MAT3220: Operation Research

Homework 9

李肖鹏 (116010114)

Due date: May 8, 12 p.m., 2019

Problem 1. Show that the shrinkage operator solving

$$\mathcal{T}_{\alpha}(\overrightarrow{v}) = \arg\min_{\overrightarrow{x}} \{ \|\overrightarrow{x} - \overrightarrow{v}\|^2 + 2\alpha \|\overrightarrow{x}\|_1 \}$$

can be given explicitly as

$$\mathcal{T}_{\alpha}(\overrightarrow{v}) = (|v_i| - \alpha)_+ \cdot \operatorname{sign}(v_i), \quad i = 1, 2, \dots, n$$

Suppose the optimal solution

$$\overrightarrow{x}^* = \arg\min_{\overrightarrow{x}} \left\{ \|\overrightarrow{x} - \overrightarrow{v}\|^2 + 2\alpha \|\overrightarrow{x}\|_1 \right\}$$

Then the *i*-th entry of it x_i is given by

$$x_i^* = \arg\min_{x_i} \{(x_i - v_i)^2 + 2\alpha |x_i|\}$$

If $x_i \geq 0$, then we need to minimize $g_i(x) = (x_i - v_i)^2 + 2\alpha x_i$. Take derivative $g_i'(x) = 2(x_i - v_i) + 2\alpha = 0$, we have $x_i = v_i - \alpha$. Thus if $v_i - \alpha \geq 0$, then $x_i^* = v_i - \alpha$; otherwise, $x_i^* = 0$. Compactly, $x_i^* = \max\{v_i - \alpha, 0\}$. Similarly, if $x_i < 0$, then we need to minimize $h_i(x) = (x_i - v_i)^2 - 2\alpha x_i$. Take derivative $h_i'(x) = 2(x_i - v_i) - 2\alpha = 0$, we have $x_i = v_i + \alpha$. Thus, if $v_i + \alpha < 0$, $x_i^* = v_i + \alpha$; otherwise, $x_i^* = 0$. Compactly, $x_i^* = \min\{v_i + \alpha, 0\} = -\max\{-v_i - \alpha, 0\}$.

Also notice that since $\alpha > 0$, when $x_i \ge 0$, if $v_i - \alpha \ge 0$, we have $v_i > 0$, and thus, $x_i^* = \max\{|v_i| - \alpha, 0\} = (|v_i| - \alpha)_+ \cdot \operatorname{sign}(v_i)$. Similarly, when $x_i < 0$, if $-v_i - \alpha > 0$, $v_i < 0$, and thus, $x_i^* = -\max\{|v_i| - \alpha, 0\} = (|v_i| - \alpha)_+ \cdot \operatorname{sign}(v_i)$. In conclusion, under any circumstances, we have

$$\vec{x}^* = (|v_i| - \alpha)_+ \cdot \operatorname{sign}(v_i), \quad i = 1, 2, \dots, n$$

Problem 2. The Bregman distance is defined as

$$B(\overrightarrow{y}, \overrightarrow{x}) = \Phi(\overrightarrow{y}) - \Phi(\overrightarrow{x}) - \nabla \Phi(\overrightarrow{x})^{\mathrm{T}} (\overrightarrow{y} - \overrightarrow{x})$$

• Let $\Phi(\vec{x})$ be a smooth and strongly convex function defined in the whole of \mathbb{R}^n , i.e. there is $\sigma > 0$ such that

$$[\nabla \Phi(\overrightarrow{x}) - \nabla \Phi(\overrightarrow{y})]^{\mathrm{T}} (\overrightarrow{x} - \overrightarrow{y}) \ge 2\sigma \|\overrightarrow{x} - \overrightarrow{y}\|^2$$

for all $\vec{x}, \vec{y} \in \mathbb{R}^n$. Prove: $B(\vec{y}, \vec{x}) \ge \sigma ||\vec{y} - \vec{x}||^2$.

By Taylor's Theorem, we have

$$\Phi(\vec{y}) = \Phi(\vec{x}) + \nabla \Phi(\vec{x})^{\mathrm{T}} (\vec{y} - \vec{x}) + \frac{1}{2} (\vec{y} - \vec{x})^{\mathrm{T}} H_{\Phi}(\vec{\xi}) (\vec{y} - \vec{x})$$

where $\vec{\xi}$ is some point between \vec{x} and \vec{y} , H_{Φ} denotes the Hessian of Φ . By definition of $B(\vec{y}, \vec{x})$, to prove $B(\vec{y}, \vec{x}) \geq \sigma \|\vec{y} - \vec{x}\|^2$ is equivalent to prove $(\vec{y} - \vec{x})^{\mathrm{T}} H_{\Phi}(\vec{\xi})(\vec{y} - \vec{x}) \geq 2\sigma \|\vec{y} - \vec{x}\|^2$.

Apply Mean Value Theorem to $\nabla \Phi(y)$, we have

$$\nabla \Phi(\vec{y}) = \nabla \Phi(\vec{x}) + H_{\Phi}(\vec{\xi})(\vec{y} - x)$$

Therefore, multiply $(\vec{y} - \vec{x})$ on both sides of the equation, we have

$$[\nabla \Phi(\overrightarrow{y}) - \nabla \Phi(\overrightarrow{x})]^{\mathrm{T}}(\overrightarrow{y} - \overrightarrow{x}) = (\overrightarrow{y} - \overrightarrow{x})^{\mathrm{T}} H_{\Phi}(\overrightarrow{\xi})(\overrightarrow{y} - \overrightarrow{x}) \ge 2\sigma \|\overrightarrow{x} - \overrightarrow{y}\|^2$$

Thus, we have proved what we need, and this implies that $B(\vec{y}, \vec{x}) \ge \sigma ||\vec{y} - \vec{x}||^2$.

• Suppose $\Phi(\vec{x}) = ||\vec{x}||^2$. What is the corresponding Bregman distance $B(\vec{y}, \vec{x})$ on \mathbb{R}^n ?

Substitute $\phi(\vec{x}) = ||\vec{x}||^2$ into the formula of $B(\vec{y}, \vec{x})$, we have

$$\begin{split} B(\overrightarrow{y}, \overrightarrow{x}) &= \Phi(\overrightarrow{y}) - \Phi(\overrightarrow{x}) - \nabla \Phi(\overrightarrow{x})^{\mathrm{T}} (\overrightarrow{y} - \overrightarrow{x}) \\ &= \|\overrightarrow{y}\|^2 - \|\overrightarrow{x}\|^2 - 2\overrightarrow{x}^{\mathrm{T}} (\overrightarrow{y} - \overrightarrow{x}) \\ &= \|\overrightarrow{y}\|^2 + \|\overrightarrow{x}\|^2 - 2\overrightarrow{x}^{\mathrm{T}} \overrightarrow{y} = \|\overrightarrow{y} - \overrightarrow{x}\|^2 \end{split}$$

Therefore, the corresponding Bregman distance is just L_2 -norm on \mathbb{R}^n .

• Suppose $\Phi(\vec{x}) = \sum_{i=1}^{n} x_i \ln x_i$. What is the corresponding Bregman distance $B(\vec{y}, \vec{x})$ on \mathbb{R}^n_{++} ?

Substitute $\phi(\vec{x}) = \vec{x}^T \ln \vec{x}$ into the formula of $B(\vec{y}, \vec{x})$, we have \vec{e} is all one vector.

$$B(\overrightarrow{y}, \overrightarrow{x}) = \Phi(\overrightarrow{y}) - \Phi(\overrightarrow{x}) - \nabla \Phi(\overrightarrow{x})^{\mathrm{T}} (\overrightarrow{y} - \overrightarrow{x})$$

$$= \overrightarrow{y}^{\mathrm{T}} \ln \overrightarrow{y} - \overrightarrow{x}^{\mathrm{T}} \ln \overrightarrow{x} - (\overrightarrow{y} - \overrightarrow{x})^{\mathrm{T}} (\overrightarrow{e} + \ln \overrightarrow{x})$$

$$= \sum_{i=1}^{n} y_i \ln \left(\frac{y_i}{x_i}\right) - \sum_{i=1}^{n} y_i + \sum_{i=1}^{n} x_i$$

Therefore, the corresponding Bregman distance is the generalized Kullback-Leibler divergence.