# MAT3220：Operation Research Homework 2 

李肖鹏（116010114）

Due date：Feb 26， 12 p．m．， 2019

Problem 1．Use the strong duality theorem to prove Gordan＇s theorem：Either $A \vec{x}>\overrightarrow{0}$ has a solution，or $A^{\mathrm{T}} \vec{y}=\overrightarrow{0}, \vec{y} \supsetneqq \overrightarrow{0}$ has a solution．

Denote $\vec{e}$ as a vector whose all entries are equal to one．Consider the following primal－dual problem．

$$
\begin{array}{rlrl}
(P) \quad \min _{\vec{x}, \vec{y}} & \vec{e}^{\mathrm{T}} \vec{y} & (D) \max _{\vec{z}} \vec{e}^{\mathrm{T}} \vec{z} \\
\text { s.t. } & A \vec{x}+\vec{y} \geq \vec{e} \quad \text { (dual variable } \vec{z}) & \text { s.t. } & A^{\mathrm{T}} \vec{z}=\overrightarrow{0} \\
& \vec{y} \geq \overrightarrow{0} & \vec{z} \leq \vec{e}, \vec{z} \geq \overrightarrow{0}
\end{array}
$$

If $A \vec{x}>\overrightarrow{0}$ has a solution，then we can amplify this solution by multiplying a positive real number so that we obtain another solution $\vec{x}^{*}$ such that $A \vec{x}^{*} \geq \vec{e}$ ．Then，if we take $\vec{y}^{*}=\overrightarrow{0}$ ， we obtain the optimal solution of primal problem，i．e．，$\vec{e}^{\mathrm{T}} \vec{y}^{*}=0$ ．By strong duality，the dual problem also has a optimal solution 0 ，meaning that $\vec{e}^{\mathrm{T}} \vec{z}^{*}=0$ ，hence $\vec{z}^{*}=\overrightarrow{0}$ ．Such $\vec{z}^{*}$ is also the only feasible solution，because if we have any other feasible solution $\vec{z} \geq \overrightarrow{0}$ must have at least one positive entry，which yields a larger objective value，which is a contradiction．Hence，there does not exist a $\vec{z} \nexists \overrightarrow{0}$ satisfying $A^{\mathrm{T}} \vec{z}=\overrightarrow{0}$ ．

Conversely，if $A \vec{x}>\overrightarrow{0}$ does not have a solution，then vector $A \vec{x}$ has at least one entry that is nonpositive．Since the primal problem is obviously feasible and bounded，it has the optimal solution $\vec{y}^{*} \supsetneqq \overrightarrow{0}$ for all chosen of $\vec{x}$ ．Hence，the optimal value $\vec{e}^{\mathrm{T}} \vec{y}^{*}>0$ ，and by strong duality，this also implies the optimal value of dual $\vec{e}^{\mathrm{T}} \vec{z}^{*}>0$ ．Thus，we conclude that $\vec{z}^{*} \supsetneqq \overrightarrow{0}$ is a feasible solution that satisfies $A^{\mathrm{T}} \vec{z}=\overrightarrow{0}$ ．Therefore，Gordan＇s theorem is proved．

## Problem 2.

－Prove the following general form of the separation theorem．Suppose that $S \subseteq \mathbb{R}^{n}$ is a closed convex set，and that $\vec{u} \notin S$ ．Then，there exist $\vec{c} \in \mathbb{R}^{n}$ and $d \in \mathbb{R}$ ，such that $\vec{c}^{\mathrm{T}} \vec{u}<d$ and $\vec{c}^{\mathrm{T}} \vec{x}>d$ for all $\vec{x} \in S$ ．

Denote $\bar{S}=\{\vec{x}-\vec{u} \mid \forall \vec{x} \in S\}$ ，since $S$ is closed and convex，it is easy to show that $\bar{S}$ is also closed and convex．Consider the function $f(\vec{x})=\|\vec{x}\|_{2}$ ，since it is continous，we know a continuous function will map a closed set to closed set，so the set

$$
D=\left\{\|\vec{x}-\vec{u}\|_{2} \mid \vec{x} \in S\right\}
$$

is a closed set, hence its minimum will be obtained by some $\vec{z} \in S$. Denote $\vec{c}=\vec{z}-\vec{u}$ and $d=\frac{1}{2} \vec{c}^{\mathrm{T}}(\vec{z}+\vec{u})$, we need to prove this hyperplan satisfies our assumption.

We claim that for all $\vec{x} \in S$, we have

$$
\vec{c}^{\mathrm{T}} \vec{x}=(\vec{z}-\vec{u})^{\mathrm{T}} \vec{x} \geq(\vec{z}-\vec{u})^{\mathrm{T}} \vec{z}>\frac{1}{2}(\vec{z}-\vec{u})^{\mathrm{T}}(\vec{z}+\vec{u})=d>(\vec{z}-\vec{u})^{\mathrm{T}} \vec{u}=\vec{c}^{\mathrm{T}} \vec{u}
$$

The nontrivial part of the above relation is

$$
(\vec{z}-\vec{u})^{\mathrm{T}} \vec{x} \geq(\vec{z}-\vec{u})^{\mathrm{T}} \vec{z}, \quad \text { and } \quad(\vec{z}-\vec{u})^{\mathrm{T}} \vec{z}>\frac{1}{2}(\vec{z}-\vec{u})^{\mathrm{T}}(\vec{z}+\vec{u})>(\vec{z}-\vec{u})^{\mathrm{T}} \vec{u}
$$

The second one is easy, since

$$
(\vec{z}-\vec{u})^{\mathrm{T}} \vec{z}>\frac{1}{2}(\vec{z}-\vec{u})^{\mathrm{T}}(\vec{z}+\vec{u}) \Longleftrightarrow \frac{1}{2}(\vec{z}-\vec{u})^{\mathrm{T}}(\vec{z}-\vec{u})>0
$$

which is obviously correct when $\vec{z} \neq \vec{u}$. Also,

$$
\frac{1}{2}(\vec{z}-\vec{u})^{\mathrm{T}}(\vec{z}+\vec{u})>(\vec{z}-\vec{u})^{\mathrm{T}} \vec{u} \Longleftrightarrow \frac{1}{2}(\vec{z}-\vec{u})^{\mathrm{T}}(\vec{z}-\vec{u})>0
$$

which is obviously correct when $\vec{z} \neq \vec{u}$.
To prove the first relation, we consider any $\lambda \in(0,1], \vec{x}_{\lambda}=(1-\lambda) \vec{z}+\lambda \vec{x} \in S$. Since $\vec{z}$ obtain the minimum distance, we have

$$
\begin{aligned}
\|\vec{z}-\vec{u}\|_{2}^{2} \leq\left\|\vec{x}_{\lambda}-\vec{u}\right\|_{2}^{2} & =\|(1-\lambda) \vec{z}+\lambda \vec{x}-\vec{u}\|_{2}^{2} \\
& =\|(1-\lambda)(\vec{z}-\vec{u})+(1-\lambda) \vec{u}+\lambda \vec{x}-\vec{u}\|_{2}^{2} \\
& =(1-\lambda)^{2}\|\vec{z}-\vec{u}\|_{2}^{2}+\lambda^{2}\|\vec{x}-\vec{u}\|_{2}^{2}+2(1-\lambda) \lambda(\vec{x}-\vec{u})^{\mathrm{T}}(\vec{z}-\vec{u})
\end{aligned}
$$

Since $\lambda \neq 0$, we have

$$
(\lambda-2)\|\vec{z}-\vec{u}\|_{2}^{2}+2(1-\lambda)(\vec{x}-\vec{u})^{\mathrm{T}}(\vec{z}-\vec{u})+\lambda\|\vec{x}-\vec{u}\|_{2}^{2} \geq 0
$$

Since this inequality is continuous with respect to $\lambda$, take $\lambda \rightarrow 0$, we have

$$
\begin{aligned}
0 & \geq\|\vec{z}-\vec{u}\|_{2}^{2}-(\vec{x}-\vec{u})^{\mathrm{T}}(\vec{z}-\vec{u}) \\
& =(\vec{z}-\vec{u})^{\mathrm{T}}(\vec{z}-\vec{u})-(\vec{x}-\vec{u})^{\mathrm{T}}(\vec{z}-\vec{u}) \\
& =(\vec{z}-\vec{x})^{\mathrm{T}}(\vec{z}-\vec{u})=(\vec{z}-\vec{u})^{\mathrm{T}} \vec{z}-(\vec{z}-\vec{u})^{\mathrm{T}} \vec{x}
\end{aligned}
$$

Hence, we prove that $(\vec{z}-\vec{u})^{\mathrm{T}} \vec{x} \geq(\vec{z}-\vec{u})^{\mathrm{T}} \vec{z}$.

- Prove the following general form of the bipolar theorem by the separation theorem. For a closed convex cone $\mathcal{K} \subseteq \mathbb{R}^{n}$, we have $\left(\mathcal{K}^{*}\right)^{*}=\mathcal{K}$.

By definition, $\mathcal{K}^{*}=\left\{\vec{y} \in \mathbb{R}^{n} \mid \vec{y}^{\mathrm{T}} \vec{x} \geq 0, \forall \vec{x} \in \mathcal{K}\right\}$. For any $\vec{z} \in \mathbb{R}^{n}$ satisfying that for all $\vec{y} \in \mathcal{K}^{*}, \vec{z}^{\mathrm{T}} \vec{y} \geq 0$ will lie in the dual cone of $\mathcal{K}^{*}$. Obviously, all of $\vec{x} \in \mathcal{K}$ satisfies such condition, hence $\left(\mathcal{K}^{*}\right)^{*} \supseteq \mathcal{K}$.

Conversely, if there is some vector $\vec{z}$ in $\left(\mathcal{K}^{*}\right)^{*}$ but not in $\mathcal{K}$, then by separation theorem, and by choosing origin properly, there is a vector $\vec{c}$ such that $\vec{c}^{\mathrm{T}} \vec{z}<0$ and $\vec{c}^{\mathrm{T}} \vec{x}>0$ for all $\vec{x} \in \mathcal{K}$. Since $\vec{c}^{\mathrm{T}} \vec{x}>0, \vec{c}$ is in $\mathcal{K}^{*}$, but because $\vec{z} \in\left(\mathcal{K}^{*}\right)^{*}, \vec{c}^{\mathrm{T}} \vec{z} \geq 0$, which is a contradiction. Hence, all element in $\left(\mathcal{K}^{*}\right)^{*}$ must be in $\mathcal{K}$, meaning that $\left(\mathcal{K}^{*}\right)^{*} \subseteq \mathcal{K}$. Therefore, we finish the proof of bipolar theorem.

Problem 3. Prove the following generalized version of Theorem 5: Suppose that two given polyhedra $P_{1}=\{\vec{x} \mid A \vec{x} \leq \vec{a}\}$ and $P_{2}=\{\vec{x} \mid B \vec{x} \leq \vec{b}\}$ (with $\vec{x} \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, \vec{a} \in \mathbb{R}^{m}, B \in \mathbb{R}^{l \times n}$, $\vec{b} \in \mathbb{R}^{l}$ ) that are nonempty but they do not intersect. Use the Farkas lemma to prove: there is an affine linear function $f(\vec{x})=\vec{c}^{\mathrm{T}} \vec{x}+d$ such that

$$
f(\vec{x})>0 \text { for } \vec{x} \in P_{1}, \text { and } f(\vec{x})<0 \text { for } \vec{x} \in P_{2}
$$

Suppose $P_{2}$ consists of vertices $\left\{\vec{p}_{1}, \ldots, \vec{p}_{n}\right\}$ and extreme rays $\left\{\vec{q}_{1}, \ldots, \vec{q}_{m}\right\}$. For any $\vec{x} \in P_{2}$, since $P_{1}$ and $P_{2}$ are disjoint, the following system has no solution,

$$
\left\{\begin{array} { l } 
{ A \vec { x } \leq \vec { a } } \\
{ \vec { x } = ( \sum _ { i = 1 } ^ { n } \lambda _ { i } \vec { p } _ { i } + \sum _ { j = 1 } ^ { m } \mu _ { j } \vec { q } _ { j } ) } \\
{ \sum _ { i = 1 } ^ { n } \lambda _ { i } = 1 } \\
{ \lambda _ { i } \geq 0 \quad \forall i = 1 , \ldots , n } \\
{ \mu _ { j } \geq 0 \quad \forall j = 1 , \ldots , m }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
A\left(\sum_{i=1}^{n} \lambda_{i} \vec{p}_{i}+\sum_{j=1}^{m} \mu_{j} \vec{q}_{j}\right)+\vec{\epsilon}=\vec{a} \\
\sum_{i=1}^{n} \lambda_{i}=1 \\
\lambda_{i} \geq 0 \quad \forall i=1, \ldots, n \\
\mu_{j} \geq 0 \quad \forall j=1, \ldots, m \\
\vec{\epsilon} \geq 0
\end{array}\right.\right.
$$

which can be formulated into matrix form as follows

$$
A \vec{u}=\left[\begin{array}{ccccccc}
A \vec{p}_{1} & \cdots & A \vec{p}_{n} & A \vec{q}_{1} & \cdots & A \vec{q}_{m} & I \\
1 & \cdots & 1 & 0 & \cdots & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{n} \\
\mu_{1} \\
\vdots \\
\mu_{m} \\
\vec{\epsilon}
\end{array}\right]=\left[\begin{array}{c}
\vec{a} \\
1
\end{array}\right]=\vec{v} \quad \text { and } \vec{u} \geq 0
$$

Since it has no solution, by Farkas' lemma, there exists $\vec{z}$ such that $A^{\mathrm{T}} \vec{z}=\overrightarrow{0}$ and $\vec{v}^{\mathrm{T}} \vec{z}<0$. Denote $\vec{z}$ as $\left(\vec{c}^{\prime \mathrm{T}}, b\right)^{\mathrm{T}}$, we have

$$
\left(A \vec{p}_{i}\right)^{\mathrm{T}} \vec{c}^{\prime}+b \geq 0, \forall i=1, \ldots, n ; \quad\left(A \vec{q}_{j}\right)^{\mathrm{T}} \vec{c}^{\prime} \geq 0, \forall j=1, \ldots, m ; \quad \vec{c}^{\prime} \geq \overrightarrow{0} ; \quad \vec{c}^{\prime \mathrm{T}} \vec{a}+b<0
$$

Let $\vec{c}=A^{\mathrm{T}} \vec{c}^{\prime}$, then we have for any $\vec{x} \in B$,

$$
\vec{c}^{\mathrm{T}} \vec{x}+b=\vec{c}^{\mathrm{T}}\left(\sum_{i=1}^{n} \lambda_{i} \vec{p}_{i}+\sum_{j=1}^{m} \mu_{j} \vec{q}_{j}\right)+b \geq 0, \quad \text { with } \sum_{i=1}^{n} \lambda_{i}=1, \quad \mu_{j} \geq 0
$$

For all $\vec{x} \in A$, we have

$$
A \vec{x} \leq \vec{a} \Longrightarrow \vec{c}^{\prime \mathrm{T}} A \vec{x} \leq \vec{c}^{\prime \mathrm{T}} \vec{a}<-b \Longrightarrow \vec{c}^{\mathrm{T}} \vec{x}+b<0
$$

Hence, the proof is finished.

