
MAT3220: Operation Research
Homework 2

李肖鹏 (116010114)

Due date: Feb 26, 12 p.m., 2019

Problem 1. Use the strong duality theorem to prove Gordan’s theorem: Either A #»x >
#»
0 has a

solution, or AT #»y =
#»
0 , #»y ≩ #»

0 has a solution.

Denote #»e as a vector whose all entries are equal to one. Consider the following primal-dual
problem.

(P ) min
#»x , #»y

#»e T #»y

s.t. A #»x + #»y ≥ #»e (dual variable #»z )
#»y ≥ #»

0

(D) max
#»z

#»e T #»z

s.t. AT #»z =
#»
0

#»z ≤ #»e , #»z ≥ #»
0

If A #»x >
#»
0 has a solution, then we can amplify this solution by multiplying a positive real

number so that we obtain another solution #»x ∗ such that A #»x ∗ ≥ #»e . Then, if we take #»y ∗ =
#»
0 ,

we obtain the optimal solution of primal problem, i.e., #»e T #»y ∗ = 0. By strong duality, the dual
problem also has a optimal solution 0, meaning that #»e T #»z ∗ = 0, hence #»z ∗ =

#»
0 . Such #»z ∗ is also

the only feasible solution, because if we have any other feasible solution #»z ≥ #»
0 must have at least

one positive entry, which yields a larger objective value, which is a contradiction. Hence, there does
not exist a #»z ≩ #»

0 satisfying AT #»z =
#»
0 .

Conversely, if A #»x >
#»
0 does not have a solution, then vector A #»x has at least one entry that is

nonpositive. Since the primal problem is obviously feasible and bounded, it has the optimal solution
#»y ∗ ≩ #»

0 for all chosen of #»x . Hence, the optimal value #»e T #»y ∗ > 0, and by strong duality, this also
implies the optimal value of dual #»e T #»z ∗ > 0. Thus, we conclude that #»z ∗ ≩ #»

0 is a feasible solution
that satisfies AT #»z =

#»
0 . Therefore, Gordan’s theorem is proved.

Problem 2.

• Prove the following general form of the separation theorem. Suppose that S ⊆ Rn is a closed
convex set, and that #»u /∈ S. Then, there exist #»c ∈ Rn and d ∈ R, such that #»c T #»u < d and
#»c T #»x > d for all #»x ∈ S.

Denote S̄ = { #»x − #»u | ∀ #»x ∈ S}, since S is closed and convex, it is easy to show that S̄ is
also closed and convex. Consider the function f( #»x ) = ∥ #»x∥2, since it is continous, we know a
continuous function will map a closed set to closed set, so the set

D = {∥ #»x − #»u∥2 | #»x ∈ S}
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is a closed set, hence its minimum will be obtained by some #»z ∈ S. Denote #»c = #»z − #»u and
d = 1

2
#»c T( #»z + #»u ), we need to prove this hyperplan satisfies our assumption.

We claim that for all #»x ∈ S, we have

#»c T #»x = ( #»z − #»u )T #»x ≥ ( #»z − #»u )T #»z >
1

2
( #»z − #»u )T( #»z + #»u ) = d > ( #»z − #»u )T #»u = #»c T #»u

The nontrivial part of the above relation is

( #»z − #»u )T #»x ≥ ( #»z − #»u )T #»z , and ( #»z − #»u )T #»z >
1

2
( #»z − #»u )T( #»z + #»u ) > ( #»z − #»u )T #»u

The second one is easy, since

( #»z − #»u )T #»z >
1

2
( #»z − #»u )T( #»z + #»u ) ⇐⇒ 1

2
( #»z − #»u )T( #»z − #»u ) > 0

which is obviously correct when #»z ̸= #»u . Also,
1

2
( #»z − #»u )T( #»z + #»u ) > ( #»z − #»u )T #»u ⇐⇒ 1

2
( #»z − #»u )T( #»z − #»u ) > 0

which is obviously correct when #»z ̸= #»u .

To prove the first relation, we consider any λ ∈ (0, 1], #»x λ = (1 − λ) #»z + λ #»x ∈ S. Since #»z

obtain the minimum distance, we have

∥ #»z − #»u∥22 ≤ ∥ #»x λ − #»u∥22 = ∥(1− λ) #»z + λ #»x − #»u∥22
= ∥(1− λ)( #»z − #»u ) + (1− λ) #»u + λ #»x − #»u∥22
= (1− λ)2∥ #»z − #»u∥22 + λ2∥ #»x − #»u∥22 + 2(1− λ)λ( #»x − #»u )T( #»z − #»u )

Since λ ̸= 0, we have

(λ− 2)∥ #»z − #»u∥22 + 2(1− λ)( #»x − #»u )T( #»z − #»u ) + λ∥ #»x − #»u∥22 ≥ 0

Since this inequality is continuous with respect to λ, take λ → 0, we have

0 ≥ ∥ #»z − #»u∥22 − ( #»x − #»u )T( #»z − #»u )

= ( #»z − #»u )T( #»z − #»u )− ( #»x − #»u )T( #»z − #»u )

= ( #»z − #»x )T( #»z − #»u ) = ( #»z − #»u )T #»z − ( #»z − #»u )T #»x

Hence, we prove that ( #»z − #»u )T #»x ≥ ( #»z − #»u )T #»z .

• Prove the following general form of the bipolar theorem by the separation theorem. For a
closed convex cone K ⊆ Rn, we have (K∗)∗ = K.

By definition, K∗ = { #»y ∈ Rn | #»y T #»x ≥ 0, ∀ #»x ∈ K}. For any #»z ∈ Rn satisfying that for all
#»y ∈ K∗, #»z T #»y ≥ 0 will lie in the dual cone of K∗. Obviously, all of #»x ∈ K satisfies such
condition, hence (K∗)∗ ⊇ K.

Conversely, if there is some vector #»z in (K∗)∗ but not in K, then by separation theorem, and by
choosing origin properly, there is a vector #»c such that #»c T #»z < 0 and #»c T #»x > 0 for all #»x ∈ K.
Since #»c T #»x > 0, #»c is in K∗, but because #»z ∈ (K∗)∗, #»c T #»z ≥ 0, which is a contradiction.
Hence, all element in (K∗)∗ must be in K, meaning that (K∗)∗ ⊆ K. Therefore, we finish the
proof of bipolar theorem.
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Problem 3. Prove the following generalized version of Theorem 5: Suppose that two given poly-
hedra P1 = { #»x |A #»x ≤ #»a } and P2 = { #»x |B #»x ≤ #»

b } (with #»x ∈ Rn, A ∈ Rm×n, #»a ∈ Rm, B ∈ Rl×n,
#»
b ∈ Rl) that are nonempty but they do not intersect. Use the Farkas lemma to prove: there is an
affine linear function f( #»x ) = #»c T #»x + d such that

f( #»x ) > 0 for #»x ∈ P1, and f( #»x ) < 0 for #»x ∈ P2

Suppose P2 consists of vertices { #»p 1, . . . ,
#»p n} and extreme rays { #»q 1, . . . ,

#»q m}. For any #»x ∈ P2,
since P1 and P2 are disjoint, the following system has no solution,

A #»x ≤ #»a

#»x =

(
n∑

i=1

λi
#»p i +

m∑
j=1

µj
#»q j

)
n∑

i=1

λi = 1

λi ≥ 0 ∀i = 1, . . . , n

µj ≥ 0 ∀j = 1, . . . ,m

⇐⇒



A

(
n∑

i=1

λi
#»p i +

m∑
j=1

µj
#»q j

)
+ #»ϵ = #»a

n∑
i=1

λi = 1

λi ≥ 0 ∀i = 1, . . . , n

µj ≥ 0 ∀j = 1, . . . ,m

#»ϵ ≥ 0

which can be formulated into matrix form as follows

A #»u =

[
A #»p 1 · · · A #»p n A #»q 1 · · · A #»q m I

1 · · · 1 0 · · · 0 0

]
·



λ1

...
λn

µ1

...
µm

#»ϵ


=

[
#»a

1

]
= #»v and #»u ≥ 0

Since it has no solution, by Farkas’ lemma, there exists #»z such that AT #»z =
#»
0 and #»v T #»z < 0.

Denote #»z as ( #»c ′T, b)T, we have

(A #»p i)
T #»c ′ + b ≥ 0, ∀ i = 1, . . . , n; (A #»q j)

T #»c ′ ≥ 0, ∀ j = 1, . . . ,m; #»c ′ ≥ #»
0 ; #»c ′T #»a + b < 0

Let #»c = AT #»c ′, then we have for any #»x ∈ B,

#»c T #»x + b = #»c T

(
n∑

i=1

λi
#»p i +

m∑
j=1

µj
#»q j

)
+ b ≥ 0, with

n∑
i=1

λi = 1, µj ≥ 0

For all #»x ∈ A, we have

A #»x ≤ #»a =⇒ #»c ′TA #»x ≤ #»c ′T #»a < −b =⇒ #»c T #»x + b < 0

Hence, the proof is finished.

3


