MAT3220: Operation Research

Homework 2

ZEHE IS (116010114)
Due date: Feb 26, 12 p.m., 2019

Problem 1. Use the strong duality theorem to prove Gordan’s theorem: Either AZ > 0 has a

solution, or AT7 =0, 7 = 0 has a solution.

Denote € as a vector whose all entries are equal to one. Consider the following primal-dual

problem.
(P) min €'y (D) max €%
T,y Z
st. A7+ Y >7€ (dual variable 27) st. ATZ=0
7T>0 7<?e, >0

If AZ > 0 has a solution, then we can amplify this solution by multiplying a positive real
number so that we obtain another solution Z* such that AZ* > €. Then, if we take §* = 0,
we obtain the optimal solution of primal problem, i.e., €T 7* = 0. By strong duality, the dual
problem also has a optimal solution 0, meaning that €T 2* = 0, hence Z* = 0. Such Z* is also
the only feasible solution, because if we have any other feasible solution z° > 0 must have at least
one positive entry, which yields a larger objective value, which is a contradiction. Hence, there does

not exist a 7 = 0 satisfying ATZ = 0.

Conversely, if A7 > 0 does not have a solution, then vector A7 has at least one entry that is
nonpositive. Since the primal problem is obviously feasible and bounded, it has the optimal solution

% T 77>%
Yy

vtz 0 for all chosen of 7. Hence, the optimal value € > 0, and by strong duality, this also

—>T—
TZ*

implies the optimal value of dual € > 0. Thus, we conclude that 2* = 0 is a feasible solution

that satisfies ATZ = 0. Therefore, Gordan’s theorem is proved.

Problem 2.
e Prove the following general form of the separation theorem. Suppose that S C R" is a closed

convex set, and that @ ¢ S. Then, there exist ¢ € R" and d € R, such that €74 < d and
CT'Z >dforall 7 € 8.

Denote S = {Z — w0 |VZ € S}, since S is closed and convex, it is easy to show that S is
also closed and convex. Consider the function f(Z) = || 7|2, since it is continous, we know a

continuous function will map a closed set to closed set, so the set

D ={||Z - 2| ¥ € S}



is a closed set, hence its minimum will be obtained by some Z € S. Denote ¢ = Z — u and
d= %E’T(E) + ), we need to prove this hyperplan satisfies our assumption.

We claim that for all 7 € S, we have

1 — — — — — —>\T —> —>T—
“(Z-)'F+W)=d>(Z-)"t=7C"u

2

The nontrivial part of the above relation is

2T = ()7

Y

(Z-2)'2>

(Z-)'Z7>Z-0)'Z, and (Z-0)'Z > %(7 ~)NZ+W) > (Z-uw)'u
The second one is easy, since
(Z-W)TF> 5 (F - WF+T) = (T D) (F-T) >0
which is obviously correct when 2 # u. Also,
1

5(7 ~D)NZ+W) > (Z-u)'U =
which is obviously correct when 2 # .

To prove the first relation, we consider any A € (0,1], @) = (1 = A\)Z + A7 € S. Since 7’

obtain the minimum distance, we have

IZ = )5 < 1175 = w5 = (1= N)Z + A2 — 273
=11 = N(Z = @) + (1= N7+ AT — T3
== N7 =23+ N7 = Z)3 +2(1 - WA =) (7 - )

Since A # 0, we have
A=2NZ =T +21 =)@ - @)(Z - )+ AT - T3>0

Since this inequality is continuous with respect to A, take A — 0, we have

0> 7 -3 (Z - 2)" (7 - )
=Z-)NZ-0)-(T-)(Z-7)
=Z-D)'Z-)=Z-)"Z7-(Z-)'7
Hence, we prove that (27— u)T7 > ( )7

Prove the following general form of the bipolar theorem by the separation theorem. For a

closed convex cone K C R", we have (K*)* = K.

By definition, K* = {y € R"|y*Z >0, VZ € K}. For any Z € R" satisfying that for all
Yy € K*, Z%y > 0 will lie in the dual cone of K*. Obviously, all of 7 € K satisfies such
condltlon, hence (K*)* D K.

Conversely, if there is some vector 2 in (K*)* but not in K, then by separation theorem, and by

—»T—>

<0and T2 >0 forall 2 € K.

——>T——>

choosmg origin properly, there is a vector ¢ such that ¢
Since ¢T7 > 0, ¢ is in K*, but because 2 € (K*)*, > 0, which is a contradiction.
Hence, all element in (K*)* must be in I, meaning that (K*)* C IC. Therefore, we finish the

proof of bipolar theorem.



Problem 3. Prove the following generalized version of Theorem 5: Suppose that two given poly-
hedra P, = {Z|AZ < @} and P, = {Z|BZ < b} (with T € R", A € R"*", @ € R™, B € R*",

b e R!) that are nonempty but they do not intersect. Use the Farkas lemma to prove: there is an

affine linear function f(2) = ¢7T

Z + d such that

f(Z)>0 for Z € Py, and f(7) <0 for 7 € P,

Suppose P, consists of vertices {p1, ...

since P, and P, are disjoint, the following

A7 <7

T = (Z/\iﬁi-FZMj?])j)
i=1 j=1

a1

i=1

AN>0 Vi=1,...,n

/’L]>O Vj—l,...,m

which can be formulated into matrix

Since it has no solution, by Farkas’ lemma, there exists Z such that ATZ = 0 and

Denote 2 as (¢'7,b)T, we have

(AB)T 2 +b>0,Vi=1,...,n; (A

system has no solution,

A (i NTi+
i=1

— i=1
A >0 Vi=1,
w; >0 Vj=1,
€>0

form as follows

A1
— /\n
Aq, 1 B
o o [M]7

M7n

_?_

Let ¢ = AT¢’, then we have for any 2 € B,

TrZ < 0.
)T >0, Vi=1,...,m; ?’26; T +b<0
)+b20, with > Ai=1, ;>0
=1 =1

n
?T?—F b=72CT (Z /\z?z + Z’uj?fj
i=1 i

For all @ € A, we have

, Pn} and extreme rays {1, ...

Zﬂja)j
j=1

, @m}- Forany 7 € P,

>+?:E

m

>0

AT < ad = 7°"TAZ7 < 7" < -b=7"7+b<0

Hence, the proof is finished.



