MAT3220：Operation Research Homework 3

李肖鹏（116010114）

Due date：March 5， 12 p．m．， 2019

Problem 1．Denote the input－length of an integer n to be $\ell(n)$ ．Consider two integers a and b ． Derive an upper bound for the input－length of $a b$ ．

We can take $\ell(n)=\left[\log _{2}(|n|+1)\right]+1$ ，and here $[x]$ is a function which take the largest integer that will not exceed x ．Recall the property of it，we know $[x]$ is nondecreasing function and $[x+y] \leq[x]+[y]+1$ ．Thus，substitute $a b$ into it，we will have

$$
\begin{aligned}
\ell(a b)=\left[\log _{2}(|a b|+1)\right]+1 & \leq\left[\log _{2}(|a|+1)+\log _{2}(|b|+1)\right]+1 \\
& \leq\left[\log _{2}(|a|+1)\right]+\left[\log _{2}(|b|+1)\right]+1+1 \\
& =\ell(a)+\ell(b)
\end{aligned}
$$

Thus a suitable upper bound for the input－length of $a b$ is $\ell(a)+\ell(b)$ ．

Problem 2．Consider a matrix $A=\left[a_{i j}\right]_{n \times n}$ ，where $a_{i j}$＇s are all integers．The determinant for A is defined as

$$
\operatorname{det}(A)=\sum_{\sigma \in \Pi} \operatorname{sign}(\sigma) a_{1 \sigma_{1}} a_{2 \sigma_{2}} \cdots a_{n \sigma_{n}}
$$

where Π is the set of all permutations，and sign (σ) is the sign of the permutation σ ．Derived an upper bound for the input－length of $\operatorname{det}(A)$ ．

Denote the integer with the largest absolute value in A to be Δ ，and $\ell(n)$ means the input length of integer n ．Since

$$
|\operatorname{det}(A)| \leq \sum_{\sigma \in \Pi}|\operatorname{sign}(\sigma)|\left|a_{1 \sigma_{1}}\right|\left|a_{2 \sigma_{2}}\right| \cdots\left|a_{n \sigma_{n}}\right| \leq \sum_{\sigma \in \Pi}|\Delta|^{n}=n!|\Delta|^{n}
$$

Also，for nonnegative integer $a \leq b$ ，we have $\ell(a) \leq \ell(b)$ ，hence

$$
\ell(\operatorname{det}(A)) \leq \ell\left(n!|\Delta|^{n}\right) \leq \ell(n!)+n \ell(|\Delta|)
$$

Of course，we can also write $n \ell(n)+n \ell(|\Delta|)$ as an upper bound．

Problem 3．Consider a system of n linear equations for n unknowns，represented in matrix multi－ plication form as follows：

$$
A \vec{x}=\vec{b}
$$

where the $n \times n$ matrix A has a nonzero determinant. The so-called Cramer's rule states that in this case the system has a unique solution given by:

$$
x_{i}=\frac{\operatorname{det}\left(A_{i}\right)}{\operatorname{det}(A)}, \quad i=1, \ldots, n
$$

where A_{i} is the matrix formed by replacing the i-th column of A by the column vector \vec{b}. Suppose that A and \vec{b} are all integer-valued. Let

$$
\Delta:=\max \left\{\left|a_{i j}\right|,\left|b_{i}\right|: i, j=1, \ldots, n\right\}
$$

Clearly, the input-length of A and \vec{b} is lower bounded by the input-length of Δ. Derive an upper bound for the input-length of x_{i} using the input-length of Δ, where $i=1, \ldots, n$.

We define the input length of a fractional number to be the sum of the input length of its numerator and denominator.

Thus, we have

$$
\ell\left(x_{i}\right)=\ell\left(\operatorname{det}\left(A_{i}\right)\right)+\ell(\operatorname{det}(A))
$$

From Problem 4, we have

$$
\ell\left(x_{i}\right) \leq 2 \ell(n!)+2 n \ell(\Delta)
$$

If you like, you could also consider for any positive integer i,

$$
\ell(i)=\log _{2}(i+1)+1 \leq \log _{2}\left(2^{i}\right)+i=i \log _{2}(1+1)+i=i \ell(1)
$$

Hence, we have

$$
\ell\left(x_{i}\right) \leq\left(n^{2}+n\right) \ell(\Delta)+2 n \ell(\Delta)=\left(n^{2}+3 n\right) \ell(\Delta)
$$

Problem 4. Let the input-length of the following integer-valued linear program

$$
\begin{array}{cl}
\min _{\vec{x}} & \vec{c}^{\mathrm{T}} \vec{x} \\
\text { s.t. } & A \vec{x}=\vec{b} \\
& \vec{x} \geq \overrightarrow{0}
\end{array}
$$

be L. Let \vec{x}^{bfs} be an arbitrary basic feasible solution for the above problem. Derive an upper bound on the input-length of \vec{x}^{bfs} in terms of L.

According to Fundemental Therorem of Linear Programming, if there exists a feasible solution, then there must exist a basic feasible solution $\vec{x}^{\text {bfs }}$. Also, if we suppose $A \in M_{m \times n}(\mathbb{Z})(n>m)$, $\vec{b} \in \mathbb{Z}^{m}$ and $\vec{c} \in \mathbb{Z}^{n}$, then there exists a basis \mathcal{B} such that $\vec{x}_{\mathcal{B}}=A_{\mathcal{B}}^{-1} \vec{b}$. Notice that $\vec{x}_{\mathcal{N}}$ is a $(n-m)$-dimensional zero vector.

Therefore,

$$
\ell\left(\vec{x}^{\mathrm{bfs}}\right)=\ell\left(\vec{x}_{\mathcal{B}}\right)+\ell\left(\vec{x}_{\mathcal{N}}\right) \leq \ell\left(\vec{x}_{\mathcal{B}}\right)+n-m=\sum_{i=1}^{m} \ell\left(x_{i}\right)+n-m
$$

By Problem 3, we have

$$
\ell\left(\vec{x}^{\mathrm{bfs}}\right) \leq 2 m(m \ell(m)+m \ell(\Delta))+n-m
$$

Since $L \geq \ell(\Delta)$ and $L \geq m n+n+m \geq m^{2}$, we have

$$
\ell\left(\vec{x}^{\mathrm{bfs}}\right) \leq 2 L(\ell(m)+\ell(\Delta))+L
$$

Since $\ell(m)=\log _{2}(m+1)+1 \leq m+1 \leq L$, we have

$$
\ell\left(\vec{x}^{\mathrm{bfs}}\right) \leq 2 L(L+L)+L=5 L^{2}
$$

Therefore, a reasonable upper bound of input length of \vec{x}^{bfs} is $5 L^{2}$.

