑k2k

j=1
j−1
2k
IEkj

(x) + kIEk
(x). By

construction ofEkj andEk, since f is measurable onE,Ekj ∈ M andEk ∈ M. By using

a similar argument as in the proof of Exercise 2.13, we can prove ϕk(x) is measurable on

E. This shows {ϕk(x)} is a sequence of measurable simple functions on E s.t. for each
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fixed x ∈ E, 0 ≤ ϕk(x) <∞ for k ∈ N+. Observe thatEkj = E(k+1)(2j−1)∪E(k+1)(2j),

so onEkj , ϕk+1(x) ≥ j−1
2k

= ϕk(x). This shows ϕk+1(x) ≥ ϕk(x) onE. By construction

of ϕk(x), ϕk(x) ≤ f(x) for all k ≥ 1.

Now it remains to show ϕk(x) → f(x) pointwisely on E. Fix x0 ∈ E, then f(x0) −
ϕk(x0) ≥ 0. Suppose f(x0) < ∞, there exists K s.t. f(x0) ≤ k for all k ≥ K.

Thus, x0 ∈ Ekj for some j. Since ϕk(x0) = j−1
2k

and j−1
2k

≤ f(x0) <
j
2k

, we have

|f(x0)− ϕk(x0)| ≤ 1
2k

→ 0 as k → ∞. This shows limk→∞ ϕk(x0) = f(x0). Suppose

f(x0) = ∞, then x0 ∈ Ek for all k ≥ 1. Thus, ϕk(x0) = k → ∞ as k → ∞. In this case

we also have limk→∞ ϕk(x0) = f(x0). Therefore, ϕk(x) → f(x) pointwisely on E.

Finally, suppose there exists a constant M > 0 s.t. |f | ≤ M on E. In this case when

k > M , Ek = ∅, so for all x ∈ E, if k > M , then x ∈ Ekj for some j. Then

0 ≤ f(x) − ϕk(x) ≤ 1
2k

for all x ∈ E. Since 1
2k

is independent of x, ϕk(x) → f(x)

uniformly on E. Since 0 ≤ ϕk(x) ≤ f(x), it is trivial that |ϕk(x)| ≤M for all x ∈ E and

k ∈ N+.

2. For general measurable function f , recall f+(x) and f−(x) defined in Exercise 2.10, and

we have f(x) = f+(x) + f−(x) = f+(x) − (−f−(x)). Since f+(x) and −f−(x) are

both nonnegative, by part 1., there exists measurable simple functionsφk(x) → f+(x) and

ψk(x) → −f−(x) onE pointwisely. Therefore, φk(x)−ψk(x) → f(x) onE pointwisely.

Let ϕk(x) = φk(x) − ψk(x), then it is easy to see ϕk(x) is also simple and measurable.

Since both φk(x) and ψk(x) are finite on E, ϕk(x) is also finite on E.

If |f(x)| ≤ M for all x ∈ E, then |f+(x)| ≤ M and | − f−(x)| ≤ M on E. By part

1., φk(x) → f+(x) uniformly and ψk(x) → −f−(x) uniformly. Therefore, it is easy to

see ϕk(x) → f(x) uniformly. Finally, we need to prove |ϕk(x)| ≤ |f(x)| for all x ∈ E.

For each x ∈ E, if f(x) > 0, then f(x) = f+(x) and −f−(x) = 0, so by construction

in part 1., we know ψk(x) = 0 for all k ≥ 1. This shows ϕk(x) = φk(x), but by part 1.,

0 ≤ φk(x) ≤ f+(x), we have |ϕk(x)| ≤ |f(x)|. If f(x) < 0, then |f(x)| = −f−(x) and

f+(x) = 0. Similarly, we have φk(x) = 0 for all k ≥ 1, so ϕk(x) = −ψk(x). By part 1.,

0 ≤ ψk(x) ≤ −f−(x) on E, so |ϕk(x)| ≤ |f(x)| ≤M for all x ∈ E.

□

K Problem Set 2.2 k

1. Let I be a closed, bounded interval and E a measurable subset of I . Let ϵ > 0. Show that

there is a step function h on I and a measurable subset F of I for which h = IE on F and

m(I \ F ) < ϵ.
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2.3 Egorov’s Theorem

Definition 2.5. Almost Everywhere

♣

Let E ⊂ Rn. A statement S(x) involving points x ∈ E is said to be almost everywhere

(abbreviated to a.e.) on E if there exists Z ⊂ E with m(Z) = 0, and S(x) is true for all

x ∈ E \ Z.

Example 2.1 Let f(x) and g(x) be defined on E. Suppose m({x ∈ E | f(x) ̸= g(x)}) = 0,

then f(x) = g(x) a.e. on E.

Example 2.2 Let f(x) and g(x) be defined on E ∈ M. Suppose f(x) is measurable on E and

f(x) = g(x) a.e. on E. Then, g(x) is also measurable on E.

Proof For all t ∈ R,

{x ∈ E | g(x) > t} ∪ Z = {x ∈ E | f(x) > t} ∪ Z

where Z = {x ∈ E | f(x) ̸= g(x)} with m(Z) = 0. Since f is measurable, we have

{x ∈ E | f(x) > t} ∈ M, and thus {x ∈ E | g(x) > t} ∪ Z ∈ M. Notice that

{x ∈ E | g(x) > t} ∪ Z = {x ∈ E | g(x) > t} ∪ (Z \ {x ∈ E | g(x) > t}) = A ∪B

where A and B are disjoint. It is easy to see B ∈ M because m∗(B) ≤ m(Z) = 0 implies that

m∗(B) = 0. Thus, A = (A ∪ B) ∩ Bc ∈ M, i.e., {x ∈ E | g(x) > t} ∈ M. This shows g(x)

is measurable on E. □

Definition 2.6. Almost Everywhere Convergence

♣

Let f(x) and {fn(x)}∞n=1 be measurable functions defined on E ∈ M. If Z ⊂ E

with m(Z) = 0, and for all x ∈ E \ Z, we have limn→∞ fn(x) = f(x), then we say

fn(x) → f(x) almost everywhere on E.

Remark If we only assume fn(x)’s are measurable on E, then we can still show f(x) is

measurable on E. This is because by the remark of Exercise 2.12, f(x) is measurable on E \Z.

Also, {x ∈ Z | f(x) > t} ⊂ Z implies that {x ∈ Z | f(x) > t} ∈ M because its outer measure

is zero. This shows f(x) is also measurable on Z. By Exercise 2.1, f(x) is measurable on

(E \ Z) ∪ Z = E.

Definition 2.7. Almost Uniform Convergence

♣

Let f(x) and {fn(x)}∞n=1 be measurable functions defined on E ∈ M. Assume each

function is finite a.e. on E, i.e., for all n ≥ 1, there exists Zn ⊂ E with m(Zn) = 0 and

|fn(x)| < ∞ for all x ∈ E \ Zn. We say fn(x) → f(x) almost uniformly (abbreviated

to a.u.) on E as n → ∞ if for all δ > 0, there exists Eδ ⊂ E with m∗(Eδ) < δ, s.t.

fn(x) → f(x) uniformly on E \ Eδ as n→ ∞.
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Example 2.3 Let fk(x) = xk where x ∈ E = [0, 1]. Denote f(x) = 0 for x ∈ [0, 1) and

f(1) = 1. Then fk(x) → f(x) pointwisely on E as k → ∞. Note that fk(x) does not converge

to f(x) uniformly onE because f(x) is not continuous onE. However, fk(x) → f(x) a.u. onE.

For any small δ > 0, let Eδ = [1− δ/2, 1], then m∗(Eδ) < δ. Since |fk(x)| ≤ (1− δ/2)k → 0

on E \ Eδ, fk(x) → 0 uniformly on E \ Eδ, and thus we can conclude fk(x) → f(x) almost

uniformly.

Recall in elementary mathematical analysis course, we have learnt that uniform convergence

implies pointwise convergence but not vice versa. Then, one may ask what is the relationship

between almost uniform convergence and almost everywhere convergence?

Theorem 2.4

♡

Let f(x) and {fn(x)}∞n=1 be finite a.e. and measurable on E ∈ M. Suppose fn(x) →
f(x) a.u. on E, then fn(x) → f(x) a.e. on E as n→ ∞.

Proof By definition of a.u. convergence, for all i ≥ 1, there exists Ei ⊂ E s.t. m∗(Ei) <
1
i

and fn(x) → f(x) uniformly on E \ Ei. Now let E0 =
∩∞

i=1Ei, then m∗(E0) ≤ m∗(Ei) for

all i ≥ 1. Take i→ ∞, we have m∗(E0) = 0. Consider any x ∈ E \ E0, since

E \ E0 = E ∩ Ec
0 = E ∩

( ∞∪
i=1

Ec
i

)
=

∞∪
i=1

(E ∩ Ec
i ) =

∪
i=1

(E \ Ei)

there exists at least one ix s.t. x ∈ E \Eix . Since fn → f on E \Eix uniformly, fn(x) → f(x)

for this fixed x as n → ∞. This shows fn(x) → f(x) pointwisely on E \ E0, and thus

fn(x) → f(x) a.e. on E. □
Remark In general, almost everywhere convergence cannot implies almost uniform convergence.

For example, take fk(x) = I(−k,k)(x) for all k ≥ 1 and E = R. Let f(x) = 1 on E. Obviously,

fk(x) → f(x) pointwisely (hence almost everywhere) on E as k → ∞. However, fk(x) does

not converge to f(x) a.u. on E. Suppose fk(x) → f(x) a.u. on E, then there exists E1 ⊂ E

with m∗(E1) < 1 s.t. fk(x) → f(x) uniformly on E \ E1. Notice that there exists a sequence

{xn}∞n=1 s.t. xn ∈ E \ E1 and xn → ∞. To verify it, suppose not, then sup(E \ E1) < M

for some constant M > 0. Since E = R, (M,∞) ⊂ E1. However, this is impossible because

m∗(E) < 1 and m∗((M,∞)) = ∞. For all k ∈ N+, there exists nk s.t. xnk
> k and

|fk(xnk
)− f(x)| = 1. This shows fk(x) does not converge to f(x) uniformly on E \ E1.

From the above theorem and its remark, we can see that just like the relation between point-

wise convergence and uniform convergence, a.e. convergence is weaker than a.u. convergence.

However, The more astonishing fact is that if we restrict the domain of the functions to be of

finite measure, i.e.,m(E) <∞, then a.e. convergence is equivalent to a.u. convergence. This is

proved by the following great theorem - Egorov’s Theorem - which is also the title of this section.
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Theorem 2.5. Egorov’s Theorem

♡

Let f(x) and {fn(x)}∞n=1 be finite a.e. and measurable on E ∈ M. If m(E) < ∞ and

fn(x) → f(x) a.e. on E, then fn(x) → f(x) a.u. on E.

Proof Let S = {x ∈ E | |f(x)| = ∞} ∪ (
∪∞

n=1{x ∈ E | |fn(x)| = ∞}), then m∗(S) = 0.

Notice that f(x) and fn(x)’s are all finite on E′ = E \ S ∈ M. Notice that it suffices to show

fn(x) → f(x) a.u. onE′ because if so, then for all δ > 0, there existsE′
δ ⊂ E′ andm∗(E′

δ) < δ

s.t. fn(x) → f(x) uniformly on E′ \ E′
δ. Let Eδ = E′

δ ∪ S, then m∗(Eδ) = m∗(E′
δ) < δ

and fn(x) → f(x) uniformly on E \ Eδ = E′ \ E′
δ. Also, since fn(x) → f(x) a.e. on E,

fn(x) → f(x) a.e. on E′.

Let Z = {x ∈ E′ | fn(x) ̸→ f(x)}, then m(Z) = 0. Observe for all x ∈ Z, there exists

ϵx s.t. |fn(x) − f(x)| ≥ ϵx for infinitely many n’s. This shows there exists an integer lx ≥ 1

s.t. |fn(x)− f(x)| ≥ 1
lx

for infinitely many n’s. Define En
l = {x ∈ E′ | |fn(x)− f(x)| ≥ 1

l }.

Since E′ ∈ M and fn(x) − f(x) is measurable on E′, it is easy to show En
l ∈ M. Then for

all x ∈ Z, there exists lx s.t. x ∈ En
lx

for infinitely many n’s. By Problem Set 1.2, Question

6., x ∈ limn→∞En
lx

for some lx. Therefore, Z ⊂
∪∞

l=1(limn→∞En
l ). Also, we can prove∪∞

l=1(limn→∞En
l ) ⊂ Z by using the same argument reversely. Thus, Z =

∪∞
l=1(limn→∞En

l ).

Again, by Problem Set 1.2, Question 6., we can write Z =
∪∞

l=1

∩∞
m=1

∪∞
n=mE

n
l . Denote

Fm
l =

∪∞
n=mE

n
l , then Fm

l ∈ M. Since Fm
l is decreasing w.r.t. m and m(Fm

l ) < ∞
(becauseFm

l ⊂ E′), by continuity of Lebesgue measure, limm→∞m(Fm
l ) = m(limm→∞ Fm

l ).

Since limm→∞ Fm
l =

∩∞
m=1 F

m
l ⊂ Z, m(limm→∞ Fm

l ) = 0 for all l ≥ 1. This shows

limm→∞m(Fm
l ) = 0 for all l ≥ 1. Therefore, for all δ > 0, there exists ml ≥ 1 s.t.

m(Fml
l ) < δ

2l
for all l ≥ 1. Let Eδ =

∪∞
l=1 F

ml
l , then m(Eδ) <

∑∞
l=1

δ
2l

= δ. We claim that

fn(x) → f(x) uniformly on E′ \ Eδ. For any x ∈ E′ \ Eδ, since

E′ \ Eδ = E′ ∩ Ec
δ = E′ ∩

(∞∪
l=1

Fml
l

)c

= E′ ∩

(∞∩
l=1

(Fml
l )c

)
we have x ∈ E′ and x /∈ Fml

l for all l ≥ 1. This shows |fn(x) − f(x)| < 1
l when n ≥ ml.

Therefore, for all l ≥ 1, there exists ml ≥ 1 s.t. |fn(x) − f(x)| < 1
l for all n ≥ ml and

all x ∈ E′ \ Eδ. This means fn(x) converges uniformly to f(x) on E′ \ Eδ. In conclusion,

fn(x) → f(x) a.u. on E′. □

K Problem Set 2.3 k

1. Let f(x) be measurable and finite a.e. on E with m(E) < ∞. For each ϵ > 0, show

that there is a measurable set F contained in E and a sequence {ϕn(x)}∞n=1 of simple

functions on E such that ϕn(x) → f(x) uniformly on F and m(E \ F ) < ϵ.

2. Let {fn(x)}∞n=1 be a sequence of measurable functions on E that converges to a real-

valued function f(x) pointwisely on E. Show thatE =
∪∞

k=1Ek, where for each k, Ek is
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2.4 Convergence In Measure

measurable, and fn(x) converges uniformly to f(x) on eachEk if k > 1, andm(E1) = 0.

3. Let {fk(x)}∞k=1 be measurable on E ∈ M, where m(E) <∞. Suppose fk(x) → ∞ a.e.

on E as k → ∞, then fk(x) → ∞ a.u. on E.

4. Let {fn(x)}∞n=1 be measurable on [0, 1] with |fn(x)| < ∞ for a.e. x ∈ E. Show that

there exists sequence of positive numbers cn such that fn(x)
cn

→ 0 a.e. on E as n→ ∞.

5. Let {fn(x)}∞n=1 be measurable on R and λn be a sequence of positive numbers, satisfying
∞∑
n=1

m ({x ∈ R | |fn(x)| > λn}) <∞

Prove that lim supn→∞
|fn(x)|
λn

≤ 1 a.e. on R.

6. Let fk(x) be real-valued, measurable on E ∈ M for all k ∈ N+, with m(E) <∞. Prove

that fk(x) → 0 a.e. on E as k → ∞ if and only if

lim
j→∞

m

({
x ∈ E

∣∣∣∣∣ supk≥j
|fk(x)| ≥ ϵ

})
= 0

for all ϵ > 0.

7. Let fk,i(x) be real-valued and measurable on [0, 1] for all k ∈ N+ and i ∈ N+ and satisfy

(a). For each fixed k ≥ 1, fk,i(x) → fk(x) a.e. on [0, 1] as i→ ∞ with some real-valued

fk(x) on [0, 1].

(b). fk(x) → g(x) a.e. on [0, 1] as k → ∞, with some real-valued g(x) on [0, 1].

Prove that there exists kj and ij such that fkj ,ij (x) → g(x) a.e. on [0, 1] as j → ∞.

2.4 Convergence In Measure

Definition 2.8. Convergence In Measure

♣

Let f(x) and {fn(x)}∞n=1 be finite a.e. and measurable on E ∈ M. If for all σ > 0,

m({x ∈ E | |fn(x) − f(x)| > σ}) → 0 as n → ∞, then we say fn(x) → f(x) in

measure on E.

Remark Notice that here we can see the reason for restricting f(x) and fn(x) to be finite a.e. on

E, because if not, say fn(x) = f(x) = ∞ onAwithm(A) > 0, then fn(x)−f(x) is not defined

on A, and the definition fails to work. However, if fn(x) − f(x) is only undefined on A with

m(A) = 0, then as long as m({x ∈ E \ A | |fn(x) − f(x)| > σ}) → 0, no matter you regard

|fn(x) − f(x)| > σ for x ∈ A as true or not, m({x ∈ E | |fn(x) − f(x)| > σ}) → 0 always

holds. That is to say, any set with zero measure can be ignored when we verify fn(x) → f(x) in

measure. Also, since we want to explore the relationship between convergence in measure and

a.u./a.e. convergence, we also require “finite a.e.” in the definition of them, although a.e. or a.u.

convergence solely doesn’t need this condition.

Problem 2.1 Let f(x) and {fn(x)}∞n=1 be finite a.e. and measurable on E ∈ M. If fn(x) →
f(x) in measure on E, then for any measurable subsetA ⊂ E, fn(x) → f(x) in measure onA.
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2.4 Convergence In Measure

Since convergence in measure is different from the usual convergence of sequence of

numbers, so we need to first verify it is well-defined, i.e., the limiting function is unique in some

sense. The following theorem shows the uniqueness of limit.

Theorem 2.6. Uniquess of Limit

♡

Let f(x), g(x), {fn(x)}∞n=1 be finite a.e. and measurable on E ∈ M. If fn(x) → f(x)

in measure and fn(x) → g(x) in measure on E, then f(x) = g(x) a.e. on E.

Proof Observe |f(x)− g(x)| ≤ |f(x)− fn(x)|+ |fn(x)− gn(x)| for all x ∈ E \A, where

A = {x ∈ E | |f(x)| = ∞} ∪ {x ∈ E | |f(x)| = ∞} ∪

( ∞∪
n=1

{x ∈ E | |fn(x)| = ∞}

)
with m(A) = 0. Then ∀σ > 0,

{x ∈ E \A | |f(x)− g(x)| > 2σ} ⊂ {x ∈ E \A | |fn(x)− f(x)| > σ}

∪ {x ∈ E \A | |fn(x)− g(x)| > σ}

Take measure (it is easy to see both sides are measurable sets) on both sides,

m({x ∈ E \A | |f(x)− g(x)| > 2σ}) ≤ m({x ∈ E \A | |fn(x)− f(x)| > σ})

+m({x ∈ E \A | |fn(x)− g(x)| > σ})

Since fn(x) → f(x) in measure and fn(x) → g(x) in measure on E, the RHS tend to zero as

n→ ∞. Thus, m({x ∈ E \A | |f(x)− g(x)| > 2σ}) = 0 for all σ > 0. Notice that

{x ∈ E \A | f(x) ̸= g(x)} =

∞∪
k=1

{
x ∈ E \A

∣∣∣∣ |f(x)− g(x)| > 1

k

}
Therefore, take σ = 1

2k , we know every set inside the union on the RHS is of measure zero. By

σ-subadditivity, we have

m({x ∈ E \A | f(x) ̸= g(x)}) ≤
∞∑
k=1

0 = 0

This shows f(x) = g(x) a.e. onE\A. However, sincem(A) = 0, it can also imply f(x) = g(x)

a.e. on E. □

Now we are going to explore the relationship between a.u. convergence, a.e. convergence,

and convergence in measure.

Theorem 2.7

♡

Let f(x) and {fn(x)}∞n=1 be finite a.e. and measurable on E ∈ M. If fn(x) → f(x)

a.u. on E, then fn(x) → f(x) in measure on E.

Proof By the remark of Definition 2.8, we only need to prove fn(x) → f(x) in measure on

E′ = E \A, where

A = {x ∈ E | |f(x)| = ∞} ∪

( ∞∪
n=1

{x ∈ E | |fn(x)| = ∞}

)
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2.4 Convergence In Measure

because m(A) = 0. For all δ > 0, there exists Eδ ⊂ E s.t. m∗(Eδ) < δ and fn(x) → f(x)

uniformly on E \ Eδ. For all σ > 0, there exists N(σ) ≥ 1 s.t. |fn(x) − f(x)| < σ
2 for all

n ≥ N(σ) and x ∈ E′ \ Eδ. Thus, for all σ > 0, there exists N(σ) s.t. for all n ≥ N(σ),

{x ∈ E′ | |fn(x) − f(x)| > σ} ⊂ Eδ. This shows m({x ∈ E′ | |fn(x) − f(x)| > σ}) < δ

by subadditivity. Take δ → 0, m({x ∈ E′ | |fn(x) − f(x)| > σ}) = 0 for n ≥ N(σ). This

is even stronger than what we need, but anyway we can say for any fixed σ > 0, as n → ∞,

m({x ∈ E′ | |fn(x)− f(x)| > σ}) → 0, so fn(x) → f(x) in measure on E′. □
Remark Note that convergence in measure cannot imply a.u. convergence because it even fails

to imply a.e. convergence. For example, for all n ∈ N+, define fnk(x) for k = 1, . . . , 2n by

fnk(x) =

1 x ∈ (k−1
2n ,

k
2n ]

0 elsewhere on (0, 1]

Construct a sequence of function {fi(x)}∞i=1 by letting f2n−2+k(x) = fnk(x). It is obvious that

when i > 2n, m({x ∈ (0, 1] | |fi(x)| > σ}) = 1
2n . This shows fi(x) → 0 in measure on (0, 1].

However, fi(x) does not converge to 0 a.e., because for each n ∈ N+,

(0, 1] =
2n+1−2∪
i=2n−1

{x ∈ (0, 1] | fi(x) = 1}

so for any fixed x ∈ (0, 1], for each n, there exists in s.t. fin(x) = 1. This shows fi(x) ̸→ 0 for

each fixed x ∈ (0, 1]. Similarly, we can also find a subsequence of fi(x) s.t. it converges to 0 for

every x. This shows fi(x) cannot converge to any function a.e. on (0, 1].

One may think a.e. convergence is stronger than convergence in measure. Unfortunately,

this is only true when the domain is of finite measure. However, this is because Egorov’s

Theorem says a.e. convergence implies a.u. convergence, and it is a.u. convergence that can

imply convergence in measure. Thus, to construct a counter-example, we only need to consider

function defined on set with infinite measure.

Example 2.4 Let E = R and fn(x) = I(−n,n)(x) for all n ≥ 1. Then it is obvious that

fn(x) → 1 pointwisely on R. However, fn(x) ̸→ 1 in measure on R. This is because for all

σ ∈ (0, 1), m({x ∈ R | |fn(x)− 1| > σ}) = ∞ for any n ∈ N+.

Notice that in practice, sometimes we want to prove fn(x) → f(x) in measure on E for

some f(x), but f(x) is very hard to find or cannot be found. In this case, we shall consider

Cauchy criterion just like what we do in convergence of sequence of numbers.

Definition 2.9. Cauchy In Measure

♣

Let {fn(x)}∞n=1 be measurable on E and finite a.e. on E. We say {fn(x)}∞n=1 is Cauchy

in measure if for every fixed σ > 0, for all ϵ > 0, there exists K ∈ N+ s.t.

m({x ∈ E | |fk(x)− fj(x)| > σ}) < ϵ, whenever k, j ≥ K
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2.4 Convergence In Measure

Theorem 2.8

♡

Let f(x) and {fn(x)}∞n=1 be measurable and finite a.e. on E. If fn(x) → f(x) in

measure on E as n→ ∞, then {fn(x)}∞n=1 is Cauchy in measure.

Proof Define the same A as in Theorem 2.7, then m(A) = 0. Let E′ = E \ A, then for all

σ > 0,

m({x ∈ E′ | |fn(x)− f(x)| > σ/2}) → 0

Thus, for all ϵ > 0, there exists N ≥ 1 s.t. m({x ∈ E′ | |fn(x) − f(x)| > σ/2}) < ϵ for all

n ≥ N . Observe that |fk(x)− fj(x)| ≤ |fk(x)− f(x)|+ |f(x)− fj(x)| for all x ∈ E′. Similar

to the proof of Theorem 2.6, we have

{x ∈ E′ | |fk(x)− fj(x)| > σ} ⊂ {x ∈ E′ | |fk(x)− f(x)| > σ/2}

∪ {x ∈ E′ | |fj(x)− f(x)| > σ/2}

Therefore, by subadditivity, we have

m({x ∈ E′ | |fk(x)− fj(x)| > σ}) ≤ m({x ∈ E′ | |fk(x)− f(x)| > σ/2})

+m({x ∈ E′ | |fj(x)− f(x)| > σ/2})

When k, j ≥ N ,m({x ∈ E′ | |fk(x)−fj(x)| > σ}) < 2ϵ, so {fn(x)}∞n=1 is Cauchy in measure.

□

Theorem 2.9

♡

Let {fk(x)}∞n=1 be measurable and finite a.e. on E ∈ M. If {fk(x)}∞k=1 is Cauchy

in measure on E, then there exists measurable function f(x), finite a.e. on E and

fk(x) → f(x) in measure on E as k → ∞. Moreover, there exists a subsequence

{fki(x)}∞i=1 of {fk(x)}∞k=1 s.t. fki(x) → f(x) a.u. on E as i→ ∞.

Proof Let A =
∪∞

k=1{x ∈ E | |fk(x)| = ∞} and E′ = E \ A, then m(A) = 0. Since

{fk(x)}∞k=1 is Cauchy in measure, for all ϵ > 0, there exists K(ϵ) ≥ 1 s.t.

m({x ∈ E′ | |fk(x)− fj(x)| > ϵ}) < ϵ, ∀ k, j ≥ K(ϵ) (2.1)

Take ϵ = 1
2 , let k1 = K(12); take ϵ = 1

22
, let k2 = K( 1

22
) s.t. k2 > k1. Keep on doing this, let

ki = K( 1
2i
) s.t. ki > ki−1 for all i ≥ 2. Then we will have

m({x ∈ E′ | |fl(x)− fj(x)| > 2−i}) < 2−i, ∀ l, j ≥ ki

In particular, for all i ≥ 1, let Ei = {x ∈ E′ | |fki+1
(x) − fki(x)| > 2−i}, and we have

m(Ei) < 2−i. Thus,
∑∞

i=1m(Ei) <∞ and by Borel-Cantelli lemma, m(limi→∞Ei) = 0.

We first claim for all x ∈ E′ \ limi→∞Ei, fki(x) → f(x) pointwisely for some f(x) as

i → ∞. Notice that if x ̸∈ limi→∞Ei, then x is in at most finitely many Ei’s, so there exists

Ix ≥ 1 s.t. x /∈ Ei for all i ≥ Ix. This shows |fki+1
(x) − fki(x)| ≤ 2−i for all i ≥ Ix. Thus,∑∞

i=Ix
(fki+1

(x) − fki(x)) converges and {fki(x)}∞i=1 converges to some f(x) pointwisely on
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2.4 Convergence In Measure

E′ \ limi→∞Ei. It is easy to extend f(x) to E′ because we can just let f(x) = 0 for all

x ∈ limi→∞Ei. In this case, f(x) is measurable on limi→∞Ei because m(limi→∞Ei) = 0.

By remark of Exercise 2.12, f(x) is measurable on E′ \ limi→∞Ei. By Exercise 2.1, f(x) is

measurable on E′. Since f(x) is finite on E′ \ limi→∞Ei, f(x) is finite a.e. on E′.

Next we claim that for each fixed σ > 0, for each fixed k ≥ 1,

{x ∈ E′ | |fk(x)− f(x)| > σ} ⊂ lim
i→∞

{x ∈ E′ | |fk(x)− fki(x)| > σ} ∪ lim
i→∞

Ei

If x ∈ LHS, but x ̸∈ limi→∞Ei, then by our first claim, limi→∞ fki(x) = f(x). Then there

exists M ∈ N+ s.t. |fki(x)− f(x)| < |fk(x)−f(x)|−σ
2 for all i ≥M . Thus,

|fk(x)− fki(x)| ≥ |fk(x)− f(x)| − |fki(x)− f(x)| > σ

This implies x ∈ {x ∈ E′ | |fk(x)− fki(x)| > σ} for all i ≥M , so for every fixed σ > 0,

x ∈ lim
i→∞

({x ∈ E′ | |fk(x)− fki(x)| > σ}), ∀ k ≥ 1

This finishes the proof of our second claim. By subadditivity,

m({x ∈ E′ | |fk(x)− f(x)| > σ}) ≤ m

(
lim
i→∞

{x ∈ E′ | |fk(x)− fki(x)| > σ}
)

By Problem Set 1.4, Question 15.,

m

(
lim
i→∞

{x ∈ E′ | |fk(x)− fki(x)| > σ}
)

≤ lim
i→∞

m({x ∈ E′ | |fk(x)− fki(x)| > σ})

Note that for every fixed σ > 0, for all ϵ < σ, there exists I(ϵ) ≥ 1 s.t. ki ≥ K(ϵ) if i ≥ I(ϵ).

Thus, for all k ≥ K(ϵ) and i ≥ I(ϵ), by Equation (2.1), we have

m({x ∈ E′ | |fk(x)− fki(x)| > σ}) ≤ m({x ∈ E′ | |fk(x)− fki(x)| > ϵ}) < ϵ

This shows for each fixed σ > 0, m({x ∈ E′ | |fk(x) − f(x)| > σ}) < ϵ for all k ≥ K(ϵ).

Therefore, fk(x) → f(x) in measure on E′ and hence on E.

Finally, we claim that fki(x) → f(x) a.u. on E, so fki(x) is just the desired subsequence.

For all δ > 0, there exists I(δ) ≥ 1 s.t.
∑∞

i=I(δ) 2
−i < δ. Recall m(Ei) <

1
2i

, so m(Eδ) < δ

where Eδ = A ∪ (
∪∞

i=I(δ)Ei). Now we only need to prove fki(x) → f(x) uniformly on

E \ Eδ. For x ∈ E \ Eδ, since |fki+1
(x) − fki(x)| ≤ 1

2i
for all i ≥ I(δ). By M -test,∑∞

i=I(δ)(fki+1
(x)− fki(x)) converges uniformly on E \ Eδ, so fki(x) converges uniformly on

E \Eδ to some g(x). However, we have known fki(x) → f(x) pointwisely on E′ \ limi→∞Ei

and limi→∞Ei ⊂
∪∞

i=I(δ)Ei, so E \Eδ ⊂ E′ \ limi→∞Ei and fki(x) → f(x) pointwisely on

E \ Eδ. This shows f(x) = g(x) on E \ Eδ and we are done. □

Conclusion Combined with Theorem 2.8 and Theorem 2.9, we know Cauchy in measure is equiv-

alent to convergence in measure. Furthermore, convergence in measure implies a.u. convergence

for a subsequence.

K Problem Set 2.4 k

1. Let E ∈ M, fk → f in measure and gk → g in measure one E as k → ∞. Prove that
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2.5 Lusin’s Theorem and Littlewood’s Three Principles

fk + gk → f + g in measure on E as k → ∞.

2. Let f∞, fn, n ∈ N+ be measurable and finite a.e. on E ∈ M, and suppose m(E) < ∞.

Prove that if any subsequence fnk
of fn contains a subsequence fnki

which converges to

f∞ a.e. on E as i→ ∞, then fn → f∞ in measure on E as n→ ∞.

3. Let E ∈ M and m(E) < ∞. Suppose fn → f∞ and gn → g∞ both in measure on E.

Prove that fngn → f∞g∞ in measure as n→ ∞.

4. Suppose fn → f∞ in measure on E ∈ M; g is uniformly continuous on R. Prove that

g ◦ fn → g ◦ f in measure as n→ ∞.

5. Let fn,i → fn in measure as i → ∞ on E ∈ M. Also, fn → f∞ in measure as n → ∞.

Prove that there exists subsequence fnm,im → f∞ a.u. as m→ ∞.

6. Suppose fn → f∞ in measure onE ∈ R,E ∈ M. Assume fn isM -Lipschitz continuous

on E for all n ≥ 1, prove that fn → f∞ a.e. as n→ ∞.

2.5 Lusin’s Theorem and Littlewood’s Three Principles

Up to now, you may still think measurable function is mysterious. Unlike continuous

function, which is very concrete and intuitive, measurable function is abstract and intangible. In

this section we will learn another very famous and great theorem which connect the continuous

function and measurable function.

Theorem 2.10. Lusin’s Theorem

♡

Let f(x) be measurable and finite a.e. on E ∈ M. Suppose f(x) is finite a.e. on E.

Then for all δ > 0, there exists a closed set Fδ ⊂ E s.t. m(E \ Fδ) < δ and f
∣∣
Fδ
(x) (f

restricted on Fδ) is continuous on Fδ.

Proof First, we show it suffices to prove the desired result for the case when m(E) < ∞. If

m(E) = ∞, then let Ek = {x ∈ E | k ≤ |x| ≤ k + 1} for k ∈ N and E =
∪∞

k=0Ek with

m(Ek) <∞. Suppose the desired result holds for the case whenm(E) <∞, then for all δ > 0,

there exists closed Fk ⊂ Ek s.t. m(Ek \ Fk) <
δ

2k+1 and f
∣∣
Fk
(x) is continuous on Fk for all

k ∈ N. Let Fδ =
∪∞

k=0 Fk, then Fδ is closed by Problem Set 1.3, Question 4. and f
∣∣
Fδ
(x) is

continuous on Fδ. Also, since E \ Fδ =
∪∞

k=0(Ek \ Fk), m(E \ Fδ) ≤
∑∞

k=0
δ

2k+1 = δ. This

shows that the desired result is also true when m(E) = ∞. Therefore, from now on, we assume

m(E) < ∞. Also, we can assume f(x) is finite on E because if we let Z ⊂ E to be the set

where |f(x)| = ∞, then m(Z) = 0. Let E′ = E \ Z, and if the desired result is true on E′,

i.e., we find the desired Fδ ⊂ E′, then use this Fδ, we still have the same result for E because

m(E \ Fδ) = m(E′ \ Fδ) < δ.

Then we prove the desired result for the case when f(x) is simple and measurable function.

Let f(x) =
∑I

i=1 yiIEi(x), where yi, . . . , yI ∈ R, Ei’s are pairwise disjoint and measurable.

By Problem Set 1.4, Question 2., there exists closed Fi ⊂ Ei s.t. m(Ei \ Fi) <
δ
I for all
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2.5 Lusin’s Theorem and Littlewood’s Three Principles

i = 1, . . . , I . Let Fδ =
∪I

i=1 Fi, then Fδ is closed and f
∣∣
Fδ
(x) is continuous on Fδ. Since

E \ Fδ =
∪I

i=1(Ei \ Fi), m(E \ Fδ) ≤
∑I

i=1m(Ei \ Fi) < δ.

Finally, we consider general measurable function f(x). By Simple Approximation Theorem,

there exists a sequence {ϕk(x)}∞k=1 of measurable simple function s.t. ϕk(x) → f(x) pointwisely

on E. Since ϕk(x) is measurable simple function on E, there exists closed Fk ⊂ E s.t.

m(E \Fk) <
δ

2k+1 and ϕk
∣∣
Fk
(x) is continuous on Fk for all k ≥ 1. Define F0 =

∩∞
k=1 Fk, then

F0 is closed, and since E \ F0 =
∪∞

k=1(E \ Fk), m(E \ F0) ≤
∑∞

k=1m(E \ Fk) <
δ
2 . It is

also obvious that ϕk
∣∣
F0
(x) is continuous on F0 for all k ≥ 1. Since ϕk(x) → f(x) pointwisely

on F0 and m(F0) < ∞, by Egorov’s theorem, ϕk(x) → f(x) a.u. on F0. Thus, there exists

F̃1 ⊂ F0 s.t. m(F0 \ F̃1) <
δ
4 and ϕk(x) → f(x) uniformly on F̃1. Notice that we can assume

F̃1 ∈ M because in proof of Egorov’s theorem, the “Eδ” we construct is indeed measurable.

Since ϕk
∣∣
F0
(x) is continuous on F0, ϕk

∣∣
F̃1
(x) is continuous on F̃1, and thus its uniform limit

f
∣∣
F̃1
(x) is continuous on F̃1. Since F̃1 ∈ M, by Problem Set 1.4, Question 2., there exists closed

Fδ ⊂ F̃1 s.t. m(F̃1 \ Fδ) <
δ
4 . Notice that

m(E \ Fδ) = m((E \ F0) ∪ (F0 \ F̃1) ∪ (F̃1 \ Fδ)) <
δ

2
+
δ

4
+
δ

4
= δ

and f
∣∣
Fδ
(x) is continuous on Fδ because f

∣∣
F̃1
(x) is continuous on F̃1. □

The last topic in this chapter is the famous Littlewood’s three principles of real analysis.

The statement of three principles is high-level idea of some theorem we have already proved.

Theorem 2.11. Littlewood’s Three Principles

♡

1. Every measurable set is nearly the union of a finite collection of disjoint open

intervals.

2. Every measurable function is nearly continuous.

3. Every pointwise convergent sequence of functions is nearly uniformly convergent.

Proof
1. See Theorem 1.1, part 5.. Notice that closed cubes can be replaced by open cubes and the

results will not change.

2. See Lusin’s theorem.

3. See Egorov’s theorem.

□
Remark The spirit of these principles lies in the word “nearly”. It means an approximation of a

general, abstract object by a simple, concrete object with desirable properties.

Example 2.5 Let f(x) be real-valued on R s.t. f(x + y) = f(x) + f(y) for all x, y ∈ R.

Suppose f(x) is measurable on R, then f(x) is continuous on R.

Proof Notice that f(0) = f(0+ 0) = f(0) + f(0) implies f(0) = 0. If we want to prove f(x)
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is continuous at x, we need to verify for all ϵ > 0, there exists δ > 0 s.t. |f(x+ h)− f(x)| < ϵ

for all |h| < δ. Since |f(x+ h)− f(x)| = |f(h)− f(0)|, it suffices to show f(x) is continuous

at x = 0. Apply Lusin’s theorem onE = [−1, 1], and take δ = 1
2 , there exists closed Fδ ⊂ E s.t.

m(E\Fδ) <
1
2 . Thenm(Fδ) > 0 and f

∣∣
Fδ
(x) is continuous onFδ. SinceFδ is compact, f

∣∣
Fδ
(x)

is uniform continuous on Fδ. Thus, for all ϵ > 0, there exists δ1 > 0 s.t. |f(x)−f(y)| < ϵ for all

x, y ∈ Fδ and |x− y| < δ1. Sincem(Fδ) > 0, there exists a neighborhood (−δ2, δ2) ⊂ Fδ −Fδ

by Steinhauss theorem. Let δ0 = min{δ1, δ2}, then for all z ∈ R s.t. |z| < δ0, there exists

x, y ∈ Fδ and z = x − y s.t. |f(z)| = |f(x − y)| = |f(x) − f(y)| < ϵ. This shows

f(z) → 0 = f(0) as z → 0. Thus, f(x) is continuous at x = 0. □

Example 2.6 Prove that there exists a closed F ⊂ [0, 1] s.t. m(F ) > 0 and F ∩Q = ∅.

Proof Consider Dirichlet function D(x) defined on E = [0, 1] by

D(x) =

0 x ∈ [0, 1] \Q

1 x ∈ [0, 1] ∩Q

Let f(x) = 1 − D(x), then it is obvious that f(x) is measurable on E = [0, 1] because

f(x) = I[0,1]\Q(x) where [0, 1] \ Q ∈ M. By Lusin’s theorem, take δ = 1
2 , then there exists

closed F1 ⊂ E s.t. m(E \ F1) <
1
2 . Thus, m(F1) >

1
2 and f

∣∣
F1
(x) is continuous on F1. Note

(f
∣∣
F1
)−1({1}) = F1 \Q, and since {1} is closed, F1 \Q is also closed. Let F = F1 \Q, then

m(F ) = m(F1) > 0, so F is the desired set. □

K Problem Set 2.5 k

1. Let f be real-valued and defined on E ∈ Rn, E ∈ M, satisfying ∀ δ > 0, there exists

closed Fδ ⊂ E s.t. m(E \ Fδ) < δ and f
∣∣
Fδ

is continuous. Prove f is measureable on E.

2. Let f be real-valued, measurable on a finite interval [a, b]. Prove that there exists sequence

hk s.t. hk → 0, f(x+ hk) → f(x) for a.e. x ∈ [a, b] as k → ∞.
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Chapter 3 Lebesgue Integration

3.1 Lebesgue Integrals of Nonnegative Measurable Functions

In this section, we are going to define a new type of integral which is different from

Riemann integral. Before we do that, let’s first do some review on Riemann integral and get

enough motivation to introduce a brand new integral.

Definition 3.1. Riemann Integral

♣

Let f(x) be defined and bounded on [a, b] where a, b ∈ R. Define a partition P =

{x0, . . . , xn} of [a, b]. Denote mi = inf [xi−1,xi] f(x), Mi = sup[xi−1,xi] f(x), and

∆xi = xi − xi−1 for i = 1, . . . , n. Then the lower sum is
∑n

i=1mi∆xi and upper sum

is
∑n

i=1Mi∆xi. If lim∆→0
∑n

i=1mi∆xi and lim∆→0
∑n

i=1Mi∆xi both exist and are

equal, where ∆ = max{∆xi}ni=1, then this limit is called Riemann integral of f(x) on

[a, b], denoted as
∫ b
a f(x) dx.

Remark In mathematical analysis, the Lebesgues Criterion for Riemann integrability says that

if f is Riemann integrable on [a, b], then f is continuous a.e. on [a, b].

It seems that Riemann integral has strong relation with continuity a function. However, since

we define a wider category of functions - measurable functions, we want to define an integration

that also works for some measurable but not continuous function, like Dirichlet function.

Definition 3.2. Lebesgue Integrals of Measurable Simple Functions

♣

Let f(x) ≥ 0 be measurable simple function on E ∈ M. Then f(x) =
∑I

i=1 yiIEi(x),

yi ≥ 0 (yi can be ∞), Ei’s pairwise disjoint and measurable, and E =
∪I

i=1Ei. We

define the Lebesgue integral of f(x) on E as
∫
E f(x) dx =

∑I
i=1 yim(Ei).

Example 3.1 Consider the function f(x) defined in the proof Example 2.6) on E = [0, 1]. Let

E1 = E ∩ Q and E2 = E ∩ Qc, then f(x) = 0 · IE1(x) + IE2(x). Since E1 ∩ E2 = ∅ and

E = E1 ∪ E2, by Definition 3.2, Lebesgue integral
∫
E f(x) dx = 0 ·m(E1) +m(E2) = 1.

� Exercise 3.1 Notice that for the same set E, there are infinitely many possible cases for Ei’s in

E =
∪I

i=1Ei. For example, let E = [0, 1] and f(x) = IE(x), then f(x) = IE1(x) + IE2(x).

We can take E1 = [0, 12) and E2 = [12 , 1], but we can also take E1 = [0, 13) and E2 = [13 , 1]. Is

the Lebesgue integral defined in Definition 3.2 unique? Please verify that Lebesgue integral is

well-defined.
Proof Suppose f(x) =

∑I
i=1 yiIEi(x) =

∑J
j=1 zjIFj (x), where E =

∪I
i=1Ei =

∪J
j=1 Fj ,

Ei’s are pairwise disjoint, Fj’s are pairwise disjoint, andEi, Fj ∈ M for all i = 1, . . . , I and j =
1, . . . , J . It suffices to show

∑I
i=1 yim(Ei) =

∑J
j=1 zjm(Fj). Notice thatEi =

∪J
j=1(Ei∩Fj)
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for all i = 1, . . . I and Fj =
∪I

i=1(Ei ∩ Fj) for all j = 1, . . . , J . Thus,

I∑
i=1

yim(Ei) =

I∑
i=1

yim

 J∪
j=1

(Ei ∩ Fj)

 =

I∑
i=1

yi

 J∑
j=1

m(Ei ∩ Fj)

 =

I∑
i=1

J∑
j=1

yim(Ei ∩ Fj)

J∑
j=1

zjm(Fj) =

J∑
j=1

zjm

(
I∪

i=1

(Ei ∩ Fj)

)
=

J∑
j=1

zj

(
I∑

i=1

m(Ei ∩ Fj)

)
=

J∑
j=1

I∑
i=1

zjm(Ei ∩ Fj)

Since both of them are finite sum, we can exchange the order of summation, and it suffices to show∑I
i=1

∑J
j=1 yim(Ei ∩ Fj) =

∑I
i=1

∑J
j=1 zjm(Ei ∩ Fj). There are two cases, Ei ∩ Fj = ∅

and Ei ∩ Fj ̸= ∅. If Ei ∩ Fj = ∅, then zjm(Ei ∩ Fj) = yim(Ei ∩ Fj) = 0 is always

true. If Ei ∩ Fj ̸= ∅, then there exists x0 ∈ Ei ∩ Fj . By definition of Ei and Fj (see

remark of Definition 2.3), f(x0) = yi and f(x0) = zj , so zj = yi. Since i, j are arbitrary,∑I
i=1

∑J
j=1 yim(Ei ∩ Fj) =

∑I
i=1

∑J
j=1 zjm(Ei ∩ Fj) is proved. □

Property Let f(x) ≥ 0 be measurable simple function on E ∈ M. Then,

1. If f(x) ≤ g(x) on E, then
∫
E f(x) dx ≤

∫
E g(x) dx.

2. If A ⊂ B ⊂ E and A,B ∈ M, then
∫
A f(x) dx ≤

∫
B f(x) dx.

3. If c > 0 is a constant, then
∫
E cf(x) dx = c

∫
E f(x) dx.

4. If f(x) = 0 on E, then
∫
E f(x) dx = 0 even if m(E) = ∞.

5. If m(E) = 0, then
∫
E f(x) dx = 0 even if f(x) = ∞ on E.

6.
∫
E f(x) dx =

∫
Rn IE(x)f(x) dx.

Proof
1. Suppose f(x) =

∑I
i=1 yiIEi(x) and g(x) =

∑J
j=1 zjIFj (x) where E =

∪I
i=1Ei =∪I

j=1 Fj , Ei’s are pairwise disjoint, Fj’s pariwise disjoint, and Ei, Fj ∈ M for all

i = 1, . . . , I and j = 1, . . . , J . By the same argument as in the proof of Exercise 3.1,∫
E
f(x) dx =

I∑
i=1

J∑
j=1

yim(Ei ∩ Fj),

∫
E
g(x) dx =

I∑
i=1

J∑
j=1

zjm(Ei ∩ Fj)

For (i, j) pair s.t. Ei ∩ Fj = ∅, yim(Ei ∩ Fj) = zjm(Ei ∩ Fj). For (i, j) pair s.t.

Ei ∩ Fj ̸= ∅, there exists x0 ∈ Ei ∩ Fj s.t. f(x0) = yi and g(x0) = zj . Since

f(x0) ≥ g(x0) ≥ 0, yi ≥ zj ≥ 0. Thus, yim(Ei ∩Fj) ≥ zjm(Ei ∩Fj) for all (i, j) pair.

This shows∫
E
f(x) dx =

I∑
i=1

J∑
j=1

yim(Ei ∩ Fj) ≥
I∑

i=1

J∑
j=1

zjm(Ei ∩ Fj) =

∫
E
g(x) dx

2. Suppose f(x) =
∑I

i=1 yiIEi(x) where E =
∪I

i=1Ei, Ei’s are pairwise disjoint, and

Ei ∈ M for all i = 1, . . . , I . Now let Ai = Ei ∩A and Bi = Ei ∩B for all i = 1, . . . , I .

Then A =
∪I

i=1Ai and B =
∪I

i=1Bi. Furthermore, Ai’s are pairwise disjoint, Bi’s are
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pairwise disjoint, and f(Ai) = f(Bi) = {yi}. Therefore,∫
A
f(x) dx =

I∑
i=1

yim(Ai),

∫
B
f(x) dx =

I∑
i=1

yim(Bi)

Since A ⊂ B, m(Ai) ≤ m(Bi), thus
∫
A f(x) dx ≤

∫
B f(x) dx.

3. Suppose f(x) =
∑I

i=1 yiIEi(x) where E =
∪I

i=1Ei, Ei’s are pairwise disjoint, and

Ei ∈ M for all i = 1, . . . , I . Then cf(x) =
∑I

i=1(cyi)IEi(x). Therefore,∫
E
cf(x) dx =

I∑
i=1

(cyi)m(Ei), c

∫
E
f(x) dx = c

I∑
i=1

yim(Ei)

Thus,
∫
E cf(x) dx = c

∫
E f(x) dx when c > 0.

4. If f(x) = 0 on E, then f(x) = 0 · IE(x), and thus
∫
E f(x) dx = 0 ·m(E) = 0 even if

m(E) = ∞.

5. Suppose f(x) =
∑I

i=1 yiIEi(x) where E =
∪I

i=1Ei, Ei’s are pairwise disjoint, and

Ei ∈ M for all i = 1, . . . , I . Then m(Ei) = 0 for all i = 1, . . . , I because m(E) = 0.

Therefore,
∫
E f(x) dx =

∑I
i=1 yim(Ei) = 0 even if yi = ∞ for all i = 1, . . . , I .

6. Suppose f(x) =
∑I

i=1 yiIEi(x) where E =
∪I

i=1Ei, Ei’s are pairwise disjoint, and

Ei ∈ M for all i = 1, . . . , I . Then let g(x) = IE(x)f(x) be defined on Rn, and we

have g(x) = f(x) on E and g(x) = 0 on Ec. This implies g(x) =
∑I+1

i=1 yiIEi(x) where

yI+1 = 0 and EI+1 = Ec. Thus,∫
Rn

g(x) dx =
I+1∑
i=1

yim(Ei) =
I∑

i=1

yim(Ei) =

∫
E
f(x) dx

□

Definition 3.3. Lebesgue Integrals of Nonnegative Measurable Functions

♣

Let f(x) be measurable and nonnegative on E ∈ M. The Lebesgue integral of f(x) on

E is defined by
∫
E f(x) dx = sup(S(f ;E)), where set S(f ;E) is

S(f ;E) =

{∫
E
s(x) dx

∣∣∣∣ 0 ≤ s(x) ≤ f(x), s(x) measurable simple on E
}

� Exercise 3.2 Use Definition 3.3 to generalize all six properties of Lebesgue integral for nonneg-

ative measurable simple functions to Lebesgue integral for nonnegative measurable functions.

Proof
1. By Definition 3.3, we claim S(f ;E) ⊂ S(g;E). If the claim is true, then∫

E
f(x) dx = sup(S(f ;E)) ≤ sup(S(g;E)) =

∫
E
g(x) dx

To prove the claim, for all L ∈ S(f ;E), there exists nonnegative measurable simple s(x)

on E s.t. s(x) ≤ f(x) and
∫
E s(x) dx = L. Since f(x) ≤ g(x) on E, s(x) ≤ g(x) on E,

so L ∈ S(g;E). Therefore, S(f ;E) ⊂ S(g;E) and we are done.

2. Take arbitrary element L ∈ S(f ;A), then there exists nonnegative measurable simple
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function s(x) on A s.t. s(x) ≤ f(x) and
∫
A s(x) dx = L. Consider s̃(x) on B defined by

s̃(x) = s(x) on A and s̃(x) = 0 on B \ A. Then s̃(x) is a nonegative measurable simple

function on B s.t. s̃(x) ≤ f(x). Notice that

L =

∫
A
s(x) dx =

∫
A
s̃(x) dx ≤

∫
B
s̃(x) dx

where the last inequality is due to property of Lebesgue integral for measurable simple

functions. This shows that for all L ∈ S(f ;A), there exists L′ ≥ L s.t. L′ ∈ S(f ;B).

This implies sup(S(f ;A)) ≤ sup(S(f ;B)), so
∫
A f(x) dx ≤

∫
B f(x) dx.

3. Take arbitrary L ∈ S(cf ;E), then there exists nonnegative measurable simple function

s(x) on E s.t. s(x) ≤ cf(x) and
∫
E s(x) dx = L. Since c > 0, s(x)

c ≤ f(x). Note

that s̃(x) = s(x)
c is also nonnegative measurable simple function on E. By property of

measurable simple function,
∫
E s̃(x) dx = 1

c

∫
E s(x) dx = L

c . Thus, L
c ∈ S(f ;E), and

so L
c ≤

∫
E f(x) dx. SinceL is arbitrary, we have

∫
E cf(x) dx ≤ c

∫
E f(x) dx. Similarly,

take arbitrary L′ ∈ S(f ;E), then there exists nonnegative measurable function t(x) on E

s.t. t(x) ≤ f(x) and
∫
E t(x) dx = L′. Then t̃(x) = ct(x) ≤ cf(x) is also nonnegative

measurable simple function on E and
∫
E t̃(x) dx = c

∫
E t(x) dx = cL′. Thus, cL′ ∈

S(cf ;E) and cL′ ≤
∫
E cf(x) dx. Since L′ is arbitrary, c

∫
E f(x) dx ≤

∫
E cf(x) dx.

This shows
∫
E cf(x) dx = c

∫
E f(x) dx.

4. If f(x) = 0 on E, then f(x) must be measurable simple function, so this one is the same

as the proof of the property for measurable simple function.

5. If m(E) = 0, then S(f ;E) = {0}, so
∫
E f(x) dx = sup{0} = 0.

6. Let g(x) = IE(x)f(x) be defined on Rn, so g(x) = f(x) onE and g(x) = 0 onEc. This

shows
∫
E g(x) dx =

∫
E f(x) dx. By part 2., we have∫

Rn

IE(x)f(x) dx =

∫
Rn

g(x) dx ≥
∫
E
g(x) dx =

∫
E
f(x) dx

Now it suffices to show
∫
Rn IE(x)f(x) dx ≤

∫
E f(x) dx. For arbitrary L ∈ S(g;Rn),

there exists nonnegative measurable simple function s(x) on Rn s.t. s(x) ≤ g(x) and∫
Rn s(x) dx = L. Notice that s

∣∣
E
(x) onE is also nonnegative measurable simple function

s.t. s
∣∣
E
(x) ≤ f(x), and by property of measurable simple function,

∫
E s
∣∣
E
(x) dx =∫

Rn IE(x)s
∣∣
E
(x) dx. Notice that IE(x)s

∣∣
E
(x) = 0 on Ec and IE(x)s

∣∣
E
(x) = s(x) on

E, but s(x) = 0 on Ec because g(x) = 0 on Ec. This shows IE(x)s
∣∣
E
(x) = s(x) on

Rn, so
∫
E s
∣∣
E
(x) dx =

∫
Rn s(x) dx = L. Thus, L ∈ S(f ;E) and S(g;Rn) ⊂ S(f ;E).

Take supremum, and we obtain
∫
Rn g(x) dx ≤

∫
E f(x) dx.

□

Conclusion From property of Lebesgue integrals of nonnegative measurable simple functions

to Exercise 3.2, we can see that some properties of Lebesgue integrals can be generalized

from integrals for nonnegative simple functions to general nonnegative functions by definition.

However, in the next section, we will see that if we want to generalize some other properties, like
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linearity or integration term by term of Lebesgue integrals, from nonnegative simple functions

to nonnegative functions, we need to use the so called monotone convergence theorem (baby

version).

K Problem Set 3.1 k

1. Let f(x) be measurable and nonnegative on E ∈ M. Suppose
∫
E f(x) dx = 0. Prove

that f = 0 a.e. on E.

2. Let f(x) ≥ 0 be measurable on E ∈ M, and positive a.e. on E with
∫
E f(x) dx = 0.

Prove that m(E) = 0.

3. Let f(x) be measurable on [0, 1] s.t. f(x) > 0, for all x ∈ [0, 1]. Prove that for all

q ∈ (0, 1), there exists δ > 0 s.t.
∫
E f(x) dx > δ, whenever E ⊂ [0, 1], E ∈ M and

m(E) ≥ q.

3.2 Monotone Convergence Theorem

In this section, we continue exploring properties of Lebesgue integrals for nonnegative

measurable functions. Similar to the last section, we first show the properties are true for

nonnegative measurable simple functions.

� Exercise 3.3 If f(x) and g(x) are nonnegative measurable simple functions on E, then∫
E
[f(x) + g(x)] dx =

∫
E
f(x) dx+

∫
E
g(x) dx

Proof Let f(x) =
∑I

i=1 yiIEi(x), where Ei’s are pairwise disjoint and E =
∪I

i=1Ei;

g(x) =
∑J

j=1 zjIFj (x), where Fj’s are pairwise disjoint and E =
∪J

j=1 Fj . By the same

argument in the proof of the first property of Lebesgue integrals for measurable simple function,∫
E
f(x) dx =

I∑
i=1

J∑
j=1

yim(Ei ∩ Fj),

∫
E
g(x) dx =

I∑
i=1

J∑
j=1

zjm(Ei ∩ Fj)

Notice that IEi(x) =
∑I

j=1 IEi∩Fj (x) and IFj (x) =
∑I

i=1 IEi∩Fj (x) for any i = 1, . . . , I and

j = 1, . . . , J , so we have

f(x) + g(x) =

I∑
i=1

yi

I∑
j=1

IEi∩Fj (x) +

J∑
j=1

zj

I∑
i=1

IEi∩Fj (x)

This verifies that f(x) + g(x) is indeed a simple function, and thus,∫
E
[f(x) + g(x)] dx =

I∑
i=1

J∑
j=1

(yi + zj)m(Ei ∩ Fj) =

∫
E
f(x) dx+

∫
E
g(x) dx

□

� Exercise 3.4 SupposeE1, E2 ∈ M,E = E1∪E2 andE1, E2 are disjoint. If f(x) is nonnegative

measurable simple function on E, then
∫
E f(x) dx =

∫
E1
f(x) dx+

∫
E2
f(x) dx.
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Proof By Exercise 3.2, part 6., we can write
∫
E f(x) dx =

∫
Rn IE(x)f(x) dx and∫

E1

f(x) dx =

∫
Rn

IE1(x)f(x) dx,

∫
E2

f(x) dx =

∫
Rn

IE2(x)f(x) dx

Notice that IE(x)f(x) = IE1(x)f(x) + IE2(x)f(x) on Rn, so by Exercise 3.3,∫
Rn

IE(x)f(x) dx =

∫
Rn

IE1(x)f(x) dx+

∫
Rn

IE2(x)f(x) dx

This also shows
∫
E f(x) dx =

∫
E1
f(x) dx+

∫
E2
f(x) dx. □

Theorem 3.1. Monotone Convergence Theorem I (MCT-I)

♡

Let {fn(x)}∞n=1 be measurable simple and nonnegative onE ∈ M. For each fixed x ∈ E,

{fn(x)}∞n=1 is an increasing sequence in n. Let f(x) = limn→∞ fn(x), then

lim
n→∞

∫
E
fn(x) dx =

∫
E
f(x) dx =

∫
E

lim
n→∞

fn(x) dx

Proof Since fn(x) is increasing for each fixed x, the pointwise limit of fn(x) always exists

(perhaps equal to infinity), so f(x) is nonnegative measurable function (may not be simple).

Also, fn(x) ≤ f(x) for all n ≥ 1 on E, so by Exercise 3.2, part 1.,
∫
E fn(x) dx ≤

∫
E f(x) dx

for all n ≥ 1. Take n→ ∞ on both sides, we have limn→∞
∫
E fn(x) dx ≤

∫
E f(x) dx. Notice

that this limit also exists because
∫
E fn(x) dx is also an increasing sequence in n by applying

Exercise 3.2, part 1. to fn(x) ≤ fn+1(x) for n ≥ 1.

Now we only need to show limn→∞
∫
E fn(x) dx ≥

∫
E f(x) dx. It suffices to show

limn→∞
∫
E fn(x) dx ≥ L for all L ∈ S(f ;E). For each L, there exists nonnegative measurable

simple function s(x) on E s.t. s(x) ≤ f(x) and
∫
E s(x) dx = L. Let s(x) =

∑I
i=1 yiIEi(x)

where Ei’s are pairwise disjoint and E =
∪I

i=1Ei. By repeatedly applying Exercise 3.4, we

have
∫
E s(x) dx =

∑I
i=1

∫
Ei
s(x) dx. Similarly,

∫
E fn(x) dx =

∑I
i=1

∫
Ei
fn(x) dx for all

n ≥ 1. Therefore, we need to prove limn→∞
∫
Ei
fn(x) dx ≥

∫
Ei
s(x) dx = yim(Ei) for all

i = 1, . . . , I . We discuss three cases:

1. If yi = 0, then limn→∞
∫
Ei
fn(x) dx ≥ 0 = yim(Ei) is obvious.

2. If 0 < yi <∞, then for all ϵ > 0, let Aϵ
n = {x ∈ Ei | fn(x) ≥ yi− ϵ} ∈ M. Since fn(x)

is increasing, Aϵ
1 ⊂ · · · ⊂ Aϵ

n ⊂ · · · . Notice that f(x) ≥ s(x), and on Ei, s(x) = yi, so

there exists largeN s.t. for all n ≥ N , fn(x) ≥ yi− ϵ. This shows Ei = limn→∞Aϵ
n. By

continuity of Lebesgue measure, m(Ei) = limn→∞m(Aϵ
n). By Exercise 3.2, part 2. and

part 1., we have
∫
Ei
fn(x) dx ≥

∫
Aϵ

n
fn(x) dx ≥

∫
An

(yi− ϵ) dx = (yi− ϵ)m(An). Take

n → ∞ on both sides, we obtain limn→∞
∫
Ei
fn(x) dx ≥ (yi − ϵ)m(Ei). Take ϵ → 0,

we have the desired result.

3. If yi = ∞, then for all M ≥ 1, define BM
n = {x ∈ Ei | fn(x) ≥ M}. Since fn(x) is

increasing, BM
1 ⊂ · · · ⊂ BM

n ⊂ · · · . Note that f(x) ≥ s(x) = ∞, so there exists large

N s.t. for all n ≥ N , fn(x) ≥ M . Thus, Ei = limn→∞BM
n . By continuity of Lebesgue
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measure, m(Ei) = limn→∞m(BM
n ). By Exercise 3.2, part 2. and part 1., we have∫

Ei

fn(x) dx ≥
∫
BM

n

fn(x) dx ≥
∫
BM

n

M dx =Mm(BM
n )

Take n → ∞, we have limn→∞
∫
Ei
fn(x) dx ≥ Mm(Ei). If m(Ei) > 0, then by taking

M → ∞, we can obtain limn→∞
∫
Ei
fn(x) dx ≥ ∞ = yim(Ei). If m(Ei) = 0, then

yim(Ei) = 0, so limn→∞
∫
Ei
fn(x) dx ≥ yim(Ei) is trivial.

Combine all three cases, we finish the proof of this theorem. □

� Exercise 3.5 Prove the result in Exercise 3.3 and Exercise 3.4 is also true for general nonnegative

measurable functions.

Proof For nonnegative measurable functions f(x) and g(x), by simple approximation theorem,

there exists sequences of nonnegative measurable simple functions {ϕk}∞k=1 and {ψk}∞k=1 s.t.

ϕk(x) → f(x) and ψk(x) → g(x) pointwisely on E. By Exercise 3.3, for all k ≥ 1,∫
E
[ϕk(x) + ψk(x)] dx =

∫
E
ϕk(x) dx+

∫
E
ψk(x) dx

Notice that ϕk(x) and ψk(x) are increasing in k for each fixed x, so ϕk(x) + ψk(x) is also

increasing and converges to f(x) + g(x) pointwisely. Thus, by MCT-I, we have∫
E
[f(x) + g(x)] dx = lim

k→∞

∫
E
[ϕk(x) + ψk(x)] dx

= lim
k→∞

∫
E
ϕk(x) dx+ lim

k→∞

∫
E
ψk(x) dx

=

∫
E
f(x) dx+

∫
E
g(x) dx

To prove the result in Exercise 3.4 for general nonnegative measurable function, we can adopt

the same method as in the proof of Exercise 3.4. The details are omitted. □

� Exercise 3.6 Let f(x) be nonnegative measurable function on E ∈ M. If set Z satisfies

m(Z) = 0, then
∫
E f(x) dx =

∫
E\Z f(x) dx.

Proof By Exercise 3.2, part 5., we have
∫
Z f(x) dx = 0. Since Z and E \ Z are disjoint, by

Exercise 3.5,
∫
E f(x) dx =

∫
Z f(x) dx+

∫
E\Z f(x) dx =

∫
E\Z f(x) dx. □

Problem 3.1 Let f(x) and g(x) be nonnegative measurable functions onE ∈ M. Use the result

in Exercise 3.6 to prove

1. If f(x) = g(x) a.e. on E, then
∫
E f(x) dx =

∫
E g(x) dx.

2. If f(x) = 0 a.e. on E, then
∫
E f(x) dx = 0.

� Exercise 3.7 Let f(x) be nonnegative measurable functions on E ∈ M. If
∫
E f(x) dx < ∞,

then f(x) is finite a.e. on E.

Proof Let B = {x ∈ E | f(x) = ∞}. By Exercise 3.2, part 2., we have∫
B
f(x) dx ≤

∫
E
f(x) dx <∞
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Since f(x) onB is a constant, so it is a simple function onB, and
∫
B f(x) dx = ∞·m(B) <∞.

If m(B) > 0, we will have ∞ ·m(B) = ∞, so this contradiction shows m(B) = 0. □

� Exercise 3.8 Let f(x) be nonnegative measurable functions on E ∈ M. Prove that for all

α ∈ (0,∞), m(Eα) ≤ 1
α

∫
E f(x) dx, where Eα = {x ∈ E | f(x) > α}. This statement

corresponds to the famous Markov’s inequality in probability theory.

Proof By Exercise 3.2, part 2., we have
∫
Eα
f(x) dx ≤

∫
E f(x) dx. Since on Eα, f(x) > α,

by Exercise 3.2, part 1.,
∫
Eα
f(x) dx ≥

∫
Eα
α dx = αm(Eα). Thus, m(Eα) ≤ 1

α

∫
E f(x) dx.

□

Recall we proved the linearity property of Lebesgue integrals for nonnegative measurable

functions in Exercise 3.5. By using induction, we can easily see that∫
E

n∑
i=1

fi(x) dx =
n∑

i=1

∫
E
fi(x) dx

for nonnegative measurable functions {fi(x)}ni=1 on E ∈ M. Now we want to prove this is

also true for sequence of nonnegative measurable functions {fi(x)}∞i=1. Such property is usually

called integration term by term property.

Theorem 3.2. Integration Term by Term I (ITT-I)

♡

Let {fn(x)}∞n=1 be a sequence of nonnegative measurable functions on E ∈ M. Let

f(x) =
∑∞

n=1 fn(x) on E. Then
∫
E f(x) dx =

∑∞
n=1

∫
E fn(x) dx.

Proof For all fixed k ≥ 1,
∑k

n=1 fn(x) ≤ f(x) on E, so
∫
E

∑k
n=1 fn(x) dx ≤

∫
E f(x) dx

by Exercise 3.2, part 1.. By linearity property of Lebesgue integrals for nonnegative measur-

able functions in Exercise 3.5,
∑k

n=1

∫
E fn(x) dx ≤

∫
E f(x) dx. Take k → ∞, we have∑∞

n=1

∫
E fn(x) dx ≤

∫
E f(x) dx. To verify the other direction, by simple approximation the-

orem, there exists nonnegative measurable simple functions {fkj(x)}∞j=1 s.t. fkj(x) → fk(x)

pointwisely and fkj(x) is increasing in j on E for each fixed k ≥ 1. Let Sk(x) =
∑k

i=1 fik(x),

then Sk(x) is nonnegative measurable simple function and Sk(x) ≤ Sk+1(x) onE for all k ≥ 1.

Also, f(x) ≥ Sk(x), and we have limk→∞ Sk(x) ≤ f(x). However, for each fixed m ≥ 1,

if m ≤ k, Sk(x) ≥
∑m

i=1 fik(x). Take k → ∞ on both sides, limk→∞ Sk(x) ≥
∑m

i=1 fi(x).

Take m → ∞, we have limk→∞ Sk(x) ≥ f(x). Therefore, we have limk→∞ Sk(x) = f(x).

By MCT-I, we have limk→∞
∫
E Sk(x) dx =

∫
E f(x) dx. Since Sk(x) ≤

∑k
i=1 fi(x), by

Exercise 3.2, part 1.,
∫
E Sk(x) dx ≤

∫
E

∑k
i=1 fi(x) dx. By linearity property in in Exercise

3.5,
∫
E

∑k
i=1 fi(x) dx =

∑k
i=1

∫
E fi(x) dx. In conclusion,∫

E
f(x) dx = lim

k→∞

∫
E
Sk(x) dx ≤ lim

k→∞

k∑
i=1

∫
E
fi(x) dx =

∞∑
i=1

∫
E
fi(x) dx

Therefore,
∫
E f(x) dx ≤

∑∞
n=1

∫
E fn(x) dx and the proof is finished. □
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Corollary 3.1

♡

Suppose E =
∪∞

k=1Ek, Ek ∈ M, Ek’s are pairwise disjoint, and f(x) is a nonnegative

measurable function on E. Then
∫
E f(x) dx =

∑∞
k=1

∫
Ek
f(x) dx.

Proof Notice that this is a further generalization of Exercise 3.4 because it allows union of

infinitely many sets. In this case, we can adopt the same method as in Exercise 3.4. Let

fk(x) = IEk
(x)f(x) be defined on E, then f(x) =

∑∞
k=1 fk(x). By ITT-I, we have∫

E
f(x) dx =

∞∑
k=1

∫
E
fk(x) dx =

∞∑
k=1

∫
E
IEk

(x)f(x) dx

By Exercise 3.2, part 6., we have
∫
E IEk

(x)f(x) dx =
∫
Rn IE(x)IEk

(x)f(x) dx. Notice that

IE(x)IEk
(x) = IEk

(x), so
∫
Rn IE(x)IEk

(x)f(x) dx =
∫
Rn IEk

(x)f(x) dx. Apply Exercise

3.2, part 6. again, we have
∫
Rn IEk

(x)f(x) dx =
∫
Ek
f(x) dx. Thus, we obtain the desired

result, i.e.,
∫
E f(x) dx =

∑∞
k=1

∫
Ek
f(x) dx. □

Now we are going to see an interesting application of the above corollary. Recall in the

definition of Riemann integral, we partition the domain into many subintervals and define the

limit of the upper sum and lower sum to be the integral value. In fact, we can define Lebesgue

integral in a similar way as Riemann integral, just with domain partition replaced by codomain

partition. The following example shows the details and that such kind of definition is equivalent

to our previous definition of Lebesgue integral for nonnegative measurable function.

Example 3.2 Let f(x) ≥ 0 and measurable on E ∈ M. Also, let f(x) be finite a.e. on E with

m(E) <∞. Let y0 = 0 < y1 < · · · < yk < · · · with yk+1 − yk < δ for all k ≥ 0 and yk → ∞
as k → ∞. Let Ek = {x ∈ E | yk ≤ f(x) < yk+1}, then

1.
∫
E f(x) dx <∞ if and only if

∑∞
k=0 ykm(Ek) <∞.

2. limδ→0
∑∞

k=0 ykm(Ek) =
∫
E f(x) dx.

Proof Let Z = {x ∈ E f(x) = ∞}, then m(Z) = 0. Observe that E \ Z =
∪∞

k=0Ek where

Ek’s are disjoint and measurable. By Corollary 3.1,
∫
E\Z f(x) dx =

∑∞
k=0

∫
Ek
f(x) dx. By

Exercise 3.6,
∫
E f(x) dx =

∫
E\Z f(x) dx. By Exercise 3.2, part 1., we have

ykm(Ek) =

∫
Ek

yk dx ≤
∫
Ek

f(x) dx ≤
∫
Ek

yk+1 dx = yk+1m(Ek)

Take summation on both sides, we have
∞∑
k=0

ykm(Ek) ≤
∫
E
f(x) dx ≤

∞∑
k=0

yk+1m(Ek) ≤
∞∑
k=0

(δ + yk)m(Ek)

By σ-additivity, we have
∞∑
k=0

ykm(Ek) ≤
∫
E
f(x) dx ≤ δm(E) +

∞∑
k=0

ykm(Ek)

If
∫
E f(x) dx < ∞,

∑∞
k=0 ykm(Ek) < ∞; if

∑∞
k=0 ykm(Ek) < ∞, then since δm(E) < ∞,∫

E f(x) dx < ∞. Furthermore, take limδ→0 on both sides of the first inequality and then take
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limδ→0 on both sides of the second inequality (upper and lower limit always exists, although may

be infinite), we have

lim
δ→0

∞∑
k=0

ykm(Ek) ≤
∫
E
f(x) dx ≤ 0 + lim

δ→0

∞∑
k=0

ykm(Ek)

Since we always have upper limit no less than lower limit, all of the inequality above becomes

equality and thus the limit exists and is equal to
∫
E f(x) dx. □

Remark This example shows that whenm(E) <∞, we can define Lebesgue integral in a similar

way as Riemann integral. The yi’s can be regarded as a partition on codomain. However, in fact,

even if m(E) = ∞, we can still prove the same result (see Problem Set 3.2, Question 6.).

Now, we are ready to prove the monotone convergence theorem for general nonnegative

measurable functions (MCT-II).

Theorem 3.3. Monotone Convergence Theorem II (MCT-II)

♡

Let {fn(x)}∞n=1 be measurable and nonnegative on E ∈ M. For each fixed x ∈ E,

{fn(x)}∞n=1 is an increasing sequence in n. Let f(x) = limn→∞ fn(x), then

lim
n→∞

∫
E
fn(x) dx =

∫
E
f(x) dx =

∫
E

lim
n→∞

fn(x) dx

Proof If there exists k0 ≥ 1 s.t. m(A0) > 0 where A0 = {x ∈ E | fk0(x) = ∞}. Notice that

f(x) is also nonnegative measurable function on E, so m(A) > 0 where A = {x ∈ E | f(x) =
∞}. Then by Exercise 3.2, part 2.,

∫
E f(x) dx ≥

∫
A f(x) dx = ∞ · m(A) = ∞. Since∫

E fn(x) dx is an increasing sequence inn, for alln ≥ k0, we have
∫
E fn(x) dx ≥

∫
E fk0(x) dx.

Take limit on both sides, we have limn→∞
∫
E fn(x) dx ≥

∫
E fk0(x) dx. By Exercise 3.2, part

2.,
∫
E fk0(x) dx ≥

∫
A0
fk0(x) dx = ∞·m(A0) = ∞. This shows limn→∞

∫
E fn(x) dx = ∞,

so the desired property holds.

If for all n ≥ 1, m(En) = 0 where En = {x ∈ E | fn(x) = ∞}, then let E∞ =
∪∞

n=1En,

and by σ-subadditivity, m(E∞) = 0. Denote E′ = E \ E∞, then since we have Exercise 3.6,

it suffices to show limn→∞
∫
E′ fn(x) dx =

∫
E′ f(x) dx. For x ∈ E′, let g1(x) = f1(x) and

gn(x) = fn(x)− fn−1(x) for all n ≥ 2, then gn(x) is nonnegative measurable on E′ for n ≥ 1.

By ITT-I,
∫
E′
∑∞

n=1 gn(x) dx =
∑∞

n=1

∫
E′ gn(x) dx. Observe that

∑m
n=1 gn(x) = fm(x), so∑∞

n=1 gn(x) = f(x) and
∫
E′ f(x) dx = limm→∞

∑m
n=1

∫
E′ gn(x) dx. By linearity property

in Exercise 3.5,
∑m

n=1

∫
E′ gn(x) dx =

∫
E′
∑m

n=1 gn(x) dx =
∫
E′ fm(x) dx. Thus, we obtain∫

E′ f(x) dx = limm→∞
∫
E′ fm(x) dx. □

Example 3.3 Let f(x) be nonnegative measurable function on R. Then

lim
n→∞

∫ n

−n
f(x) dx =

∫ ∞

−∞
f(x) dx

Notice that here all integrals are Lebesgue integrals.

Proof Let fn(x) = IEn(x)f(x) on R, where En = (−n, n). Then it obvious that {fn(x)}∞n=1
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is an increasing sequence of nonnegative measurable function on R. Moreover, fn(x) → f(x)

pointwisely on R. By MCT-II, limn→∞
∫
R fn(x) dx =

∫
R f(x) dx. By Exercise 3.2, part 6.,∫

En
f(x) dx =

∫
R fn(x) dx. Thus, we have limn→∞

∫
En
f(x) dx =

∫
R f(x) dx. □

At the end of this pretty long section, we are going to introduce a very famous and handy

lemma of Lebesgue integral for nonnegative measurable functions, the so called Fatou’s lemma.

Lemma 3.1. Fatou’s Lemma

♡

Let {fn(x)}∞n=1 be a sequence of nonnegative measurable functions on E ∈ M. Then∫
E limn→∞ fn(x) dx ≤ limn→∞

∫
E fn(x) dx.

Proof Let gk(x) = infn≥k fn(x), then gk(x) is nonnegative measurable function on E for all

k ≥ 1. Also, gk(x) is increasing in k for each x ∈ E and gk(x) → limn→∞ fn(x) pointwisely

as k → ∞. Apply MCT-II to {gk}∞k=1, we have
∫
E limk→∞ gk(x) dx = limk→∞

∫
E gk(x) dx.

Thus,
∫
E limn→∞ fn(x) = limk→∞

∫
E gk(x) dx. Since gk(x) ≤ fk(x), by Exercise 3.2, part

1.,
∫
E gk(x) dx ≤

∫
E fk(x) dx. Hence, limk→∞

∫
E gk(x) dx ≤ limk→∞

∫
E fk(x) dx. In

conclusion, we obtain
∫
E limn→∞ fn(x) ≤ limk→∞

∫
E fk(x) dx. □

Example 3.4 Let {fn(x)}∞n=1 be a sequence of nonnegative measurable function on E s.t.∫
E fn(x) dx→

∫
E f(x) dx <∞ and fn(x) → f(x) pointwisely. Then for allA ⊂ E,A ∈ M,∫

A fn(x) dx→
∫
A f(x) dx.

Proof By Fatou’s lemma, we have

lim
n→∞

∫
A
fn(x) dx ≥

∫
A

lim
n→∞

fn(x) dx =

∫
A
f(x) dx∫

E\A
f(x) dx =

∫
E\A

lim
n→∞

fn(x) dx ≤ lim
n→∞

∫
E\A

fn(x) dx

Thus, by Exercise 3.5,
∫
A f(x) dx =

∫
E f(x) dx −

∫
E\A f(x) dx. Notice that this is valid

because
∫
E\A f(x) dx ≤

∫
E f(x) dx < ∞ by Exercise 3.2, part 2.. Combined the above

inequalities, we obtain

lim
n→∞

∫
A
fn(x) dx ≥

∫
E
f(x) dx− lim

n→∞

∫
E\A

fn(x) dx

Recall that limn→∞(an + bn) ≤ limn→∞ an + limn→∞ bn for any two sequences {an}∞n=1 and

{bn}∞n=1. Also limn→∞(−an) = − limn→∞ an. Thus, we have

lim
n→∞

(∫
E
fn(x) dx−

∫
E\A

fn(x) dx

)
≤
∫
E
f(x) dx− lim

n→∞

∫
E\A

fn(x) dx

Combine all inequalities above, we have

lim
n→∞

∫
A
fn(x) dx ≥

∫
A
f(x) dx ≥ lim

n→∞

∫
A
fn(x) dx

Since upper limit is always no less than lower limit, all inequalities can be changed to equalities

and upper or lower limit can be changed to limit. This shows limn→∞
∫
A fn(x) dx =

∫
A f(x) dx.

□
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K Problem Set 3.2 k

1. Let f(x) be nonnegative, measurable on E ∈ M satisfying
∫
E f(x) dx < ∞. Let

Ek = {x ∈ E | f(x) ≥ k}, k ≥ 1. Prove that
∑∞

k=1m(Ek) <∞.

2. Let f(x) ≥ 0 be measurable on E ∈ M, where m(E) < ∞. Prove
∫
E f(x) dx < ∞ if

and only if
∑∞

k=0 2
km(E2k) <∞, where Ek = {x ∈ E | f(x) ≥ k} for all k ≥ 0.

3. Let fk(x) be nonnegative and measurable on [0, 1] s.t. fk(x) → ∞ a.e. on [0, 1]. Prove

that
∫ 1
0 fk(x) dx→ ∞.

4. Let fk(x) be nonnegative and measurable on E ∈ M, fk(x) → f∞(x) in measure on E.

Prove that
∫
E f∞(x) dx ≤ limk→∞

∫
E fk(x) dx.

5. Let Ek ⊂ [0, 1], Ek ∈ M, for all k ≥ 1 s.t. m(Ek) ≥ δ > 0 where δ is a constant.

Assume for a sequence ak we have
∑∞

k=1 |ak|IEk
(x) < ∞ a.e. on [0, 1]. Prove that∑∞

k=1 |ak| <∞.

6. Prove that Example 3.2 is true even if m(E) = ∞.

3.3 Lebesgue Integrals of Measurable Functions

In the previous two sections, we have explored many useful properties of Lebesgue integrals

of nonnegative measurable functions. Now we are going to finish our goal to define a new integral

for all Lebesgue measurable functions in this section. Recall that in Exercise 2.10, we decompose

any measurable functions f(x) into positive part f+(x) and negative part f−(x) and we proved

they are both measurable. This implies that we can write f(x) = f+(x) − (−f−(x)) where

f+(x) and −f−(x) are both nonnegative. Thus, it is natural to use the integrals of f+(x) and

f−(x) to define the Lebesgue Integrals of general measurable functions.

Definition 3.4. Lebesgue Integrals of Measurable Functions

♣

Let f(x) be measurable on E ∈ M. If at least one of
∫
E f+(x) dx or

∫
E(−f−(x)) dx is

finite, then the Lebesgue Integral of f(x) on E exists and is defined as∫
E
f(x) dx =

∫
E
f+(x) dx−

∫
E
(−f−(x)) dx

If both
∫
E f+(x) dx and

∫
E(−f−(x)) dx are finite, then we say f(x) is Lebesgue

integrable onE and denote f ∈ L1(E), where L1(E) is the set of all Lebesgue integrable

functions on E.

Remark In particular, if f(x) is nonnegative measurable, then f(x) ∈ L1(E) is equivalent to∫
E f(x) dx < ∞. Notice that f+(x) = f(x) and f−(x) = 0 on E, so

∫
E(−f−(x)) dx = 0,

thus finite automatically.

� Exercise 3.9 Let f(x) be measurable function on E ∈ M. Prove that f ∈ L1(E) if and only if

|f | ∈ L1(E), that is,
∫
E |f(x)| dx <∞.
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Proof If f ∈ L1(E), then
∫
E f+(x) dx < ∞ and

∫
E(−f−(x)) dx < ∞. Since f+,−f−

are both nonnegative measurbale, by remark of Definition 3.4, f+,−f− ∈ L1(E). Recall that

|f(x)| = f+(x) + (−f−(x)), by linearity of nonnegative measurable functions,∫
E
|f(x)| dx =

∫
E
f+(x) dx+

∫
E
(−f−(x)) dx <∞

Since |f(x)| is also nonnegative, by remark of Definition 3.4, |f | ∈ L1(E). □

Now we explore some basic properties of Lebesgue integral for general measurable function

in the following exercises. Notice that many properties have occurred in the previous sections,

but they are generalized from nonnegative measurable functions to general measurable functions.

� Exercise 3.10 If f(x) = 0 a.e. on E ∈ M, then f(x) is measurable on E and
∫
E f(x) dx = 0.

Proof For t ∈ R, we want to prove Et = {x ∈ E | f(x) > t} ∈ M. If t ≥ 0, since

Et ⊂ {x ∈ E | f(x) ̸= 0},m∗(Et) ≤ m({x ∈ E | f(x) ̸= 0}) = 0, and thusEt ∈ M. If t < 0,

then E \Et = {x ∈ E | f(x) ≤ t} ⊂ {x ∈ E | f(x) ̸= 0}. Similarly, we will have E \Et ∈ M
because it has zero outer measure. Since E ∈ M, Et = E \ (E \ Et) ∈ M. Thus, f(x) is

measurable on E. If f(x) = 0 a.e. on E, then it is easy to verify f+(x) = 0 a.e. on E. Since

f+(x) is nonnegative measurable, by Problem 3.1,
∫
E f+(x) dx = 0. Similarly, we can prove∫

E(−f−(x)) dx = 0 because −f−(x) = 0 a.e. on E. Thus,∫
E
f(x) dx =

∫
E
f+(x) dx−

∫
E
(−f−(x)) dx = 0− 0 = 0

□

� Exercise 3.11 If f(x) is measurable on E ∈ M and f ∈ L1(E), then f(x) is finite a.e. on E.

Proof By Exercise 3.9, |f | ∈ L1(E). Let E∞ = {x ∈ E | |f(x)| = ∞}. Suppose f(x) is not

finite a.e. on E, then m(E∞) > 0. Thus,
∫
E∞

|f(x)| dx = ∞·m(E∞) = ∞. By Exercise 3.2,

part 2.,
∫
E |f(x)| dx ≥

∫
E∞

|f(x)| dx = ∞. Therefore, f(x) is finite a.e. on E. □

Problem 3.2 Let f and g be measurable on E ∈ M. If g ∈ L1(E) and |f(x)| ≤ g(x) for all

x ∈ E, then f ∈ L1(E). In particular, if m(E) <∞ and |f(x)| ≤M on E, then f ∈ L1(E).

� Exercise 3.12 Let f(x) and g(x) be measurable on E ∈ M and c ∈ R. Suppose f ∈ L1(E)

and g ∈ L1(E), then

1. cf ∈ L1(E) and
∫
E(cf(x)) dx = c

∫
E f(x) dx.

2. f + g ∈ L1(E) and
∫
E [f(x) + g(x)] dx =

∫
E f(x) dx+

∫
E g(x) dx.

Proof Compared with Exercise 3.5 and Exercise 3.2, part 3., the result we want to prove is a

more general version of linearity property for Lebesgue integrals.

1. If c = 0, then cf(x) = 0 is a simple function on E, and thus we have∫
E
(cf(x)) dx = 0 ·m(E) = 0 = 0 ·

∫
E
f(x) dx = c

∫
E
f(x) dx
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Since cf(x) is also nonnegative, by Exercise 3.9, cf(x) ∈ L1(E).

If c > 0, then we have (cf(x))+ = cf+(x). Since f+(x) is nonnegative, by Exercise

3.2, part 3.,
∫
E cf+(x) dx = c

∫
E f+(x) dx. Since f ∈ L1(E),

∫
E f+(x) dx <

∞, and thus
∫
E cf+(x) dx < ∞. This shows

∫
E(cf(x))+ dx < ∞. Similarly, we

have −(cf(x))− = c(−f−(x)). Since −f−(x) is nonnegative, by Exercise 3.2, part 3.,∫
E c(−f−(x)) dx = c

∫
E(−f−(x)) dx.

∫
E(−f−(x)) dx < ∞ because f ∈ L1(E).

Thus,
∫
E [−(cf(x))−] dx =

∫
E c(−f−(x)) dx <∞. By Definition 3.4, we have∫

E
(cf(x)) dx = c

∫
E
f+(x) dx− c

∫
E
(−f−(x)) dx

= c

(∫
E
f+(x) dx−

∫
E
(−f−(x)) dx

)
= c

∫
E
f(x) dx

This shows cf ∈ L1(E) at the same time.

If c < 0, then (cf(x))+ = cf−(x) = (−c)(−f−(x)) and −(cf(x))− = −cf+(x). Notice

that −f−(x) and f+(x) are nonnegative, by Exercise 3.2, part 3., we have∫
E
(cf(x))+ dx = (−c)

∫
E
(−f−(x)) dx,

∫
E
[−(cf(x))−] dx = (−c)

∫
E
f+(x) dx

Since f ∈ L1(E),
∫
E(−f−(x)) dx <∞ and

∫
E f+(x) dx <∞, so∫

E
(cf(x)) dx = (−c)

∫
E
(−f−(x)) dx+ c

∫
E
f+(x) dx

= c

(∫
E
f+(x) dx−

∫
E
(−f−(x)) dx

)
= c

∫
E
f(x) dx

This shows cf ∈ L1(E) at the same time.

2. Notice that |f(x) + g(x)| ≤ |f(x)|+ |g(x)|,∫
E
|f(x) + g(x)| dx ≤

∫
E
[|f(x)|+ |g(x)|] dx =

∫
E
|f(x)| dx+

∫
E
|g(x)| dx <∞

where the first inequality is by Exercise 3.2, part 1., the equality is by Exercise 3.5, and

the second inequality is by the fact that |f | ∈ L1(E) and |g| ∈ L1(E). Thus, we obtain

f+g ∈ L1(E). Observe that f+g = (f+g)++(f+g)−, f = f++f− and g = g++g−,

so we have (f + g)+ + (−f−) + (−g−) = f+ + g+ + [−(f + g)−]. Take integration on

both sides overE, since each term on both sides is nonnegative, by Exercise 3.5, we obtain∫
E
(f(x) + g(x))+ dx+

∫
E
(−f−(x)) dx+

∫
E
(−g−(x)) dx

=

∫
E
f+(x) dx+

∫
E
g+(x) dx+

∫
E
[−(f(x) + g(x))−] dx

Notice that the six terms above are all finite because of f, g, f + g ∈ L1(E), so by

manipulating these terms, we have∫
E
(f(x) + g(x))+ dx−

∫
E
[−(f(x) + g(x))−] dx

=

∫
E
f+(x) dx−

∫
E
(−f−(x)) dx+

∫
E
g+(x) dx−

∫
E
(−g−(x)) dx

which is exactly equivalent to
∫
E [f(x) + g(x)] dx =

∫
E f(x) dx+

∫
E g(x) dx.

□
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� Exercise 3.13 Suppose f(x) and g(x) are measurable onE ∈ M and g ∈ L1(E). If f(x) = g(x)

a.e. on E, then f ∈ L1(E) and
∫
E f(x) dx =

∫
E g(x) dx.

Proof Since f(x) = g(x) a.e. on E, f(x) − g(x) = 0 a.e. on E. By Exercise 3.10,∫
E [f(x)− g(x)] dx = 0, and thus f − g ∈ L1(E). Since g ∈ L1(E), by Exercise 3.12, we have

(f − g) + g = f ∈ L1(E). Also,∫
E
f(x) dx =

∫
E
[(f(x)− g(x)) + g(x)] dx

=

∫
E
[f(x)− g(x)] dx+

∫
E
g(x) dx =

∫
E
g(x) dx

□

� Exercise 3.14 Suppose f(x) and g(x) are measurable on E ∈ M and f, g ∈ L1(E). If

f(x) ≤ g(x) on E,
∫
E f(x) dx ≤

∫
E g(x) dx.

Proof Take c = −1 in Exercise 3.12, we have −f ∈ L1(E), thus g− f = g+ (−f) ∈ L1(E).

Since g = g − f + f , we have
∫
E g(x) dx =

∫
E [(g(x)− f(x)) + f(x)] dx. By Exercise 3.12

again,
∫
E g(x) dx =

∫
E [g(x) − f(x)] dx +

∫
E f(x) dx. Notice that g(x) − f(x) ≥ 0, so by

Exercise 3.2, part 1.,
∫
E [g(x)− f(x)] dx ≥ 0. This shows

∫
E g(x) dx ≥

∫
E f(x) dx. □

� Exercise 3.15 Let f(x) and g(x) be measurable on E ∈ M. Suppose f ∈ L1(E) and g(x) is

bounded on E. Prove that f · g ∈ L1(E).

Proof Note that there exists M > 0 s.t. |g(x)| ≤ M on E, and thus |f(x)g(x)| ≤ M |f(x)|
on E. Since |f(x)g(x)| and M |f(x)| are both nonnegative measurable function on E, by

Exercise 3.2, part 1. and part 3.,
∫
E |f(x)g(x)| dx ≤

∫
EM |f(x)| dx =M

∫
E |f(x)| dx. Since

f ∈ L1(E),
∫
E |f(x)| dx <∞ and

∫
E |f(x)g(x)| dx <∞, so f · g ∈ L1(E). □

� Exercise 3.16 Let f(x) be measurable on E ∈ M. Suppose f ∈ L1(E), then similar to

Riemann integral, we have
∣∣∫

E f(x) dx
∣∣ ≤ ∫E |f(x)| dx.

Proof Notice that±f(x) ≤ |f(x)| and±f ∈ L1(E) (by Exercise 3.12), so by applying Exercise

3.14, we have
∫
E ±f(x) dx ≤

∫
E |f(x)| dx. By Exercise 3.12,

∫
E ±f(x) dx = ±

∫
E f(x) dx.

Thus, we have ±
∫
E f(x) dx ≤

∫
E |f(x)| dx, which is equivalent to the desired result. □

� Exercise 3.17 Let f(x) be measurable on E ∈ M. Suppose
∫
E f(x) dx exists and E = A ∪B

where A,B are disjoint measurable sets. Prove
∫
E f(x) dx =

∫
A f(x) dx+

∫
B f(x) dx.

Proof Since
∫
E f(x) dx =

∫
E f+(x) dx−

∫
E(−f−(x)) dx, by Exercise 3.5,∫

E
f+(x) dx =

∫
A
f+(x) dx+

∫
B
f+(x) dx (1)∫

E
(−f−(x))(x) dx =

∫
A
(−f−(x)) dx+

∫
B
(−f−(x)) dx (2)

Since
∫
E f(x) dx exists, either

∫
E f+(x) dx or

∫
E(−f−(x)) dx is finite. If

∫
E f+(x) dx is

finite, then both
∫
A f+(x) dx and

∫
B f+(x) dx are finite . Thus,

∫
A f(x) dx and

∫
B f(x) dx
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exist. If
∫
E(−f−(x)) dx is finite, then both

∫
A(−f−(x)) dx and

∫
B(−f−(x)) dx are finite.

Thus,
∫
A f(x) dx and

∫
B f(x) dx also exist. In any case, we can use equation (1) minus equation

(2), and we will obtain the desired result. □

� Exercise 3.18 Let f(x) be measurable on E ∈ M. Suppose
∫
E f(x) dx exists. Prove∫

E f(x) dx =
∫
E\Z f(x) dx where Z ∈ M and m(Z) = 0.

Proof By Definition 3.4, we have
∫
E f(x) dx =

∫
E f+(x) dx−

∫
E −f−(x) dx. Since f+(x)

and −f−(x) are both nonnegative measurable, by Exercise 3.6,∫
E
f+(x) dx =

∫
E\Z

f+(x) dx,

∫
E
−f−(x) dx =

∫
E\Z

−f−(x) dx

Since
∫
E f(x) dx exists, either

∫
E f+(x) dx or

∫
E −f−(x) dx is finite, so either

∫
E\Z f+(x) dx

or
∫
E\Z −f−(x) dx is finite. This shows

∫
E\Z f(x) dx exists and∫

E\Z
f(x) dx =

∫
E\Z

f+(x) dx−
∫
E\Z

−f−(x) dx

=

∫
E
f+(x) dx−

∫
E
−f−(x) dx =

∫
E
f(x) dx

□
Remark Notice that f(x) is measurable on E if and only if f(x) is measurable on E \ Z when

E ∈ M and m(Z) = 0. Thus, we can use exactly the same argument to prove if
∫
E\Z f(x) dx

exists, then
∫
E f(x) dx also exists and

∫
E f(x) dx =

∫
E\Z f(x) dx.

� Exercise 3.19 Let f(x) be measurable on E ⊂ Rn, E ∈ M.

1. Suppose
∫
E f(x) dx exists. Prove that

∫
Rn IE(x)f(x) dx exists and∫

Rn

IE(x)f(x) dx =

∫
E
f(x) dx

2. Suppose
∫
Rn IE(x)f(x) dx exists. Prove that

∫
E f(x) dx exists and∫

E
f(x) dx =

∫
Rn

IE(x)f(x) dx

Proof
1. By Definition 3.4, we have

∫
E f(x) dx =

∫
E f+(x) dx −

∫
E −f−(x) dx. Since f+(x)

and −f−(x) are both nonnegative measurable, by Exercise 3.2, part 6.,∫
E
f+(x) dx =

∫
Rn

IE(x)f+(x) dx,

∫
E
−f−(x) dx =

∫
Rn

−f−(x)IE(x) dx

Similar to the proof of Exercise 3.18, either
∫
Rn IE(x)f+(x) dx or

∫
Rn −f−(x)IE(x) dx

is finite, so
∫
Rn f(x)IE(x) dx exists and∫
Rn

f(x)IE(x) dx =

∫
Rn

IE(x)f+(x) dx−
∫
Rn

−f−(x)IE(x) dx

=

∫
E
f+(x) dx−

∫
E
−f−(x) dx =

∫
E
f(x) dx

2. Since
∫
Rn IE(x)f(x) dx exists, either

∫
Rn [IE(x)f(x)]+ dx or

∫
Rn −[IE(x)f(x)]− dx is

finite. Notice that, [IE(x)f(x)]+ = IE(x)f+(x) and −[IE(x)f(x)]− = −f−(x)IE(x)
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on Rn. Thus, either
∫
Rn IE(x)f+(x) dx or

∫
Rn −f−(x)IE(x) dx is finite. Notice that

f+(x) and −f−(x) are nonnegative measurable functions, by Exercise 3.2, part 6.,∫
E
f+(x) dx =

∫
Rn

IE(x)f+(x) dx,

∫
E
−f−(x) dx =

∫
Rn

−f−(x)IE(x) dx

Therefore, either
∫
E f+(x) dx or

∫
E −f−(x) dx is finite, so

∫
E f(x) dx exists and∫

E
f(x) dx =

∫
E
f+(x) dx−

∫
E
−f−(x) dx

=

∫
Rn

IE(x)f+(x) dx−
∫
Rn

−f−(x)IE(x) dx

=

∫
Rn

[IE(x)f(x)]+ dx−
∫
Rn

−[IE(x)f(x)]− dx =

∫
Rn

f(x)IE(x) dx

□

Problem 3.3 Let f(x) be function defined on Z. If Z ∈ M with m(Z) = 0, then f(x) is

measurable on Z and
∫
Z f(x) dx = 0.

Problem 3.4 Let f(x) be measurable function on E ∈ M and f ∈ L1(E). Suppose A ⊂ E

and A ∈ M, then f ∈ L1(A).

K Problem Set 3.3 k

1. Let f(x) be nonnegative measurable on [0, 1]. Prove that if there exists constant A < ∞
s.t.
∫ 1
0 f

k(x) dx = A for all k ≥ 1, then f(x) = IE(x) a.e. on [0, 1] for some E ⊂ [0, 1].

2. Suppose f ∈ L1(R), f(0) = 0, f ′(0) exists. Prove that f(x)
x ∈ L1(R).

3. Let f(x) be measurable on R, c ∈ R \ {0} and a ∈ R. Suppose f ∈ L1(R). Prove that

f(cx+ a) ∈ L1(R) and
∫
R f(cx+ a) dx = 1

|c|
∫
R f(y) dy.

4. Let E ⊂ R and E ∈ M. Suppose f(x) is measurable on E and f ∈ L1(E). Prove∫
E−a

c
f(cx+ a) dx = 1

|c|
∫
E f(y) dy for all c ∈ R \ {0}, a ∈ R.

5. Let f ∈ L1(R), and a > 0. Define F (x) =
∑∞

n=−∞ f(x/a + n). Prove the series

converges absolutely for almost all x ∈ R, F ∈ L1([0, a]) and F is periodic with period a.

3.4 Dominated Convergence Theorem

In this section we are going to introduce another fundamental theorem in real analysis:

dominated convergence theorem (DCT). In addition, we are going to explore many useful prop-

erties of Lebesgue integral induced by DCT. Finally, we are going to introduce another mode

of convergence - L1-convergence - and the relation between it and other modes of convergence

discussed before.
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Theorem 3.4. Dominated Convergence Theorem

♡

Let F (x) and {fk(x)}∞k=1 be measurable functions on E ∈ M s.t. |fk(x)| ≤ F (x)

a.e. on E. Suppose F ∈ L1(E) and fk(x) → f(x) a.e. on E for some f(x). Then∫
E |fk(x)−f(x)| dx→ 0 as k → ∞. In particular, limk→∞

∫
E fk(x) dx =

∫
E f(x) dx.

Proof Let E1 = {x ∈ E | fk(x) ̸→ f(x)} and Ek
2 = {x ∈ E | |fk(x)| > F (x)} for

all k ≥ 1. Also, let E2 =
∪∞

k=1E
k
2 , then we can show m(E1) = m(E2) = 0. Since

F ∈ L1(E), by Exercise 3.11, F (x) is finite a.e. on E. Thus, if E3 = {x ∈ E | |F (x)| = ∞},

m(E3) = 0. Denote E′ = E1 ∪ E2 ∪ E3, and we have m(E′) = 0. Now, it suffices to

show
∫
E\E′ |fk(x)− f(x)| dx → 0 as k → ∞ because of Exercise 3.6. Notice that on E \ E′,

|fk(x)| ≤ F (x) everywhere and sinceF (x) is finite everywhere, each fk(x) is finite everywhere.

Furthermore, fk(x) → f(x) pointwisely on E \ E′.

Let A = E \ E′, then A ∈ M. Since F ∈ L1(E), by Problem 3.4, F ∈ L1(A). Notice

that |fk(x)| ≤ F (x) on A for all k ≥ 1, so by taking k → ∞, |f(x)| ≤ F (x) on A. By Problem

3.2, fk ∈ L1(A) and f ∈ L1(A). Let gk(x) = |fk(x) − f(x)| for each k ≥ 1 on A, then

gk(x) → 0 pointwisely on A. Also, it is easy to show gk(x)’s are nonnegative measurable on A

with gk(x) ≤ 2F (x). By Exercise 3.12, 2F ∈ L1(A). Thus, by Problem 3.2 again, gk ∈ L1(A)

for all k ≥ 1. Apply Fatou’s lemma to 2F (x)− gk(x) ≥ 0 on A, we obtain

lim
k→∞

∫
A
(2F (x)− gk(x)) dx ≥

∫
A

lim
k→∞

(2F (x)− gk(x)) =

∫
A
2F (x) dx

By Exercise 3.12,

lim
k→∞

∫
A
(2F (x)− gk(x)) dx = lim

k→∞

(∫
A
2F (x) dx−

∫
A
gk(x) dx

)
=

∫
A
2F (x) dx− lim

k→∞

∫
A
gk(x) dx

Thus, we obtain limk→∞
∫
A gk(x) dx ≤ 0. This implies limk→∞

∫
A gk(x) dx = 0. Therefore,∫

E\E′ |fk(x) − f(x)| dx → 0 as k → ∞. Since m(E′) = 0, by Exercise 3.6, we obtain∫
E |fk(x)− f(x)| dx→ 0 as k → ∞.

To prove the claim after “In particular”, observe that

±
(∫

E
fk(x) dx−

∫
E
f(x) dx

)
=

∫
E
±(fk(x)− f(x)) dx ≤

∫
E
|fk(x)− f(x)| dx

where the equality is by Exercise 3.12 and the inequality is by Exercise 3.14. Thus we have∣∣∫
E fk(x) dx−

∫
E f(x) dx

∣∣→ 0 as k → ∞, which is equivalent to the desired result. □

Example 3.5 Suppose f(x) is measurable on E ⊂ Rn, E ∈ M, and f ∈ L1(E), prove that

lim
k→∞

∫
E∩Bk

f(x) dx =

∫
E
f(x) dx

where Bk is the open ball with radius k centered at the origin.

Proof Since f ∈ L1(E), and E ∩ Bk ⊂ E is measurable, by Problem 3.4, f ∈ L1(E ∩ Bk).
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Thus,
∫
E∩Bk

f(x) dx exists. By Exercise 3.19,∫
E∩Bk

f(x) dx =

∫
Rn

IE∩Bk
(x)f(x) dx

Since
∫
Rn IE∩Bk

(x)f(x) dx exists, by Exercise 3.17,∫
Rn

IE∩Bk
(x)f(x) dx =

∫
E
IE∩Bk

(x)f(x) dx+

∫
Rn\E

IE∩Bk
(x)f(x) dx

Notice that IE∩Bk
(x)f(x) = 0 on Rn \ E, so∫

E∩Bk

f(x) dx =

∫
Rn

IE∩Bk
(x)f(x) dx =

∫
E
IE∩Bk

(x)f(x) dx

Denote fk(x) = IE∩Bk
(x)f(x), then fk(x) is measurable, |fk(x)| ≤ |f(x)|, and fk(x) → f(x)

pointwisely on E. By DCT with f(x) as dominating function, we have

lim
k→∞

∫
E∩Bk

f(x) dx = lim
k→∞

∫
E
fk(x) dx =

∫
E
f(x) dx

□

Proposition 3.1. Differentiation Under the Integral Sign

♠

Let f(x, y) be defined on E × (a, b), where x ∈ E ∈ M, y ∈ (a, b) with a, b ∈ R. If

for each fixed y ∈ (a, b), f(x, y) is in L1(E);

for each fixed x ∈ E, ∂f
∂y (x, y) exists for all y ∈ (a, b);

there exists g ∈ L1(E), y0 ∈ (a, b) and δ > 0 s.t.
∣∣∣∂f∂y (x, y)∣∣∣ ≤ g(x) for each fixed

x ∈ E and all y ∈ (y0 − δ, y0 + δ) ⊂ (a, b).

Then we can exchange the order of differentiation and integration, i.e.,[
d

dy

∫
E
f(x, y) dx

]
y=y0

=

∫
E

∂f

∂y
(x, y)

∣∣∣∣
y=y0

dx

Proof For small enough h ∈ R+, since for fixed y, f ∈ L1(E), by Exercise 3.12,∫
E f(x, y0 + h) dx−

∫
E f(x, y0) dx

h
=

∫
E

f(x, y0 + h)− f(x, y0)

h
dx

Since ∂f
∂y exists on (a, b) for each fixed x, f(x, y) is continuous on [y0−δ, y0+δ] for small δ > 0

s.t. h < δ. Then we can apply mean value theorem, i.e. there exists θ ∈ (0, 1) s.t. θh < δ and∫
E

f(x, y0 + h)− f(x, y0)

h
dx =

∫
E

∂f

∂y
(x, y0 + θh) dx

Pick arbitrary sequence hk → 0 with hk ̸= 0 for all k ≥ 1. Let uk(x) = f(x,y0+hk)−f(x,y0)
hk

,

then uk(x) is measurable on E and |uk(x)| ≤ g(x) on E for all k ≥ 1. Since g ∈ L1(E) and

uk(x) → ∂f
∂y (x, y0) pointwisely on E, we can apply DCT to uk(x). Thus,

lim
k→∞

∫
E f(x, y0 + hk) dx−

∫
E f(x, y0) dx

hk
= lim

k→∞

∫
E
uk(x) dx =

∫
E

∂f

∂y
(x, y0) dx

By definition of limit, this implies the desired result. □

�
Note Since the definition of f ∈ L1(E) includes the condition that f(x) is measurable on

E ∈ M, sometimes we only say f ∈ L1(E) with E ∈ M and omit the measurablity condition.
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Theorem 3.5. Riemann Integral is Lebesgue Integral

♡

If f(x) is Riemann integrable on bounded interval [a, b], then f ∈ L1([a, b]) and

(R)

∫ b

a
f(x) dx = (L)

∫ b

a
f(x) dx

where (R) stands for Riemann and (L) stands for Lebesgue.

Proof Recall Lebesgue’s Criterion for integrablility, f(x) is Riemann integrable if and only

if f(x) is bounded and continuous a.e. on [a, b]. Let B be the set of discontinuous points of

f(x) on [a, b], then m(B) = 0. This implies f(x) is continuous on [a, b] \ B ∈ M, so f(x)

is measurable on [a, b] \ B, hence measurable on [a, b]. Since f(x) is bounded on [a, b], by

Problem 3.2, f ∈ L1([a, b]). Let Pk = {xk0, . . . , xknk
} be a sequence of partition of [a, b] s.t.

minnk
i=1 |xki − xki−1| → 0 as k → ∞. Since f(x) is Riemann integrable, the Riemann sum

converges, i.e.,
∑nk

i=0 f(x
k
i )(x

k
i+1 − xki ) → (R)

∫ b
a f(x) dx as k → ∞. Let

fk(x) =


f(xk0) x ∈ [xk0, x

k
1)

...
...

f(xknk
) x ∈ [xknk−1, x

k
nk
]

Then fk(x) is measurable simple and bounded byM on [a, b]. Also, fk(x) → f(x) a.e. on [a, b]

because for x ∈ [a, b] \ B, fk(x) → f(x). We can verify this by using f(x) is continuous on

[a, b] \B, i.e., for all ϵ > 0, there exists δ > 0 s.t. for all |y − x| < δ, |f(y)− f(x)| < ϵ. Thus,

for all ϵ > 0, we can find K s.t. for all k ≥ K, minnk
i=1 |xki − xki−1| < δ, then fk(x) = f(y)

where |y− x| < δ, and thus |fk(x)− f(x)| = |f(y)− f(x)| < ϵ. This shows fk(x) → f(x) on

[a, b] \ B. Therefore, by DCT, (L)
∫ b
a fk(x) dx → (L)

∫ b
a f(x) dx. Notice that by definition of

Lebesgue integral for measurable simple function, (L)
∫ b
a fk(x) dx =

∑nk
i=0 f(x

k
i )(x

k
i+1 − xki ),

so the two limits (L)
∫ b
a f(x) dx and (R)

∫ b
a f(x) dx coincides with each other. □

Theorem 3.6. Integration Term by Term II (ITT-II)

♡

Let fk(x) be measurable on E ∈ M and fk ∈ L1(E) for all k ≥ 1. Suppose∑∞
k=1

∫
E |fk(x)| dx <∞, then

∑∞
k=1 fk(x) converges a.e. onE and

∑∞
k=1 fk ∈ L1(E).

Furthermore, ∫
E

∞∑
k=1

fk(x) dx =
∞∑
k=1

∫
E
fk(x) dx

Proof Let g(x) =
∑∞

k=1 |fk(x)|, by ITT-I,
∫
E g(x) dx =

∑∞
k=1

∫
E |fk(x)| dx < ∞. Thus,

g ∈ L1(E) and by Exercise 3.11, g(x) is finite a.e. on E. Thus,
∑∞

k=1 |fk(x)| converges a.e.

on E, and so does
∑∞

k=1 fk(x). Since |
∑∞

k=1 fk(x)| ≤
∑∞

k=1 |fk(x)| = g(x), by Problem 3.2,∑∞
k=1 fk ∈ L1(E). Let hm(x) =

∑m
k=1 fk(x), then hm(x) →

∑∞
k=1 fk(x) a.e. on E. Also,

|hm(x)| ≤ g(x) on E, so by DCT,
∫
E hm(x) dx→

∫
E

∑∞
k=1 fk(x) dx as m→ ∞. Notice that

by Exercise 3.12,
∫
E hm(x) dx =

∑m
k=1

∫
E fk(x) dx, so the desired property holds. □
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At the end of this section, we introduce another mode of convergence besides a.e. conver-

gence, a.u. convergence, and convergence in measure, that is, L1-convergence. We will not go

deep into it because in the next chapter we are going to study Lp-space systematically, and at that

time, we will generalize L1-convergence to Lp-convergence and explore more properties of it.

Definition 3.5. L1-convergence

♣

Let f(x) and fk(x) be measurable on E ∈ M. Suppose f ∈ L1(E) and fk ∈ L1(E) for

all k ≥ 1. We say fk(x) → f(x) in L1(E) if
∫
E |fk(x)− f(x)| dx→ 0 as k → ∞.

�
Note Notice that the conclusion in DCT can be regarded as L1-convergence, so in short, DCT

says if a sequence of function is bounded by Lebesgue integrable function, then a.e. convergence

implies L1-convergence.

Theorem 3.7

♡

Let f(x), g(x), and fk(x) be measurable function on E for all k ≥ 1.

1. If fk(x) → f(x) in L1(E) as k → ∞, then fk(x) → f(x) in measure.

2. If |fk(x)| ≤ g(x) on E where g ∈ L1(E), then fk(x) → f(x) a.e. implies

fk(x) → f(x) a.u..

Proof
1. For all σ > 0, recall Markov’s inequality in Exercise 3.8, we have

m ({x ∈ E | |fk(x)− f(x)| > σ}) ≤ 1

σ

∫
E
|fk(x)− f(x)| dx

Since fk(x) → f(x) in L1(E), the RHS converges to zero, so LHS also converges to zero,

and this means fk(x) → f(x) in measure on E.

2. Since g ∈ L1(E), by Exercise 3.11, g(x) is finite a.e. on E, and since |fk(x)| ≤ g(x),

fk(x) is also finite a.e. on E. Thus, we can observe that this statement is quite similar

to Egorov’s theorem, so we want to prove this statement by using the proof of Egorov’s

theorem. Notice that the only missing condition is that Egorov’s theorem needs m(E) to

be finite, so we need to scrutinize the proof of Egorov’s theorem, find out at which step we

usedm(E) <∞ and try to obtain the same conclusion without usingm(E) <∞. In fact

we use m(E) < ∞ only once in the whole proof of Egorov’s theorem, that is, when we

use the continuity of Lebesgue measure to prove limm→∞m(Fm
l ) = 0. Thus, if we can

prove that m(F 1
l ) < ∞ without using m(E) < ∞, but by some new conditions in this

question, i.e., fk(x) is bounded by Lebesgue integrable function for all k ≥ 1, then we are

done.

Now we adopt all notations in the proof of Egorov’s theorem. Since |fk(x)| ≤ g(x)

for all k ≥ 1, and fk(x) → f(x) pointwisely on E′ \ Z, so |f(x)| ≤ g(x) on E′ \ Z.

Since m(Z) = 0, it suffices to show m(F 1
l \ Z) < ∞. For all x ∈ F 1

l \ Z, there exists
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3.4 Dominated Convergence Theorem

ix s.t. |fix(x) − f(x)| > 1
l . Since |fix − f(x)| ≤ |fix | + |f(x)| ≤ 2g(x), we have

x ∈ {x ∈ E | g(x) > 1
2l}. Thus, F 1

l \Z ⊂ {x ∈ E | g(x) > 1
2l}. By Markov’s inequality,

m(F 1
l \ Z) ≤ m

({
x ∈ E | g(x) > 1

2l

})
≤ 2l

∫
E
|g(x)| dx <∞

som(F 1
l ) = m(F 1

1 \Z) <∞ and we can use exactly the same proof of Egorov’s theorem.

□

K Problem Set 3.4 k

1. Let fk(x) be measurable on E ∈ M s.t. |fk(x)| ≤ F (x) a.e. on E, where F ∈ L1(E)

and fk(x) → f∞(x) in measure onE. Prove that
∫
E |fk(x)− f∞(x)| dx→ 0 as k → ∞.

In particular,
∫
E fk(x) dx→

∫
E f∞(x) dx as k → ∞.

2. Let fk(x) be measurable and nonnegative on E ∈ M, where m(E) < ∞. Prove that

fk(x) → 0 in measure on E iff
∫
E

fk(x)
1+fk(x)

dx→ 0.

3. Let fk(x) be nonnegative measurable on E ∈ M. Let f ∈ L1(E) s.t. fk(x) → f(x) in

measure on E and
∫
E fk(x) dx→

∫
E f(x) dx. Prove that

∫
E |fk(x)− f(x)| dx→ 0.

4. Suppose f ∈ L1(E), E ∈ M. E =
∪∞

k=1Ek, Ek ∈ M, pairwise disjoint. Prove that∫
E f(x) dx =

∑∞
k=1

∫
Ek
f(x) dx.

5. Prove that for all f ∈ L1(E), E ∈ M, there exists a sequence fk(x) ∈ L1(E), s.t. fk is

bounded on E and fk → f in L1(E) as k → ∞.

6. Prove that for all f ∈ L1(E), E ∈ M, there exists simple functions fk(x) ∈ L1(E) s.t.

fk → f in L1(E).

7. Use “=⇒” to denote “implies” and “−→” to denote “after passing to a subsequence

implies”, complete the following diagram

converge a.u.

converge a.e. converge in measure

converge in L1(E)

in general case, special case when m(E) < ∞, and special case when |fk| ≤ g ∈ L1(E)

respectively.

8. Suppose f ∈ L1(E). Prove that for all ϵ > 0, there exists δ > 0 s.t. for all e ⊂ E, e ∈ M,

with m(e) < δ, we have
∫
e |f(x)| dx < ϵ.

9. Let fk ∈ L1(E) be s.t. fk → f∞ a.e. onE. Supposem(E) <∞. Prove that f∞ ∈ L1(E)

and fk → f∞ inL1(E) if and only if for all ϵ > 0, there exists δ > 0 s.t.
∫
e |fk(x)| dx < ϵ

for all k ≥ 1 whenever e ⊂ E, e ∈ M and m(E) < δ.

10. Recall there are two types of improper integral. One type is (I)
∫ b
a f(x) dx, which
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3.5 Fubini-Tonelli Theorem

can be regarded as limc→a+(R)
∫ b
c f(x) dx. If such a limit exists as a finite number,

then we say the improper integral (I)
∫ b
a f(x) dx is convergent. Also, the other type

is (I)
∫∞
−∞ f(x) dx, which can be regarded as lima→−∞,b→∞(R)

∫ b
a f(x) dx. If such

a limit exists as a finite number, then we say the improper integral (I)
∫∞
−∞ f(x) dx is

convergent.

(a). Suppose the improper integral (I)
∫ b
a f(x) dx is absolutely convergent. Prove that

f ∈ L1([a, b]) and (L)
∫ b
a f(x) dx = (I)

∫ b
a f(x) dx.

(b). Suppose (I)
∫ b
a f(x) dx is an improper integral and f ∈ L1([a, b]). Prove that

(I)
∫ b
a f(x) dx is absolutely convergent.

(c). Prove the same result for improper integral (I)
∫∞
−∞ f(x) dx as in (a). and (b)..

11. Let α > −1. Define Γ(α) = (L)
∫∞
0 e−ttα+1 dt. Prove Lebesgue integral

(L)
∫ ∞

0

e−x

1− e−x
xα+1 dx = Γ(α)

∞∑
n=1

1

nα+2

Is the improper integral (I)
∫∞
0

e−x

1−e−x x
α+1 dx convergent absolutely?

3.5 Fubini-Tonelli Theorem

Recall in calculus, for Riemann integrable function f(x, y) defined on [a, b]× [c, d] where

a, b, c, d ∈ R, we can calculate the double integral by the iterated integral, i.e.,

(R)

∫∫
[a,b]×[c,d]

f(x, y) d(x, y) =

∫ d

c

(∫ b

a
f(x, y) dx

)
dy =

∫ b

a

(∫ d

c
f(x, y) dy

)
dx

However, this property is too restricted because f(x, y) needs to be bounded and a.e. continuous

on a closed rectangle. To make it more handy in practice, we want to generalize this property to

any Lebesgue integrable functions.�
Note Throughout this section, we let Rn = Rn1 × Rn2 , where n = n1 + n2. Denote point

x̃ ∈ Rn as x̃ = (x, y), where x ∈ Rn1 and y ∈ Rn2 .

Definition 3.6. Fubini Condition

♣

Let f(x, y) be nonnegative measurable on Rn. f(x, y) satisfies Fubini condition if

(a). For almost every fixed x ∈ Rn1 , f(x, y) is measurable on Rn2 .

(b). Let g(x) =
∫
Rn2 f(x, y) dy, then g(x) is measurable on Rn1 .

(c).
∫
Rn1 g(x) dx =

∫
Rn f(x, y) d(x, y).

Furthermore, the set of all nonnegative measurable functions on Rn satisfying Fubini

condition is denoted as F .

Remark Notice that for the second part, for those x s.t. f(x, y) is not measurable on Rn2 , g(x)

is not well-defined by the formula because Lebesgue integral is only defined for measurable

function. To resolve this problem, we can simply define g(x) = 0 for those x and it will not

affect the value of
∫
Rn1 g(x) dx by Exercise 3.6.
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3.5 Fubini-Tonelli Theorem

Lemma 3.2

♡

1. If f ∈ F , then c · f ∈ F for all constant c ≥ 0.

2. If f1, f2 ∈ F , then f1 + f2 ∈ F .

3. If f1, f2 ∈ F , f2 ∈ L1(Rn), and f1 − f2 ≥ 0 on Rn, then f1 − f2 ∈ F .

4. Suppose fk ∈ F for all k ∈ N+ and fk(x, y) is increasing in k for all fixed

(x, y) ∈ Rn. If fk(x, y) → f(x, y) pointwisely on Rn, then f ∈ F .

5. Suppose fk ∈ F for all k ∈ N+ and fk(x, y) is decreasing in k for all fixed

(x, y) ∈ Rn. If fk(x, y) → f(x, y) pointwisely on Rn and there exists k0 ≥ 1 s.t.

fk0 ∈ L1(Rn), then f ∈ F .

Proof
1. Since f ∈ F , f(x) is nonnegative measurable function on Rn. By Exercise 2.4, cf(x) is

also nonnegative measurable function on Rn. To prove cf ∈ F , it remains to check the

three conditions in Definition 3.6.

(a). Since f ∈ F , for almost every fixed x ∈ Rn1 , f(x, y) is measurable on Rn2 . Denote

A = {x ∈ Rn1 | f(x, y) is not measurable on Rn2}, then m(A) = 0. By Exercise

2.4, cf(x, y) is also measurable on Rn2 for x ∈ Rn1 \A.

(b). Let g1(x) =
∫
Rn2 cf(x, y) dy and g(x) =

∫
Rn2 f(x, y) dy, then g(x) and g1(x)

is well-defined on Rn1 \ A. Since f(x, y) is nonnegative, by Exercise 3.2, part 3.,

g1(x) = cg(x) on Rn1 \ A. Notice that g(x) is measurable on Rn1 , so by Exercise

2.2, g(x) is measurable on Rn1 \A. By Exercise 2.4, g1(x) is measurable on Rn1 \A.

Sincem(A) = 0, by Problem 3.3, g1(x) is measurable on A. Therefore, by Exercise

2.1, g1(x) is measurable on Rn1 .

(c). Since g(x) is nonnegative on Rn1 , by Exercise 3.2, part 3.,∫
Rn1

g1(x) dx =

∫
Rn1

cg(x) dx = c

∫
Rn1

g(x) dx

= c

∫
Rn

f(x, y) d(x, y) =

∫
Rn

cf(x, y) d(x, y)

where the third equality is because f ∈ F ; the last equality is because f(x, y) is

nonnegative measurable on Rn and thus Exercise 3.2, part 3. applies.

2. See Problem Set 3.5, Question 1..

3. Since f1, f2 ∈ F , f1(x, y) and f2(x, y) are nonnegative measurable on Rn. Notice that

f1 − f2 ≥ 0 is well-defined on Rn, then by Exercise 2.5, f1(x, y) − f2(x, y) is also

nonnegative measurable on Rn. To prove f1 − f2 ∈ F , it remains to check the three

conditions in Definition 3.6.

(a). Since f1, f2 ∈ F , for almost all x ∈ Rn1 , f1(x, y) and f2(x, y) are measurable

functions on Rn2 . Denote Aj = {x ∈ Rn1 | fj(x, y) is not measurable on Rn2} for

j = 1, 2, then m(A1) = m(A2) = 0. Let A = A1 ∪ A2, then m(A) = 0. Notice

that f1 − f2 is well defined on Rn, so by Exercise 2.4 & 2.5, f1(x, y) − f2(x, y) is
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3.5 Fubini-Tonelli Theorem

also measurable function on Rn2 for x ∈ Rn1 \A.

(b). Let gj(x) =
∫
Rn2 fj(x, y) dy for j = 1, 2 and g(x) =

∫
Rn2 [f1(x, y)− f2(x, y)] dy.

Since f2 ∈ F ,
∫
Rn1 g2(x) dx =

∫
Rn f2(x, y) d(x, y). Combined with the assump-

tion f2 ∈ L1(Rn), we have
∫
Rn1 g2(x) dx <∞. By Exercise 3.11, g2(x) is finite a.e.

on Rn1 . LetB = {x ∈ Rn1 | g2(x) = ∞}∪A, thenm(B) = 0 and g1(x)− g2(x) is

well-defined on Rn1 \B. Since g1(x) and g2(x) are measurable on Rn1 , by Exercise

2.2, they are measurable on Rn1 \ B. By Exercise 2.4 & 2.5, g1(x) − g2(x) is also

measurable on Rn1 \ B. Now we want to prove g(x) = g1(x)− g2(x) on Rn1 \ B.

Write f1 = (f1 − f2) + f2, then since f1 − f2 ≥ 0 and f2 ≥ 0 on Rn2 for each fixed

x ∈ Rn1 \B, by Exercise 3.5,∫
Rn2

f1(x, y) dy =

∫
Rn2

[f1(x, y)− f2(x, y)] dy +

∫
Rn2

f2(x, y) dy

which is exactly g1(x) = g(x) + g2(x). On Rn1 \ B, since g2(x) is finite, we have

g(x) = g1(x)− g2(x). Thus, g(x) is measurable on Rn1 \B. Since m(B) = 0, by

Problem 3.3, g(x) is measurable on B. By Exercise 2.1, g(x) is measurable on Rn1 .

(c). Write g1 = (g1 − g2) + g2. Since g1 − g2 ≥ 0 and g2 ≥ 0 on x ∈ Rn1 \ B, by

Exercise 3.5,∫
Rn1\B

g1(x) dx =

∫
Rn1\B

[g1(x)− g2(x)] dx+

∫
Rn1\B

g2(x) dx

Notice that m(B) = 0, so by Exercise 3.6,∫
Rn1

g1(x) dx =

∫
Rn1

[g1(x)− g2(x)] dx+

∫
Rn1

g2(x) dx

Since
∫
Rn1 g2(x) dx <∞, we can move it to the LHS, and we will have∫

Rn1

[g1(x)− g2(x)] dx =

∫
Rn1

g1(x) dx−
∫
Rn1

g1(x) dx (3.1)

Since f1, f2 ∈ F , we have∫
Rn1

g1(x) dx−
∫
Rn1

g1(x) dx =

∫
Rn

f1(x, y) d(x, y)−
∫
Rn

f2(x, y) d(x, y)

(3.2)

Write f1 = (f1 − f2) + f2. Since f1 − f2 ≥ 0 and f2 ≥ 0 on Rn, by Exercise 3.5,∫
Rn

f1(x, y) d(x, y) =

∫
Rn

[f1(x, y)− f2(x, y)] d(x, y) +

∫
Rn

f2(x, y) d(x, y)

Since
∫
Rn f2(x, y) d(x, y) <∞, we can move it to the LHS, and thus we have∫

Rn

f1(x, y) d(x, y)−
∫
Rn

[f1(x, y)− f2(x, y)] d(x, y) =

∫
Rn

f2(x, y) d(x, y)

(3.3)

Combine Equation (3.1), (3.2), and (3.3), we have∫
Rn1

[g1(x)− g2(x)] dx =

∫
Rn

[f1(x, y)− f2(x, y)] d(x, y)

Recall g(x) = g1(x)−g2(x) on Rn1 \B, so by applying Exercise 3.6 twice, we have∫
Rn1

g(x) dx =

∫
Rn1

[g1(x)− g2(x)] dx

This shows the third condition holds, and so f1 − f2 ∈ F .
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4. See Problem Set 3.5, Question 2..

5. Notice that f(x, y) is also nonnegative measurable on Rn by the remark of Exercise 2.12.

It remains to show the three conditions in Definition 3.6.

(a). Since fk ∈ F , for almost every fixed x ∈ Rn1 , fk(x, y) is measurable on Rn2 .

Let Ak = {x ∈ Rn1 | fk(x, y) is not measurable on Rn2}, then m(Ak) = 0 for all

k ≥ 1. Denote A =
∪∞

k=1Ak, then m(A) = 0 and fk(x, y) is measurable on Rn2

for all x ∈ Rn1 \A. By the remark of Exercise 2.12 again, f(x, y) is measurable on

Rn2 for x ∈ Rn1 \A.

(b). Let gk(x) =
∫
Rn2 fk(x, y) dy and g(x) =

∫
Rn2 f(x, y) dy, then gk(x) is measurable

on Rn1 . Since fk0 ∈ F ,
∫
Rn1 gk0(x) dx =

∫
Rn fk0(x, y) d(x, y). Combined with

the assumption fk0 ∈ L1(Rn), gk0 ∈ L1(Rn1). By Exercise 3.11, gk0(x) is finite

a.e. on Rn1 . Let B = {x ∈ Rn1 | gk0(x) = ∞} ∪ A, then m(B) = 0. Thus, for

each fixed x ∈ Rn1 \B, fk0(x, y) is in L1(Rn2). Since 0 ≤ fk(x, y) ≤ fk0(x, y) on

Rn2 for all k ≥ k0 for each fixed x ∈ Rn1 \ B, and fk(x, y) → f(x, y) pointwisely

on Rn2 for each fixed x ∈ Rn1 \B, by DCT, gk(x) → g(x) pointwisely on Rn1 \B.

Therefore, g(x) is also measurable on Rn1 \B by the remark of Exercise 2.12. Note

that m(B) = 0, so by Problem 3.3, g(x) is measurable on B. By Exercise 2.1, g(x)

is measurable on Rn1 .

(c). Since 0 ≤ fk(x, y) ≤ fk0(x, y) on Rn2 for each fixed x ∈ Rn1 \ A, by Exercise

3.2, part 1., 0 ≤ gk(x, y) ≤ gk0(x, y) on Rn1 \ A. Since gk(x) → g(x) a.e.

on Rn1 and gk0 ∈ L1(Rn1), by DCT,
∫
Rn1 gk(x) dx →

∫
Rn1 g(x) dx. Now

consider fk(x, y) → f(x, y) pointwisely on Rn and 0 ≤ fk(x, y) ≤ fk0(x, y) on

Rn for all k ≥ k0 with fk0 ∈ L1(Rn), we can apply DCT to fk(x, y), and we will

obtain
∫
Rn fk(x, y) d(x, y) →

∫
Rn f(x, y) d(x, y). Notice that fk ∈ F implies∫

Rn1 gk(x) dx =
∫
Rn fk(x, y) d(x, y), so

∫
Rn1 g(x) dx =

∫
Rn fk(x, y) d(x, y).

□

Lemma 3.3

♡If E ⊂ Rn and E ∈ M, then IE(x, y) is in F where x ∈ Rn1 and y ∈ Rn2 .

Proof Notice that IE(x, y) is always measurable on Rn because of Problem Set 2.1, Question

6.. We are going to divide the whole proof in five steps.

1. Suppose E = R1 × R2, where Rj is closed rectangle in Rnj for j = 1, 2. In this case

we can write IE(x, y) = IR1(x)IR2(y). Now it remains to prove the three conditions in

Definition 3.6.

(a). For each fixed x ∈ Rn1 , IE(x, y) = IR2(y) or IE(x, y) = 0 on Rn2 . Thus, IE(x, y)

is measurable on Rn2 for each fixed x ∈ Rn1 . This proves the first condition.

(b). Let g(x) =
∫
Rn2 IE(x, y) dy, then g(x) is well-defined onRn1 . By Exercise 3.2, part

3., g(x) = IR1(x)
∫
Rn2 IR2(y) dy = |R2|IR1(x). Since IR1(x) is measurable on
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Rn1 , by Exercise 2.4, g(x) is measurable on Rn1 . This proves the second condition.

(c). By Exercise 3.2, part 3.,
∫
Rn1 g(x) dx = |R2|

∫
Rn1 IR1(x) dx = |R2||R1| = |E|.

Since E is also a rectangle in Rn,
∫
Rn IE(x, y) d(x, y) = m(E) = |E|. This proves

the third condition.

2. Suppose E is open. Then by Exercise 1.3, E =
∪∞

k=1 ck, where ck’s are almost disjoint

closed cubes. Thus, IE(x, y) =
∑∞

i=1 Ick(x, y) a.e. on Rn (the equality may not hold on

the boundary of each ck). Since ck is closed cubes, it can be written as ck = R1 × R2

where Rj’s are closed rectangles in Rnj for j = 1, 2. Thus, by step one, Ick ∈ F for

all k ≥ 1. By Lemma 3.2, part 2., gm =
∑m

k=1 Ick ∈ F for all m ≥ 1. Notice that

gm(x, y) → IE(x, y) pointwisely on Rn and gm(x, y) is increasing in m for all fixed

(x, y) ∈ Rn, so by Lemma 3.2, part 4., IE(x, y) ∈ F .

3. Suppose E is Gδ set, then E =
∩∞

i=1Gk, where Gi is open. If G1 is bounded, let

Fk =
∩k

i=1Gi. Notice thatFk decreases toE as k increases to∞, so IFk
(x, y) → IE(x, y)

pointwisely on Rn and IFk
(x, y) is decreasing for each fixed (x, y) ∈ Rn. Since Fk is

open, by step two, Fk ∈ F for all k ≥ 1. Also, F1 is bounded, so IF1 ∈ L1(Rn). Thus,

by Lemma 3.2, part 5., IE ∈ F . If G1 is not bounded, let Gm
i = Gi ∩ Bm, where Bm is

the open ball centered at the orgin with radius m. Denote Em =
∩∞

i=1G
m
i , since Em is a

bounded Gδ set, IEm ∈ F for all m ≥ 1. Notice that IEm(x, y) is increasing to IE(x, y)

as m→ ∞ for each fixed (x, y) ∈ Rn, so by Lemma 3.2, part 4., IE ∈ F .

4. Suppose m(E) = 0. By Theorem 1.1, there exists Gδ set H ⊃ E and m(H \ E) = 0.

It is easy to see m(H) = 0, so
∫
Rn1 IH(x, y) d(x, y) = m(H) = 0. By step three,

IH ∈ F . By Definition 3.6,
∫
Rn1 gH(x) dx =

∫
Rn1 IH(x, y) d(x, y) = 0, where

gH(x) =
∫
Rn2 IH(x, y) dy. Notice that gH(x) is nonnegative, so by Problem Set 3.1,

Question 1., gH(x) = 0 a.e. on Rn1 . Let A = {x ∈ Rn1 | gH(x) ̸= 0}, then m(A) = 0.

Since IH(x, y) is also nonnegative, for all x ∈ Rn1 \ A, IH(x, y) = 0 a.e. on Rn2 by

using Problem Set 3.1, Question 1. again. Note that IE(x, y) ≤ IH(x, y) on Rn, so for all

x ∈ Rn1 \A, IE(x, y) = 0 a.e. on Rn2 . Then we check the conditions in Definition 3.6.

(a). For each fixed x ∈ Rn1 \ A, IE(x, y) = 0 a.e. on Rn1 . Thus, for each fixed

x ∈ Rn1 \A, by Exercise 3.10, IE(x, y) is measurable on Rn1

(b). Let g(x) =
∫
Rn2 IE(x, y) dy, then for each fixed x ∈ Rn1 \ A, g(x) = 0. This

means g(x) = 0 a.e. on Rn1 , so by Exercise 3.10, g(x) is measurable on Rn1 .

(c). Since m(E) = 0,
∫
Rn IE(x, y) d(x, y) = m(E) = 0. Since g(x) = 0 a.e. on Rn1 ,

by Exercise 3.10,
∫
Rn1 g(x) dx = 0.

Therefore, we have proved IE ∈ F when m(E) = 0.

5. SupposeE ∈ M. By Theorem 1.1, we can takeGδ setH s.t. H ⊃ E andm(H \E) = 0.

Write E = H \ (H \E), then IE(x, y) = IH(x, y)− IH\E(x, y). By step three, IH ∈ F .

By step four, IH\E ∈ F . Also, IH\E ∈ L1(Rn). By Lemma 3.2, part 3., IE ∈ F .

□
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Theorem 3.8. Fubini-Tonelli Theorem I (FTT-I)

♡

If f(x, y) is nonnegative and measurable on Rn, then f ∈ F . In particular,∫
Rn1

(∫
Rn2

f(x, y) dy

)
dx =

∫
Rn

f(x, y) d(x, y) =

∫
Rn2

(∫
Rn1

f(x, y) dx

)
dy

Proof By simple approximation theorem, there exists measurable simple functions ϕk(x, y)

s.t. ϕk(x, y) → f(x, y) pointwisely on Rn as k → ∞ and ϕk(x, y) is increasing in k for each

fixed (x, y) ∈ Rn. Since every simple function can be written as a finite linear combination of

indicator function of measurable sets, by Lemma 3.3 and Lemma 3.2, part 1. & 2., ϕk ∈ F for

all k ≥ 1. By Lemma 3.2, part 4., f ∈ F .

By Definition of F , it is easy to see
∫
Rn1

(∫
Rn2 f(x, y) dy

)
dx =

∫
Rn f(x, y) d(x, y). To

prove the second equality, we only need to exchange the “character” of x and y, i.e., regard y

here as the x in Definition 3.6 and x here as the y in Definition 3.6. We can do this because x

and y have no order and n1, n2 can be arbitrary as long as n1 + n2 = n. □

Theorem 3.9. Fubini-Tonelli Theorem II (FTT-II)

♡

Let f ∈ L1(Rn), then even if f is not nonnegative, it still satisfies all three conditions in

Definition 3.6. In particular,∫
Rn1

(∫
Rn2

f(x, y) dy

)
dx =

∫
Rn

f(x, y) d(x, y) =

∫
Rn2

(∫
Rn1

f(x, y) dx

)
dy

Proof Write f(x, y) = f+(x, y) − (−f−(x, y)), where f+(x, y) and −f−(x, y) are both

nonnegative measurable. Thus, f+ ∈ F and −f− ∈ F . Since f ∈ L1(Rn), by Definition 3.6,

we have f+ ∈ L1(Rn) and −f− ∈ L1(Rn).

1. Since −f− ∈ F and −f− ∈ L1(Rn), let g−(x) =
∫
Rn2 −f−(x, y) dy, and we have∫

Rn1

g−(x) dx =

∫
Rn

−f−(x, y) d(x, y) <∞

By Exercise 3.11, g−(x) is finite a.e. on Rn1 . Let A = {x ∈ Rn1 | g−(x) = ∞}, then for

each fixed x ∈ Rn1 \ A, g−(x) < ∞. This further implies for each fixed x ∈ Rn1 \ A,

−f−(x, y) is finite a.e. on Rn2 . Let Ax = {y ∈ Rn2 | − f−(x, y) = ∞}, then for each

fixed x ∈ Rn1 \A, f+(x, y)− (−f−(x, y)) is well-defined on Rn2 \Ax. Denote

B1 = {x ∈ Rn1 | f+(x, y) is not measurable on Rn2}

B2 = {x ∈ Rn1 | − f−(x, y) is not measurable on Rn2}

thenm(B1) = m(B2) = 0. LetB = B1∪B2∪A, and we havem(B) = 0. For each fixed

x ∈ Rn1 \ B, since f+(x, y) and −f−(x, y) are measurable and −f−(x, y) is finite on

Rn2 \Ax, by Exercise 2.4 & 2.5, f+(x, y)− (−f−(x, y)) is well-defined and measurable

on Rn2 \Ax. Thus, f(x, y) is measurable on Rn2 \Ax for almost all x ∈ Rn1 . Notice that

m(Ax) = 0, so by Problem 3.3 and Exercise 2.1, f(x, y) is measurable on Rn2 for almost

all x ∈ Rn1 .
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2. Let g+(x) =
∫
Rn2 f+(x, y) dy and g(x) =

∫
Rn2 f(x, y) dy. Since g−(x) < ∞ on

Rn1 \A, by Definition 3.4, g(x) = g+(x)−g−(x) on Rn1 \A. Since g+(x) and g−(x) are

both measurable on Rn1 \ A, by Exercise 2.4 & 2.5, g(x) is also measurable on Rn1 \ A.

Note that m(A) = 0, so by Problem 3.3 and Exercise 2.1, g(x) is measurable on Rn1 .

3. Since f ∈ L1(Rn), f+ ∈ F , and −f− ∈ F , we have∫
Rn

f(x, y) d(x, y) =

∫
Rn

f+(x, y) d(x, y)−
∫
Rn

−f−(x, y) d(x, y)

=

∫
Rn1

g+(x) dx−
∫
Rn1

g−(x) dx

Also notice that g+ ∈ L1(Rn1) and −g− ∈ L1(Rn1), so by Exercise 3.12,∫
Rn1

g+(x) dx−
∫
Rn1

g−(x) dx =

∫
Rn1

[g+(x)− g−(x)] dx

Since g(x) = g+(x)− g−(x) a.e. on Rn1 , by Exercise 3.13,∫
Rn

f(x, y) d(x, y) =

∫
Rn1

[g+(x)− g−(x)] dx =

∫
Rn1

g(x) dx

In conclusion, f satisfies all three conditions in Definition 3.6 even if f is not nonnegative on

Rn. Thus, by the same reason in Theorem 3.8,∫
Rn1

(∫
Rn2

f(x, y) dy

)
dx =

∫
Rn

f(x, y) d(x, y) =

∫
Rn2

(∫
Rn1

f(x, y) dx

)
dy

□

Example 3.6 Suppose E1 ⊂ Rn1 and E2 ⊂ Rn2 are both measurable. Then E1 × E2 ⊂ Rn is

measurable and m(E1 × E2) = m(E1)m(E2).

Proof First we prove if we have known E1 ×E2 ∈ M, then m(E1 ×E2) = m(E1)m(E2). If

E1 × E2 ∈ M, by Problem Set 2.1, Question 6., IE1×E2(x, y) is measurable on Rn. By FTT-I,∫
Rn1

(∫
Rn2

IE1×E2(x, y) dy

)
dx =

∫
Rn

IE1×E2(x, y) d(x, y) = m(E1 × E2)

Notice that IE1×E2(x, y) = IE1(x)IE2(y), so we have∫
Rn1

(∫
Rn2

IE1×E2(x, y) dy

)
dx =

∫
Rn1

(∫
Rn2

IE1(x)IE2(y) dy

)
dx

=

∫
Rn1

IE1(x)

(∫
Rn2

IE2(y) dy

)
dx =

∫
Rn1

m(E2)IE1(x)dx

= m(E2)

∫
Rn1

IE1(x)dx = m(E1)m(E2)

where the second and the fourth equality is by Exercise 3.2, part 3.. Thus, we have shown

m(E1 × E2) = m(E1)m(E2), given that E1 × E2 ∈ M.

Then we prove E1 × E2 ∈ M. Let Ak = (E1 × E2) ∩ Ck where Ck =
∏n

i=1[−k, k]
for all k ≥ 1. Since E1 × E2 =

∪∞
k=1Ak, it suffices to show each Ak ∈ M. Notice that

Ak = Ek
1 × Ek

2 where Ek
1 = E1 ∩

∏n1
i=1[−k, k] and Ek

2 = E2 ∩
∏n2

i=1[−k, k]. Thus, Ek
1 and

Ek
2 are bounded for all k ≥ 1. Since Ek

1 , E
k
2 ∈ M, by Definition 1.7, for all ϵ > 0, there exists

open Gk
1 ⊂ Rn1 and Gk

2 ⊂ Rn2 s.t. Ek
1 ⊂ Gk

1 and Ek
2 ⊂ Gk

2 with m(Gk
1 \ Ek

1 ) <
ϵ

100 and

m(Gk
2 \ Ek

2 ) <
ϵ

100 . Also, by Problem Set 1.4, Question 2., there exists closed F k
1 ⊂ Rn1 and
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F k
2 ⊂ Rn2 s.t. F k

1 ⊂ Ek
1 and F k

2 ⊂ Ek
2 with m(Ek

1 \ F k
1 ) <

ϵ
100 and m(Ek

2 \ F k
2 ) <

ϵ
100 .

Obviously Gk
1 ×Gk

2 ⊃ Ek
1 × Ek

2 ⊃ F k
1 × F k

2 , then we have

m∗(Gk
1 ×Gk

2 \ Ek
1 × Ek

2 ) ≤ m∗(Gk
1 ×Gk

2 \ F k
1 × F k

2 )

≤ m∗((Gk
1 \ F k

1 )×Gk
2) +m∗(Gk

1 × (Gk
2 \ F k

2 ))

Notice thatGk
1 andGk

2 \F k
2 are both open, so by definition of product topology,Gk

1 × (Gk
2 \F k

2 )

is also open, hence measurable. Thus, m(Gk
1 × (Gk

2 \ F k
2 )) = m(Gk

1)m(Gk
2 \ F k

2 ). Similarly,

since (Gk
1 \ F k

1 )×Gk
2 ∈ M, m((Gk

1 \ F k
1 )×Gk

2) = m(Gk
1 \ F k

1 )m(Gk
2). Therefore,

m∗(Gk
1 ×Gk

2 \ Ek
1 × Ek

2 ) ≤ m(Gk
1 \ F k

1 )m(Gk
2) +m(Gk

1)m(Gk
2 \ F k

2 )

Also, notice that Gk
1 \ F k

1 = (Gk
1 \ Ek

1 ) ∪ (Ek
1 \ F k

1 ) and Gk
2 \ F k

2 = (Gk
2 \ Ek

2 ) ∪ (Ek
2 \ F k

2 ),

so we have m(Gk
1 \ F k

1 ) <
ϵ
50 and m(Gk

2 \ F k
2 ) <

ϵ
50 . Since Ek

1 and Ek
2 are bounded,

m(Ek
1 ) < ∞ and m(Ek

2 ) < ∞. This implies m(Gk
1) < ∞ and m(Gk

2) < ∞. Therefore,

m∗(Gk
1 ×Gk

2 \ Ek
1 × Ek

2 ) → 0 as ϵ→ 0, and this shows Ek
1 × Ek

2 ∈ M. □

Example 3.7 Let E1 ⊂ Rn1 and E2 ⊂ Rn2 be measurable. Suppose f ∈ L1(E1 × E2), then∫
E1×E2

f(x, y) d(x, y) =

∫
E1

(∫
E2

f(x, y) dy

)
dx =

∫
E2

(∫
E1

f(x, y) dx

)
dy

Proof By Example 3.6, E1×E2 ∈ M. Consider f(x, y)IE1×E2(x, y) on Rn, we want to show

fIE1×E2 ∈ L1(Rn). Since f(x, y)IE1×E2(x, y) = f(x, y) onE1×E2 and f(x, y) is measurable

on E1 × E2, f(x, y)IE1×E2(x, y) is measurable on E1 × E2. Since f(x, y)IE1×E2(x, y) = 0

on Rn \ (E1 × E2), by Exercise 3.10, f(x, y)IE1×E2(x, y) is measurable on Rn \ (E1 × E2).

Thus, by Exercise 2.1, f(x, y)IE1×E2(x, y) is measurable on Rn. By Exercise 3.2, part 6.,∫
Rn

|f(x, y)IE1×E2(x, y)| d(x, y) =
∫
Rn

|f(x, y)|IE1×E2(x, y) d(x, y)

=

∫
E1×E2

|f(x, y)| d(x, y)

Since f ∈ L1(E1 × E2), by Exercise 3.9, we obtain the desired result fIE1×E2 ∈ L1(Rn). By

FTT-II, with the fact that IE1×E2(x, y) = IE1(x)IE2(y),∫
Rn

f(x, y)IE1×E2(x, y) d(x, y) =

∫
Rn1

(∫
Rn2

f(x, y)IE1(x)IE2(y) dy

)
dx

Since f ∈ L1(Rn), by Exercise 3.19,∫
E1×E2

f(x, y) d(x, y) =

∫
Rn

f(x, y)IE1×E2(x, y) d(x, y)

By FTT-II, there exists set A with m(A) = 0 and g(x) =
∫
Rn2 f(x, y)IE1(x)IE2(y) dy exists

for x ∈ Rn1 \A. Notice that for x ∈ E1 \A, by Exercise 3.19,

g(x) =

∫
Rn2

f(x, y)IE2(y) dy =

∫
E2

f(x, y) dy

Denote Ec
1 = Rn2 \ E1, then for x ∈ Ec

1 \A, g(x) = 0. Thus, by Exercise 3.18,∫
Rn1

(∫
Rn2

f(x, y)IE1(x)IE2(y) dy

)
dx =

∫
Rn1\A

g(x)dx
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By Exercise 3.17,∫
Rn1\A

g(x)dx =

∫
E1\A

g(x)dx+

∫
Ec

1\A
g(x)dx =

∫
E1\A

(∫
E2

f(x, y) dy

)
dx

By the remark of Exercise 3.18, we obtain∫
E1\A

(∫
E2

f(x, y) dy

)
dx =

∫
E1

(∫
E2

f(x, y) dy

)
dx

Combine all above equalities,
∫
E1×E2

f(x, y) d(x, y) =
∫
E1

(∫
E2
f(x, y) dy

)
dx. Similarly, we

can prove the other equality
∫
E1×E2

f(x, y) d(x, y) =
∫
E2

(∫
E1
f(x, y) dx

)
dy. □

K Problem Set 3.5 k

1. Prove Lemma 3.2, part 2..

2. Prove Lemma 3.2, part 4..

3. Let f(x, y) ∈ L1(E1 × E2), where x ∈ E1 ⊂ Rn1 , E1 ∈ M and y ∈ E2 ⊂ Rn2 ,

E2 ∈ M. Prove that
∫
E2
f(x, y) dy ∈ L1(E1) and

∫
E1
f(x, y) dx ∈ L1(E2).

4. Let f(x) be nonnegative onE ∈ M,E ⊂ Rn. LetA = {(x, y) ∈ E×R | 0 ≤ y ≤ f(x)}.

Prove that f is measurable on E iff A ⊂ Rn+1 is measurable. Also prove if f(x) is

measurable on E, then
∫
E f(x) dx = m(A).

5. Suppose f(x) is measurable on E ⊂ Rn, E ∈ M. For all λ ≥ 0, define the distribution
function F (λ) = m({x ∈ E | |f(x)| > λ}). Prove that if |f |p ∈ L1(E) where p ≥ 1,

then
∫
E |f(x)|p dx = p

∫∞
0 λp−1F (λ) dλ.
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Chapter 4 Lp-space

4.1 Basic Properties of Lp-space

Definition 4.1. Lp-norm

♣

Let E ⊂ Rn, E ∈ M, and m(E) > 0. For 0 < p < ∞, define Lp-norm of any

measurable function f(x) on E to be

∥f∥p =
(∫

E
|f(x)|p dx

)1/p

Furthermore, define L∞-norm of any measurable function f(x) on E to be

∥f∥∞ = inf{C > 0 | |f(x)| ≤ C a.e. on E}

Definition 4.2. Lp-space

♣

Let E ⊂ Rn, E ∈ M, and m(E) > 0. For 0 < p ≤ ∞, define Lp(E) to be the set of all

measurable functions on E s.t. ∥f∥p <∞.

� Exercise 4.1 Let f(x) be measurable function on E ∈ M, then |f(x)| ≤ ∥f∥∞ a.e. on E.

Proof Take decreasing sequence ck s.t. ck → ∥f∥∞ as k → ∞ and |f(x)| ≤ ck a.e. on E.

Then there exists Bk ∈ M s.t. m(Bk) = 0 and |f(x)| ≤ ck on E \Bk. Consider E \
∪∞

k=1Bk,

on which |f(x)| ≤ ck for all k ≥ 1. Take k → ∞, |f(x)| ≤ ∥f∥∞. Since m(
∪∞

k=1Bk) = 0,

|f(x)| ≤ ∥f∥∞ a.e. on E. □

� Exercise 4.2 Let f(x) be measurable function on E ∈ M with m(E) < ∞. Prove ∥f∥p →
∥f∥∞ as p→ ∞.

Proof If ∥f∥∞ = 0, then by Exercise 4.1, |f(x)| ≤ 0 a.e. on E, and so f(x) = 0 a.e. on

E. Since |f(x)|p = 0 a.e. on E, by Exercise 3.10, ∥f∥p = 0 for all p > 0. This shows

∥f∥p → ∥f∥∞ as p→ ∞.

If ∥f∥∞ > 0, then for all 0 < M < ∥f∥∞, m(A) > 0, where A = {x ∈ E | |f(x)| ≥M}.

For 0 < p <∞, by Exercise 3.2, part 2. & 1.,(∫
E
|f(x)|p dx

)1/p

≥
(∫

A
|f(x)|p dx

)1/p

≥ (Mpm(A))1/p =M(m(A))1/p

Take lower limit as p→ ∞ on both sides, since m(E) <∞, we have limp→∞∥f∥p ≥M . Take

M → ∥f∥∞, limp→∞∥f∥p ≥ ∥f∥∞. For the other direction, by Exercise 4.1, 3.2, part 1., and

3.18 with its remark,(∫
E
|f(x)|p dx

)1/p

≤
(∫

E
∥f∥p∞ dx

)1/p

= ∥f∥∞(m(E))1/p
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Take upper limit as p→ ∞, since m(E) <∞, we have limp→∞∥f∥p ≤ ∥f∥∞. Thus,

∥f∥∞ ≤ lim
p→∞

∥f∥p ≤ lim
p→∞

∥f∥p ≤ ∥f∥∞

This implies limp→∞∥f∥p = ∥f∥∞. □
Remark The above conclusion is not true in general if m(E) = ∞. Consider f(x) = 1 on

R, then ∥f∥∞ = 1 but ∥f∥p = ∞ for all 0 < p < ∞. However, if in addition, there exists

0 < r <∞ s.t. ∥f∥r <∞, then the conclusion always holds even if m(E) = ∞ (See Problem

Set 4.1, Question 7.).

Example 4.1 Let f(x) = − lnx on E = (0, 1). Prove f ∈ Lp(E) but f /∈ L∞(E), and

∥f∥p → ∞ as p→ ∞.

Proof Notice that limx→0+ x
ϵ(− lnx) = 0 for all ϵ > 0, so there exists constant Cϵ > 0 s.t.

0 < − lnx ≤ Cϵx
−ϵ for all x ∈ (0, 1). Note that I =

∫ 1
0 (Cϵx

−ϵ)p dx is improper integral

and if we take ϵ small enough s.t. ϵp < 1, then I < ∞. This means Cϵx
−ϵ ∈ Lp(0, 1) and

so f ∈ Lp(0, 1). Also, it is easy to see ∥f∥∞ = ∞, so f /∈ L∞(E). Since m(E) < ∞, by

Exercise 4.2, ∥f∥p → ∞ as p→ ∞. □

Now we make an agreement as follows: if f, g ∈ Lp(E), 0 < p ≤ ∞, and f(x) = g(x)

a.e. on E, then we identify f(x) and g(x) as the same element in Lp(E). For example, the

Dirichlet function IQ(x) = 0 a.e. on R, so the Dirichlet function and the constant function 0 is

the same element in Lp(R). Thus, if f(x) is defined a.e. on E, then we can define f(x) to be

any number you like at those x’s where f(x) is not defined, and we can regard the new function

and old function as the same element in Lp(E).

� Exercise 4.3 Let E ∈ M. Prove for all 0 < p ≤ ∞, Lp(E) is a linear space, i.e., for all

f, g ∈ Lp(E), for all c1, c2 ∈ R, we have c1f + c2g ∈ Lp(E).

Proof Since f, g ∈ Lp(E), f(x) and g(x) are finite a.e. on E, so c1f(x) + c2g(x) is finite a.e.

on E. Notice that it is possible that c1f(x) + c2g(x) is not well-defined on a set with measure

zero, but by our agreement, we can define the function value at those points to be any number

we like, so c1f(x) + c2g(x) is defined everywhere on E. When p < ∞, recall for all a, b ∈ R,

|a+ b|p ≤ (|a|+ |b|)p ≤ 2p|a|p + 2p|b|p. By Exercise 3.2, part 1., we have∫
E
|c1f(x) + c2g(x)|p dx ≤

∫
E
2p[|c1|p|f(x)|p + |c2|p|g(x)|p] dx

By Exericse 3.2, part 3. & 3.5, we have∫
E
2p[|c1|p|f(x)|p + |c2|p|g(x)|p] dx = 2p|c1|p∥f∥pp + 2p|c2|p∥g∥pp <∞

This shows ∥c1f + c2g∥p <∞, so c1f + c2g ∈ Lp(E).

Now consider p = ∞, since f, g ∈ Lp(E), there exists constant K1,K2 s.t. |f(x)| ≤ K1

and |g(x)| ≤ K2 a.e. on E. Thus, |c1f(x) + c2g(x)| ≤ |c1|K1 + |c2|K2 a.e. on E. This shows
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∥c1f + c2g∥∞ ≤ |c1|K1 + |c2|K2 <∞ and c1f + c2g ∈ L∞(E). □

� Exercise 4.4 Let 1 ≤ p ≤ ∞, and f(x), g(x) are measurable on E ∈ M. Then,∫
E
|f(x)g(x)| dx ≤

(∫
E
|f(x)|p dx

)1/p(∫
E
|g(x)|q dx

)1/q

where 1
p + 1

q = 1. This implies ∥fg∥1 ≤ ∥f∥p∥g∥q.
Proof First consider if either ∥f∥p or ∥g∥q is zero, then ∥f∥p∥g∥q = 0. Problem Set 3.1,

Question 1. or Exercise 4.1 implies either f(x) = 0 a.e. or g(x) = 0 a.e. onE, so f(x)g(x) = 0

a.e. on E. Thus, ∥fg∥1 = 0 by Exercise 3.10, and ∥fg∥1 ≤ ∥f∥p∥g∥q holds.

From now on, suppose both ∥f∥p > 0 and ∥g∥q > 0. Then we consider if either ∥f∥p or

∥g∥q is infinity, ∥f∥p∥g∥q = ∞. In this case ∥fg∥1 ≤ ∥f∥p∥g∥q always holds.

From now on, suppose both ∥f∥p and ∥g∥q are positive and finite. If p = 1, then q = ∞,

and by Exercise 4.1, |f(x)g(x)| ≤ ∥g∥∞|f(x)| a.e. on E. By Exercise 3.2, part 1. & 3.,

∥fg∥1 =
∫
E
|f(x)g(x)| dx ≤ ∥g∥∞

∫
E
|f(x)| dx = ∥f∥1∥g∥∞

If p = ∞, then q = 1, and the proof is very similar.

From now on, suppose both ∥f∥p and ∥g∥q are positive and finite and p, q ∈ (1,∞).

By taking logarithm on both sides and using concavity of logarithmic function, we can prove

a
1
p b

1
q ≤ a

p + b
q for all a, b ≥ 0. Now consider

∥fg∥1 = ∥f∥p∥g∥q
∫
E

(
|f(x)|p

∥f∥pp

)1/p( |g(x)|q

∥g∥qq

)1/q

dx

≤ ∥f∥p∥g∥q
∫
E

(
|f(x)|p

p∥f∥pp
+

|g(x)|q

q∥g∥qq

)
dx

=

(
1

p
+

1

q

)
∥f∥p∥g∥q = ∥f∥p∥g∥q

where the first equality is by Exercise 3.2, part 3.; the inequality is by Exercise 3.2, part 1.; and

the second equality is by Exercise 3.5 and Exercise 3.2, part 3.. □�
Note The inequality in the conclusion is called Hölder’s inequality.

Example 4.2 Suppose m(E) < ∞, and 0 < p1 < p2 < ∞. Prove Lp2(E) ⊂ Lp1(E) and

∥f∥p1 ≤ [m(E)]
1
p1

− 1
p2 ∥f∥p2 for any measurable function f(x) on E.

Proof Let p = p2
p1

and q = p2
p2−p1

. Apply Hölder’s inequality to |f(x)|p1 and 1, we have

∥f∥p1p1 =

∫
E
|f(x)|p1 · 1 dx ≤

(∫
E
|f(x)|p2 dx

) p1
p2

(∫
E
1 dx

) p2−p1
p2

= ∥f∥p1p2 [m(E)]
1− p1

p2

Take p1-th square root on both sides, we obtain the desired result. □

Example 4.3 Suppose f ∈ Lp(0, 1) with 1 < p ≤ ∞. Let F (x) =
∫ x
0 f(t) dt for all x ∈ (0, 1).

Prove that F (x) = o
(
x1/q

)
as x→ 0+ where q satisfies 1

p + 1
q = 1.

Proof By Example 4.2, f ∈ L1(0, 1), so we can apply Exercise 3.16, and |F (x)| ≤
∫ x
0 |f(t)| dt
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on (0, 1). By Hölder’s inequality,∫ x

0
|f(t)| dt ≤

(∫ x

0
|f(x)|p dt

)1/p(∫ x

0
1 dt

)1/q

= x1/q
(∫ x

0
|f(x)|p dt

)1/p

Therefore, we have
F (x)

x1/q
≤
(∫ x

0
|f(x)|p dt

)1/p

Since f ∈ Lp(0, 1), |f |p ∈ L1(0, 1). By Problem Set 3.4, Question 8.,
∫ x
0 |f(x)|p dt → 0 as

x→ 0+. This shows F (x) = o
(
x1/q

)
as x→ 0+. □

� Exercise 4.5 Suppose 1 ≤ p ≤ ∞, f(x), g(x) are measurable on E ∈ M, and f(x) + g(x) is

well-defined a.e. on E. Prove ∥f + g∥p ≤ ∥f∥p + ∥g∥p.
Proof By our argeement, we can simply define f(x) + g(x) = 0 where f(x) + g(x) is not

well-defined and ∥f + g∥p will be the same. When p = 1, since |f(x)+ g(x)| ≤ |f(x)|+ |g(x)|
on E, by Exercise 3.2, part 1. & 3.5,

∥f + g∥1 =
∫
E
|f(x) + g(x)| dx ≤

∫
E
|f(x)| dx+

∫
E
|g(x)| dx = ∥f∥1 + ∥g∥1

When p = ∞, let A = {c | |f(x) + g(x)| ≤ c a.e. on E}, A1 = {c1 | |f(x)| ≤ c1 a.e. on E},

and A2 = {c2 | |g(x)| ≤ c2 a.e. on E}. To prove ∥f + g∥∞ ≤ ∥f∥∞ + ∥g∥∞, we only need to

prove inf A ≤ inf A1 + inf A2. For any c1 ∈ A1 and c2 ∈ A2, we have |f(x) + g(x)| ≤ c1 + c2

a.e. on E by triangular inequality. Thus, inf A ≤ c1 + c2 for all c1 ∈ A1 and c2 ∈ A2. Take

infimum on c1 over A1, and then on c2 over A2, we will obtain the desired result.

When p ∈ (1,∞), by triangular inequality, Exercise 3.2, part 1., & 3.5,∫
E
|f(x) + g(x)|p dx ≤

∫
E
|f(x) + g(x)|p−1(|f(x)|+ |g(x)|) dx

=

∫
E
|f(x) + g(x)|p−1|f(x)| dx+

∫
E
|f(x) + g(x)|p−1|g(x)| dx

By Hölder’s inequality,∫
E
|f(x) + g(x)|p−1|f(x)| dx ≤

(∫
E
|f(x) + g(x)|p dx

) p−1
p
(∫

E
|f(x)|p dx

)1/p

∫
E
|f(x) + g(x)|p−1|g(x)| dx ≤

(∫
E
|f(x) + g(x)|p dx

) p−1
p
(∫

E
|g(x)|p dx

)1/p

Therefore, we obtain ∥f + g∥pp ≤ ∥f + g∥p−1
p (∥f∥p + ∥g∥p). If ∥f + g∥p = 0, then the desired

inequality trivially holds. If ∥f + g∥p ̸= 0, we can cancel out ∥f + g∥p−1
p on both sides, and we

will obtain the desired properties. □�
Note The inequality in the conclusion is called Minkowski inequality.

In Exercise 4.3, we have shown Lp(E) is a linear space. In fact, we can further show it is

a complete normed space, i.e., Banach space. However, we shall first introduce some definition

about that.
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Definition 4.3. Normed Space

♣

A normed space X over field R is a linear space in which we have a “norm” satisfying:

1. For all x ∈ X , ∥x∥ ≥ 0.

2. For all x, y ∈ X , ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

3. For all c ∈ R and x ∈ X , ∥cx∥ = |c|∥x∥.

4. If x ∈ X and ∥x∥ = 0, then x = 0.

Theorem 4.1

♡If 1 ≤ p ≤ ∞, then Lp(E) is a normed space.

Proof Consider the Lp-norm defined in Definition 4.1, we need to check whether it satisfies the

four conditions in Definition 4.3.

1. It is obvious that ∥f∥p ≥ 0 for all f ∈ Lp(E) by the Definition 4.1.

2. For all f, g ∈ Lp(E), it is obvious that |f |p ∈ L1(E) and |g|p ∈ L1(E), so by Exercise

3.11, |f(x)|p and |g(x)|p are finite a.e. on E. This shows f(x) and g(x) are finite

a.e. on E, so f(x) + g(x) is well-defined a.e. on E. Thus, by Minkowski inequality,

∥f + g∥p ≤ ∥f∥p + ∥g∥p.
3. For p <∞, since f ∈ Lp(E), |f |p ∈ L1(E), so by Exercise 3.12,(∫

E
|cf(x)|p dx

)1/p

=

(∫
E
|c|p|f(x)|p dx

)1/p

=

(
|c|p

∫
E
|f(x)|p dx

)1/p

Thus, we have ∥cf∥p = |c|∥f∥p.

For p = ∞, if c = 0, then for all f ∈ L∞(E), cf(x) = 0 on E, so ∥cf∥∞ = 0.

It is obvious that |c|∥f∥∞ = 0, so ∥cf∥p = |c|∥f∥p holds. Now we only consider

c ̸= 0. Let A = {k | |f(x)| ≤ k a.e. on E} and A1 = {k1 | |cf(x)| ≤ k1 a.e. on E},

then ∥cf∥∞ = inf A1 and ∥f∥∞ = inf A. For all k ∈ A, |f(x)| ≤ k a.e. on E,

so |cf(x)| ≤ |c|k a.e. on E. This shows |c|k ∈ A1, and thus |c|k ≥ ∥cf∥∞. Since

c ̸= 0, we have k ≥ ∥cf∥∞
|c| , and by taking infimum over A on both sides, we obtain

∥f∥∞ ≥ ∥cf∥∞
|c| . This is equivalent to |c|∥f∥∞ ≥ ∥cf∥∞. On the other hand, for all

k1 ∈ A1, |cf(x)| ≤ k1 a.e. on E implies |f(x)| ≤ k1
|c| a.e. on E. Thus, k1

|c| ∈ A and
k1
|c| ≥ ∥f∥∞. This is equivalent to k1 ≥ |c|∥f∥∞. By taking infimum over A1 on both

sides, ∥cf∥∞ ≥ |c|∥f∥∞. Therefore, we proved ∥cf∥∞ = |c|∥f∥∞.

4. For p < ∞, if ∥f∥p = 0, by Problem Set 3.1, Question 1., |f |p = 0 a.e. on E. Thus

f(x) = 0 a.e. on E. By our agreement, f(x) is just the zero element in Lp(E).

For p = ∞, if ∥f∥∞ = 0, by Exercise 4.1, |f(x)| ≤ 0 a.e. on E, so f(x) = 0 a.e. on E.

By our agreement, f(x) is just the zero element in Lp(E).

□
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Definition 4.4. Cauchy Sequence

♣

Let X be a normed space. A sequence {xk}∞k=1 ⊂ X is Cauchy if for all ϵ > 0, there

exists Kϵ ≥ 1 s.t. ∥xk − xl∥ < ϵ, whenever k, l ≥ Kϵ.

Definition 4.5. Banach Space

♣

A normed space in which every Cauchy sequence converges with respect to this particular

norm is called a complete normed space or Banach space.

Definition 4.6. Lp-convergence

♣

Let f(x) and fk(x) be measurable on E ∈ M. Suppose f ∈ Lp(E) and fk ∈ Lp(E) for

all k ≥ 1. We say fk(x) → f(x) in Lp(E) if ∥fk − f∥p → 0 as k → ∞.

Remark From now on, if we say fk(x) → f(x) in Lp(E), then it implicitly indicates that

f ∈ Lp(E) and fk ∈ Lp(E) for all large enough k.

Theorem 4.2

♡If 1 ≤ p ≤ ∞, then Lp(E) is a Banach space.

Proof First consider when p = ∞. Let {fk}∞k=1 ⊂ L∞(E) be Cauchy in L∞(E). Define

Akl = {x ∈ E | |fk(x)− fl(x)| > ∥fk − fl∥∞} for all k, l ≥ 1. By Exericise 4.1, m(Akl) = 0.

Let A =
∪∞

k,l=1Akl, then m(A) = 0. Since {fk}∞k=1 is a Cauchy sequence, for all ϵ > 0, there

existsKϵ ≥ 1 s.t. ∥fk − fl∥ < ϵ if k, l ≥ Kϵ. Thus, for all fixed x ∈ E \A, |fk(x)− fl(x)| < ϵ

if k, l ≥ Kϵ. This implies for each fixed x ∈ E \ A, {fk(x)}∞k=1 is a Cauchy sequence. Since

Cauchy sequence in R must converge, fk(x) → f(x) on E \ A and by the remark of Exercise

2.11, f(x) is measurable on E \ A. Since m(A) = 0, we can define f(x) = 0 on A, and by

Exercise 2.1, f(x) is measurable onE. Take l → ∞, |fk(x)−f(x)| < ϵ onE\A. By definition,

we have ∥fk−f∥∞ ≤ ϵ if k ≥ Kϵ. Since each fk ∈ L∞(E), by Minkowski inequality, it is easy

to see f ∈ L∞(E). This also shows fk(x) → f(x) in L∞(E), so L∞(E) is a Banach space.

Then we consider when p < ∞. Let {fk}∞k=1 be Cauchy in Lp(E) for all i ≥ 1. There

exists Ki ≥ 1 s.t. if k, l ≥ Ki, ∥fk − fl∥p < 1
2i

. We can take {Ki}∞i=1 s.t. Ki is increasing to

infinity and ∥fKi+1 − fKi∥p < 1
2i

. Define g(x) =
∑∞

i=1 |fKi+1(x)− fKi(x)| and for all k ≥ 1,

gk(x) =
∑K

i=1 |fKi+1(x) − fKi(x)|. Then, gk(x) is increasing in k for each fixed x ∈ E and

gk(x) → g(x) pointwisely onE. By Minkowski inequality, ∥gk∥p ≤
∑k

i=1∥fKi+1 −fKi∥p ≤ 1.

Now since |gk(x)|p → |g(x)|p pointwisely on E and |gk(x)|p is increasing in k, by MCT-II,∫
E |g(x)|p dx = limk→∞

∫
E |gk(x)|p dx ≤ 1. This shows |g|p ∈ L1(E) and by Exercise

3.11, |g(x)|p is finite a.e. on E, so g(x) is finite a.e. on E. Thus,
∑n−1

i=1 (fKi+1(x) − fKi(x))

converges absolutely for a.e. x ∈ E. Since on R, absolute convergence implies convergence,
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i=1 (fKi+1(x)− fKi(x)) converges for a.e. x ∈ E. However,

n−1∑
i=1

(fKi+1(x)− fKi(x)) = fKn(x)− fK1(x)

so fKi(x) converges to some f(x) a.e. on E. By a similar argument to the p = ∞ case,

f(x) is measurable. Since {fk(x)}∞k=1 is Cauchy in Lp(E), for all ϵ > 0, there exists Kϵ ≥ 1

s.t. if k, l ≥ Kϵ, ∥fk − fl∥p < ∞. Take l = Ki for large enough i s.t. Ki ≥ Kϵ, then∫
E |fk(x)− fKi(x)|p dx < ϵp for all large i. By Fatou’s lemma,∫

E
lim
i→∞

|fk(x)− fKi(x)|p dx ≤ lim
i→∞

∫
E
|fk(x)− fKi(x)|p dx ≤ ϵp

Thus,
∫
E |fk(x)− f(x)|p dx ≤ ϵp and ∥fk − f∥p ≤ ϵ for all k ≥ Kϵ. Since each fk ∈ Lp(E),

by Minkowski inequality, it is easy to see f ∈ Lp(E). This also shows fk(x) → f(x) in Lp(E),

so Lp(E) is a Banach space. □

Recall in the previous chapter, we have shown that L1-convergence implies convergence in

measure. Now we generalize it to Lp-convergence implies convergence in measure.

Theorem 4.3

♡

Let f(x) and fk(x) be measurable on E ∈ M. If fk(x) → f(x) in Lp(E), then

fk(x) → f(x) in measure on E.

Proof By Markov’s inequality on |fk(x)− f(x)|p, for all α ∈ (0,∞), we have

αm ({x ∈ E | |fk(x)− f(x)|p > α}) ≤
∫
E
|fk(x)− f(x)|p dx

For all σ > 0, take α s.t. α1/p = σ, then we have

m ({x ∈ E | |fk(x)− f(x)|p > α}) ≤ 1

σp
∥fk − f∥pp → 0

Therefore, fk(x) → f(x) in measure on E. □

K Problem Set 4.1 k

1. Let 0 < p < 1 and q = p
p−1 . Assume that if g = 0 on E then ∥g∥Lq(E) = 0.

(a). Proved for f, g measurable onE ∈ M andm(E) > 0, we have the reversed Hölder’s

inequality, i.e., ∥fg∥L1(E) ≥ ∥f∥Lp(E)∥g∥Lq(E).

(b). Prove reversed Minkowski inequality, i.e., for measurable f, g s.t. f ≥ 0, g ≥ 0 on

E, we have ∥f∥Lp(E) + ∥g∥Lp(E) ≤ ∥f + g∥Lp(E).

(c). Construct f and g s.t. ∥f∥Lp(E) + ∥g∥Lp(E) < ∥f + g∥Lp(E).

2. Let X be a normed space. Suppose x∞ ∈ X and xk ∈ X for all k ≥ 1. Prove

that if ∥xk − x∞∥ → 0 as k → ∞, then ∥xk∥ → ∥x∞∥. In L1(−1, 1), construct a

counterexample s.t. ∥fk∥L1 → ∥f∞∥L1 but fk ̸→ f∞ in L1.

3. Let E ⊂ Rm, F ⊂ Rn, and f(x, y) be measurable on E × F , where x ∈ E, y ∈ F . For

1 ≤ p <∞, if
∫
F ∥f(x, y)∥Lp

x(E) dy <∞, prove
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(a). For almost every fixed x ∈ E, f(x, y) ∈ L1
y(F ).

(b).
∫
F f(x, y) dy is a measurable function of x on E and

∫
F f(x, y) dy ∈ Lp

x(E).

(c).
∥∥∫

F f(x, y) dy
∥∥
Lp
x(E)

≤
∫
F ∥f(x, y)∥Lp

x(E) dy.

4. Let 1 < p <∞. For all f ∈ Lp(0,∞), define Tf = 1
x

∫ x
0 f(y) dy for x ∈ (0,∞). Prove

that ∥Tf∥Lp(0,∞) ≤ p
p−1∥f∥Lp(0,∞).

5. Let f(x) be measurable on Rn.

(a). Prove that f(x− y) as a function of (x, y) ∈ Rn × Rn is measurable.

(b). Prove that for all f ∈ L1(Rn), g ∈ Lp(Rn), 1 ≤ p ≤ ∞, f ∗ g ∈ Lp(Rn) where

f ∗ g =
∫
Rn f(x− y)g(y) dy.

(c). Prove ∥f ∗ g∥Lp(Rn) ≤ ∥f∥L1(Rn)∥g∥Lp(Rn).

6. Let f be continuous on the interval (0, 1). Prove that ∥f∥L∞(0,1) = supx∈(0,1) |f(x)|.
7. Let f be measurable on E and there exists r > 0 s.t. f ∈ Lr(E). Prove that

limp→∞∥f∥Lp(E) = ∥f∥L∞(E).

8. Let f ∈ L2(0, 1) and
∫ 1
0 f(x)x

n dx = 0, ∀n ∈ N. Prove f(x) = 0 a.e. on (0, 1).

9. Let f be positive and measurable on (0, 1). Prove that 1 ≤
(∫ 1

0 f(x) dx
)(∫ 1

0
1

f(x) dx
)

.

10. Let fk(x) be measurable on (0, 1) for all k ≥ 1. Suppose fk → f a.e. on (0, 1) and for

some r ∈ (0,∞),
∫ 1
0 |fk(x)|r dx ≤ M for constant M and for all k ≥ 1. Prove that for

all 0 < p < r,
∫ 1
0 |fk(x)− f(x)|p dx→ 0 as k → ∞.

4.2 Dense Subsets of Lp-space

In this section we are going to explore several density theorems for Lp-space. The main

idea of these theorems is to use a sequence of “good” functions to approximate a general function

in Lp-space.

Theorem 4.4

♡

Suppose 1 ≤ p ≤ ∞, then for all f ∈ Lp(E) with E ∈ M, there exists a sequence of

measurable simple function fk(x) on E s.t. fk(x) → f(x) in Lp(E).

Proof We first consider the case when p <∞. Recall by simple approximation theorem, there

exists a sequence of measurable simple function {fk(x)}∞k=1 onE s.t. fk(x) → f(x) pointwisely

on E with fk(x) finite on E for all k ≥ 1. Furthermore, if we scrutinize the proof of simple

approximation theorem, we can see |fk(x)| ≤ |f(x)| on E. Notice that |fk(x) − f(x)|p → 0

pointwisely on E, and |fk(x) − f(x)|p ≤ 2p(|f(x)|p + |fk(x)|p) ≤ 2p+1|f(x)|p. Since f is

in Lp(E), |f |p ∈ L1(E). By Exercise 4.3, L1(E) is a linear space, so 2p+1|f |p ∈ L1(E). By

DCT, limk→∞
∫
E |fk(x)− f(x)|p dx =

∫
E limk→∞ |fk(x)− f(x)|p dx = 0.

Then we consider the case when p = ∞. By Exercise 4.1, |f(x)| ≤ ∥f∥∞ < ∞ a.e.

on E. Thus, we can find a measurable set A s.t. m(A) = 0 and |f(x)| ≤ ∥f∥∞ for all

x ∈ E \ A. By simple approximation theorem, there exists a sequence of measurable simple
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4.2 Dense Subsets of Lp-space

function {fk(x)}∞k=1 and fk(x) → f(x) uniformly on E \A. For all ϵ > 0, there exists Kϵ ≥ 1

s.t. |fk(x) − f(x)| < ϵ for all x ∈ E \ A and k ≥ Kϵ. This implies ∥fk − f∥∞ ≤ ϵ for all

k ≥ Kϵ, which shows fk(x) → f(x) in L∞(E). □
Remark This theorem shows that the set of measurable simple functions in Lp is a dense subset

of Lp for all 1 ≤ p ≤ ∞.

Theorem 4.5

♡

Suppose 1 ≤ p < ∞, then for all f ∈ Lp(E) with E ∈ M, there exists a sequence

of measurable simple function fk(x) on E s.t. fk(x) → f(x) in Lp(E) and fk(x) has

bounded support, i.e., {x ∈ E | fk(x) ≠ 0} is bounded, for all k ≥ 1.

Proof For l ≥ 1, let Il(x) = IBl(0)(x), where Bl(0) is the ball centered at the origin with

radius l. Notice that for each fixed k, Il(x)fk(x) → fk(x) pointwisely as l → ∞. Also,

|Il(x)fk(x)|p ≤ |fk(x)|p ∈ L1(E), so by DCT, as l → ∞,∫
E
|fk(x)|p|Il(x)− 1|p dx =

∫
E
|[Il(x)fk(x)]p − [fk(x)]

p| dx→ 0

This shows for each fixed k, there exists lk ≥ 1 s.t. ∥Ilkfk − fk∥p ≤ 1
k . By Theorem 4.4, there

exists a sequence of measurable simple functions {gk(x)}∞k=1 s.t. gk(x) → f(x) in Lp(E). Let

fk(x) = Ilk(x)gk(x), then fk(x) is measurable simple function with bounded support. Thus,

∥fk(x)− f(x)∥p ≤ ∥fk(x)− gk(x)∥p + ∥gk(x)− f(x)∥p ≤
1

k
+ ∥gk(x)− f(x)∥p → 0

as k → ∞. □
Remark This theorem shows that the set of measurable simple functions with bounded support

in Lp is a dense subset of Lp for all 1 ≤ p < ∞. Notice that this is not always true for L∞(E).

To find a counter-example, one can consider f(x) = 1 on R.

Theorem 4.6

♡

Suppose 1 ≤ p < ∞, then for all f ∈ Lp(E) with E ∈ M, there exists a bounded

continuous function g(x) on Rn s.t. ∥f − g∥p < ϵ. There also exists a sequence of

bounded continuous functions {gk(x)}∞k=1 on Rn s.t. gk ∈ Lp(E) for all k ≥ 1 and

gk(x) → f(x) in Lp(E).

Proof We are going to prove this theorem in two steps. We first prove that for all ϵ > 0, there

exists bounded measurable function h(x) s.t. h ∈ Lp(E) and ∥f − h∥p < ϵ. Then we apply

Lusin’s theorem to h(x) to obtain the desired bounded continuous function.

Step 1: For all k ≥ 1, define fk(x) on E by

fk(x) =


f(x) if |f(x)| < k

k if f(x) ≥ k

−k if f(x) ≤ −k

82



4.2 Dense Subsets of Lp-space

In this case, |fk(x)| ≤ |f(x)| for all x ∈ E and fk(x) → f(x) a.e. on E. Notice that

|fk(x)− f(x)|p ≤ (|fk(x)|+ |f(x)|)p ≤ 2p|f(x)|p ∈ L1(E)

By DCT, |fk(x)− f(x)|p → 0 in L1(E), so there exists k0 s.t. ∥fk0 − f∥p < ϵ. Since fk0(x) is

bounded measurable, we take h(x) = fk0(x).

Step 2: By Lusin’s theorem, there exists closed F ⊂ E s.t. m(E \ F ) < ϵ and h
∣∣
F
(x) is

continuous on F . By Tietze extension theorem (a famous theorem in general topology), there

exists continuous function g(x) on Rn s.t. g
∣∣
F
(x) = h

∣∣
F
(x) and g(x) preserves boundedness of

f(x). Thus, we have

∥f − g∥p ≤ ∥f − h∥p + ∥h− g∥p < ϵ+ [(2M)pm(E \ F )]1/p

This proves the first part of the theorem. The second part is trivial by simply taking ϵ = 1
n . □

Remark This theorem shows that the set of bounded continuous functions in Lp is a dense

subset of Lp for all 1 ≤ p < ∞. Notice that this is not always true for L∞(E). To find a

counter-example, one can consider f(x) = I(0,1](x)− I[−1,0](x) on E = [−1, 1]. If the theorem

is true, then there exists k0 ≥ 1 s.t. ∥f − gk0∥∞ < 1
100 , so |f(x) − gk0(x)| < 1

100 for all

x ∈ E \ B with m(B) = 0. Since gk0(x) is continuous, by intermediate value property, there

exists x0 ∈ [−1, 1] s.t. gk0(x0) = 0. Since m(B) = 0, there exists xn → x0 s.t. xn /∈ B for all

n. Notice that if x0 ∈ [−1, 0], we can pick xn < x0 for all n; if x0 ∈ (0, 1], we pick xn > x0 for

all n. In this case, |f(xn)− gk0(xn)| < 1
100 for all n ≥ 1. Take n→ ∞, by one-side continuity

of f and continuity of gk0 , we have |f(x0) − gk0(x0)| < 1
100 which is a contradiction because

|f(x0)− gk0(x0)| = |f(x0)− 0| = 1.

Theorem 4.7

♡

The set of all polynomial functions on [a, b] is dense in Lp([a, b]) with a, b finite and

1 ≤ p <∞.

Proof First, polynomial functions on [a, b] are always in Lp([a, b]). For all f ∈ Lp([a, b]), for

all ϵ > 0, there exists bounded continuous function g defined on R s.t. ∥f − g∥p < ϵ. Since g

is continuous on [a, b], by Weierstrass Approximation theorem, there exists polynomial h(x) s.t.

max[a,b] |g(x)− h(x)| < ϵ. Consider

∥f − h∥p ≤ ∥f − g∥p + ∥g − h∥p < ϵ+ (ϵp(b− a))1/p = Kϵ

where K is a positive constant. □
Remark Notice that this is not always true for L∞([a, b]). To see this, consider polynomials on

bounded interval [a, b] as a special type of bounded continuous functions and use Theorem 4.6.

Definition 4.7. Step Function

♣

Step function is a function that can be written as a finite linear combination of indicator

functions of disjoint intervals.
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4.3 Applications of Density Theorems in Lp-space

Theorem 4.8

♡The set of all step functions inLp([a, b]) is dense inLp([a, b])witha, b finite and p ∈ [1,∞).

Proof By Theorem 4.4, for all ϵ > 0, there exists a simple measurable function g(x) s.t.

∥f − g∥p < ϵ. Denote g(x) =
∑k

i=1CiIEi(x), where Ei ∈ M and Ei ⊂ (a, b) for all

i = 1, . . . , k. It suffices to show IEi(x) can be approximated by step function. By Theorem 1.1,

sincem(Ei) ≤ b− a, for all ϵ > 0, there exists finitely many closed intervals I1, . . . , IJ s.t. they

are almost disjoint, Ij ⊂ (a, b) for all j, and if U =
∪J

j=1 Ij , we have m(Ei△U) < ϵ. If two

intervals are almost disjoint but not disjoint, then we denote the union of them as a new closed

interval and replace the orginal two by this new closed interval. In this way, we can assume all Ij’s

are disjoint. Let S(x) =
∑J

j=1 IIj (x), and we can observe that |S(x) − IEi(x)| = IEi△U (x).

This shows ∥S− IEi∥p = [m(Ei△U)]1/p < ϵ1/p, and thus, IEi(x) can be approximated by step

function S(x). □
Remark Notice that this is not always true for L∞([a, b]). See Problem Set 4.2, Question 1..

K Problem Set 4.2 k

1. Prove that step functions are not dense in L∞([0, 1]).

2. Let f(x) be measurable and bounded on R and periodic with period T > 0. Consider

g ∈ L1(0, a), where 0 < a <∞. Prove that as ϵ→ 0+,∫ a

0
f(x/ϵ)g(x) dx→ ⟨f⟩

∫ a

0
g(x) dx, ⟨f⟩ = 1

T

∫ T

0
f(y) dy

3. Consider Fourier transform:

f̂(ξ) =

∫ ∞

−∞
f(x)e−2πixξ dx

Prove that if f ∈ L1(R), then f̂(ξ) → 0 as |ξ| → ∞.

4. In Step 2 of the proof of Theorem 4.6, we use Tietze extension theorem. In fact, we

only need to use a special version of it, that is, for every bounded continuous real-valued

function g(x) on a closed set F ⊂ Rn, there exists a bounded continuous real-valued

function G(x) on Rn s.t. G
∣∣
F
(x) = g(x). If |g(x)| ≤ M on F , |G(x)| ≤ M on Rn. To

prove this special case of Tietze extension theorem, show that

(a). there exists a continuous function h : Rn 7→ R s.t.

|h(x)| ≤ 1
3M for all x ∈ F ,

|h(x)| < 1
3M for all x ∈ F c,

|g(x)− h(x)| ≤ 2
3M for all x ∈ F .

(b). there exists bounded continuous function G(x) on Rn s.t. G
∣∣
F
(x) = g(x) on F and

|G(x)| ≤M on Rn.
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4.3 Applications of Density Theorems in Lp-space

4.3 Applications of Density Theorems in Lp-space

In this section we are going to apply the density theorems studied in the last section to

verify some more advanced but essential properties of Lp-space. In short, we will first show the

generalized Riemann-Lebesgue lemma. After that, we will discuss the continuity and separability

of Lp-space.

Theorem 4.9. Generalized Riemann-Lebesgue Lemma

♡

Suppose {gn(x)}∞n=1 are measurable and uniformly bounded on bounded interval [a, b],

i.e., there exists constant M > 0 s.t. |gn(x)| ≤ M for all x ∈ [a, b] and n ≥ 1. Assume

for all c ∈ [a, b],
∫ c
a gn(x) dx → 0 as n → ∞, then

∫ b
a f(x)gn(x) dx → 0 for all

f ∈ L1([a, b]).

Proof Step 1: Suppose f is a step function, then we can write f(x) =
∑k

i=1 ciIIi(x), where

interval Ii ⊂ [a.b]. Denote ci ≤ di as the two end points of interval Ii, then we have∫ b

a
f(x)gn(x) dx =

k∑
i=1

ci

∫ b

a
IIi(x)gn(x) dx =

k∑
i=1

ci

∫ di

ci

gn(x) dx

Since for each i,
∫ di
ci
gn(x) dx =

∫ di
a gn(x) dx −

∫ ci
a gn(x) dx. Both terms on the right hand

side converge to zero as n→ ∞ because ci, di ∈ [a, b]. This shows
∫ b
a f(x)gn(x) dx→ 0.

Step 2: For any f ∈ L1(a, b), by Theorem 4.8, for all ϵ > 0, there exists step function g s.t.

∥f − g∥1 < ϵ. Consider∣∣∣∣∫ b

a
f(x)gn(x) dx

∣∣∣∣ ≤ ∣∣∣∣∫ b

a
(f(x)− g(x))gn(x) dx

∣∣∣∣+ ∣∣∣∣∫ b

a
g(x)gn(x) dx

∣∣∣∣
≤M

∫ b

a
|f(x)− g(x)| dx+

∣∣∣∣∫ b

a
g(x)gn(x) dx

∣∣∣∣
< Mϵ+

∣∣∣∣∫ b

a
g(x)gn(x) dx

∣∣∣∣
Take lim supn→∞ on both sides, since g(x) is step function, by Step 1,

lim sup
n→∞

∣∣∣∣∫ b

a
f(x)gn(x) dx

∣∣∣∣ ≤Mϵ

Since this is true for all ϵ > 0, by taking ϵ→ 0, we obtain the desired result. □

Theorem 4.10. Continuity in Lp-space

♡
Let 1 ≤ p <∞. For all f ∈ Lp(Rn), ∥f(x+ h)− f(x)∥Lp

x(Rn) → 0 as h→ 0.

Proof Recall Theorem 4.6, for all ϵ > 0, there exists bounded continuous function g(x) s.t.

∥f − g∥p < ϵ. Define function ϕ(r) for r ≥ 0 to be

ϕ(r) =


1 if r ∈ [0, 1]

−r + 2 if r ∈ (1, 2]

0 if r > 2
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Let gk(x) = g(x)ϕ
(
|x|
k

)
for all k ≥ 1, then

gk(x) =


g(x) if |x| ≤ k

0 if |x| ≥ 2k

ckx ∈ (0, g(x)) if k < |x| < 2k

Thus, gk(x) is uniformly continuous on B̄2k(0), where B̄r(x) is the closed ball centered at x

with radius r. Abbreviate ∥•∥Lp
x(Rn) as ∥•∥p. Consider

∥f(x+ h)− f(x)∥p ≤ ∥f(x+ h)− g(x+ h)∥p︸ ︷︷ ︸
I

+ ∥g(x+ h)− g(x)∥p︸ ︷︷ ︸
II

+ ∥g(x)− f(x)∥p︸ ︷︷ ︸
III

Notice that III < ϵ by construction. By applying FTT-II n−1 times (properly choosing objective

function to apply),

(I)p =

∫
Rn

|f(x+ h)− g(x+ h)|p dx

=

∫
· · ·
∫ ∞

−∞︸ ︷︷ ︸
n copies

|f(x1 + h1, · · · , xn + hn)− g(x1 + h1, · · · , xn + hn)|p dx1 · · · dxn

=

∫
· · ·
∫ ∞

−∞︸ ︷︷ ︸
n copies

|f(x1, · · · , xn)− g(x1, · · · , xn)|p dx1 · · · dxn

=

∫
Rn

|f(x)− g(x)|p dx = (III)p

where the third equality is by appying change of variables technique in Problem Set 3.3, Question

3.. Thus, I < ϵ. Now we only need to focus on part II, where

II = ∥g(x+ h)− gk(x+ h)∥p︸ ︷︷ ︸
a

+ ∥gk(x+ h)− gk(x)∥p︸ ︷︷ ︸
b

+ ∥gk(x)− g(x)∥p︸ ︷︷ ︸
c

Similarly, we can prove a = c. Since g and gk are all bounded continuous function, and

gk(x) → g(x) pointwisely, by DCT, c → 0. Thus, there exists K s.t. ∥gK − g∥p < ϵ. Fix this

K, and consider when |h| < 1,

bp =

∫
B2K+1(0)

|gK(x+ h)− gK(x)|p dx

because gK(x) = gK(x+ h) = 0 when |x| ≥ 2K + 1 by definition of gK . Up to now we have

∥f(x+ h)− f(x)∥p ≤ 4ϵ+ b. As h→ 0, since gK(x) is continuous, gK(x+ h)− gK(x) → 0.

Also note that gK(x + h) − gK(x) is bounded, so by DCT, b → 0 as h → 0. Thus, by taking

limh→0 on both sides, we obtain limh→0∥f(x+ h)− f(x)∥p ≤ 4ϵ. Take ϵ→ 0, we have shown

that ∥f(x+ h)− f(x)∥p → 0 as p→ 0. □

Example 4.4 LetE ⊂ Rn,E ∈ M withm(E) <∞. Prove limh→0m((E+h)∩E) = m(E).

Proof Note that it suffices to show as h→ 0,∫
Rn

I(E+h)∩E(x) dx→
∫
Rn

IE(x) dx <∞
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Since I(E+h)∩E(x) = IE+h(x)IE(x), consider∣∣∣∣∫
Rn

IE(x)(IE+h(x)− IE(x)) dx

∣∣∣∣ ≤ ∫
Rn

|IE+h(x)− IE(x)| dx

=

∫
Rn

|IE(x− h)− IE(x)| dx

Since m(E) <∞, apply continuity of L1-norm with f(x) = IE(x) ∈ L1(Rn),∫
Rn

|IE(x− h)− IE(x)| dx = ∥IE(x− h)− IE(x)∥1 → 0

□

Example 4.5 Let E ⊂ Rn, E ∈ M with m(E) > 0. Prove E − E ⊃ Bδ(0) for δ > 0, where

Bδ(0) is the open ball centered at the origin with radius δ.

Proof Recall the first paragraph of the proof of Lemma 1.1, it suffices to show the desired result

holds for the case whenm(E) <∞. In this case, by Example 4.4,m((E+h)∩E) → m(E) > 0

as h → 0. Thus, there exists δ > 0 s.t. m((E + h) ∩ E) > 0 when |h| < δ. Thus, there exists

x ∈ E, y + h ∈ E + h s.t. x = y + h, and hence x − y = h. This shows h ∈ E − E for all

|h| < δ. Thus, Bδ(0) ⊂ E − E. □
Remark This is exactly the Steinhauss Theorem we proved in Chapter 1 (see Lemma 1.1).

In Chapter 1, we provided an elementary but rather tedious proof. However, with continuity

property of Lp-space, we can prove it within a few lines.

At the end of this section, we are going to introduce a topological property, called “Separa-

bility”, of a topological space (here we restricted to normed space). This property may be widely

used in your graduate study.

Definition 4.8. Separability of Normed Space

♣Normed space X is separable if it has a countable dense subset.

Example 4.6 Let X = R, then X is separable because Q is a countable dense subset of it.

Theorem 4.11

♡For 1 ≤ p <∞, Lp(R) is separable.

Proof Let D be the set of all functions in the form of p(x)IBr(0)(x) on x ∈ Rn, where p(x) is

the polynomial with rational coefficient and r ∈ Q+. In this case, it is easy to seeD is countable.

Claim: D is dense in Lp(Rn). Take arbitrary function f ∈ Lp(Rn). For all ϵ > 0, by Theorem

4.6, there exists bounded continuous function g s.t. ∥f − g∥p < ϵ
100 . Consider

∥g − gIBr(0)∥p =
∫
Rn

|g(x)|p(1− IBr(0)(x)) dx

We want to show ∥g − gIBr(0)∥p → 0 as r → ∞. This is done by applying DCT because
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gIBr(0)(x) → g(x) pointwisely and g is bounded. Thus, there exists large R ∈ Q so that

∥g − gIBR(0)∥p < ϵ
100 . Fix this R and consider g(x) on BR(0). By Weierstrass approximation

theorem, there exists polynomial p(x) s.t. |p(x) − g(x)| < ϵ
100c for all x ∈ BR(0), where

constant c is the volume of BR(0). WLOG, we can assume p(x) has only rational coefficients

because the set of polynomials with rational coefficients on B̄R(0) is also a dense subset of

polynomials with real coefficients on B̄R(0) (because rational number is dense in real number

and B̄R(0) is compact). Thus, ∥gIBR(0) − pIBR(0)∥p ≤ ϵ
100 . In conclusion,

∥f − pIBR(0)∥p = ∥f − g∥p + ∥g − gIBR(0)∥p + ∥gIBR(0) − pIBR(0)∥p ≤
3ϵ

100
< ϵ

This shows exactly D is dense in Lp(Rn). □
Remark For 1 ≤ p < ∞, Lp(E) is separable for any E ⊂ Rn, E ∈ M. To prove this, let D′

denote the set of all functions in the form of p(x)IBr(0)(x)IE(x) on Rn and check D′ is dense

in Lp(E).

Theorem 4.12

♡For p = ∞, Lp(E) is not separable for E ⊂ Rn and E ∈ M.

Proof Define f(r) = m(E ∩Br(0)) for r ≥ 0. Then f(0) = 0 and f(r) → m(E) as r → ∞
(by continuity of measure). Also, f(r) is increasing on r ∈ [0,∞). Furthermore, we claim that

f(r) is continuous on [0,∞). To prove it, consider any 0 ≤ r < t <∞,

0 ≤ f(t)− f(r) = m(E ∩Bt(0))−m(E ∩Br(0))

= m(E ∩ (Bt(0) \Br(0))) ≤ m(Bt(0) \Br(0)) → 0

as |r − t| → 0. Thus, f(r) is continuous. Define

A = {closed nondegenerate interval I s.t. f
∣∣
I

is constant, and I is maximal}

Then for I, J ∈ A, if I ̸= J , I ∩ J = ∅. Since f(
∪

I∈A I) ⊂ [0,m(E)] is countable and

f([0,∞)) ⊃ [0,m(E)) is uncountable, S = [0,∞) \
∪

I∈A I is uncountable. This is because

f maps countable set to countable set. Note that for s < t with s, t ∈ S, f(s) < f(t) because

if f(s) = f(t), then f is a constant on (s, t), and (s, t) ∈ A. Now, for all s ∈ S, define

Is(x) = IE∩Bs(0)(x), then ∥Is − It∥∞ = 1 for t > s because m(Bt(0) \Bs(0)) > 0. Suppose

L∞(E) is separable, then there exists dense countable set {gk}∞k=1. For all s ∈ S, pick k(s) ≥ 1

s.t. ∥Is − gk(s)∥∞ < 1
4 .

Claim: k(s) is injective mapping. If k(s) = k(t) but s ̸= t, then ∥Is − It∥∞ = 1. However, this

is impossible because

∥Is − It∥∞ ≤ ∥Is − gk(s)∥∞ + ∥gk(s) − It∥∞ = ∥Is − gk(s)∥∞ + ∥gk(t) − It∥∞ <
1

4
+

1

4
=

1

2

This shows k(s) is injective. Notice that k(s) maps uncountable set S to countable set N,

but injective mapping cannot map a set to another set with smaller cardinality, so we obtain a

contradiction. Thus, L∞(E) is not separable. □
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4.3 Applications of Density Theorems in Lp-space

K Problem Set 4.3 k

1. Recall the heat equationut(x, t) = uxx(x, t) x ∈ R, t > 0

u(x, 0) = ϕ(x) x ∈ R

whose solution is given by

u(x, t) =

∫ ∞

−∞
Γ(x− y, t)ϕ(y) dy

where Γ(x, t) is the fundamental solution of heat equation given by

Γ(x, t) =
1√
4πt

e−
x2

4t , x ∈ R, t > 0

which is the solution of heat equation with ϕ(x) equal to delta function δ(x).

(a). Prove for any fixed y ∈ R,
∂

∂t
Γ(x− y, t) =

∂2

∂x2
Γ(x− y, t), ∀x ∈ R, ∀ t > 0

(b). Suppose ϕ ∈ L1(R) from now on, and prove u(x, t) satisfies the equation ut(x, t) =

uxx(x, t) for x ∈ R, t > 0.

(c). Prove ∥u(·, t)− ϕ(·)∥L1(R) → 0 as t→ 0+.

(d). Prove that |u(x, t)| ≤ 1√
4πt

∥ϕ∥L1(R), for all x ∈ R, all t > 0. Give physical

intepretation of this result.

2. Answer the following questions:

(a). For all measurable subset A ⊂ [0, 2π], prove that

lim
t→∞

∫
A
cos(tx) dx = 0

(b). Let tk → ∞ as k → ∞. Define E = {x ∈ [0, 2π] | sin(tkx) converges as k → ∞}.

Prove m(E) = 0.

3. Suppose f ∈ L1(0, 1). Let g(x) =
∫ 1
x

f(t)
t dt, 0 < x ≤ 1. Prove that g ∈ L1(0, 1),

limx→0+ xg(x) = 0, and
∫ 1
0 g(x) dx =

∫ 1
0 f(t) dt.

4. Let f ∈ L1(Rn), g ∈ L∞(Rn). Prove that

(a). (f ∗ g)(x) is uniformly continuous in x on Rn.

(b). If g ∈ L1(Rn), then (f ∗ g)(x) → 0 as |x| → ∞.
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Chapter 5 Lebesgue Differentiation

5.1 Differentiability of Monotone Functions

In this section, we are going to focus on the differentiablity of monotone functions. Our

ultimate goal is to introduce two main theorems related to the differentiablity of monotone

functions, namely, the Lebesgue’s theorem for the differentiability of monotone functions and

Fubini’s theorem on differentiation. However, before going into that, we need to introduce some

new concepts and useful tools.

Definition 5.1. Dini’s Derivatives

♣

Suppose f(x) is real-valued on (x0 − δ, x0 + δ) for δ > 0, then the four types of Dini’s

derivatives are given by

D+f(x0) = lim
x→x0+

f(x)− f(x0)

x− x0
, D−f(x0) = lim

x→x0−

f(x)− f(x0)

x− x0

D+f(x0) = lim
x→x0+

f(x)− f(x0)

x− x0
, D−f(x0) = lim

x→x0−

f(x)− f(x0)

x− x0

Example 5.1 Let f(x) = |x| on (−1, 1). We can compute D+f(0) = 1 = D+f(0) and

D−f(0) = D−f(0) = −1.

� Exercise 5.1 Consider four types of Dini’s derivatives, and show that D+f(x0) ≥ D+f(x0)

and D−f(x0) ≥ D−f(x0). Also, D+f(x0) = D+f(x0) = D−f(x0) = D−f(x0) <∞ if and

only if f is differentiable at x0.

Example 5.2 Suppose f is continuous on bounded interval [a, b] and D+f(x) ≥ 0 for all

x ∈ (a, b), then f is increasing on [a, b]. The same conclusion holds if D−f(x) ≥ 0 on (a, b).

Proof Special case: D+f(x) > 0 on (a, b). Suppose there exists a < x1 < x2 < b s.t.

f(x2) < f(x1), fix α ∈ (f(x2), f(x1)). Let Eα = {x ∈ (x1, x2) | f(x) = α}. By intermediate

value theorem, Eα ̸= ∅. Since f is continuous, Eα is closed and bounded, hence compact.

Thus, there exists c ∈ Eα s.t. c ≥ x for all x ∈ Eα. Note that c ∈ (x1, x2), so f(x) ≤ f(c)

for x ∈ (c, x2). Suppose not, then there exists x0 s.t. f(x0) > f(c) and x0 ∈ (c, x2). Note that

f(c) > f(x2), so by intermediate value theorem, there exists d ∈ (x0, x2) s.t. f(d) = α. Then

d ∈ Eα and d > c leads to a contradiction. Thus, we have D+f(c) = limx→c+
f(x)−f(c)

x−c ≤ 0.

This contradicts D+f(c) > 0 and so we can conclude that f(x) must be increasing on (a, b).

Since f(x) is continuous on [a, b], f(x) is also increasing on [a, b].

General case: D+f(x) ≥ 0 on (a, b). For any ϵ > 0, define fϵ(x) = f(x) + ϵx. It is easy to

see D+fϵ(x) = D+f(x) + ϵ > 0 given D+f(x) ≥ 0. Thus, by special case fϵ(x) is increasing



5.1 Differentiability of Monotone Functions

on [a, b], i.e., f(x1) + ϵx1 ≤ f(x2) + ϵx2 for all a ≤ x1 ≤ x2 ≤ b. Take ϵ → 0 on both sides,

f(x1) ≤ f(x2) for all a ≤ x1 ≤ x2 ≤ b, which means f(x) is increasing. □

Definition 5.2. Vitali Covering

♣

Let E ⊂ R and Γ be a set of intervals I in R. If for all x ∈ E and all ϵ > 0, we can find

I ∈ Γ and x ∈ I with 0 < |I| < ϵ, then Γ is called a Vitali covering of E.

Example 5.3 Let Q = {rn}∞n=1, Γ = {[rn − 1
k , rn + 1

k ] |n, k = 1, 2, . . .}. Then Γ is a Vitali

covering of Q.

Theorem 5.1. Vitali Covering Theorem

♡

Let E ⊂ R with m∗(E) < ∞ and Γ is a Vitali covering of E. Then for all ϵ > 0, there

exists a finite disjoint collection {In}Nn=1 of intervals in Γ s.t. m∗(E \
∪N

n=1 In) < ϵ.

Proof Notice that if we prove the desired result for the case when all intervals I ∈ Γ are closed,

we can easily prove the general case. If Γ is a Vitali covering ofE, we can define Γ̄ = {Ī | I ∈ Γ}
and Γ̄ is also a Vitali covering ofE because |Ī| = |I|. Then by closed interval case, for all ϵ > 0,

there exists {Īn}Nn=1 s.t. m∗(E \
∪N

n=1 Īn) < ϵ. Thus, {In}Nn=1 satisfiesm∗(E \
∪N

n=1 In) < ϵ.

This proves the general case. Thus, WLOG, we can assume all I ∈ Γ are closed.

Since m(E) < ∞, there exists open set G s.t. G ⊃ E and m(G) < ∞. Define

Γ1 = {I ∈ Γ | I ⊂ G}, then Γ1 ⊂ Γ is also a Vitali covering of E. To see this, for all x ∈ E,

consider for all ϵ > 0, there exists neighborhoodNϵ(x) of x with radius ϵ s.t. Nϵ(x) ⊂ G. Since

Γ is a Vitali covering, there exists I ∈ Γ s.t. |I| < ϵ
4 and x ∈ I . Notice that I ⊂ Nϵ(x), so

I ∈ Γ1. This shows for all ϵ > 0 and x ∈ E, we can find I ∈ Γ1 s.t. x ∈ I and 0 < |I| < ϵ.

Thus, Γ1 is indeed a Vitali covering of E and it suffices to choose the desired {In}Nn=1 from Γ1.

We choose {In}Nn=1 inductively. Choose I1 ∈ Γ1 arbitrarily. Forn ≥ 2, letΓn+1 = {I | I ∈
Γ1, I ∩ Ik = ∅ for k = 1, . . . , n}. If Γn+1 = ∅ (called “finite termination”), then denote the

current index n asN and claim that {In}Nn=1 satisfies the desired property. Actually, in this case

E ⊂
∪N

n=1 In, so m∗(E \
∪N

n=1 In) = 0. This is because if there exists x ∈ E \
∪N

n=1 In, then

we can find δ > 0 s.t. Nδ(x) ⊂ G \
∪N

n=1 In because In’s are closed and G \
∪N

n=1 In is open.

Then there exists I ∈ Γ1 s.t. |I| < δ
4 and I ⊂ Nδ(x). This shows I ∩ In = ∅ for n = 1, . . . , N ,

i.e., I ∈ Γn+1, which is a contradiction. If Γn+1 ̸= ∅, then let kn = supI∈Γn+1
|I|, and kn > 0.

There exists In+1 ∈ Γn+1 with |In+1| > 1
2kn, and we can continue to choose In+2 by the same

procedure.

IfΓn is noempty for alln ≥ 1, we will obtain a sequence of disjoint closed intervals {In}∞n=1.

Since In ⊂ G,
∑∞

n=1 |In| = m(
∪∞

n=1 In) ≤ m(G) <∞. Thus, for all ϵ > 0, we can findN s.t.∑∞
n=N+1 |In| <

ϵ
5 . We claim {I1, . . . , IN} is the desired collection, i.e.,m∗(E \

∪N
n=1 In) < ϵ.
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5.1 Differentiability of Monotone Functions

Let x ∈ E\
∪N

n=1 In, then by the same argument as the finite termination case, there exists I ∈ Γ1

s.t. x ∈ I and I∩In = ∅ for alln = 1, . . . , N . For alln ≥ 1, we have |I| ≤ kn < 2|In+1|. Since

|In| → 0 as n → ∞, kn → 0. We can always find the smallest N1 > N s.t. |I| > kN1 . This

shows |I| ≤ kN1−1 < 2|IN1 |. Note that |I| > kN1 but |I| ≤ kN1−1 implies that I ∩ IN1 ̸= ∅.

Since x ∈ I , the distance of x to the midpoint of In is at most |I| + 1
2 |IN1 | ≤ 5

2 |IN1 |. Let

JN1 be the interval with the same midpoint of IN1 but |JN1 | = 5|IN1 |, then x ∈ JN1 . Thus,

E \
∪N

n=1 In ⊂
∪∞

N+1 Jn and m∗(E \
∪N

n=1 In) ≤
∑∞

n=N+1 |Jn| = 5
∑∞

n=N+1 |In| < ϵ. □

Remark The theorem may not be true if m∗(E) = ∞. Consider

Γ = {[x− 1

n
, x+

1

n
] | ∀x ∈ R, ∀n ∈ N+}

is a Vitali covering of R. However, for any finitely many intervals {[x − 1
n , x + 1

n ]}
N
n=1,

m(R \
∪N

n=1[x− 1
n , x+ 1

n ]) = ∞.

Remark From the proof of this theorem, one can easily show there exists at most countable

disjoint intervals {In}∞n=1 ⊂ Γ ({In}Nn=1 for finite termination case) s.t. m∗(E \
∪∞

n=1 In) = 0

(m∗(E \
∪N

n=1 In) = 0 for finite termination case).

Remark Interestingly, the above remark is still true even if m∗(E) = ∞. We can define

Ek = {x ∈ E | k < |x| < k + 1} for all k ≥ 0, then E = (
∪∞

k=1Ek) ∪ Z with m(Z) = 0.

Define Γk = {I ∈ Γ | k < |x| < k + 1 for all x ∈ I}. We claim that Γk is a Vitalli covering of

Ek for all k ≥ 0. It can be verified by using exactly the same method as in the second paragraph

of proof of the theorem. Apply the theorem, there exists {Ikn}∞n=1 s.t. m∗(Ek \
∪∞

n=1 I
k
n) = 0

for all k ≥ 0. Notice that Ikn ∩ Ik′n′ = ∅ if (k, n) ̸= (k′, n′). Thus,

E \

( ∞∪
k=0

∞∪
n=1

Ikn

)
⊂

[ ∞∪
k=0

Ek \

( ∞∪
k=0

∞∪
n=1

Ikn

)]
∪ Z ⊂

∞∪
k=0

(
Ek \

∞∪
n=1

Ikn

)
∪ Z

By taking outer measure on both sides together with monotonicity and σ-subadditivity, we obtain

m∗(E \
∪∞

k=0

∪∞
n=1 I

k
n) ≤

∑∞
k=0m

∗(Ek \
∪∞

n=1 I
k
n) = 0.

Before we state and prove the main theorem in this section, there is one more crucial lemma

that will be very helpful for the proof of our main theorem.

Lemma 5.1

♡

Let F : [a, b] 7→ R be an increasing function defined on bounded interval [a, b]. For two

real numbers r < R, the set E = {x ∈ (a, b) |D−F (x) < r < R < D+F (x)} has

measure zero.

Proof Let m∗(E) = s. For any ϵ > 0, there exists open set O ⊃ E s.t. m(O) < s + ϵ. Let

x ∈ E. Then D−F (x) < r implies for all δ > 0, there exists 0 < h < δ s.t. F (x)−F (x−h)
h < r.

Collect all of such intervals [x − h, x] ⊂ O, we obtain a Vitali covering of E. By Vitali

covering theorem, there exists disjoint intervals I1, . . . , IN , where Ik = [xk − hk, xk] s.t.

m∗(E \
∪N

k=1 Ik) < ϵ. Denote Iok = (xk − hk, xk), then m∗(E \
∪N

k=1 I
o
k) < ϵ. Define
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5.1 Differentiability of Monotone Functions

A = E ∩ (
∪N

k=1 I
o
k), then m∗(A) > s− ϵ. Moreover, we have
N∑
k=1

(F (xk)− F (xk − hk)) < r
N∑
k=1

hk < rm(O) < r(s+ ϵ)

Let y ∈ A. Then D+F (y) > R implies there exists arbitrarily small k > 0 s.t. [y, y + k] ⊂ Ik

for some k and F (y+k)−F (y)
k > R. The collection of such intervals is a Vitali covering of A, so

by Vitali covering theorem again, there exists disjoint J1, . . . , JM with Jj = [yj , yj + kj ] s.t.

m∗(A \
∪M

j=1 Jj) < ϵ. It further implies m∗(A ∩ (
∪M

j=1 Jj)) > s− 2ϵ. Moreover,
M∑
j=1

(F (yj + kj)− F (yj)) > R

M∑
j=1

kj > R(s− 2ϵ)

Also, each Jj is contained in some In, so for each fixed n, by increasing property of F ,∑
j:Jj⊂In

(F (yj + kj)− F (yj)) ≤ F (xn)− F (xn − hn)

Sum both sides over n = 1, . . . , N ,
N∑

n=1

(F (xn)− F (xn − hn)) ≥
N∑

n=1

∑
j:Jj⊂In

(F (yj + kj)− F (yj))

=
M∑
j=1

(F (yj + kj)− F (yj)) > R(s− 2ϵ)

Thus, we have r(s + ϵ) > R(s − 2ϵ) for all ϵ > 0. Take ϵ → 0, we obtain rs ≥ Rs. Since

r < R, s = 0 and we are done. □

Theorem 5.2. Lebesgue’s Theorem

♡

Suppose real-valued function f(x) is increasing on [a, b]. Then f ′(x) exists a.e. in (a, b).

Moreover, f ′(x) is measurable, nonnegaitve, and the Lebesgue integral of f ′(x) satisfies∫ b

a
f ′(x) dx ≤ f(b)− f(a)

Proof Notice that

{x ∈ (a, b) |D−f(x) < D+f(x)} =
∪

r,R∈Q
{x ∈ (a, b) |D−f(x) < r < R < D+f(x)}

By Lemma 5.1, m({x ∈ (a, b) |D−f(x) < r < R < D+f(x)}) = 0 for all r,R ∈ Q, so

m({x ∈ (a, b) |D−f(x) < D+f(x)}) = 0, i.e., D−f(x) ≥ D+f(x) a.e. on (a, b). Now

consider function −f(−x), it is also increasing. Thus, we can apply the same argument on

g(x) = −f(−x) on (−b,−a) and obtain D−g(x) ≥ D+g(x) a.e. on (a, b). Notice that

D−g(x) = lim
y→x−

g(y)− g(x)

y − x
= lim

y→x−

f(−y)− f(−x)
−y − (−x)

= lim
(−y)→(−x)+

f(−y)− f(−x)
−y − (−x)

= lim
z→w+

f(z)− f(w)

z − w
= D+f(w)

Similarly, we can obtain D+g(x) = D−f(w), so D+f(w) ≥ D−f(w) for all w = −x where

x ∈ (−b,−a). Thus, D+f(x) ≥ D−f(x) for x ∈ (a, b). Note that D−f(x) ≥ D−f(x) and
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5.1 Differentiability of Monotone Functions

D+f(x) ≥ D+f(x) is always true by Exercise 5.1. Therefore, for almost all x ∈ (a, b),

D+f(x) ≥ D−f(x) ≥ D−f(x) ≥ D+f(x) ≥ D+f(x)

which impliesD+f(x) = D−f(x) = D−f(x) = D+f(x) a.e. on (a, b). Then we can conclude

f ′(x) = limh→0
f(x+h)−f(x)

h exists (possibly infinity) a.e. on (a, b). Define f(x) = f(b) for all

x ≥ b. Let gn(x) = n(f(x + 1
n) − f(x)), then gn(x) is measurable, nonnegative on [a, b] and

gn(x) → g(x) a.e. on (a, b). This shows f ′(x) ≥ 0 is measurable. By Fatou’s lemma,∫ b

a
f ′(x) dx ≤ lim

n→∞

∫ b

a
gn(x) dx = lim

n→∞
n

∫ b

a

[
f

(
x+

1

n

)
− f(x)

]
dx

(1)
= lim

n→∞
n

(∫ b+ 1
n

a+ 1
n

f(x) dx−
∫ b

a
f(x) dx

)

= lim
n→∞

n

(∫ b+ 1
n

b
f(x) dx−

∫ a+ 1
n

a
f(x) dx

)

≤ lim
n→∞

n

(
f(b)

n
− f(a)

n

)
= f(b)− f(a)

Since f(a) and f(b) are both real value and f(x) is increasing on [a, b], f(x) is bounded on

[a, b]. Since [a, b] is also bounded interval, f ∈ L1(a, b). Thus, (1) follows from change of

variable of integrable function (see Problem Set 3.3, Question 3.). The above inequality shows

f ′(x) ∈ L1(a, b), so f ′(x) is finite a.e. on (a, b). Thus, f(x) is differentiable a.e. on (a, b). □

Theorem 5.3. Fubini’s Theorem on Differentiation

♡

Suppose fn(x) is increasing on [a, b] for all n ≥ 1 and S(x) ≜
∑∞

n=1 fn(x) is convergent

for all x ∈ [a, b]. Then S(x) is differentiable a.e. on (a, b),
∑∞

n=1 f
′
n(x) is convergent

a.e. on (a, b), and S′(x) =
∑∞

n=1 f
′
n(x) a.e. on (a, b).

Proof Let SN (x) =
∑N

n=1 fn(x) and RN (x) =
∑∞

n=N+1 fn(x) for all N ≥ 1. Then S(x),

SN (x), andRN (x) are all increasing on [a, b] and hence differentiable a.e. on (a, b) by Lebesgue’s

Theorem (Theorem 5.2). Thus, there existsA ⊂ (a, b) withm((a, b)\A) = 0 and S(x), SN (x),

and RN (x) are all differentiable at every x ∈ A for all N ≥ 1. From Lebesgue’s Theorem, we

also know R′
N (x) ≥ 0 on A. Also, S′(x) = S′

N (x) + R′
N (x) ≥ S′

N (x) =
∑N

n=1 f
′
n(x) ≥ 0

on A, where the last equality is because each fn(x) = Sn(x) − Sn−1(x) (Define S0(x) = 0)

is differentiable on A. Also, f ′n(x) ≥ 0 for all n ≥ 1 on A. Since S′(x) is finite and∑N
n=1 f

′
n(x) ≤ S′(x) for allN ≥ 1, takeN → ∞,

∑N
n=1 f

′
n(x) converges to

∑∞
n=1 f

′
n(x) <∞

for each fixed x ∈ A. Thus,
∑∞

n=1 f
′
n(x) is convergent a.e. on (a, b).

Now it remains to show S′(x) =
∑∞

n=1 f
′
n(x) a.e. on (a, b). It suffices to showR′

N (x) → 0

as N → ∞ a.e. on (a, b). Notice that R′
N (x) = R′

N+1(x) + f ′N+1(x) ≥ R′
N+1(x), so R′

N (x)

is decreasing in N for any fixed x ∈ A. Thus, R′
N (x) is convergent because it is bounded

below by zero. Now we only need to show there exists a subsequence R′
Ni
(x) → 0 as i → ∞

a.e. on (a, b). Since
∑∞

n=1 fn(b) and
∑∞

n=1 fn(b) converges, RN (b) → 0 and RN (a) → 0 as

N → ∞. This also shows RN (b) − RN (a) → 0 as N → ∞. Take subsequence Ni → ∞ as
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i → ∞ s.t. 0 ≤ RNi(b) − RNi(a) <
1
2i

. Since fn(x) is an increasing function for all n ≥ 1,

0 ≤ RNi(x) − RNi(a) <
1
2i

for all x ∈ [a, b]. This implies R(x) ≜
∑∞

i=1(RNi(x) − RNi(a))

converges.

It is easy to seeR(x) is increasing on [a, b], so by Lebesgue’s Theorem,R(x) is differentiable

a.e. on (a, b) and R′(x) ≥ 0. There exists B ⊂ (a, b) s.t. m((a, b) \ B) = 0 and R(x) is

differentiable at every point in B. Also, define UM (x) =
∑M

i=1(RNi(x) − RNi(a)) and

VM (x) =
∑∞

i=M+1(RNi(x)−RNi(a)), then UM (x) is differentiable at all x ∈ A for allM ≥ 1

and hence VM (x) = R(x)− UM (x) is differentiable at all x ∈ A ∩B for all M ≥ 1. Thus, on

A ∩ B, R′(x) = U ′
M (x) + V ′

M (x) ≥ U ′
M (x) =

∑M
i=1R

′
Ni
(x) ≥ 0. Take M → ∞, we have

R′(x) ≥
∑∞

i=1R
′
Ni
(x). Since R′(x) is finite,

∑∞
i=1R

′
Ni
(x) <∞, and thus R′

Ni
(x) → 0 for all

x ∈ A ∩B. Notice that m((a, b) \ (A ∩B)) = 0, so R′
Ni
(x) → 0 a.e. on (a, b). □

K Problem Set 5.1 k

1. Let f(x) be increasing on [a, b]. Prove that the set of discontinuous points of f is at most

countable.

2. Let f(x) = x sin 1
x for x ̸= 0 and f(x) = 0 for x = 0. Find Dini’s derivative D±f(0)

and D±f(0).

3. Let f(x) be real-valued on (a, b). Define E = {x ∈ (a, b) |D+f(x) < D−f(x)}. Prove

that E is at most countable.

4. Let f(x) be increasing on (a, b). Let E ⊂ (a, b) s.t. E ∈ M and for all ϵ > 0, there exists

open G ⊂ (a, b), G ⊃ E s.t.
∑

i(f(bi) − f(ai)) < ϵ, where G =
∪

i(ai, bi). Prove that

f ′(x) = 0 for a.e. x ∈ E.

5. Suppose f(x) is continuous on I . Prove that it is impossible thatD+f(x) > c > D−f(x)

for all x ∈ I , where c is a constant and I is an interval.

6. Find a function f(x) that is strictly increasing on R, discontinuous at and only at every

q ∈ Q, and f ′(x) = 0 a.e. on R.

5.2 Function of Bounded Variations

Definition 5.3. Total Variation

♣

Suppose f(x) is defined on [a, b] and it is real-valued. Let ∆ be a partition of [a, b],

i.e., ∆ = {a = x0, x1, . . . , xn−1, xn = b}. Define v∆ =
∑n

i=1 |f(xi) − f(xi−1)| and

V b
a (f) = sup{v∆ |∆ is a partition of [a, b]}. We call V b

a (f) the total variation of f over

[a, b].

Recall our definition of positive part and negative part of any real numbers, i.e., for all

t ∈ R, t+ = max{0, t} ≥ 0 and t− = min{0, t} ≤ 0. Also, t = t+ + t− and |t| = t+ − t−.
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5.2 Function of Bounded Variations

Thus, we can define positive variation and negative variation respectively as follows:

Definition 5.4. Positive & Negative Variation

♣

Suppose f(x) is defined on [a, b] and it is real-valued. Let ∆ be a partition of [a, b].

Define p∆ =
∑n

i=1(f(xi)−f(xi−1))
+ and P b

a(f) = sup{p∆ |∆ is a partition of [a, b]}.

Then we call P b
a(f) the positive variation of f over [a, b]. Similarly, we can define

n∆ = −
∑n

i=1(f(xi)−f(xi−1))
− andN b

a(f) = sup{n∆ |∆ is a partition of [a, b]}. We

call N b
a(f) the negative variation of f over [a, b].

Definition 5.5. Functions of Bounded Variation

♣

Suppose f(x) is defined on [a, b] and it is real-valued. If the total variation of f is

finite, i.e., V b
a (f) < ∞, then we say f has bounded variation on [a, b] and denote it as

f ∈ BV([a, b]).

Example 5.4 Suppose f is monotone on [a, b], then V b
a (f) = |f(b)− f(a)|.

Example 5.5 Suppose f is continuous on [a, b] and differentiable on (a, b) with |f ′(x)| ≤ M

for some constant M > 0, then f ∈ BV([a, b]).

Proof Take any partition ∆ of [a, b], we have v∆ =
∑n

i=1 |f(xi) − f(xi−1)|. By mean value

theorem on [xi−1, xi], there exists ci ∈ (xi−1, xi) s.t. f(xi) − f(xi−1) = f ′(ci)(xi − xi−1).

Thus, we have v∆ =
∑n

i=1 |f ′(ci)||xi − xi−1| ≤ M
∑n

i=1 |xi − xi−1| = M(b − a). This

shows for all ∆, v∆ ≤ M(b − a), so by taking supremum over all ∆ on both sides, we have

V b
a (f) ≤M(b− a) <∞. Therefore, f ∈ BV([a, b]). □

Example 5.6 Let f(x) = xα sin 1
x for x ∈ (0, 1] and f(0) = 0, where α > 0 is a constant.

It is easy to see f(x) is continuous on [0, 1]. Discuss on [0, 1], for which value of α, we have

f ∈ BV([0, 1]).

Proof Case 1: α ≥ 2. Compute |f ′(x)| = |αxα−1 sin 1
x + xα−2 cos 1

x | ≤ α + 1. Since f(x)

is continuous on [0, 1] and differentiable on (0, 1) with |f ′(x)| ≤ α + 1 for all x ∈ (0, 1), by

Example 5.5, f ∈ BV([0, 1]).

Case 2: α ∈ (0, 1]. For all m ≥ 2, define partition ∆m = {0, 2
(2m+1)π ,

2
(2m−1)π , . . . ,

2
3π , 1}.

Note that |f( 2
(2m+1)π )− f( 2

(2m−1)π )| =
2α

(2m+1)απα + 2α

(2m−1)απα for all m ≥ 2. Thus,

v∆m =
m∑
k=0

|f(xk+1)− f(xk)| ≥
2α

πα

m∑
k=1

1

(2k + 1)α

Since α ∈ (0, 1], the series diverges by comparing it with harmonic series. Thus, v∆m → ∞ as

m→ ∞, so V 1
0 (f) = ∞ and f is not of bounded variation.

Case 3: α ∈ (1, 2). In this case, the first term of f ′(x), namely, αxα−1 sin 1
x is bounded

on [0, 1]. We focus on the second term, i.e., xα−2 cos 1
x . When x → 0, this term can be
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5.2 Function of Bounded Variations

arbitrarily large. However, we can check the improper integral of it is absolutely convergent,

i.e., (I)
∫ 1
0 |xα−2 cos 1

x | dx ≤ (I)
∫ 1
0 x

α−2 dx = limn→∞(R)
∫ 1
1/n x

α−2 dx = 1
α−1 < ∞,

where the last equality is by using Fundamental Theorem of Calculus for Riemann inte-

gral. Knowing this, it is not hard to show (I)
∫ 1
0 |f ′(x)| dx < ∞. Notice that for any

partition ∆ = {0 = x0, x1, . . . , xn = 1}, for all i ≥ 2, f ′(x) is bounded continuous on

[xi−1, xi], hence Riemann integrable, so Fundamental Theorem of Calculus for Riemann in-

tegral implies |f(xi) − f(xi−1)| = (R)|
∫ xi

xi−1
f ′(t) dt| ≤ (R)

∫ xi

xi−1
|f ′(t)| dt. In addition,

f(x1) − f(x0) = limn→∞[f(x1) − f(x0 +
1
n)] = limn→∞(R)

∫ x1

1/n f
′(t) dt. Therefore, we

have v∆ ≤ limn→∞(R)
∫ 1
1/n |f

′(t)| dt = (I)
∫ 1
0 |f ′(t)| dt. Take supremum over all ∆, and we

obtain V 1
0 (f) ≤ (I)

∫ 1
0 |f ′(t)| dt <∞, so f ∈ BV([0, 1]). □

� Exercise 5.2 If f ∈ BV([a, b]), then f is bounded on [a, b].

Proof For allx ∈ [a, b], let∆x = {a, x, b}. Since v∆x = |f(x)−f(a)|+|f(b)−f(x)| ≤ V b
a (f)

for all x ∈ [a, b], by triangular inequality, |f(x)| − |f(a)| + |f(x)| − |f(b)| ≤ V b
a (f). This

impiles that |f(x)| ≤ 1
2(V

b
a (f) + |f(a)| + |f(b)|) ≜ M . Since f ∈ BV([a, b]), M is a finite

number, and this shows f is bounded by M on [a, b]. □

� Exercise 5.3 If f, g ∈ BV([a, b]), then c1f + c2g ∈ BV([a, b]) for any constants c1, c2 and

f · g ∈ BV([a, b]). Moreover, if |g(x)| ≥ c for constant c > 0 on [a, b], then f
g ∈ BV([a, b]).

Proof First we prove c1f + c2g ∈ BV([a, b]). For any partition ∆, consider

v∆(c1f + c2g) =
n∑

i=1

|c1f(xi) + c2g(xi)− c1f(xi−1)− c2g(xi−1)|

≤
n∑

i=1

|c1||f(xi)− f(xi−1)|+
n∑

i=1

|c2||g(xi)− g(xi−1)|

= |c1|v∆(f) + |c2|v∆(g) ≤ |c1|V b
a (f) + |c2|V b

a (g)

Take supremum over all partition ∆, we have V b
a (c1f + c2g) ≤ |c1|V b

a (f) + |c2|V b
a (g) < ∞,

and this shows c1f + c2g ∈ BV([a, b]).

Next we prove f · g ∈ BV([a, b]). For any partition ∆, consider

v∆(fg) =
n∑

i=1

|f(xi)g(xi)− f(xi−1)g(xi−1)|

=
n∑

i=1

|f(xi)g(xi)− f(xi)g(xi−1) + f(xi)g(xi−1)− f(xi−1)g(xi−1)|

≤
n∑

i=1

|f(xi)||g(xi)− g(xi−1)|+
n∑

i=1

|g(xi−1)||f(xi)− f(xi−1)|

By Exercise 5.2, |f(x)| ≤M and |g(x)| ≤ N on [a, b] for some constant M,N > 0.

v∆(fg) ≤M

n∑
i=1

|g(xi)− g(xi−1)|+N

n∑
i=1

|f(xi)− f(xi−1)| ≤MV b
a (g) +NV b

a (f)

Take supremum over all partition ∆, we have V b
a (fg) ≤ MV b

a (g) + NV b
a (f) < ∞, and this
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5.2 Function of Bounded Variations

shows fg ∈ BV([a, b]).

Finally, we prove f(x)
g(x) ∈ BV([a, b]) when g(x) is bounded away from zero. By product

case, it suffices to show 1
g ∈ BV([a, b]). For any partition ∆, consider

v∆

(
1

g

)
=

n∑
i=1

∣∣∣∣ 1

g(xi)
− 1

g(xi−1)

∣∣∣∣ = n∑
i=1

|g(xi)− g(xi−1)|
|g(xi)g(xi−1)|

≤ 1

c2
v∆(g) ≤

V b
a (g)

c2
<∞

Thus, 1
g ∈ BV([a, b]) and it further implies f

g ∈ BV([a, b]) by the previous conclusion. □

� Exercise 5.4 If f ∈ BV([a, b]), V b
a (f) = P b

a(f) +N b
a(f) and f(b)− f(a) = P b

a(f)−N b
a(f).

Proof By definition, for any partition ∆, we have

p∆ − n∆ =

n∑
i=1

(f(xi)− f(xi−1))
+ +

n∑
i=1

(f(xi)− f(xi−1))
−

=

n∑
i=1

(f(xi)− f(xi−1)) = f(b)− f(a)

Thus, p∆ = n∆ + f(b) − f(a). Take supremum over ∆ on both sides, it is easy to see

P b
a(f) = N b

a(f) + f(b)− f(a). Since it is easy to see n∆ ≤ v∆, N b
a(f) ≤ V b

a (f) <∞. Thus,

by subtractingN b
a(f) on both sides, we obtain P b

a(f)−N b
a(f) = f(b)−f(a). To prove the other

equality, consider v∆ = p∆+n∆ = 2n∆+f(b)−f(a). Take supremum over all∆ on both sides,

we have V b
a (f) = 2N b

a(f)+f(b)−f(a). Since we have proved P b
a(f)−N b

a(f) = f(b)−f(a),
by eliminating f(b)− f(a), we have V b

a (f) = P b
a(f) +N b

a(f). □

� Exercise 5.5 The functions V x
a (f), P x

a (f) and Nx
a (f) are all increasing in x on [a, b].

Proof Consider a ≤ x1 < x2 ≤ b, for any partition ∆x1 of [a, x1], there is a partition ∆x2 of

[a, x2] satisfying ∆x2 = ∆x1 ∪ {x2}. Notice that

v∆x1
≤ v∆x1

+ |f(x2)− f(x1)| = v∆x2
≤ V x2

a (f)

so by taking supremum over all ∆x1 , we have V x1
a (f) ≤ V x2

a (f). Thus, V x
a (f) is increasing on

[a, b]. The other two can be proved in exactly the same way, so we omit the proof. □

Theorem 5.4. Jordan Decomposition for BV Function

♡

A function f ∈ BV([a, b]) if and only if f = g − h where g and h are real-valued

increasing functions on [a, b].

Proof First we prove the “If” part. Since g, h are increasing on [a, b], by Example 5.4,

g, h ∈ BV([a, b]). By Exercise 5.3, f = g − h ∈ BV([a, b]). Then we prove the “only if” part.

Since f ∈ BV([a, b]), by Exercise 5.5, for all x ∈ [a, b], f ∈ BV([a, x]). Thus, by Exercise 5.4,

f(x) = f(a)+P x
a (f)−Nx

a (f). By Exercise 5.5, P x
a (f) andNx

a (f) are increasing on [a, b]. Let

g(x) = f(a) + P x
a (f) and h(x) = Nx

a (f), then f(x) = g(x)− h(x) where g, h are increasing

functions on [a, b]. Since P x
a (f) is increasing, 0 ≤ P x

a (f) ≤ P b
a(f). Note that N b

a(f) ≥ 0,

together with V b
a (f) = P b

a(f) +N b
a(f), we have P b

a(f) ≤ V b
a (f) < ∞, so g(x) is real-valued
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5.2 Function of Bounded Variations

on [a, b]. Similarly, we can prove h(x) is real-valued on [a, b]. □

Corollary 5.1

♡If f ∈ BV([a, b]), then f is differentiable a.e. on [a, b].

Proof The proof follows directly from Jordan decomposition for function of bounded variations

and Lebesgue’s theorem for the differentiability of monotone functions. □

Theorem 5.5

♡

Suppose f ∈ L1(a, b). Define indefinite integral F (x) =
∫ x
a f(t) dt for x ∈ [a, b]. Then

(i) F is continuous on [a, b].

(ii) F ∈ BV([a, b]) and V b
a (F ) =

∫ b
a |f(x)| dx.

Proof We prove the above two parts separately:

(i) Fix x0 ∈ [a, b]. LetA = [x0, x] or [x, x0], thenm(A) → 0 as x→ x0. Since f ∈ L1(a, b),

|F (x) − F (x0)| = |
∫
A f(t) dts| → 0 as m(A) → 0 by Problem Set 3.4, Question 8..

Thus, we obtain |F (x)− F (x0)| → 0 as x→ x0. This shows F (x) is continuous at x0.

(ii) For any partition ∆ = {a = x0, . . . , xn−1, xn = b}, compute

v∆(F ) =

n∑
i=1

|F (xi)− F (xi−1)| ≤
n∑

i=1

∫ xi

xi−1

|f(x)| dx =

∫ b

a
|f(x)| dx <∞

where the first inequality is due to Exercise 3.16. Take supremum over all ∆, we have

V b
a (F ) ≤

∫ b
a |f(x)| dx. It remains to show V b

a (F ) ≥
∫ b
a |f(x)| dx.

Let E+ = {x ∈ (a, b) | f(x) > 0} and E− = {x ∈ (a, b) | f(x) < 0}. We define

I(x) = IE+(x) − IE−(x), then I(x)f(x) = |f(x)| on (a, b). By Theorem 4.8, there

exists sequence of step functions S+
n (x) → IE+(x) in L1(a, b) as n → ∞. According

to the proof of Theorem 4.8, we can assume S+
n (x) only take value 1 or 0 on (a, b).

Similarly, there exists sequence of step functions S−
n (x) → IE−(x) in L1(a, b), where

S−
n (x) = 0 or 1 on (a, b). Let Sn(x) = S+

n (x)−S−
n (x). Then Sn(x) is a step function and

Sn(x) ∈ {1, 0,−1} on (a, b). Furthermore, it is easy to show by Minkowski inequality that

Sn(x) → I(x) in L1(a, b). Thus, by Theorem 3.7, Sn(x) → I(x) in measure and so there

exists a subsequenceSnp → I(x) a.e. on (a, b). Since f ∈ L1(a, b), by Exercise 3.11, f(x)

is finite a.e. on (a, b). This shows for almost all fixed x ∈ (a, b), Snp(x)f(x) → I(x)f(x)

as p → ∞, so Snp(x)f(x) → I(x)f(x) a.e. on (a, b). Note that |Snp(x)f(x)| ≤ |f(x)|
where f ∈ L1(a, b), so by DCT,

∫ b
a Snp(x)f(x) dx →

∫ b
a I(x)f(x) dx =

∫ b
a |f(x)| dx.

Also, we can assume Sn(x) =
∑kn

j=1 cn,jIRn,j (x) where Rn,j’s are disjoint intervals and

cn,j ∈ {0,±1} for each fixed n. Notice that∫ b

a
Sn(x)f(x) dx =

kn∑
j=1

∫ b

a
cn,jIRn,j (x)f(x) dx ≤

kn∑
j=1

∣∣∣∣∣
∫
Rn,j

f(x) dx

∣∣∣∣∣
Define partition ∆ of [a, b] as the collection of two end points of each interval Rn,j , then

99



5.3 Fundamental Theorem of Calculus and Absolutely Continuous Function

by definition of F (x), for each n,∫ b

a
Sn(x)f(x) dx =

kn∑
j=1

|F (Rr
n,j)− F (Rl

n,j)| ≤ v∆(F ) ≤ V b
a (F )

Thus by considering n = np and taking p→ ∞,
∫ b
a |f(x)| dx ≤ V b

a (F ). Combined with

the previous result, V b
a (F ) =

∫ b
a |f(x)| dx and F ∈ BV([a, b]) because f ∈ L1(a, b).

□

K Problem Set 5.2 k

1. Let ∆0 = {a = x0, x1, x2, x3, b = x4}. Then if a continuous function f(x) defined

on [a, b] is increasing on [a, x1] and [x2, x3], decreasing on [x1, x2] and [x3, b], then

V b
a (f) = v∆0 .

2. Observe that v∆ ≤ v∆1 if ∆1 is a finer partition of [a, b] than ∆. Use this observation to

prove if f is real-valued on [a, b] and c ∈ (a, b), then V b
a (f) = V c

a (f) + V b
c (f).

3. Find V 2π
0 (sin 2x) by using Question 2. in this Problem Set.

4. Let fk(x) ∈ BV([a, b]) for all k ≥ 1. Suppose V b
a (fk) ≤ M for all k ≥ 1, and fk → f

pointwise on [a, b] as k → ∞. Prove f ∈ BV([a, b]) and V b
a (f) ≤M .

5. Denote γ : [0, 1] 7→ C by γ(t) = x(t) + iy(t), where x(t) and y(t) are real-valued

continuous functions on [0, 1]. A curve γ is rectifiable if V 1
0 (γ) < ∞. In this case,

the length of γ is defined to be V 1
0 (γ). Prove that if x(t) and y(t) are continuously

differentiable on [0, 1], then V 1
0 (γ) =

∫ 1
0

√
(x′(t))2 + (y′(t))2 dt.

6. Suppose f ∈ BV([0, 1]). Define F (x) = 1
x

∫ x
0 f(t) dt for x ∈ (0, 1] and F (0) = 2020.

Prove that F ∈ BV([0, 1]) and limx→0+ F (x) exists as a finite number.

7. Let f(x) be real-valued on [a, b], satisfying that for all ϵ > 0, V b
a+ϵ(f) ≤M , where M is

a constant. Prove that f ∈ BV([a, b]).

5.3 Fundamental Theorem of Calculus and Absolutely Continuous
Function

In this section, we are going to derive a sufficient and necessary condition for Fundamental

Theorem of Calculus (FTC) for Lebesgue integrable function. This is a huge extension for the

basic FTC for Riemann integral that you should learn in any basic calculus course. FTC for

Lebesgue integral consists of two parts. The first part is relatively easier and only requires the

following lemma as an extra prerequisite:

Lemma 5.2

♡
If f ∈ L1(a, b) and

∫ x
a f(t) dt = 0 for all x ∈ [a, b], then f(x) = 0 a.e. on (a, b).

Proof Let I be an interval s.t. I ⊂ [a, b], then
∫
I f(x) dx = 0 by using the assumption. Recall

Problem 1.1, for any open G ⊂ [a, b], we can write G =
∪∞

k=1 Ik, where Ik’s are disjoint open
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5.3 Fundamental Theorem of Calculus and Absolutely Continuous Function

intervals. Thus, by Problem Set 3.4, Question 4.,
∫
G f(x) dx =

∑∞
k=1

∫
Ik
f(x) dx = 0. Let

E+ = {x ∈ (a, b) | f(x) > 0} and E− = {x ∈ (a, b) | f(x) < 0}.

We want to show m(E±) = 0. Suppose m(E+) > 0. Since for all δ > 0, there exists

closed F ⊂ E+ s.t. m(E+ \ F ) < δ. Take δ = m(E+)
100 , we have m(E+) − m(F ) < δ, so

m(F ) > 99
100m(E+) > 0. However, since (a, b) \ F is open,

0 =

∫ b

a
f(x) dx =

∫
F
f(x) dx+

∫
(a,b)\F

f(x) dx =

∫
F
f(x) dx

This shows
∫
F f(x) dx = 0. Notice that f(x) > 0 on F with m(F ) > 0, by using Problem

Set 3.1, Question 2., we obtain a contradiction. Therefore, m(E+) = 0. Similarly, we can show

m(E−) = 0. This shows that f(x) = 0 a.e. on (a, b). □

Theorem 5.6. Fundamental Theorem of Calculus I (FTC-I)

♡

Suppose f ∈ L1(a, b) and define F (x) ≜
∫ x
a f(t) dt, then F ′(x) exists and F ′(x) = f(x)

a.e. on (a, b).

Proof Special case: Assume f is bounded, i.e., |f(x)| ≤ C for all x ∈ [a, b]. WLOG, define

f(x) = f(b) for all x > b. Define Fn(x) = n(F (x + 1
n) − F (x)) for all x ∈ [a, b], then

Fn(x) = n
∫ x+ 1

n
x f(t) dt. By Theorem 5.5, each Fn(x) and F (x) are continuous with bounded

variation on [a, b]. By Corollary 5.1, F (x) is differentiable a.e. on (a, b), so F ′(x) exists a.e.

on (a, b). By definition, Fn(x) → F ′(x) a.e. on (a, b). Note that |Fn(x)| ≤ C on [a, b] for all

n ≥ 1, so for each c ∈ [a, b], by DCT,∫ c

a
F ′(x) dx = lim

n→∞

∫ c

a
Fn(x) dx = lim

n→∞
n

∫ c

a

[
F

(
x+

1

n

)
− F (x)

]
dx

(⋆)
= lim

n→∞
n

[∫ c+ 1
n

a+ 1
n

F (x) dx−
∫ c

a
F (x) dx

]

= lim
n→∞

n

[∫ c+ 1
n

c
F (x) dx−

∫ a+ 1
n

a
F (x) dx

]

= F (c)− F (a) = F (c) =

∫ c

a
f(x) dx

where (⋆) is due to change of variable for Riemann-integral (we can regard it as Riemann-integral

because F (x) is continuous and [a, b] is bounded).

We tend to conclude that
∫ c
a (F

′(x) − f(x)) dx = 0 for all c ∈ [a, b] by using Exercise

3.12 but it requires us to show F ′ ∈ L1(a, b). Since F ∈ BV([a, b]), by Jordan Decomposition,

F = g−h where g and h are increasing on [a, b] and F ′ = g′−h′ a.e. on (a, b). By Lebesgue’s

Theorem,
∫ b
a g

′(x) dx ≤ g(b) − g(a) < ∞, so g′ ∈ L1(a, b). Similarly, h′ ∈ L1(a, b), so

F ′ ∈ L1(a, b). Therefore, we can conclude
∫ c
a (F

′(x) − f(x)) dx = 0 for all c ∈ [a, b]. By

Lemma 5.2 we just proved, F ′(x) = f(x) a.e. on (a, b).

General case: Assume f ∈ L1(a, b) only. Consider f+ ∈ L1(a, b) and −f− ∈ L1(a, b), we
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5.3 Fundamental Theorem of Calculus and Absolutely Continuous Function

can write F (x) =
∫ x
a f

+(t) dt −
∫ x
a (−f

−(t)) dt. Thus, if we can prove the desired result

for nonnegative f ∈ L1(a, b), then we can prove the most general case easily. Now assume

f ∈ L1(a, b) is nonnegative on [a, b]. Define

fn(x) =

f(x) if f(x) ≤ n

n if f(x) > n

then fn(x) ≤ f(x) is nonnegative, measurable and bounded. Since f(x) ≥ 0, F (x) is increasing

on [a, b]. By Lebesgue’s Theorem, for all c ∈ [a, b],
∫ c
a F

′(x) dx ≤ F (c)−F (a) =
∫ c
a f(x) dx.

Similar to the argument in special case, we have
∫ c
a (F

′(x) − f(x)) dx ≤ 0 for all c ∈ [a, b].

Now it suffices to show F ′(x) − f(x) ≥ 0 a.e. on (a, b). Let Fn(x) =
∫ x
a fn(t) dt, then by

special case, F ′
n(x) exists and F ′

n(x) = fn(x) a.e. on (a, b). Finally, notice that F (x)− Fn(x)

is increasing on [a, b] because F (x) − Fn(x) =
∫ x
a (f(t) − fn(t)) dt and the integrand is

nonnegative. Thus, by Lebesgue’s Theorem, it is differentiable and its derivative is nonnegative

a.e. on (a, b), i.e., (F (x) − Fn(x))
′ = F ′(x) − F ′

n(x) = F ′(x) − fn(x) ≥ 0 a.e. on (a, b).

Since fn(x) → f(x) a.e. on (a, b), by taking n → ∞, F ′(x) − f(x) ≥ 0 a.e. on (a, b).

This shows
∫ c
a (F

′(x) − f(x)) dx ≥ 0. Combined with the previous result, we actually have∫ c
a (F

′(x)− f(x)) dx = 0 for all c ∈ [a, b]. By Lemma 5.2, F ′(x) = f(x) a.e. on (a, b). □

Having FTC-I, we can prove the 1-dimensional version of the well-known Lebesgue’s

Differentiation Theorem easily. You will learn the general version of it in Harmonic Analysis.

Theorem 5.7. Lebesgue’s Differentiation Theorem

♡

Suppose f ∈ L1(a, b), where (a, b) may be unbounded, e.g. R. We have

1. For almost all x ∈ (a, b), limh→0+
1

|Bh(x)|
∫
Bh(x)

f(y) dy = f(x).

2. Furthermore, limh→0+
1

|Bh(x)|
∫
Bh(x)

|f(y)− f(x)| dy = 0 a.e. on (a, b).

where Bh(x) is the open ball centered at x with radius h.

Proof
1. Define Ek = (a, b) ∩ {x ∈ R | k ≤ x < k + 1} for all k ∈ Z. Notice that each Ek is a

bounded interval, so we denote the two end points of Ek as ak, bk (ak ≤ bk). If ak = bk,

then ignore such Ek. Let Fk(x) =
∫ x
ak
f(t) dt, since Fk ∈ L1(ak, bk), by FTC-I on

(ak, bk), for almost all x ∈ (ak, bk),

lim
h→0+

1

|Bh(x)|

∫
Bh(x)

f(y) dy = lim
h→0+

Fk(x+ h)− Fk(x− h)

2h

=
1

2
lim

h→0+

[
Fk(x+ h)− Fk(x)

h
+
Fk(x)− Fk(x− h)

h

]
=

1

2
(F ′

k(x) + F ′
k(x)) = F ′

k(x) = f(x)

Since the above result holds a.e. on each Ek and (a, b) =
∪∞

k=−∞Ek, the desired result

holds a.e. on (a, b).

2. For all fixed r ∈ Q, consider the function |f(x) − r|, it is in L1(a, b). Apply part 1 to
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|f(x)− r|, for almost all x ∈ (a, b),

lim
h→0+

1

|Bh(x)|

∫
Bh(x)

|f(y)− r| dy = |f(x)− r| (⋆)

Thus, there exists Er ⊂ (a, b) s.t. m(Er) = 0 and (⋆) holds for all x ∈ (a, b) \ Er. Let

E =
∪

r∈QEr, then it is easy to showm(E) = 0 and for all x ∈ (a, b) \E and r ∈ Q, (⋆)

holds. Now fix x ∈ (a, b) \E, for all ϵ > 0, pick rx ∈ Q s.t. |f(x)− rx| < ϵ, and we have
1

|Bh(x)|

∫
Bh(x)

|f(y)− f(x)| dy ≤ 1

|Bh(x)|

∫
Bh(x)

(|f(y)− rx|+ |rx − f(x)|) dy

≤ 1

|Bh(x)|

∫
Bh(x)

|f(y)− rx| dy + ϵ

Take limh→0+ on both sides,

lim
h→0+

1

|Bh(x)|

∫
Bh(x)

|f(y)− f(x)| dy ≤ |f(x)− rx|+ ϵ < 2ϵ

Take ϵ→ 0, we obtain the desired result for all x ∈ (a, b) \ E, hence a.e. on (a, b).

□

The following theorem is a special case of 1-dimensional Lebesgue’s Differentiation Theo-

rem. It tells us that for any measurable set E, almost all points in E is has “density” 1, and the

set of points on the boundary of E, which has density less than 1, can be ignored.

Theorem 5.8. Lebesgue’s Density Theorem

♡

Suppose E ⊂ R, E ∈ M. Then

lim
h→0+

m(E ∩Bh(x))

m(Bh(x))
=

1 for almost all x ∈ E

0 for almost all x ∈ Ec

where Bh(x) is the open ball centered at x with radius h.

Proof For any x ∈ R, we can write
m(E ∩Bh(x))

m(Bh(x))
=

1

|Bh(x)|

∫
Bh(x)

IE(y) dy

Similar to the proof of Lebesgue’s Differentiation Theorem, we can define Ek = E ∩ [k, k + 1)

for all k ∈ Z. Notice that IEk
∈ L1(k, k + 1), so we can apply Lebesgue’s Differentiation

Theorem to conclude

lim
h→0+

m(E ∩Bh(x))

m(Bh(x))
= IE(x) (⋆)

for almost all x ∈ [k, k + 1). Since R =
∪∞

k=−∞[k, k + 1), (⋆) holds for almost all x ∈ R, and

this proves the desired results. □

Next we are going to derive the second part of FTC. However, before that, we will first

introduce an essential concept, that is, absolutely continuous function and derive some properties

of it. These results would be helpful for us to prove the second part of FTC.
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Definition 5.6

♣

Let f(x) be real-valued on [a, b]. The function f is absolutely continuous on [a, b]

if for all ϵ > 0, there exists δ > 0 s.t. for any finite collection of disjoint open in-

tervals (x1, y1), . . . , (xn, yn) contained in (a, b) satisfying
∑n

i=1(yi − xi) < δ, we have∑n
i=1 |f(yi)−f(xi)| < ϵ. In addition, denote f ∈ AC([a, b]) if and only if f is absolutely

continuous on [a, b].

Problem 5.1 If f ∈ AC([a, b]), then f is uniformly continuous on [a, b].

Problem 5.2 If f is Lipschitz continuous on [a, b], then f ∈ AC([a, b]).

� Exercise 5.6 If f ∈ AC([a, b]), and f ′(x) = 0 a.e. on [a, b], then f(x) = c on [a, b] for some

constant c.

Proof We prove by contradiction, and it suffices to show if f ′(x) = 0 a.e. on [a, b] and f

is not a constant, then there exists ϵ0 > 0 s.t. for all δ > 0, there exists a finite collection of

disjoint open intervals (x1, y1), . . . , (xn, yn) containted in (a, b) satisfying
∑n

i=1(yi − xi) < δ

and
∑n

i=1 |f(yi)− f(xi)| ≥ ϵ0.

Pick c ∈ (a, b] s.t. f(c) ̸= f(a). Let Ec = {x ∈ (a, c) | f ′(x) = 0}, then m(Ec) = c− a.

Fix r > 0, for all x ∈ Ec, since f ′(x) = 0, there exists small interval [x, x + hx] ⊂ (a, c) s.t.

|f(x+hx)− f(x)| < rhx, Now consider Γ = {[x, x+h] |x ∈ Ec, 0 < h ≤ hx}, we can easily

see it is a Vitali covering of Ec. By Vitali Covering Theorem, for all δ > 0, there exists a finite

collection of disjoint intervals {[xi, xi + hi]}mi=1 ⊂ Γ s.t. m(Ec \
∪m

i=1[xi, xi + hi]) < δ. This

implies m((a, c) \
∪m

i=1[xi, xi + hi]) < δ. Let x0 = a and xm+1 = c, then WLOG, assume

x0 < x1 < x1 + h1 < · · · < xm < xm + hm < xm+1. Let h0 = 0, then

|f(c)− f(a)| ≤
m∑
i=0

|f(xi+1)− f(xi + hi)|+
m∑
i=1

|f(xi + hi)− f(xi)|

≤
m∑
i=0

|f(xi+1)− f(xi + hi)|+ r

m∑
i=1

hi

≤
m∑
i=0

|f(xi+1)− f(xi + hi)|+ r(b− a)

Take ϵ0 = 1
2 |f(c) − f(a)| and r = ϵ0

b−a , we have
∑m

i=0 |f(xi+1) − f(xi + hi)| ≥ ϵ0. Now let

yi+1 = xi+1 and zi+1 = xi + hi for all i = 0, . . . ,m. It is easy to see {(zi, yi)}m+1
i=1 is a finite

collection of disjoint open intervals satisfying
∑m+1

i=1 (yi−zi) = m((a, c)\
∪m

i=1[xi, xi+hi]) < δ

and
∑m+1

i=1 |f(yi)− f(zi)| ≥ ϵ0, so the desired result holds. □
Remark This may be the most intuitive reason for introducing a new concept of absolutely

continuous function. Recall in Lebesgue’s Theorem, we have
∫ x
a f

′(t) dt ≤ f(b)− f(a). If the

equality holds, then we obtain FTC. However, the strict inequality may holds if f ′(x) = 0 a.e.
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on (a, b) cannot imply f(x) is a constant. Let f(x) be Cantor function, then f ′(x) = 0 a.e. on

(0, 1) but 0 =
∫ x
a f

′(t) dt < f(b) − f(a) = 1. Thus, FTC does not hold for Cantor function.

On the contrary, if we impose absolutely continuity, then such a strange case will be eliminated

(we will see this later).

� Exercise 5.7 Let f ∈ L1(a, b) and F (x) =
∫ x
a f(t) dt, then F ∈ AC([a, b]).

Proof Recall Problem Set 3.4, Question 8., for all ϵ > 0, there exists δ > 0 s.t. for any subset

e ⊂ (a, b) if m(e) < δ,
∫
e |f(x)| dx < ϵ. Now consider any finite collection of disjoint open

intervals {(xi, yi)}ni=1 contained in (a, b) satisfying
∑n

i=1(yi − xi) < δ, let e =
∪n

i=1(xi, yi),

then since m(e) =
∑n

i=1(yi − xi) < δ,
∫∪n

i=1(xi,yi)
|f(x)| dx < ϵ. Notice that

n∑
i=1

|F (yi)− F (xi)| =
n∑

i=1

∣∣∣∣∫ yi

xi

f(t) dt

∣∣∣∣ ≤ n∑
i=1

∫ yi

xi

|f(t)| dt =
∫
∪n

i=1(xi,yi)
|f(x)| dx < ϵ

Thus, F ∈ AC([a, b]). □

� Exercise 5.8 If f ∈ AC([a, b]) and g ∈ AC([a, b]), then c1f + c2g ∈ AC([a, b]), where c1, c2
are two constants. Furthermore, fg ∈ AC([a, b]).

Proof By assumption, for all ϵ > 0, there exists δ > 0 s.t. for any finite collection of disjoint open

intervals {(xi, yi)}ni=1 contained in (a, b), if
∑n

i=1(yi−xi) < δ, then
∑n

i=1 |f(yi)− f(xi)| < ϵ

and
∑n

i=1 |g(yi)− g(xi)| < ϵ. Let h = c1f + c2g, by triangular inequality,
n∑

i=1

|h(yi)− h(xi)| ≤ |c1|
n∑

i=1

|f(yi)− f(xi)|+ |c2|
n∑

i=1

|g(yi)− g(xi)| < (|c1|+ |c2|)ϵ

This implies that h ∈ AC([a, b]). Furthermore, by Problem 5.1, f and g are uniformly continuous

on [a, b], hence they are bounded on [a, b], i.e., |f(x)| ≤ M and |g(x)| ≤ N on [a, b] for some

constant M,N > 0. Let ϕ = fg, then
n∑

i=1

|ϕ(yi)− ϕ(xi)| ≤
n∑

i=1

|f(yi)g(yi)− f(yi)g(xi) + f(yi)g(xi)− f(xi)g(xi)|

≤
n∑

i=1

|f(yi)||g(yi)− g(xi)|+
n∑

i=1

|g(xi)||f(yi)− f(xi)|

≤M
n∑

i=1

|g(yi)− g(xi)|+N
n∑

i=1

|f(yi)− f(xi)| < (M +N)ϵ

Thus, fg ∈ AC([a, b]). □

� Exercise 5.9 If f ∈ AC([a, b]), then f ∈ BV([a, b]).

Proof By assumption, there exists δ > 0 s.t. for any finite collection of disjoint open intervals

{(xi, yi)}ni=1 contained in (a, b), if
∑n

i=1(yi−xi) < δ, then
∑n

i=1 |f(yi)− f(xi)| < 1. Choose

N ≥ 1 s.t. b−a
N < δ. Define a partition of [a, b] by ∆0 = {a = x0, x1, . . . , xN = b}. Let ∆

be any partition of [a, b], and define ∆1 = ∆0 ∪ ∆ = {z0, z1, . . . , zK}. By Problem Set 5.2,
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Question 2., since ∆1 is finer than ∆, we have v∆ ≤ v∆1 . However,

v∆1 =
K∑
k=1

|f(zk)− f(zk−1)| =
N∑
i=1

∑
(zk−1,zk)⊂(xi−1,xi)

|f(zk)− f(zk−1)| < N

This shows for any partition ∆, v∆ < N . Thus, by taking the supremum over all partition ∆ on

both sides, V b
a (f) ≤ N , which shows f ∈ BV([a, b]). □

Theorem 5.9. Fundamental Theorem of Calculus II (FTC-II)

♡

If f ∈ AC([a, b]), then f ′(x) exists a.e. on (a, b) and f ′ ∈ L1(a, b). Furthermore,

f(x)− f(a) =
∫ x
a f

′(t) dt for all x ∈ [a, b].

Proof By Exercise 5.9, f ∈ BV([a, b]), so by Corollary 5.1, f ′(x) exists a.e. on (a, b).

Moreover, by Jordan Decomposition, f = g − h for some increasing function g and h. By

Lebesgue’s Theorem, 0 ≤
∫ b
a g

′(x) dx ≤ g(b)−g(a), so g′ ∈ L1(a, b). Similarly, h′ ∈ L1(a, b),

thus f ′ ∈ L1(a, b). Define f̃(x) ≜ f(a) +
∫ x
a f

′(t) dt, we want to show f̃(x) = f(x) on [a, b].

By FTC-I, f̃ ′(x) = f ′(x) a.e. on (a, b), so (f̃ − f)′(x) = 0 a.e. on [a, b]. By Exercise 5.7,

f̃ ∈ AC([a, c]). By Exercise 5.8, f̃ − f ∈ AC([a, b]). By Exercise 5.6, f̃ − f is a constant on

[a, b]. However, it is obvious that f̃(a)− f(a) = 0, so f̃(x) = f(x) on [a, b]. □
Remark The converse of FTC-II is also true, i.e., if f(x) − f(a) =

∫ x
a g(t) dt for some

g ∈ L1(a, b), then f ∈ AC([a, b]) and f ′(x) = g(x) a.e. on (a, b).

A direct application of FTC-II is called “integration by parts”, a famous and classical

technique that is widely used in Riemann integration.

Theorem 5.10. Integration by Parts

♡
Suppose f, g ∈ AC([a, b]), then

∫ b
a f

′(x)g(x) dx = f(x)g(x)
∣∣b
a
−
∫ b
a f(x)g

′(x) dx.

Proof Since f, g ∈ AC([a, b]), by Exercise 5.8, fg ∈ AC([a, b]). By FTC-II, f(x), g(x),

and f(x)g(x) are all differentiable a.e. on (a, b). By FTC-II,
∫ b
a (f(x)g(x))

′ dx = f(x)g(x)
∣∣b
a
.

By product rule for differentiation, (f(x)g(x))′ = f ′(x)g(x) + g′(x)f(x) a.e. on (a, b), so∫ b
a (f(x)g(x))

′ dx =
∫ b
a f

′(x)g(x) dx +
∫ b
a g

′(x)f(x) dx. To be rigorous, we need to argue

f ′(x)g(x) and g′(x)f(x) are in L1(a, b). This is because FTC-II guarantees f ′, g′ ∈ L1(a, b)

and Exercise 5.1 guarantees f, g are bounded on [a, b]. □

Our final task for this section is to connect measurablity preserving property with absolute

continuity. This is because in general, verifying a function is absolutely continuous is quite

hard. After connecting them, we can derive some user-friendly criteria for checking absolute

continuity.

� Exercise 5.10 If f ∈ AC([a, b]) with E ⊂ [a, b] and m(E) = 0, then m(f(E)) = 0.
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Proof By assumption, for all ϵ > 0, there exists δ > 0 s.t. if any finite collection of open intervals

{(xi, yi)}ni=1 contained in (a, b) satisfies
∑n

i=1(yi − xi) < δ, then
∑n

i=1 |f(yi) − f(xi)| < ϵ.

Since m(E) = 0, there exists open set G ⊂ (a, b) s.t. G ⊃ E and m(G) < δ. By Problem 1.1,

write G =
∪∞

k=1(ak, bk) where {(ak, bk)}∞k=1 is a collection of disjoint open intervals. Thus,

f(E) ⊂ f(G) ⊂
∪∞

k=1 f([ak, bk]). Let mk = min[ak,bk] f(x) and Mk = max[ak,bk] f(x). Also

let ck = argmin[ak,bk] f(x) and dk = argmax[ak,bk] f(x). Therefore,

m∗(f(E)) ≤
∞∑
k=1

(Mk −mk) =

∞∑
k=1

(f(dk)− f(ck))

For any fixed N ,
∑N

k=1(dk − ck) ≤
∑∞

k=1(bk − ak) = m(G) < δ, so by using the definition

of absolute continuity,
∑N

k=1(f(dk)− f(ck)) < ϵ. Take N → ∞,
∑∞

k=1(f(dk)− f(ck)) < ϵ.

Take ϵ→ 0, we have m∗(f(E)) = 0. □

Theorem 5.11

♡

Suppose f(x) is continuous on [a, b]. Then f is measurability preserving, i.e., E ∈ M
implies f(E) ∈ M, if and only if m(E) = 0 implies m(f(E)) = 0.

Proof For “if” part, use the same argument as the second paragraph in the proof of Theorem

1.5. For “only if” part, suppose there exists E ⊂ [a, b] s.t. m(E) = 0 but m(f(E)) > 0.

Then by the remark right after Theorem 1.3, there exists S ⊂ f(E) with S /∈ M. However,

f−1(S) ∩ E ∈ M because m(E) = 0 implies m(f−1(S) ∩ E) = 0. By assumption, f is

measurability preserving, so f(f−1(S) ∩ E) = S is measurable. This is a contradiction, so the

desired property is proved. □

Corollary 5.2

♡If f ∈ AC([a, b]), then f is measurability preserving.

Now we display our main theorem for connecting absolute continuity and measurability

preserving. However, since its proof is too complicated, we will not prove it immediately;

instead, we shall verify it progressively by first introducing two useful lemmas.

Theorem 5.12

♡

Suppose f(x) is continuous on [a, b] and f ′(x) exists a.e. on (a, b). Furthermore,

f ′ ∈ L1(a, b) and for any subset E ⊂ [a, b], m(E) = 0 implies m(f(E)) = 0. Then

f ∈ AC([a.b]) and FTC-II holds for all x ∈ [a, b].

Lemma 5.3

♡

Suppose f(x) is measurable on [a, b], E ⊂ (a, b) and E ∈ M. Furthermore, f ′(x) exists

and |f ′(x)| ≤ c for some constant c on [a, b]. Then m∗(f(E)) ≤ cm(E).
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Proof For all ϵ > 0, there exists open G s.t. E ⊂ G ⊂ (a, b) and m(G) < m(E) + ϵ.

By assumption, for all x ∈ E, |f ′(x)| < c + ϵ. Thus, there exists small enough hx > 0 s.t.

|f(y) − f(x)| < (c + ϵ)|y − x| for all y ̸= x and y ∈ [x − hx, x + hx] ⊂ G. This implies

|f(y)− f(x)| < (c+ ϵ)h for all y ∈ [x− h, x+ h] with any 0 < h ≤ hx. This further implies

f(y) ∈ (f(x)−(c+ϵ)h, f(x)+(c+ϵ)h), so f([x−h, x+h]) ⊂ (f(x)−(c+ϵ)h, f(x)+(c+ϵ)h)

for any 0 < h ≤ hx. Let Γ = {[f(x)− (c+ ϵ)h, f(x) + (c+ ϵ)h] |x ∈ E, 0 < h ≤ hx}. It is

easy to see Γ is a Vitali covering of f(E). By the second remark following Theorem 5.1, there

exists a countable collection of disjoint intervals {[f(xi)− (c+ ϵ)hi, f(xi)+(c+ ϵ)hi]}∞i=1 ⊂ Γ

s.t. m∗(f(E) \
∪∞

i=1[f(xi)− (c+ ϵ)hi, f(xi) + (c+ ϵ)hi]) = 0. Therefore,

m∗(f(E)) ≤
∞∑
i=1

m([f(xi)− (c+ ϵ)hi, f(xi) + (c+ ϵ)hi])

=
∞∑
i=1

2(c+ ϵ)hi = (c+ ϵ)
∞∑
i=1

m([xi − hi, xi + hi])

Note that {[xi − hi, xi + hi]}∞i=1 should be a collection of disjoint intervals. If not, then

f([xi − hi, xi + hi]) ∩ f([xj − hj , xj + hj ]) ̸= ∅. However, this is a contradiction because

f([xi − hi, xi + hi]) ⊂ (f(xi) − (c + ϵ)hi, f(xi) + (c + ϵ)hi) for any i ∈ N+ and we pick

{[f(xi)− (c+ ϵ)hi, f(xi) + (c+ ϵ)hi]}∞i=1 to be a collection of disjoint intervals. Thus,

m∗(f(E)) ≤ (c+ ϵ)

∞∑
i=1

m([xi − hi, xi + hi]) = (c+ ϵ)m

( ∞∪
i=1

[xi − hi, xi + hi]

)
This showsm∗(f(E)) ≤ (c+ ϵ)m(G) < (c+ ϵ)(m(E)+ ϵ) for all ϵ > 0. By taking ϵ→ 0 and

using m(E) <∞, m∗(f(E)) ≤ cm(E). □

Lemma 5.4

♡

Suppose f(x) is measurable on [a, b] and f ′(x) exists for all x ∈ E ⊂ (a, b) withE ∈ M.

Then m∗(f(E)) ≤
∫
E |f ′(x)| dx.

Proof Let 0 = y0 < y1 < · · · < yn < · · · with yn → ∞ as n → ∞. Assume yn+1 − yn < δ

for all n ≥ 0. Also, define En = {x ∈ E | yn−1 ≤ |f ′(x)| < yn} for all n ≥ 1. Notice that

E =
∪∞

n=1En implies f(E) =
∪∞

n=1 f(En), so m∗(f(E)) ≤
∑∞

n=1m
∗(f(En)). By Lemma

5.3, m∗(f(En)) ≤ ynm(En). Thus, m∗(f(E)) ≤
∑∞

n=1 ynm(En) for any δ > 0. Recall in

Example 3.2, we have limδ→0
∑∞

i=1 ynm(En) =
∫
E |f ′(x)| dx. Therefore, by taking δ → 0 on

both sides, m∗(f(E)) ≤
∫
E |f ′(x)| dx. □

After so much preparation, we can finally prove our main theorem on absolute continuity

and measurability preserving. In addition, several corollaries following the main theorem will

give some user-friendly versions of it.

Proof [Theorem 5.12] Consider any finite collection of disjoint open intervals {(xi, yi)}ni=1

contained in (a, b), define Ek = {x ∈ [xk, yk] | f ′(x) exists as a finite number}. Since f ′(x)
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5.3 Fundamental Theorem of Calculus and Absolutely Continuous Function

exists a.e. on (a, b), m([xk, yk] \ Ek) = 0. By assumption, m(f([xk, yk] \ Ek)) = 0, so

m∗(f(Ek)) ≤ m∗(f([xk, yk])) ≤ m∗(f(Ek)) +m∗(f([xk, yk] \ Ek)) = m∗(f(Ek))

Thus, m∗(f(Ek)) = m∗(f([xk, yk])). Now by intermediate value property of continuous

function, |f(yk) − f(xk)| ≤ m∗(f([xk, yk])). By Lemma 5.4, m∗(f(Ek)) ≤
∫
Ek

|f ′(x)| dx.

Therefore, |f(yk) − f(xk)| ≤
∫
Ek

|f ′(x)| dx for k = 1, . . . , n. By summing over k on both

sides and since Ek’s are almost disjoint,
n∑

k=1

|f(yk)− f(xk)| ≤
n∑

k=1

∫
Ek

|f ′(x)| dx =

∫
∪n

k=1 Ek

|f ′(x)| dx ≤
∫
∪n

k=1[xk,yk]
|f ′(x)| dx

Since f ′ ∈ L1(a, b), by Problem Set 3.4, Question 8., for all ϵ > 0, there exists δ > 0 s.t. for any

subset e ⊂ [a, b] and e ∈ M, if m(e) < δ, then
∫
e |f

′(x)| dx < ϵ. Let e =
∪n

k=1[xk, yk], then

if
∑n

k=1(yk − xk) < δ,
∑n

k=1 |f(yk)− f(xk)| ≤
∫∪n

k=1[xk,yk]
|f ′(x)| dx < ϵ. □

Corollary 5.3

♡

Suppose f(x) is continuous on [a, b] and f ′(x) exists a.e. on (a, b) with f ′ ∈ L1(a, b).

Then f ∈ AC([a, b]) if and only ifm(f(E)) = 0 for any subsetE ⊂ (a, b)withm(E) = 0.

Proof The “if” and “only if” parts follow from Theorem 5.12 and Exercise 5.10. □

Corollary 5.4

♡

Suppose f(x) is continuous on [a, b] and f ∈ BV([a, b]). Moreover, m(f(E)) = 0 for

any subset E ⊂ (a, b) with m(E) = 0. Then f ∈ AC([a, b]).

Proof If f ∈ BV([a, b]), by Corollary 5.1, f ′(x) exists a.e. on (a, b). To show f ′ ∈ L1(a, b),

we can use exactly the same argument as in the second paragraph in the proof of FTC-I. Then

Theorem 5.12 gives the desired result. □

Corollary 5.5

♡

Suppose f(x) is continuous on [a, b] and differentiable on (a, b) with f ′ ∈ L1(a, b). Then

f ∈ AC([a, b]) and FTC-II holds for all x ∈ [a, b].

Proof Since f(x) is differentiable on E ⊂ (a, b), by Lemma 5.4, m∗(f(E)) ≤
∫
E |f ′(x)| dx.

If m(E) = 0, then
∫
E |f ′(x)| dx = 0, so m∗(f(E)) = 0. Therefore, we can apply Theorem

5.12 to conclude the desired result. □

Example 5.7 Let f(x) = xα sin 1
x for x ∈ (0, 1] and f(0) = 0. Then f ∈ AC([0, 1]) if α > 1.

Proof It is easy to see f(x) is continuous on [0, 1] and differentiable on (0, 1). To see

f ′ ∈ L1(0, 1), consider f ′(x) = αxα−1 sin 1
x − xα−2 cos 1

x . Notice that |xα−1 sin 1
x | ≤ 1 on

[0, 1], so xα−1 sin 1
x ∈ L1(0, 1). Also, |xα−2 cos 1

x | ≤ xα−2 ∈ L1(0, 1). Thus, f ′ ∈ L1(0, 1).

By Corollary 5.5, f ∈ AC([0, 1]). □
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�
Note In the following problem set, all (a, b) or [a, b] are assumed to be bounded intervals.

K Problem Set 5.3 k

1. Let f(x) be continuous and increasing on [a, b]. Prove f ∈ AC([a, b]) if and only if for

all ϵ > 0, there exists δ > 0 s.t. whenever E ⊂ (a, b), E ∈ M, m(E) < δ, we have

m∗(f(E)) < ϵ.

2. Let f ∈ L1(a, b) and
∫ b
a x

nf(x) dx = 0 for all n ≥ 0. Prove that f(x) = 0 a.e. on [a, b].

3. Let f be increasing on [a, b], satisfying
∫ b
a f

′(x) dx = f(b) − f(a). Prove that f is

absolutely continuous on [a, b].

4. Suppose f is differentiable on R and f, f ′ ∈ L1(R). Prove that
∫
R f

′(x) dx = 0.

5. Let fk(x) be increasing and absolutely continuous on [a, b] for all k ≥ 1. Suppose∑∞
k=1 fk(x) converges pointwise on [a, b]. Prove that

∑∞
k=1 fk(x) is absolutely continuous

on [a, b].

6. Let E ∈ M be a subset of [0, 1] s.t. ∃ constant α > 0 satisfyingm(E ∩ [a, b]) ≥ α(b− a)

for all 0 ≤ a < b ≤ 1. Prove that m(E) = 1.

7. Let f be continuous on [a, b] and differentiable at every x ∈ (a, b) \ S, where S is at most

countable. Suppose f ′(x) ∈ L1(a, b). Prove that

f(x) = f(a) +

∫ x

a
f ′(t) dt, ∀x ∈ [a, b] (1)

8. Suppose f ∈ AC([a, b]) and f(0) = 0. Prove that∫ 1

0
|f(x)f ′(x)| dx ≤ 1√

2

∫ 1

0
(f ′(x))2 dx

9. Let {gk}∞k=1 ⊂ AC([a, b]). Assume

|g′k(x)| ≤ F (x) a.e. on (a, b) for all k ≥ 1, where F ∈ L1(a, b).

there exists c ∈ [a, b] s.t. limk→∞ gk(c) exists as a finite number.

limk→∞ g′k(x) exists and equal to some finite f(x) a.e. on (a, b).

Prove

(a). limk→∞ gk(x) exists and equal to some finite g(x) for every x ∈ [a, b].

(b). Show g ∈ AC([a, b]) and g′ = f a.e. on (a, b).

10. Let f ∈ BV([a, b]). Define v(x) = V x
a (f). Prove that f ∈ AC([a, b]) if and only if

v ∈ AC([a, b]).

5.4 Change of Variables

In this section, we are going to derive another useful technique that has already been widely

used in the Riemann integral, that is, the change of variables technique, in the context of Lebesgue

integral. After that, we will also introduce some user-friendly versions of it and illustrate how to

use it by some concrete examples.

110



5.4 Change of Variables

Throughout this section, we are going to use the notation and assumption below. Let

G ⊂ Rn and ϕ : G 7→ Rn, i.e., x = (x1, . . . , xn) and ϕ(x) = (ϕ1(x), . . . , ϕn(x)). Suppose ϕ

is C1-smooth (continuously differentiable) and injective. Denote its Jacobian matrix as

dϕ(x) =


∂ϕ1

∂x1
· · · ∂ϕ1

∂xn

... . . . ...
∂ϕn

∂x1
· · · ∂ϕn

∂xn

 =
∂(y1, . . . , yn)

∂(x1, . . . , xn)

We assume dϕ(x) is nonsingular at every x ∈ G, i.e., det(dϕ(x)) ̸= 0 for all x ∈ G. By Inverse

Function Theorem, D ≜ ϕ(G) is open and ϕ−1 : D 7→ G is also C1-smooth.

We first recall the baby version (for Riemman integral) of change of variables technique,

which should be learnt in any calculus or mathematical analysis course. In addition to the above

assumption, we also assume

dϕ(x) is bounded on G;

m(∂G) = 0 = m(∂D) where ∂S denotes the boundary of S for any set S;

f : D 7→ R is continuous and bounded;

G is bounded

Then we conclude that (R)
∫
D f(y) dy = (R)

∫
G f(ϕ(x)) det(dϕ(x)) dx where y = ϕ(x).

From the baby version of change of variables technique, we can see that the situations for

using such technique are usually:

1. f(y) is too complicated but f(ϕ(x)) det(dϕ(x)) has a nicer form;

2. D is too compliacted but G has a nicer form.

Next we are going to introduce the statement of grown-up version (for Lebesgue integral)

of change of variables technique. However, we will not give a proof of it until we derive an

important lemma.

Theorem 5.13. Change of Variables

♡

Assume the conditions in the second paragraph of this section hold. In addition, suppose

f(y) ∈ L1(D). Then f(ϕ(x)) det(dϕ(x)) ∈ L1(G) and

(L)
∫
D
f(y) dy = (L)

∫
G
f(ϕ(x)) det(dϕ(x)) dx

Lemma 5.5

♡

For any E ⊂ D with E ∈ M, we have ϕ−1(E) ∈ M. If E ⊂ D with m(E) = 0, then

m(ϕ−1(E)) = 0.

Proof For all k ≥ 1, let Dk = {x ∈ D | ∥x∥2 < k, dist(x, ∂D) > 1
k} where the distance

function dist(x, ∂D) ≜ infz∈∂D∥z − x∥2. It is a standard exercise to check Dk is open.
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Also, the closure Dk ⊂ D is compact, and D =
∪∞

k=1Dk. Then E =
∪∞

k=1(Dk ∩ E) and

ϕ−1(E) =
∪∞

k=1 ϕ
−1(Dk ∩ E). For all x ∈ Dk ⊂ D, there exists closed ball Bx ⊂ D with x

as the center of it. Thus, {Bx}x∈Dk
is an open cover of Dk. Since Dk is compact, there exists a

finite collection {Bxi}mi=1 ⊂ {Bx}x∈Dk
s.t.
∪m

i=1Bxi ⊃ Dk. Then, E ∩Dk ⊂
∪m

i=1(Bxi ∩E)

implies ϕ−1(E ∩Dk) =
∪m

i=1 ϕ
−1(Bxi ∩ E ∩Dk). Consider ϕ−1 : Bxi 7→ Rn is C1-smooth,

ϕ−1 is Lipschitz continuous on compact setBxi . By (slightly modifying the domain of function)

Theorem 1.5, ϕ−1(Bxi ∩ E ∩ Dk) ∈ M. Therefore, ϕ−1(E ∩ Dk) ∈ M and ϕ−1(E) ∈ M.

Since ϕ−1 is continuous and measurability preserving, by using the same argument (except that

the domain is different) as in Theorem 5.11, for any E ⊂ D with m(E) = 0, m(ϕ−1(E)) = 0.

□

Now we are going to prove the Change of Variables theorem. To make this complicated

proof easier to follow, we divide the whole proof into five steps.

Proof [Theorem 5.13] Step 1: For simplicity, denote J(x) = dϕ(x) and det(dϕ(x)) = |J(x)|.
For any rectangle I (can be open, closed, or half-open half-closed) so that its closure (a closed

rectangle) Ī ⊂ D,

m(I) = (L)
∫
I
1 dy = (R)

∫
I
1 dy = (R)

∫
ϕ−1(I)

|J(x)| dx = (L)
∫
ϕ−1(I)

|J(x)| dx

where the third equality is by change of variables for Riemann integration. If {Ii}∞i=1 are

rectangles, almost disjoint and their closures are contained in D, then

m

( ∞∪
i=1

Ii

)
=

∞∑
i=1

m(Ii) =

∞∑
i=1

(L)
∫
ϕ−1(Ii)

|J(x)| dx =

∞∑
i=1

(L)
∫
ϕ−1(Ioi )

|J(x)| dx

where Ioi denotes the interior of rectangle Ii. The last equality is because ϕ−1(Ii) = ϕ−1(Ioi )∪Z
with Z ⊂ ϕ−1(∂Ii), and by Lemma 5.5, m(∂Ii) = 0 implies m(ϕ−1(∂Ii)) = 0 and m(Z) = 0.

Since ϕ−1 is injective and maps set with zero measure to set with zero measure, that Ii’s are

almost disjoint implies ϕ−1(Ii)’s are almost disjoint. Thus,

m

( ∞∪
i=1

Ii

)
= (L)

∫
∪∞

i=1 ϕ
−1(Ioi )

|J(x)| dx = (L)
∫
∪∞

i=1 ϕ
−1(Ii)

|J(x)| dx

Consider any open set Ω ⊂ D, by Exercise 1.3, Ω =
∪∞

k=1 ck where ck’s are almost disjoint

cubes. Therefore,

m(Ω) = (L)
∫
∪∞

k=1 ϕ
−1(ck)

|J(x)| dx = (L)
∫
ϕ−1(

∪∞
k=1 ck)

|J(x)| dx

In conclusion, for any open set Ω ⊂ D, m(Ω) = (L)
∫
ϕ−1(Ω) |J(x)| dx. From now on, all

integrals (except for specially declared) are Lebesgue integral, so we will drop the symbol (R)

and (L) in front of the integral sign.

Step 2: Prove for any E ⊂ D with E ∈ M and m(E) < ∞, m(E) =
∫
ϕ−1(E) |J(x)| dx.

By Theorem 1.1, there exists a Gδ set H =
∩∞

k=1Dk so that H ⊃ E, Dk ⊂ D open,

m(D1) < m(E) + 1, and m(H \ E) = 0. Claim that m(H) =
∫
ϕ−1(H) |J(x)| dx. Define
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Ek =
∩k

i=1Di for all k ≥ 1, then Ek decreases to H as k → ∞. Since ϕ−1(Ek) ∈ M and

ϕ−1(H) ∈ M, ϕ−1(Ek) decreases to ϕ−1(H). Since Ek is open, by Step 1,

m(Ek) =

∫
ϕ−1(Ek)

|J(x)| dx =

∫
Rn

|J(x)|Iϕ−1(Ek)(x) dx

Take limit as k → ∞ on both sides, by Continuity of Lebesgue Measure,

m(H) = lim
k→∞

∫
Rn

|J(x)|Iϕ−1(Ek)(x) dx

Since |J(x)|Iϕ−1(Ek)(x) ≤ |J(x)|Iϕ−1(E1)(x) and∫
Rn

|J(x)|Iϕ−1(E1)(x) dx =

∫
ϕ−1(E1)

|J(x)| dx = m(E1) <∞

By DCT, m(H) =
∫
Rn |J(x)|Iϕ−1(H)(x) dx =

∫
ϕ−1(H) |J(x)| dx, which proves the claim.

Now we can conclude that

m(E) = m(H) =

∫
ϕ−1(H)

|J(x)| dx

=

∫
ϕ−1(E)

|J(x)| dx+

∫
ϕ−1(H\E)

|J(x)| dx =

∫
ϕ−1(E)

|J(x)| dx

where the last equality is becausem(H \E) = 0 with Lemma 5.5 impliesm(ϕ−1(H \E)) = 0.

Step 3: Suppose f(y) ∈ L1(D) is simple function. Write f(y) =
∑m

k=1 ckIEk
(x) where

Ek’s are measurable (with 0 < m(E) <∞), disjoint, and ck’s are nonzero. Observe∫
D
f(y) dy =

m∑
k=1

ckm(Ek) = ck

m∑
k=1

∫
ϕ−1(Ek)

|J(x)| dx =

∫
G
|J(x)|

m∑
k=1

ckIϕ−1(Ek)(x) dx

where the second equality is because of Step 2. Notice that Iϕ−1(Ek)(x) = IEk
(ϕ(x)), so∫

D
f(y) dy =

∫
G
|J(x)|

m∑
k=1

ckIEk
(ϕ(x)) dx =

∫
G
|J(x)|f(ϕ(x)) dx

Step 4: Suppose f(x) ≥ 0 with f ∈ L1(D). By simple approximation theorem, there exists

measurale simple function fk ≥ 0 s.t. fk(x) increases to f(y) on D as k → ∞. Thus, fk(ϕ(x))

increases to f(ϕ(x)) on G. By Step 3,
∫
D fk(y) dy =

∫
G f(ϕ(x))|J(x)| dx for all k ≥ 1. Take

k → ∞ on both sides, by MCT,
∫
D f(y) dy =

∫
G f(ϕ(x))|J(x)| dx.

Step 5: Suppose f ∈ L1(D), then f(y) = f+(y) − (−f−(y)) with f+(y) ≥ 0 and

f−(y) ≤ 0 on D. By Step 4, we have∫
D
f(y) dy =

∫
D
f+(y) dy −

∫
D
−f−(y) dy

=

∫
G
f+(ϕ(x))|J(x)| dx−

∫
G
−f−(ϕ(x))|J(x)| dx

=

∫
G
f(ϕ(x))|J(x)| dx

Thus, the Change of Variables theorem is proved. □
Remark Since f(y) ∈ L1(D), we implicitly assume f(y) is measurable on D. To be rigorous,

we need to prove f(ϕ(x)) is measurable on G, i.e., for all t ∈ R, {x ∈ G | f(ϕ(x)) > t} ∈ M.

Notice that x ∈ ϕ−1{y ∈ D | f(y) > t} if and only if ϕ(x) ∈ {y ∈ D | f(y) > t}. Thus,
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{x ∈ G | f(ϕ(x)) > t} = ϕ−1{y ∈ D | f(y) > t}. Since f(y) is measurable on D, for all

t ∈ R, {y ∈ D | f(y) > t} ∈ M, so by Lemma 5.5, ϕ−1{y ∈ D | f(y) > t} ∈ M and

{x ∈ G | f(ϕ(x)) > t} ∈ M.

Next we derive some user-friendly versions of the Change of Variables theorem. For all

of the following Corollaries, we always assume the same conditions on sets G,D, function ϕ

as in Theorem 5.13. After that, we also give some examples to illustrate how to invoke those

user-friendly versions of theorem to solve practical problems.

Corollary 5.6

♡

Suppose E ⊂ D, E ∈ M and f(y) ∈ L1(E), then∫
E
f(y) dy =

∫
ϕ−1(E)

f(ϕ(x))|J(x)| dx

Proof Since f(y) ∈ L1(E), f(y)IE(y) ∈ L1(D). By Theorem 5.13, f(ϕ(x))IE(ϕ(x))|J(x)|
is in L1(G). Notice that IE(ϕ(x)) = Iϕ−1(E)(x), so by Theorem 5.13 again, we have∫

D
f(y)IE(y) dy =

∫
G
f(ϕ(x))Iϕ−1(E)(x)|J(x)| dx

Since E ⊂ D implies ϕ−1(E) ⊂ ϕ−1(D) = G, the desired result follows immediately. □

Corollary 5.7

♡

If f(ϕ(x))|J(x)| ∈ L1(G), then f(y) ∈ L1(D) and∫
D
f(y) dy =

∫
G
f(ϕ(x))|J(x)| dx

Proof Let g(x) = f(ϕ(x))|J(x)| for x ∈ G. By assumption, g(x) ∈ L1(G). Consider

ϕ−1 : D 7→ G defined by x = ϕ−1(y) for y ∈ D, it is bijective and C1-smooth (by In-

verse Function Theorem). Thus, applying Theorem 5.13 to g and ϕ−1, we can conclude

g(ϕ−1(y)) det(dϕ−1(y)) ∈ L1(D) and
∫
G g(x) dx =

∫
D g(ϕ

−1(y)) det(dϕ−1(y)) dy. Note

that g(ϕ−1(y)) det(dϕ−1(y)) = f(y) det(dϕ(x)) det(dϕ−1(y)) = f(y) because by Inverse

Function Theorem, dϕ−1(y) = (dϕ(x))−1. Therefore, f(y) ∈ L1(D) and∫
G
f(ϕ(x))|J(x)| dx =

∫
G
g(x) dx =

∫
D
g(ϕ−1(y)) det(dϕ−1(y)) dy =

∫
D
f(y) dy

which gives the desired result. □

Corollary 5.8

♡

If f(y) ≥ 0 and measurable on D, then f(ϕ(x))|J(x)| is measurable on G and∫
D
f(y) dy =

∫
G
f(ϕ(x))|J(x)| dx
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Proof For all k ≥ 1, define

fk(y) =

f(y) if f(y) ≤ k

k if f(y) > k

Let Dk = D ∩ Bk(0) and Gk = ϕ−1(Dk), then fk(y) is bounded on Dk with Dk bounded.

By the remark right after the proof of Theorem 5.13, f(ϕ(x))|J(x)| is measurable. Thus,

fk ∈ L1(Dk). By Theorem 5.13, we conclude that
∫
Dk
fk(y) dy =

∫
Gk
fk(ϕ(x))|J(x)| dx.

This implies
∫
Rn fk(y)IDk

(y) dy =
∫
Rn fk(ϕ(x))IGk

(x)|J(x)| dx. Notice that as k → ∞, for

any fixed x ∈ G, fk(ϕ(x)) and IGk
(x) are nonnegative increasing to f(ϕ(x)) and IG(x); for

any fixed y ∈ D, fk(y) and IDk
(y) are nonnegative increasing to f(y) and ID(y). Therefore, by

MCT,
∫
Rn f(y)ID(y) dy =

∫
Rn f(ϕ(x))IG(x)|J(x)| dx, which gives the desired result. □

Example 5.8 Let A be n× n real matrix with det(A) ̸= 0. Then for all E ⊂ Rn with E ∈ M,

A(E) = {y ∈ Rn |Ax = y, x ∈ E} is measurable and m(A(E)) = m(E)| det(A)|.
Proof Let G = Rn, ϕ(x) = A−1x, D = Rn and f(y) = IE(y). Since E ∈ M, f(y) is mea-

surable. By Corollary 5.8, f(ϕ(x))|J(x)| = IE(A
−1x)|det(A−1)| = IE(A

−1x)| det(A)|−1 is

measurable on Rn. Furthermore, since IE(A−1x) = IA(E)(x),∫
Rn

IE(y) dy =

∫
Rn

IE(A
−1x)|det(A)|−1 dx =

∫
A(E)

| det(A)|−1 dx =
m(A(E))

| det(A)|
Also, that IE(A−1x)| det(A)|−1 is measurable implies IE(A

−1x) is measurable, because

| det(A)|−1 is a finite constant. Then IA(E)(x) is measurable, so A(E) is measurable. □

Example 5.9 Let a1, . . . ,an ∈ Rn be linearly independent. Define parallelepiped P ⊂ Rn

spanned by a1, . . . ,an as P = {
∑n

i=1 xiai |xi ∈ [0, 1], ∀ i = 1, . . . , n}. Prove that P is

measurable and m(P ) = | det(A)| where the i-th column of A is ai.

Proof Let E = {x ∈ Rn |xi ∈ [0, 1], ∀ i = 1, . . . , n}, then E is a closed cube in Rn,

hence measurable. Notice that P = A(E) with det(A) ̸= 0, so by Exercise 5.8, P ∈ M and

m(P ) = |det(A)|m(E). It is trivial that m(E) = |E| = 1, so m(P ) = |det(A)|. □

Example 5.10 LetA be a 3×3 positive definite real matrix (symmetric) with eigenvalues λi = i

for i = 1, 2, 3. Define H(x) = xTAx on x ∈ R3. Compute
∫∫∫

H(y)<1 e
√

H(y) dy.

Proof Since A is symmetric positive definite, by eigenvalue decomposition, there exists or-

thogonal matrix Q s.t. A = QΛQT where Λ = diag(1, 2, 3) is a diagonal matrix with its

diagonal elements 1, 2 and 3. Denote
√
Λ = diag(1,

√
2,
√
3) and

√
A = Q

√
ΛQT. Define

D = {y ∈ R3 |H(y) < 1}, ϕ(x) = (
√
A)−1x, H(y) = ∥

√
Ay∥22. It is also easy to see

G = ϕ−1(D) = {x ∈ R3 | ∥x∥2 < 1}. Since f(y) = e
√

H(y) is continuous and nonnegative,

we can apply Corollary 5.8 to obtain∫∫∫
H(y)<1

e
√

H(y) dy =

∫∫∫
G
e∥x∥2 det(

√
A

−1
) dx =

1√
6

∫∫∫
∥x∥2<1

e∥x∥2 dx
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5.4 Change of Variables

Now we use polar coordinate to do change of variables again. Define
x1

x2

x3

 = ϕ̃(ρ, ψ, θ) =


ρ sinψ cos θ

ρ sinψ sin θ

ρ cosψ

 , where ψ ∈ (0, π), θ ∈ (0, 2π), ρ ∈ (0, 1)

G̃ = {(ρ, ψ, θ) ∈ R3 |ψ ∈ (0, π), θ ∈ (0, 2π), ρ ∈ (0, 1)}

Then D̃ = ϕ̃(G̃) = {x ∈ R3 | ∥x∥2 < 1} \ Z where m(Z) = 0. Therefore, by Corollary 5.8,∫∫∫
∥x∥2<1

e∥x∥2 dx =

∫∫∫
D̃
e∥x∥2 dx =

∫∫∫
G̃
eρ|ρ2 sinψ| dρ dψ dθ

Since G̃ is a rectangle, by FTT-II,∫∫∫
G̃
eρ|ρ2 sinψ| dρ dψ dθ =

∫ 2π

0

∫ π

0
sinψ

∫ 1

0
eρρ2 dρ dψ dθ

= (e− 2)

∫ 2π

0

∫ π

0
sinψ dψ dθ

=

∫ 2π

0
2(e− 2) dθ = 4π(e− 2)

Thus, the final answer is ∫∫∫
H(y)<1

e
√

H(y) dy =
4π(e− 2)√

6

□
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Chapter 6 Version History

We revised our lecture notes now and then. This section shows the version story of this

lecture notes.

2020/12/28 Updates:release of Version 1.0

1 The first version of this lecture notes was released!
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