
Additional Exercises: Convexity

1. Why a real symmetric matrix will always have real (as opposed to complex) eigenvalues?

2. Prove the following Cauchy-Schwarz inequality.

For any u, v ∈ Rn, we have

uTv ≤ ‖u‖2 · ‖v‖2.

3. Use the Cauchy-Schwarz inequality to prove the so-called triangle inequality for the Euclidean

norm:

‖x+ y‖2 ≤ ‖x‖2 + ‖y‖2

for all x, y ∈ Rn.

4. For a square matrix A ∈ Rn×n, its trace is tr (A) =
∑n
i=1 aii. Prove: For any X ∈ Rm×n and

Y ∈ Rn×m, we have tr (XY T) = tr (Y XT) =
∑m
i=1

∑n
j=1XijYij .

5. Let X ∈ Rm×n be a real matrix. The so-called Frobenius norm of X is defined as

‖X‖F :=

 m∑
i=1

n∑
j=1

X2
ij

1/2

and its spectrum norm is defined as ‖X‖2 :=
(
λmax(XTX)

)1/2
. Prove: Both ‖ · ‖F and ‖ · ‖2

are indeed matrix norms.

6. Prove: For any X ∈ Rm×n and y ∈ Rm,

‖Xy‖2 ≤ ‖X‖2 · ‖y‖2.

7. Prove: For any X, it holds that ‖X‖2 ≤ ‖X‖F .

8. Compute the gradient of the quartic function

f(x) = (xTAx)2

where A ∈ Sn.

9. Compute the Hessian matrix of the quartic function

f(x) = (xTAx)2

where A ∈ Sn.



10. Prove: If h(x) is twice continuously differentiable, then h(x) is convex in Rn is equivalent to

∇2h(x) � 0 for all x ∈ Rn.

11. Prove: (
∏n
i=1 xi)

1/n is a concave function in Rn
++.

12. Prove:
xn1

x2x3 · · ·xn
is a convex function in Rn

++.

13. Consider X ∈ Sn×n, and so X has n real eigenvalues as we discussed before. Let them be

λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X).

Prove: λ1(X) is a convex function.

14. Prove:

ln

(
n∑
i=1

exi

)
is a convex function.

15. Suppose that f(x) ≥ 0 is convex for x ∈ S, and g(x) > 0 is concave for x ∈ S. Prove:

f(x)

g(x)

is a quasi-convex function.

16. Show that
aTx+ b

cTx+ d

is quasi-linear in {x | cTx+ d > 0}.

17. Suppose that f(x) ≥ 0 is convex for x ∈ S, and g(x) > 0 is concave for x ∈ S. Prove:

f(x)2

g(x)

is a convex function.

18. Prove:
∏n
i=1 xi is quasi-concave in Rn

++.

19. Show that S := {x | ‖x− a‖2 ≤ ‖x− b‖2} is a convex region. Further prove: ‖x− a‖2/‖x− b‖2
is quasi-convex in S.

20. Prove:

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2dt

is a log-concave function.
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21. Suppose Q ∈ Sn×n++ . Prove:

2xTy ≤ xTQx+ yTQ−1y

for any x, y ∈ Rn.

22. Suppose 0 < p < 1. Show that (
n∑
i=1

xpi

)1/p

is a concave function in Rn
++.

23. If f(x) is twice continuously differentiable and quasi-convex, then for any x ∈ dom(f):

dT∇f(x) = 0 =⇒ dT∇2f(x)d ≥ 0.

24. Prove: If the above condition holds, then there must exist some real value α such that

∇2f(x) + α∇f(x)(∇f(x))T � 0.

[The Hessian matrix of a quasi-convex function can have at most one negative eigenvalue!]

25. For X ∈ Sn×n, its eigenvalues are denoted to be

λ1(X) ≥ λ2(X) ≥ · · · ≥ λn−1(X) ≥ λn(X).

Let 1 ≤ k ≤ n. Consider

f(X) :=
k∑
i=1

λi(X).

Prove: f(X) is a convex function.

Hint: Show that

f(X) = sup{tr(UTXU) | U ∈ Rn×k, UTU = Ik}.

26. A function f : Rn
++ → R

h(x) = cxλ11 x
λ2
2 · · ·x

λn
n

with c > 0 and λ ∈ Rn is called a monomial. Sum of monomials, f(x) =
∑k
i=1 hi(x), is called

a posynomial.

The so-called geometric programming problem is as follows:

(G) min f0(x)

s.t. fi(x) ≤ 1, i = 1, 2, ...,m

hj(x) = 1, j = 1, 2, ..., p

where fi(x) are posynomials (i = 1, 2, ...,m), and hj(x) are monomials (j = 1, 2, ..., p).

Show that (G) can be formulated as convex optimization through a variable transformation.
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27. Formulate the following L4-norm approximation problem as QCQP:

min ‖Ax− b‖4 =

(
m∑
i=1

(aTi x− bi)4
)1/4

.

28. The so-called Chebyshev center of a polyhedron is the deepest point inside the polyhedron.

Suppose that the polyhedron is given by P = {x | aTi x ≤ bi, i = 1, 2, ...,m}. Formulate the

problem of finding the Chebyshev center of P by a convex optimization model.

29. An ellipsoid may be given by the image of a ball under some linear transformation, e.g. E =

{Bu+ b | ‖u‖2 ≤ 1}. Without losing generality we can also assume B � 0. Then the volume of

E is proportional to detB.

Consider again the polyhedron P = {x | aTi x ≤ bi, i = 1, 2, ...,m}. Now the problem is

to find the maximum volume ellipsoid inscribed inside P . Formulate the problem by convex

optimization.

30. Let Ai ∈ Sn×n, i = 1, 2, ...,m. Therefore, A0 + x1A1 + · · · + xmAm is a symmetric matrix.

We wish to find the values of x1, ..., xm so as to minimize the gap between the largest and the

smallest eigenvalues of A0 + x1A1 + · · ·+ xmAm. Formulate this problem by SDP.

31. Let

K := {x ∈ Rn | x1 ≥ x2 ≥ · · · ≥ xn ≥ 0}.

Show that K is a proper cone.

32. Find A ∈ Rn×n such that K = ARn
+.

33. In general, if K ⊆ Rn is a proper cone, and M ∈ Rn×n is a non-singular matrix, then MK is

also a proper cone.

34. Compute (MK)∗.

35. Derive the dual of the following non-standard conic optimization problem:

min cTx

s.t. A1x+ b1 ∈ K1

A2x+ b2 ∈ K2

...

Amx+ bm ∈ Km,

where K1,K2, · · · ,Km are all closed convex cones.
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36. Suppose that f(x) is a convex function, and its conjugate function is known to be f∗(s).

Consider the following optimization model

min f(x)

s.t. Ax ≤ b.

Derive the Lagrangian dual of the above problem.

37. The channel capacity optimization problem is:

min −cTx+
∑m
i=1 yi ln yi

s.t. Px = y

x ≥ 0, 1Tx = 1.

What is the dual of the above problem?

38. The sum of first k largest components of vector x ∈ Rn (k < n) is known to be a convex

function. (Why?) Denote this function to be f(x). Formulate the following portfolio selection

problem using f(x): We wish to select from a total of n assets to form a portfolio (no short-

selling is allowed). Asset i has an expected rate of return µi > 0, and the covariance matrix is

Σ. We wish to minimize the variance of the portfolio while requiring that the expected rate of

return to the portfolio is at least µ. Moreover, the weight of the first k largest components of

investment should not exceed half of the total investment.

39. The condition that f(x) ≤ 0.5 can be formulated by linear programming. How?
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