MAT3220: Operation Research

Homework 5

ZE S (116010114)

Due date: April 9, 12 p.m., 2019

Problem 1. Suppose that the gradient of a function f : R™ — R is Lipschitz continuity, that is,
3L > 0 such that |Vf(Z) - VF(Y)| < L|Z -7, VZ, ¥ € R". Prove that for any @, v € R" we
have
—> —> —>\T /—> —> L — —12
f(@) < f(0) + V(@) (7 = 7) + S [|v — 7|

Consider function h(t) = f(¥ + t(¥ — V') and Newton-Leibniz formula, we have

h(l)—h(O):/ B () dt:f(ﬂ’)—f(?):/o V(T + 4T — ) (T - ) dt

0

Therefore, we have

[f(0) = f(0) = V() (T = 7)| = /0 Vi@ + (T = T) = V)] (T - 7)dt

1
< / V@ + (@ — )~ V@) - [T - 2| dt
0
1
< / Lt||@ — 7| dt
0
L —> —>
=217 - TP
In conclusion, we have

£ < F(D)+ VA@@ - T) + T - TP

Problem 2. The gradient descent method with Armijo’s line-search rule is as follows,

Set parameters s > 0, 8 € (0,1) and o € (0,1). Initially, set k = 1.
For iterate k, let ¢ be the smallest integer satisfying

F@*) = f(@F+plsd®) > —ap'sVf(ZH)Td"

where d* = ~VF(ZF). Let ap = sp*, TF1 = 7F + apd®. Letk=Fk+ 1, and

return to For.




Prove that if f is convex and twice differentiable with a bounded Hessian matrix, then there exists
a constant ¢ > 0, such that

(@ - (@) <, forallk>1

ol e

We first make the assumption that the level set of the initial point is bounded, which means
|79 — Z*|| < C. Also, suppose V2f(Z) < MI for M > 0. Since we use backtrack line search, the

following Armijo’s condition must be satisfied,
F@E) = f(ZF + spLdF) > —oB'sV ()T dF (2.1)
FZE) = f(TF + 5BV dR) < —oB LV (TR TR (2.2)
Substitute d* = —Vf(Z%) and for simplicity, let aj;, = s3°, then by (2.1), we have
@) < £(@) — oarl VHEYI? (2.3)

This shows that the function value is strictly decreasing, so the level set of each iteration will be
contained in the level set of the initial point, hence we have || 7% — 7| < C, for all k. By Taylor

expansion of f at 2% and (2.2), we obtain
P+ (on/B) ) = FT) + (an/B)VFE)T T 4 (a5 0 V257
> F(ZF) + o(on/B)VF(ZF)TdF

Since the hessian is bounded

(@ BPMIF@)E > (- o /BIFF)P = oy > 20— (2.4
Also, by the convexity of f, we have
F@) = f(@) < IVLEHIIZY - 27 (2.5)
Use (2.5) to eliminate the gradient term in (2.3), we have
—k+1 — f(x f )2 g >4\ (12
1) - 57 < —oadLEL I o0ty ) piar)
Use (2.4), we finally have
Fa) - (@) < - 2202y i e (2.6)

Let e, = f(Z%) — f(Z*) and denote K = 20(1 — 0)3/(MC?), then we have the recurrence relation
as follows (for all k, e, > 0, and this implies 1 — Kej > 0),

1 K 1
>4 >4+ K 2.7
€k+1_ek+1_K€k_@k+ 27)

ert1 < e —Kei =

It is easy to obtain

e < 1 c b 1 MC? (%)
_ < — = - ere c= — = ————— *
ST RKhe, SKE R T ST K T 9801 o)

so f(Z%) — f(@*) = O(1/k), which is equivalent to what we need to prove.



Problem 3. Suppose that the objective function f is uniformly convex, i.e., there exist 0 < m <
M < oo,
mlI X V?f(Z) X MI, foral @

Consider Newton’s method with Armijo’s line search rule as follows,

Set parameters s > 0, 8 € (0,1) and o € (0,1). Initially, set k = 1.
For iterate k, let £ be the smallest integer satisfying

F@Y) = f(@F+ plsd™) > —ap'sV (M) Td"

where d* = —(V2f(Z%)) IV f(Z").
Compare f(i’k+354:1)’€) with f(¥k+gk) and let oy, be either s8¢ or 1, whichever
is lesser in terms of the f(Z* + ay gk) value.

Let 1 = Z* + . d*. Let k =k + 1, and return to For.

Prove that the above algorithm has a global linear rate of convergence.

If V2 £(7) is not guaranteed to be continuous, then use (2.1) and (2.2), and substitute o), = s3¢,

d* = —(V2f(Z%) IV f(Z*), we have
F@ + 0id") < (@) =00l V(@ (V2 F(T) V() (3.1)
F@*+ (ah/B)d") > F(Z*) — olah/B)VF(ZF)T(V2F(TF) IV F(ZF) (32)
Use the same argument by which we obtained (2.4) and since M~'I < (V2f(Z%))~! <m™'1,

2 26(1—o)m

(d"TV2 (M) dE > (0 — YV T dF = o), > (3.3)
23 M
Denote that
ap = argmin f(Z" +ald¥), F@*+ad®) = min  f(Z+a,db)
af e{1,sp%} aj e{1,s8}
With (3.1), the upper bound of f(Z* + ay, d *) is given by
FE + o d®) < (T + afd?)
< F(@Y) = ol V(@ (VAF(EE)TIV(ET)
N oo _
< 5@ - k() P
By substituting (3.3), we obtain
N — N 2B80(1 —o)m o
P+ a8 < f(@) - LU e (3.4

To derive the bound of gradient, consider Taylor expansion



Let ¥ = @*, where * is the optimal solution, A = 1, and € = Z* — 2*, combining the lower and

upper bound of the hessian, we have

T - 20 < S35 - (@) < B I7 - TP (35)
Then, let ¥ = Z, A=1,and € = ©* — ZF,
F@) = f@5) = IVFEMIZ* -2 + %H?k -7
Use (3.5) to eliminate f(2*) — f(Z'%), we have
m||Z" — T < V(@)
Consider mean value theorem, we have
IVA(@T*) = V@) = V@) -0l = [V2F@)IIIZT" - 27| < M| 7" — 7|
Therefore, combining the lower and upper bound of gradient together, we have

m|| T =T < V(@) < M||ZE - 7| (3.6)

Notice that (3.5) and (3.6) does not depend on algorithm but they are only related to the uniform
convexity of function f. Thus, we can apply them to (3.4). Use (3.6) to eliminate gradient and use

(3.5) to eliminate the iterates difference so that only the function difference remains,

- o(l—o)m?
P+ apdh) < (79 - PO g0 pa) (37)
Rearrange the term, we finally have
- _ 3
FE o dh) - f(@) < 1= PELZD] iy g (38)

Notice that 0 < o(1 —¢) < 1, 8 € (0,1) and m < M, the coefficient

4ol —a)m?

C=1 —

€ (0,1)
so a global linear convergence is ensured.

If the hessian is continuous, then the algorithm will first have linear and then super-linear
convergence, so globally linear convergence still holds. If in addtion, the hessian is Lipschitz con-
tinuous, then the algorithm will first have linear and then quadratic convergence, so globally linear

convergence also holds. The details are shown in Appendix.



Appendix: Additional Proof of Problem 3

In the first phase, where |V f(Z*)| > v, from (3.4), we still have

2B0(1 —o)m 2B0(l —o)m
M2 Y

This shows that at each iterations the objective value decreases by at least a positive constant.

F(@ +a,d") < f(TF) - IVF(Z9))? < f(2*) - (3.9)

Since this function is uniformly convex, hence its global minimum is finite, this phase can only last
for finite steps, so we don’t determine its convergence rate in the context of limit, but it is obvious

that the rate of convergence is at least linear.

In the second phase, where ||V f(Z%)|| <, by (3.6) and bound of hessian, we have

IVAE)] = S IVAF) ~ VAE) - (~VFE)
= |vr@+ @ - vr@h - vrrEt d|

1
= / V22 +tdF)d" dt — VAf(ZF)d*
0

_ /01 [v?,f(z? +tdb) — v?ﬂz’f)} d* dtH (3.10)

VAN

€
— ||V f(22*
sl
Therefore, we have the recurrence relation
— € —
V@I < —IVAED] (3.11)

Since V2f () is continuous, there exists g, such that for all @ such that ||Z*** — Z%|| < dy, the
inequality (3.11) holds for e = m?3/(2M?), and thus (3.11) reduces to

IVAEHH] < %I\Vf(?k)ﬂ (3.12)

Since the first phase only continue for finite steps, if we take v = mdy, there must exists a kg
such that [|[Vf(Z*)| < mdy. From (3.6), ||@* — Z*| < &y, thus we can apply (3.12), and thus
|V f(Z*+1)|| < . By induction, we can see that for all k > ko, ||V f(Z*)|| < 4. This means (3.12)
holds all iterations after kg, and also shows that ||V f(Z*)|| converges to zero at least linearly. By

definition of Z**!, we have
1 1
—|IVf(@")| < |5 = ZF| < = || VAR 3.13
—IVEYI <7 2o < 57 IVAED)] (3.13)

Since gradient converges to zero as k — oo, by (3.13), || Z**! — Z*|| — 0, but this just means that
d — 0 as k — co. By continuity, € — 0 as k — co. However, if we combine (3.11), (3.5), and (3.6),

we have

M3e?

F@E) = f(@) < —(F(T*) = f(Z")) (3.14)

Hence, when k — oo, the coefficient M3e*/m® — 0, which ensures super-linear convergence.

If further more, the hessian is Lipschitz continuous with Lipschitz constant L, then (3.10) will
yield
L
—k+1 —ky (2
VA < 5z IVAE)



If we take v = m?/L, then there exists kg, such that |V f(Z%0)|| < m?/L, and since we have

L
2m?2

v -—»k+1|<L72|V(——>k|27 L VHEY)| 27 2
IVE < v @ = (LaIv @) = a

Ap+1 =

by induction, for all & > kg, we havewe have
ar <af " < @

3
1@ - 1) < 5P < 2 (5)

Therefore, we have
gk—ko+1

which is exactly quadratic convergence.



