Additional Exercises: Convexity

1. Why a real symmetric matrix will always have real (as opposed to complex) eigenvalues?
2. Prove the following Cauchy-Schwarz inequality.

For any $u, v \in \mathbf{R}^{n}$, we have

$$
u^{\mathrm{T}} v \leq\|u\|_{2} \cdot\|v\|_{2} .
$$

3. Use the Cauchy-Schwarz inequality to prove the so-called triangle inequality for the Euclidean norm:

$$
\|x+y\|_{2} \leq\|x\|_{2}+\|y\|_{2}
$$

for all $x, y \in \mathbf{R}^{n}$.
4. For a square matrix $A \in \mathbf{R}^{n \times n}$, its trace is $\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}$. Prove: For any $X \in \mathbf{R}^{m \times n}$ and $Y \in \mathbf{R}^{n \times m}$, we have $\operatorname{tr}\left(X Y^{\mathrm{T}}\right)=\operatorname{tr}\left(Y X^{\mathrm{T}}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} X_{i j} Y_{i j}$.
5. Let $X \in \mathbf{R}^{m \times n}$ be a real matrix. The so-called Frobenius norm of X is defined as

$$
\|X\|_{F}:=\left(\sum_{i=1}^{m} \sum_{j=1}^{n} X_{i j}^{2}\right)^{1 / 2}
$$

and its spectrum norm is defined as $\|X\|_{2}:=\left(\lambda_{\max }\left(X^{\mathrm{T}} X\right)\right)^{1 / 2}$. Prove: Both $\|\cdot\|_{F}$ and $\|\cdot\|_{2}$ are indeed matrix norms.
6. Prove: For any $X \in \mathbf{R}^{m \times n}$ and $y \in \mathbf{R}^{m}$,

$$
\|X y\|_{2} \leq\|X\|_{2} \cdot\|y\|_{2} .
$$

7. Prove: For any X, it holds that $\|X\|_{2} \leq\|X\|_{F}$.
8. Compute the gradient of the quartic function

$$
f(x)=\left(x^{\mathrm{T}} A x\right)^{2}
$$

where $A \in \mathcal{S}^{n}$.
9. Compute the Hessian matrix of the quartic function

$$
f(x)=\left(x^{\mathrm{T}} A x\right)^{2}
$$

where $A \in \mathcal{S}^{n}$.
10. Prove: If $h(x)$ is twice continuously differentiable, then $h(x)$ is convex in \mathbf{R}^{n} is equivalent to $\nabla^{2} h(x) \succeq 0$ for all $x \in \mathbf{R}^{n}$.
11. Prove: $\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}$ is a concave function in \mathbf{R}_{++}^{n}.
12. Prove:

$$
\frac{x_{1}^{n}}{x_{2} x_{3} \cdots x_{n}}
$$

is a convex function in \mathbf{R}_{++}^{n}.
13. Consider $X \in \mathcal{S}^{n \times n}$, and so X has n real eigenvalues as we discussed before. Let them be

$$
\lambda_{1}(X) \geq \lambda_{2}(X) \geq \cdots \geq \lambda_{n}(X)
$$

Prove: $\lambda_{1}(X)$ is a convex function.
14. Prove:

$$
\ln \left(\sum_{i=1}^{n} e^{x_{i}}\right)
$$

is a convex function.
15. Suppose that $f(x) \geq 0$ is convex for $x \in S$, and $g(x)>0$ is concave for $x \in S$. Prove:

$$
\frac{f(x)}{g(x)}
$$

is a quasi-convex function.
16. Show that

$$
\frac{a^{\mathrm{T}} x+b}{c^{\mathrm{T}} x+d}
$$

is quasi-linear in $\left\{x \mid c^{\mathrm{T}} x+d>0\right\}$.
17. Suppose that $f(x) \geq 0$ is convex for $x \in S$, and $g(x)>0$ is concave for $x \in S$. Prove:

$$
\frac{f(x)^{2}}{g(x)}
$$

is a convex function.
18. Prove: $\prod_{i=1}^{n} x_{i}$ is quasi-concave in \mathbf{R}_{++}^{n}.
19. Show that $S:=\left\{x \mid\|x-a\|_{2} \leq\|x-b\|_{2}\right\}$ is a convex region. Further prove: $\|x-a\|_{2} /\|x-b\|_{2}$ is quasi-convex in S.
20. Prove:

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t
$$

is a log-concave function.
21. Suppose $Q \in \mathcal{S}_{++}^{n \times n}$. Prove:

$$
2 x^{\mathrm{T}} y \leq x^{\mathrm{T}} Q x+y^{\mathrm{T}} Q^{-1} y
$$

for any $x, y \in \mathbf{R}^{n}$.
22. Suppose $0<p<1$. Show that

$$
\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}
$$

is a concave function in \mathbf{R}_{++}^{n}.
23. If $f(x)$ is twice continuously differentiable and quasi-convex, then for any $x \in \operatorname{dom}(f)$:

$$
d^{\mathrm{T}} \nabla f(x)=0 \Longrightarrow d^{\mathrm{T}} \nabla^{2} f(x) d \geq 0
$$

24. Prove: If the above condition holds, then there must exist some real value α such that

$$
\nabla^{2} f(x)+\alpha \nabla f(x)(\nabla f(x))^{\mathrm{T}} \succeq 0
$$

[The Hessian matrix of a quasi-convex function can have at most one negative eigenvalue!]
25. For $X \in \mathcal{S}^{n \times n}$, its eigenvalues are denoted to be

$$
\lambda_{1}(X) \geq \lambda_{2}(X) \geq \cdots \geq \lambda_{n-1}(X) \geq \lambda_{n}(X)
$$

Let $1 \leq k \leq n$. Consider

$$
f(X):=\sum_{i=1}^{k} \lambda_{i}(X)
$$

Prove: $f(X)$ is a convex function.
Hint: Show that

$$
f(X)=\sup \left\{\operatorname{tr}\left(U^{\mathrm{T}} X U\right) \mid U \in \mathbf{R}^{n \times k}, U^{\mathrm{T}} U=I_{k}\right\}
$$

26. A function $f: \mathbf{R}_{++}^{n} \rightarrow \mathbf{R}$

$$
h(x)=c x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} \cdots x_{n}^{\lambda_{n}}
$$

with $c>0$ and $\lambda \in \mathbf{R}^{n}$ is called a monomial. Sum of monomials, $f(x)=\sum_{i=1}^{k} h_{i}(x)$, is called a posynomial.

The so-called geometric programming problem is as follows:

$$
\begin{array}{lll}
(G) & \min & f_{0}(x) \\
& \text { s.t. } & f_{i}(x) \leq 1, i=1,2, \ldots, m \\
& h_{j}(x)=1, j=1,2, \ldots, p
\end{array}
$$

where $f_{i}(x)$ are posynomials $(i=1,2, \ldots, m)$, and $h_{j}(x)$ are monomials $(j=1,2, \ldots, p)$.
Show that (G) can be formulated as convex optimization through a variable transformation.
27. Formulate the following L_{4}-norm approximation problem as QCQP:

$$
\min \|A x-b\|_{4}=\left(\sum_{i=1}^{m}\left(a_{i}^{\mathrm{T}} x-b_{i}\right)^{4}\right)^{1 / 4}
$$

28. The so-called Chebyshev center of a polyhedron is the deepest point inside the polyhedron. Suppose that the polyhedron is given by $P=\left\{x \mid a_{i}^{\mathrm{T}} x \leq b_{i}, i=1,2, \ldots, m\right\}$. Formulate the problem of finding the Chebyshev center of P by a convex optimization model.
29. An ellipsoid may be given by the image of a ball under some linear transformation, e.g. $E=$ $\left\{B u+b \mid\|u\|_{2} \leq 1\right\}$. Without losing generality we can also assume $B \succ 0$. Then the volume of E is proportional to $\operatorname{det} B$.

Consider again the polyhedron $P=\left\{x \mid a_{i}^{\mathrm{T}} x \leq b_{i}, i=1,2, \ldots, m\right\}$. Now the problem is to find the maximum volume ellipsoid inscribed inside P. Formulate the problem by convex optimization.
30. Let $A_{i} \in \mathcal{S}^{n \times n}, i=1,2, \ldots, m$. Therefore, $A_{0}+x_{1} A_{1}+\cdots+x_{m} A_{m}$ is a symmetric matrix. We wish to find the values of x_{1}, \ldots, x_{m} so as to minimize the gap between the largest and the smallest eigenvalues of $A_{0}+x_{1} A_{1}+\cdots+x_{m} A_{m}$. Formulate this problem by SDP.
31. Let

$$
\mathcal{K}:=\left\{x \in \mathbf{R}^{n} \mid x_{1} \geq x_{2} \geq \cdots \geq x_{n} \geq 0\right\}
$$

Show that \mathcal{K} is a proper cone.
32. Find $A \in \mathbf{R}^{n \times n}$ such that $\mathcal{K}=A \mathbf{R}_{+}^{n}$.
33. In general, if $\mathcal{K} \subseteq \mathbf{R}^{n}$ is a proper cone, and $M \in \mathbf{R}^{n \times n}$ is a non-singular matrix, then $M \mathcal{K}$ is also a proper cone.
34. Compute $(M \mathcal{K})^{*}$.
35. Derive the dual of the following non-standard conic optimization problem:

$$
\begin{array}{lc}
\min & c^{\mathrm{T}} x \\
\text { s.t. } & A_{1} x+b_{1} \in \mathcal{K}_{1} \\
& A_{2} x+b_{2} \in \mathcal{K}_{2} \\
& \vdots \\
& A_{m} x+b_{m} \in \mathcal{K}_{m},
\end{array}
$$

where $\mathcal{K}_{1}, \mathcal{K}_{2}, \cdots, \mathcal{K}_{m}$ are all closed convex cones.
36. Suppose that $f(x)$ is a convex function, and its conjugate function is known to be $f^{*}(s)$. Consider the following optimization model

$$
\begin{array}{ll}
\min & f(x) \\
\text { s.t. } & A x \leq b .
\end{array}
$$

Derive the Lagrangian dual of the above problem.
37. The channel capacity optimization problem is:

$$
\begin{array}{ll}
\min & -c^{\mathrm{T}} x+\sum_{i=1}^{m} y_{i} \ln y_{i} \\
\text { s.t. } & P x=y \\
& x \geq 0, \mathbf{1}^{\mathrm{T}} x=1 .
\end{array}
$$

What is the dual of the above problem?
38. The sum of first k largest components of vector $x \in \mathbf{R}^{n}(k<n)$ is known to be a convex function. (Why?) Denote this function to be $f(x)$. Formulate the following portfolio selection problem using $f(x)$: We wish to select from a total of n assets to form a portfolio (no shortselling is allowed). Asset i has an expected rate of return $\mu_{i}>0$, and the covariance matrix is Σ. We wish to minimize the variance of the portfolio while requiring that the expected rate of return to the portfolio is at least μ. Moreover, the weight of the first k largest components of investment should not exceed half of the total investment.
39. The condition that $f(x) \leq 0.5$ can be formulated by linear programming. How?

Solutions (Convexity)

1. Let $A x=\lambda x$. Then, $x^{H} A x=\lambda x^{H} x$

$$
\Rightarrow \overline{\left(x^{H} A x\right)}=\bar{\lambda} \cdot x^{H} x=x^{H} A^{H} x=x^{H} A x=\lambda x^{H} x
$$

$\Rightarrow \bar{\lambda}=\lambda$: a real value.
2. \forall real value $t: 0 \leqslant\|u+t \cdot v\|_{2}^{2}=\|u\|_{2}^{2}+2 t \cdot u^{\top} v+t^{2} \cdot\|v\|_{2}^{2}$
\Rightarrow Its discreminant $\Delta=\left(u^{\top} v\right)^{2}-\|u\|_{2}^{2} \cdot\|v\|_{2}^{2} \leq 0$

$$
\Rightarrow \quad\left|u^{\top} v\right| \leqslant\|u\|_{2} \cdot\|v\|_{2} .
$$

3. $\|x+y\|_{2}^{2}=\|x\|_{2}^{2}+2 x^{\top} y+\|y\|_{2}^{2} \leqslant\|x\|_{2}^{2}+2\|x\|_{2} \cdot\|y\|_{2}+\|y\|_{2}^{2}$

$$
=\left(\|x\|_{2}+\|y\|_{2}\right)^{2}
$$

$$
\Rightarrow\|x+y\|_{2} \leqslant\|x\|_{2}+\|y\|_{2} .
$$

4. $\operatorname{tr}\left(X Y^{\top}\right)=\sum_{j=1}^{m}\left(\sum_{i=1}^{n} X_{j i} Y_{j i}\right)=\sum_{i=1}^{n}\left(\sum_{j=1}^{m} Y_{i j} X_{i j}\right)=\operatorname{tr}\left(Y X^{\top}\right)$
5. Let the SVD (Singular value Decomposition) of X be

$$
X=U \cdot \Sigma \cdot v^{\top}=\sum_{i=1}^{r} \sigma_{i} u_{i} \cdot v_{i}^{\top}
$$

Where $u_{i} \in \mathbb{R}^{m}, v_{j} \in \mathbb{R}^{n}$, and they are orthonormal in their own domain.
We have $\|X\|_{F}^{2}=\operatorname{tr}\left(X X^{\top}\right)=\sum_{i=1}^{r} \sigma_{i}^{2}$ and $\|X\|_{2}=\max _{1 \leq i \leq r} \sigma_{i}$.

Let us verify that the triangle inequality is satisfied by these maTrix norms. (The other two definitions of a norm, i.e., $\|x\|=0 \Leftrightarrow x=0 ;\|t x\|=1 t \mid \cdot\|x\|$, are Trivial to verify).

That $\|X\|_{F}$ is a norm follows from the fact that $\|X\|_{F}$ is the Eudidean norm on the maTrix X as a vector.

To verify that $\|x\|_{2}$ is a matrix norm, we proceed to the next question first.
6. Suppose $X^{\top} X F=\lambda_{\text {max }} \cdot v$ where $\lambda_{\max }$ is the eigenvalue with largest absolute value. Then, $v^{\top} X^{\top} X v=\lambda_{\max } v^{\top} v$.

On the other hand, $\quad y^{\top} x^{\top} x y \leq \lambda_{\max } \cdot y^{\top} y=\|x\|_{2}^{2} \cdot y^{\top} y$.
Therefore, $\max _{\|y\|_{2}=1}\|x y\|_{2}=\|x\|_{2}$.
Going back to Question 5: $\|X+Y\|_{2}=\max \|(X+Y) \cdot v\|_{2}$

$$
\leqslant \max _{\|v\|_{2}=1}\|X \cdot v\|_{2}+\max _{\|v\|_{2}=1}\|Y v\|_{2}=\|X\|_{2}+\|Y\|_{2} .
$$

The triangle inequality is shown.
7. $\|x\|_{2}=\max _{1 \leqslant i \leqslant r} \sigma_{i} \leqslant\left(\sum_{i=1}^{r} \sigma_{i}^{2}\right)^{\frac{1}{2}}=\|X\|_{F}$.
8. $\nabla\left(\left(x^{\top} A x\right)^{2}\right)=2 \cdot\left(x^{\top} A x\right) \cdot \nabla\left(x^{\top} A x\right)=4 \cdot\left(x^{\top} A x\right) \cdot A x$.
9. $\nabla^{2}\left(\left(x^{\top} A x\right)^{2}\right)=8 A x \cdot(A x)^{\top}+4 \cdot\left(x^{\top} A x\right) \cdot A$.
10. $h(x)$ is convex \& smooth $\Longleftrightarrow h(y) \geq h(x)+\nabla h(x)^{\top} \cdot(y-x)$

$$
\forall x, y
$$

If $\nabla^{2} h(z) \succcurlyeq 0 \quad \forall z$, then by the Taylor expression

$$
h(y)-h(x)-\nabla h(x)^{\top} \cdot(y-x)=\frac{1}{2}(y-x)^{\top} \cdot \nabla^{2} f(z) \cdot(y-x) \succcurlyeq 0
$$

where z is between x and y.
On the oither hand, if $h(y) \geqslant h(x)+\nabla h(x)^{\top}(y-x) \quad \forall x, y$, then one may choose $y=x+\Delta x$ to derive

$$
\Delta x^{\top} \cdot \nabla^{2} f(z) \cdot \Delta x \geq 0
$$

Because Δx can be chosen arbitrarily, we have $\nabla^{2} f(x) \cong 0$.
11 Let $f(x)=\left(\prod_{i=1}^{n} x_{i}\right)^{\frac{1}{n}}=e^{\frac{1}{n}\left(\sum_{i=1}^{m} \ln x_{i}\right)}$

$$
\begin{aligned}
\nabla f(x) & =e^{\frac{1}{n}\left(\sum_{i=1}^{n} \ln x_{1}\right)} \cdot\left(\begin{array}{c}
\frac{1}{n x_{1}} \\
\vdots \\
\frac{1}{n}
\end{array}\right) \\
\nabla^{2} f(x) & \left.=e^{\frac{1}{n}\left(\sum_{i=1}^{n} \ln x_{i}\right)}\left[\begin{array}{c}
\frac{1}{n_{n}} \\
\frac{1}{n^{2}} \\
\vdots \\
\frac{1}{x_{n}}
\end{array}\right)\left(\frac{1}{x_{1}} \cdots \frac{1}{x_{n}}\right)-\frac{1}{n}\left(\begin{array}{ccc}
\frac{1}{x_{1}^{2}} & 0 \\
\cdots & \frac{1}{x_{n}^{2}}
\end{array}\right)\right] \\
\xi^{\top} \nabla^{2} f(x) \xi & =e^{\frac{1}{n}\left(\sum_{i=1}^{n} \ln x_{i}\right)} \cdot\left[\left(\frac{1}{n} \sum_{i=1}^{n} \frac{\xi_{i}}{x_{i}}\right)^{2}-\frac{1}{n} \sum_{i=1}^{n} \frac{\xi_{i}^{2}}{x_{i}^{2}}\right] \leqslant 0 \quad \text { Canchy-Schwarzit }
\end{aligned}
$$

$\Rightarrow f$ is concave.

12 Let $f(x)=\frac{x_{1}^{n}}{x_{2} \cdots x_{n}}$

$$
\begin{aligned}
& \ln f(x)=n \cdot \ln x_{1}-\sum_{i=2}^{n} \ln x_{i}=: g(x) \\
& \nabla g(x)=\left(\begin{array}{c}
\frac{n}{x_{1}} \\
-\frac{1}{x_{2}} \\
\vdots \\
-\frac{1}{x_{n}}
\end{array}\right), \quad \nabla^{2} g(x)=\left(\begin{array}{ccc}
-\frac{n}{x_{1}^{2}} & & \\
& \frac{1}{x_{2}^{2}} & 0 \\
& 0 & \ddots \\
\frac{1}{x_{n}^{2}}
\end{array}\right)
\end{aligned}
$$

Because $f(x)=e^{g(x)}$,
$\nabla f(x)=f(x) \cdot \nabla g(x), \quad \nabla^{2} f(x)=f(x) \cdot \nabla^{2} g(x)+f(x) \cdot \nabla g(x) \cdot \nabla g(x)^{\top}$

$$
\left.\left.\begin{array}{l}
\Rightarrow r^{2} f(x)=f(x) \cdot\left[\left(\begin{array}{lllll}
-\frac{n}{x_{1}^{2}} & & & & \\
& \frac{1}{x_{2}^{2}} & & \\
& & \ddots & \\
& & & \frac{1}{x_{n}^{2}}
\end{array}\right)+\left(\begin{array}{ccc}
\frac{n}{x_{1}} \\
-\frac{1}{x_{2}} \\
\vdots \\
-\frac{1}{x_{n}}
\end{array}\right)\left(\frac{n}{x_{1}}\right.\right.
\end{array}-\frac{1}{x_{2}} \cdots \cdots-\frac{1}{x_{n}}\right)\right]
$$

Take any $\xi \in \mathbb{R}^{n}$:

$$
\xi^{\top} \nabla^{2} f(x) \xi=f(x) \cdot\left[-n \cdot\left(\frac{\xi}{x_{1}}\right)^{2}+\sum_{i=2}^{m}\left(\frac{\xi_{i}}{x_{i}}\right)^{2}+\left(n \cdot \frac{\xi_{1}}{x_{1}}-\sum_{i=2}^{m} \frac{\xi_{i}}{x_{i}}\right)^{2}\right] .
$$

To show that the above expression is always non-negative, denote $z_{i}=\frac{\xi_{i}}{x_{i}}, i=1, \cdots, M$. We have

$$
\begin{aligned}
& -n z_{1}^{2}+\sum_{i=2}^{n} z_{i}^{2}+\left(n z_{1}-\sum_{i=2}^{n} z_{i}\right)^{2} \\
= & \left(z_{1}, \cdots, z_{n}\right)\left[\left(\begin{array}{ccc}
-n & & \\
& 1 & \\
& & \ddots \\
& & \\
& & \\
& &
\end{array}\right)+\left(\begin{array}{c}
n \\
-1 \\
\vdots \\
-1
\end{array}\right)(n,-1, \cdots,-1)\right]\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{n}
\end{array}\right)=: z^{\top} Q \cdot z .
\end{aligned}
$$

We write Q as a block matrix

$$
\begin{aligned}
Q & =\left(\begin{array}{ll}
-n & \\
& I_{n-1}
\end{array}\right)+\binom{n}{-\mathbb{1}_{n-1}}\left(n,-\mathbb{1}_{n-1}^{\top}\right) \\
& =\left(\begin{array}{cc}
n^{2}-n & -n \cdot 1_{n-1}^{\top} \\
-n \cdot 1_{n-1} & I_{n-1}+\mathbb{1}_{n-1} \cdot \mathbb{1}_{n-1}^{\top}
\end{array}\right)
\end{aligned}
$$

By the so-call Schur Complement Lemma: $Q \succeq 0$

$$
\Leftrightarrow I_{n-1}+1_{n-1} \cdot 1_{n-1}^{\top}-\frac{n^{2}}{n^{2}-n} \cdot 1_{n-1} \cdot I_{n-1}^{\top}=I_{n-1}-\frac{1}{n-1} 1_{n-1} \cdot I_{n-1}^{\top} \leqq 0
$$

But the above matrix inequality is obvious, because $\mathbb{I}_{n-1} \cdot \mathbb{1}_{n-1}^{T}$ has eigenvalue 0 with multiplicity $n-2$ and eigenvalue n_{1-1}. Therefore, $\mathbb{1}_{n-1} \cdot 1_{n-1}^{\top} \leqslant(n-1) \cdot I_{n-1}$.
13. We use the fact that if $f(x ; a)$ is a convex function in x for any fixed a, then $\max _{a \in A} f(x ; a)$ remains a convex function in x.
Because $\quad \lambda_{1}(x)=\max _{\|v\|_{2}=1} \frac{v^{\top} X v}{\|v\|_{2}^{2}}$ and $\frac{v^{\top} X v}{\|v\|_{2}^{2}}$ is a linear function in X for fixed v, so $\lambda_{1}(x)$ is a convex function in X.
14. Let $f(x)=\ln \left(\sum_{i=1}^{n} e^{x_{i}}\right)$.

$$
\begin{aligned}
& \nabla f(x)=\frac{1}{\sum_{i=1}^{n} e^{x_{i}}}\left(\begin{array}{c}
e^{x_{1}} \\
\vdots \\
e^{x_{n}}
\end{array}\right) \quad \text { and } \\
& \nabla^{2} f(x)=\frac{1}{\sum_{i=1}^{n} e^{x_{i}}}\left(\begin{array}{cc}
e^{x_{1}} & \\
& \ddots \\
0 & \\
0 & e^{x_{n}}
\end{array}\right)-\frac{1}{\left(\sum_{i=1}^{n} e^{\left.x_{i}\right)^{2}}\right.}\left(\begin{array}{c}
e^{x_{1}} \\
\vdots \\
e^{x_{n}}
\end{array}\right)\left(e^{x_{1}} \ldots e^{x_{n}}\right)
\end{aligned}
$$

Take any $\xi \in \mathbb{R}^{n}$:

$$
\begin{aligned}
\xi^{\top} \nabla^{\prime} f(x) \xi & =\frac{1}{\sum_{i=1}^{n} e^{x_{i}}}\left(\sum_{i=1}^{n} \sum_{i}^{2} \cdot e^{x_{i}}\right)-\frac{1}{\left(\sum_{i=1}^{n} e^{x_{i}}\right)^{2}}\left(\sum_{i=1}^{n} \sum_{i} e^{x_{i}}\right)^{2} \\
& =\frac{1}{\left(\sum_{i=1}^{n} e^{x_{i}}\right)^{2}}\left[\left(\sum_{i=1}^{n} e^{x_{i}}\right)\left(\sum_{i=1}^{n} \xi_{i}^{2} e^{x_{i}}\right)-\left(\sum_{i=1}^{n} \xi_{i} e^{x_{i}}\right)^{2}\right] \geqslant 0
\end{aligned}
$$

where we used the Canchy-Schwarz inequality:
$\left[\begin{array}{c}\text { let } a_{i}:=\xi_{i} e^{\frac{x_{i}}{2}}, b_{i}:=e^{\frac{x_{i}}{2}} \\ \text { Then }\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leqslant\left(\sum_{i=1}^{n} a_{i}^{2}\right) \cdot\left(\sum_{i=1}^{n} b_{i}^{2}\right) .\end{array}\right]$
The convexity of $f(x)$ follows, since $\nabla f(x) \approx 0$ as we proved above.
15. The level set of $\frac{f}{g}$ is:

$$
L_{\lambda}\left(\frac{f}{g}\right)=\left\{x \left\lvert\, \frac{f(x)}{g(x)} \leq \lambda\right.\right\}=\{x \mid f(x)-\lambda \cdot g(x) \leq 0\}
$$

Since $f(x)-\lambda g(x)$ is convex, we know that
$L_{\lambda}\left(\frac{f}{g}\right)$ is a convex set. Hence, $\frac{f}{g}$ is quasi-convex.
16. $\frac{a^{\top} x+b}{c^{\top} x+d}$ is both quasi-convex and quasi-concave (hence quasi-linear) because a linear function is both convex and concave.
17. It is easy to verify that: if $F\left(x_{1}, x_{2}\right)$ is convex, and $F\left(x_{1}, x_{2}\right)$ is increasing in x_{1} for fixed x_{2}, and $F\left(x_{1}, x_{2}\right)$ is decreasing in x_{2} for fixed x_{1}, then $F(f(x), g(x))$ is convex if f is convex and $g(x)$ is concave. This is because

$$
\begin{aligned}
& f(\lambda x+(1-\lambda) g) \leq \lambda f(x)+(1-\lambda) f(y) \& g(\lambda x+(1-\lambda) y) \geq \lambda g(x)+C(1) \mid g(y) \\
\Rightarrow & F(f(\lambda x+(1-\lambda) y), g(\lambda x+(1-\lambda) y)) \leq F(\lambda f(x)+(1-\lambda) \text { gig (y), } \lambda g(x)+(1-\lambda) g(y)) \\
\leqslant & \text { convex; } \sqrt{y} \text { of } F \\
& \lambda F(f(x), g(x))+(1-\lambda) F(f(y), g(y)) .
\end{aligned}
$$

Now we use what we proved in Question 12:
$\frac{x_{1}^{2}}{x_{2}}$ is convex in $\left(x_{1}, x_{2}\right)$ for $\left(x_{1}, x_{2}\right)>0$.
We have $\frac{f^{2}(x)}{g(x)}$ is a convex function.
18. $\prod_{i=1}^{n} x_{i}=e^{\sum_{i=1}^{n} \ln x_{i}}$

$$
\Rightarrow\left\{x \mid x>0, \prod_{i=1}^{n} x_{i} \geqslant t\right\}=\left\{x \mid x>0, \sum_{i=1}^{n} \ln x_{i} \geqslant \ln t\right\}
$$

which is a convex set for all $t>0$. Therefore, $\prod_{i=1}^{n} x_{i}$ is quasi-coneave for $x>0$.
19. $\left\{x \mid\|x-a\|_{2}^{*} \leqslant\|x-b\|_{2}\right\}=\left\{x \mid x^{\top} x-2 a^{\top} x+a^{\top} a \leqslant x^{\top} x-2 b^{\top} x+l^{\top} b\right\}$ $=\left\{x \mid 2(b-a)^{\top} x \leqslant b^{\top} b-a^{\top} a\right\}$ which is a half-sprace,
hence a convex set.
20. We want to show: $\ln \left(\int_{-\infty}^{x} e^{-t^{2} / 2} d t\right)=f(x)$ is a concave function.
We have: $f^{\prime}(x)=\frac{e^{-\frac{x^{2}}{2}}}{\int_{-\infty}^{x} e^{-t^{2} / 2} d t}$

$$
\Rightarrow f^{\prime \prime}(x)=-\frac{e^{-\frac{x^{2}}{2}} \cdot x}{\int_{-\infty}^{x} e^{-t^{2} / 2} d t}-\frac{\left(e^{-x^{2} / 2}\right)^{2}}{\left(\int_{-\infty}^{x} e^{-t^{2} / 2} d t\right)^{2}}<0
$$

21. For any positive definite matrix Q bo, there is a unique posiTive maTrix $Q^{\frac{1}{2}}$ such that $Q^{\frac{1}{2}} \cdot Q^{\frac{1}{2}}=Q$ and $Q^{\frac{1}{2}} \succ 0$.
Therefore, $0 \leqslant\left\|Q^{\frac{1}{2}} x-Q^{-\frac{1}{2}} y\right\|_{2}^{2} \leqslant x^{\top} Q x-2 x^{\top} Q^{\frac{1}{2}} \cdot Q^{-\frac{1}{2}} y+y^{\top} Q^{-1} y$

$$
=x^{\top} Q x+y^{\top} Q^{-1} y-2 x^{\top} y
$$

22. Let $f(x)=\left(\sum_{i=1}^{m} x_{i}^{p}\right)^{\frac{1}{p}}$. We have

$$
\begin{aligned}
& \nabla f(x)=\frac{1}{p}\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{\frac{1}{p-1}} \cdot\left(\begin{array}{c}
p \cdot x_{1}^{p-1} \\
\vdots \\
p \cdot x_{n}^{p-1}
\end{array}\right)=\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{\frac{1-p}{p}} \cdot\left(\begin{array}{c}
x_{1}^{p-1} \\
\vdots \\
x_{n}^{p-1}
\end{array}\right) \\
& \nabla^{2} f(x)=\frac{1-p}{p} \cdot\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{\frac{1-2 p}{p}} \cdot p \cdot\left(\begin{array}{c}
x_{1}^{p-1} \\
\vdots \\
x_{n}^{p-1}
\end{array}\right)\left(x_{1}^{p-1}, \cdots, x_{n}^{p-1}\right)+\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{\frac{1-p}{p}} \cdot(p-1) \cdot\left(\begin{array}{c}
x_{1}^{p-2} \\
\vdots \\
0 \\
x_{n}^{p-2}
\end{array}\right)
\end{aligned}
$$

Take any $\xi \in \mathbb{R}^{n}$:

$$
\xi^{\top} \nabla^{2} f(x) \xi=(p-1) \cdot\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{\frac{1-2 p}{p}} \cdot\left[-\left(\sum_{i=1}^{n} \xi_{i} \cdot x_{i}^{p-1}\right)^{2}+\left(\sum_{i=1}^{n} x_{i}^{p}\right) \cdot\left(\sum_{i=1}^{n} \xi_{i}^{2} \cdot x_{i}^{p-2}\right)\right]
$$

Denote $a_{i}=x_{i}^{\frac{p}{2}}, b_{i}=\xi_{i} \cdot x_{i}^{\frac{p-2}{2}}$. Wee have

$$
-\left(\sum_{i=1}^{n} \xi_{i} x_{i}^{p-1}\right)^{2}+\left(\sum_{i=1}^{n} x_{i}^{p}\right) \cdot\left(\sum_{i=1}^{n} \xi_{i}^{2} x_{i}^{p-2}\right)=-\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2}+\left(\sum_{i=1}^{n} a_{i}^{2}\right) \cdot\left(\sum_{i=1}^{n} b_{i}^{2}\right) \geqslant 0
$$

Canchy-Schwarz inequality!
Therefore $\xi^{\top} \nabla \nabla^{2}(x) \xi \leq 0 \quad$ (notice $\left.p<1\right) \quad \forall \xi$, and so f is concave.
23. Suppose, by contradiction, that $d^{\top} \nabla f(x)=0$ and $d^{\top} \nabla f(x) d<0$. Consider $\quad h(t)=f(x+t d)$. We have $h^{\prime}(t)=p f(x+t d)^{\top} d$ and $h^{\prime \prime}(t)=d^{\top} \nabla^{2} f(x+t d) d$.
In this case, $h^{\prime}(0)=0$ and $h^{\prime \prime}(0)<0$. Therefore 0 is a local maximum for $h(t)$, for $t \in(-\varepsilon, \varepsilon) \quad(\varepsilon>0)$.
So, there is $t>0$ such that $h(t)<h(0) \& h(-t)<h(0)$. Then, $f(x)>\max \{f(x+t d), f(x-t d)\}$, which is a contradiction to the definition of quasi-convexity.
24. This is basically a linear algebra exercise.

It says that if there is a real-symmetric matrix Q and a real-vector v, in such a way that

$$
\forall d: \quad d^{\top} v=0 \Rightarrow d^{\top} Q d \geqslant 0
$$

then there must exist a value t such that $Q+t v v^{\top} \equiv 0$.
Let us first prove this fact in a slightly stronger form:

$$
\forall d \neq 0: d^{\top} v=0 \Rightarrow d^{\top} Q d>0
$$

then there exists t such that $Q+t v v^{\top} \geqslant 0$.
To see this, consider $\tau:=\max _{\substack{v^{\top} d=0 \\ d \neq 0}} \frac{\left(v^{\top} Q d\right)^{2}}{d^{\top} Q d}>0$.
Choose t such that $t w^{\top} v+v^{\top} Q v \geqslant \tau$.
Since any $x \in \mathbb{R}^{n}$ can be written as $x=\alpha \cdot v+\beta \cdot d$ with $v^{\top} d=0$, we have

$$
\begin{aligned}
& x^{\top}\left(Q+t \cdot v v^{\top}\right) x=(\alpha v+\beta d)^{\top}\left(Q+t v v^{\top}\right)(\alpha v+\beta d) \\
= & \alpha^{2}\left(v^{\top} Q v+t \cdot v^{\top} v\right)+2 \alpha \beta \cdot v^{\top} Q d+\beta^{2} d^{\top} Q d \\
\geqslant & \tau \cdot \alpha^{2}+2 \alpha \beta \cdot v^{\top} Q d+\beta^{2} \cdot d^{\top} Q d
\end{aligned}
$$

The discreminant of the above quadratic form is

$$
\Delta=\left(v^{\top} Q d\right)^{2}-\tau \cdot d^{\top} Q d \leq 0
$$

Therefore, $\quad \tau \cdot \alpha^{2}+2 \alpha \beta v^{\top} Q d+\beta^{2} d^{\top} Q d \geqslant 0$

24 (continued) Therefore $Q+t \cdot v v^{\top} \cong 0$.

We may choose Q to be $Q+\varepsilon$ I with $\varepsilon>0$.
Then, $\quad Q+\varepsilon \cdot I+t_{\varepsilon} \cdot v \cdot v^{\top} \geq 0 \quad \forall \varepsilon>0$.
That is, the smallest eigenvalue of $Q+t_{\varepsilon} \cdot U \cdot v^{\top}$ is at most $-\varepsilon$. This also implies that Q has only one negative eigenvalue with eigenvector v. Hence, there is a value t^{*}, in such a way that $\forall t \geqslant t^{*}$ we have $Q+t u \cdot v^{\top} \succcurlyeq 0$.
25. Let $X=Q^{\top}\left(\begin{array}{llll}\lambda_{1} & & \\ & \ddots & \\ & & \lambda_{\mu}\end{array}\right) Q$ where $Q^{\top} Q=I$.

Take any $U \in \mathbb{R}^{n \times k}$ with $U^{\top} \cdot U=I_{k}$. Let $\tilde{U}=Q U$.
We have $\tilde{u}^{\top} \widetilde{u}=I_{k}$, and so

$$
\operatorname{tr}\left(u^{\top} \times u\right)=\operatorname{tr}\left(\tilde{u}^{\top}\left(\begin{array}{llll}
\lambda_{1} & & \\
& \ddots & & \\
& & \lambda_{n}
\end{array}\right) \tilde{u}\right)=\operatorname{tr}\left[\left(\begin{array}{lll}
\lambda_{1} & & \\
& & \lambda_{n}
\end{array}\right) \cdot \tilde{u} \cdot \tilde{u}^{\top}\right]
$$

$=\sum_{i=1}^{n} \lambda_{i} \cdot \mu_{i}^{2}$, where μ_{i} is the norm of the ith row of \tilde{u}. We have that $\mu_{i}^{2} \leq 1 \forall i$ and $\sum_{i=1}^{n} \mu_{i}^{2}=k$. Therefore, $\quad \operatorname{tr}\left(u^{\top} X u\right)=\sum_{i=1}^{n} \lambda_{i} \mu_{i}^{2} \leqslant \lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}$.
On the otter hand, we can choose u to be the k eigenvectors of X, and then $\operatorname{tr}\left(U^{\top} X U\right)=\lambda_{1}+\cdots+\lambda_{k}$.

25 (Continued.) Therefore, we have shown

$$
f(x)=\max \left\{\operatorname{tr}\left(u^{\top} x u\right) \mid u \in \mathbb{R}^{n \times k}, u^{\top} u=I_{k}\right\}
$$

For any fixed $u, \operatorname{tr}\left(u^{\top} x u\right)$ is a linear function in x, hence convex. Therefore, $f(x)$ is a convex function in X.
26. Let us introduce a variable transformation

$$
x_{i}:=e^{y_{i}}, \quad i=1, \cdots, n
$$

The monomial $\quad h(x)=c \cdot x_{1}^{\lambda_{1}} \cdots x_{n}^{\lambda_{n}}=c \cdot e^{\lambda_{1} y_{1}+\cdots+\lambda_{n} y_{n}}$. The constraint $h_{j}(x)=\$$ becomes $\lambda_{j i} y_{1}+\cdots+\lambda_{j n} y_{n}=c_{j}$ and the constraint $f_{i}(x) \leq 1$ becomes

$$
\sum_{i} c_{i} e^{\sum_{j=1}^{n} \lambda_{i j} y_{j}} \leqslant 1 \Rightarrow \ln \left(\sum_{i} c_{i} e^{\sum_{j=1}^{n} \lambda_{i j} y_{j}}\right) \leqslant 0
$$

According to Exercise 14, we know that

$$
\ln \left(\sum_{i} c_{i} e^{\sum_{j=1}^{n} \lambda_{i} y_{j}}\right)
$$

is convex. Therefore, after the above transformation, the geometric programming problem becomes convex programming!
27. min $\sum_{i=1}^{m} t_{i}$
s.t. $t_{i} \geq S_{i}^{2}$

$$
s_{i} \geqslant\left(a_{i}^{\top} x-b_{i}\right)^{2}, \quad i=1, \cdots, m
$$

28. Let the point be located at p, and the entire Euclidean ball with p as the eenter, radius t, is within the polyhedron. That is,

$$
a_{i}^{\top}(p+t \xi) \leq b_{i}, \quad i=1, \cdots m, \text { and } \xi \text { is a unit }
$$ vector. This is equivalent to: $\quad a_{i}^{\top} p+t\left\|a_{i}\right\| \leq b_{i}, i=1, i m$.

Therefore, the problem of finding the chebysheu center is:
$\max t$

$$
\text { s.t. } a_{i}^{\top} p+t \cdot\left\|a_{i}\right\| \leqslant b_{i}, \quad i=1, \cdots m
$$

where p and t are the decision variables, and the problem is convex optimization.
29. Similar as in Exercise 28, the constraints are:

$$
a_{i}^{T}(B u+b) \leqslant b_{i}, \forall\|u\| \leq 1, \quad \text { which is: }\left\|B a_{i}\right\|+a_{i}^{T} b \leq b_{i} \text {. }
$$

The problem is: $\max \ln (\operatorname{det}(B))$

$$
\text { s.t. }\left\|B a_{i}\right\|+a_{i}^{\top} b \leq b_{i}, \quad i=1, \cdots, m
$$

where the decision variables are: B, b.
30.
$\min z-y$

$$
\text { st. } \quad y \cdot I \preccurlyeq A_{0}+x_{1} A_{1}+\cdots+x_{m} A_{m} \leqslant z \cdot I .
$$

31. K is: (1) a convex cone (easy to verify)
(2) K is pointed: If $x \in K \&-x \in K$

$$
\Rightarrow x=0
$$

(3) K is solid:
$\left(\begin{array}{c}n \\ n-1 \\ \vdots \\ 1\end{array}\right)+B \subseteq K$, where B is a unit ball.
32.

$$
A=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
0 & 1 & \cdots & 1 \\
0 & 0 & 1 & \cdots \\
0 & \cdots & \cdots & 1 \\
0 & 0 & 0 & \cdots
\end{array}\right)
$$

33. (1) $M K$ is a convex cone;
(2) If $M x \in M K$ and $-M x \in M K$

$$
\Rightarrow x \&-x \in K \Rightarrow x=0 \Rightarrow M 0=0
$$

(3) A solid ball under non-singular linear Transformation becomes a solid ellipsoid.
34.

$$
\begin{aligned}
(M \cdot K)^{*} & =\left\{y \mid x^{\top} M^{\top} y \geqslant 0 \quad \forall x \in K\right\} \\
& =\left\{y \mid M^{\top} y \in K^{*}\right\} \\
& =M^{-\top} \cdot K^{*}
\end{aligned}
$$

35.

$$
\begin{array}{ll}
\max & \sum_{i=1}^{m} b_{i}^{\top} y_{i} \\
\text { s.t. } & A_{1}^{\top} y_{1}+\cdots+A_{m}^{\top} y_{m}+c=0 \\
& y_{i} \in K_{i}^{*}, i=1, \cdots, m .
\end{array}
$$

36.

$$
\begin{array}{ll}
\max & -b^{\top} y-f^{*}\left(-A^{\top} y\right) \\
\text { s.t. } & y \geqslant 0
\end{array}
$$

37.

$$
\begin{aligned}
\max & -\sum_{i=1}^{m} e^{\lambda_{i}-1}-\lambda_{0} \\
\text { st. } & -c+P^{\top} \lambda+\lambda_{0} \cdot \mathbb{1} \geqslant 0
\end{aligned}
$$

38.

$$
\begin{aligned}
\min & x^{\top} \Sigma x \\
\text { s.t. } & \mathbb{1}^{\top} x=1, \quad d^{\top} x \geqslant \mu \\
& f(x) \leq 1 / 2, \quad x \geqslant 0
\end{aligned}
$$

where $\quad d^{\top}=\left(\mu_{1}, \mu_{2}, \cdots, \mu_{n}\right)$.
39. The constraint $f(x) \leq 1 / 2$ can be represented by:

$$
x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{k}} \leq 1 / 2
$$

for all $1 \leqslant i_{1}<i_{2}<i_{3}<\cdots<i_{k} \leqslant n$, which is certainly polyhedral, but it involves $\binom{n}{k}=\frac{n!\text { (linear }}{k!\cdot(n-k)!}$ constraints.

