
MAT3220 Additional Exercises: Convexity

李肖鹏 (116010114)

Due date: Tomorrow

Question 1. Why a real symmetric matrix will always have real (as opposed to complex) eigenval-
ues?

Suppose λ0 is an eigenvalue of real symmetric matrix A, then there exists a nonzero eigenvector
#»a such that

A #»a = λ0
#»a (1)

Take complex conjugate on both sides of (1), we have

A #»a = λ0
#»a =⇒ A · #»a = λ0 · #»a =⇒ A · #»a = λ0 · #»a (2)

Also, take transpose on both sides of (1), we have

(A #»a )
T
= (λ0

#»a )
T
=⇒ #»a TAT = λ0

#»a T =⇒ #»a TA = λ0
#»a T (3)

Multiply #»a T on the left on both sides of (2), and multiply #»a on the right on both sides of (3), we
have

#»a TA #»a = λ0
#»a T #»a and #»a TA #»a = λ0

#»a T #»a

Hence, we conclude that
(λ0 − λ0)∥ #»a ∥22 = 0

Since #»a ̸= #»
0 , ∥ #»a ∥2 ̸= 0, then λ0 = λ0, meaning that λ0 ∈ R.

Question 2. Prove the following Cauchy-Schwarz inequality, i.e., for any #»u , #»v ∈ Rn, we have

#»uT #»v ≤ ∥ #»u∥2 · ∥ #»v ∥2

Consider the following inequality,

0 ≤ ∥ #»u − λ #»v ∥22 = ( #»u − λ #»v )T( #»u − λ #»v )

= ( #»uT − λ #»v T)( #»u − λ #»v )

= ∥ #»u∥22 − 2λ #»uT #»v + λ2∥ #»v ∥22

Since for any λ,
f(λ) = ∥ #»u∥22 − 2λ #»uT #»v + λ2∥ #»v ∥22 ≥ 0

We have
∆ = 4( #»uT #»v )2 − 4∥ #»u∥22∥ #»v ∥22 ≤ 0
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We will finally conclude that
#»uT #»v ≤ ∥ #»u∥2 · ∥ #»v ∥2

Question 3. Use the Cauchy-Schwarz inequality to prove the so-called triangle inequality for the
Euclidean norm,

∥ #»x + #»y ∥2 ≤ ∥ #»x∥2 + ∥ #»y ∥2

for all #»x , #»y ∈ Rn.

To prove ∥ #»x + #»y ∥2 ≤ ∥ #»x∥2 + ∥ #»y ∥2, we only need to prove

( #»x + #»y )T( #»x + #»y ) ≤ #»xT #»x + 2∥ #»x∥2∥ #»y ∥2 + #»y T #»y

But the left hand side is just
#»xT #»x + 2 #»xT #»y + #»y T #»y

By Cauchy-Schwarz inequality, 2 #»xT #»y ≤ 2∥ #»x∥2∥ #»y ∥2, hence, we finish the proof.

Question 4. For a square matrix, A ∈ Rn×n, its trace is tr (A) =
∑n

i=1 aii. Prove that for any
X ∈ Rm×n and Y ∈ Rm×n, we have tr (XY T) = tr (Y XT) =

∑m
i=1

∑n
j=1 XijYij .

Consider the (i, i)-th entry of XY T, if we denote Xi as the i-th row of X, and Yi as the i-th
row of Y , then we have

(XY T)i,i = XiY
T
i =

n∑
j=1

XijYij

Hence, the trace of XY T can be computed by

tr (XY T) =
m∑
i=1

XiY
T
i =

m∑
i=1

n∑
j=1

XijYij

Similarly, consider the (i, i)-th entry of Y XT, we have

(Y XT)i,i = YiX
T
i =

n∑
j=1

YijXij

Hence, the trace of Y XT can be computed by

tr (Y XT) =
m∑
i=1

YiX
T
i =

m∑
i=1

n∑
j=1

YijXij

In conclusion,

tr (XY T) = tr (Y XT) =
m∑
i=1

n∑
j=1

XijYij

Question 5. Let X ∈ Rm×n be a real matrix. The so-called Frobenius norm of X is defined as

∥X∥F :=

(
m∑
i=1

n∑
j=1

X2
ij

)1/2
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and its spectrum norm is defined as ∥X∥2 :=
(
λmax(X

TX)
)1/2. Prove that both ∥ · ∥F and ∥ · ∥2 are

indeed matrix norms.

We first prove ∥ · ∥F is matrix norms, by checking whether it satisfies the five defining properties.
For property (1), it is obvious that ∥ · ∥F ≥ 0. For property (2), if ∥X∥F = 0, we can derive that all
X2

ij are equal to zero, meaning that X is zero matrix. For property (3),

∥αX∥F =

(
m∑
i=1

n∑
j=1

(αXij)
2

)1/2

=

(
α2

m∑
i=1

n∑
j=1

X2
ij

)1/2

= |α|

(
m∑
i=1

n∑
j=1

X2
ij

)1/2

= |α|∥X∥F

For property (4), to prove ∥X + Y ∥F ≤ ∥X∥F + ∥Y ∥F , we only need to prove

m∑
i=1

n∑
j=1

(Xij + Yij)
2 ≤

( m∑
i=1

n∑
j=1

X2
ij

)1/2

+

(
m∑
i=1

n∑
j=1

Y 2
ij

)1/2
2

which is equivalent to say

m∑
i=1

n∑
j=1

XijYij ≤

(
m∑
i=1

n∑
j=1

X2
ij

)1/2( m∑
i=1

n∑
j=1

Y 2
ij

)1/2

However, this is exactly Cauchy-Schwarz inequality, so the proof of property (4) is finished. For
property (5),

∥XY ∥2F =
m∑
i=1

n∑
j=1

(
n∑

k=1

XikYkj

)2

≤
m∑
i=1

n∑
j=1

(
n∑

k=1

X2
ik

n∑
k=1

Y 2
kj

)

=
m∑
i=1

n∑
k=1

X2
ik

(
n∑

j=1

n∑
k=1

Y 2
kj

)

=
m∑
i=1

n∑
k=1

X2
ik∥Y ∥2F

= ∥X∥2F∥Y ∥2F

Hence, ∥ · ∥F is matrix norm.

Then we prove ∥ · ∥2 is matrix norm. For property (1), since XTX is always positive semi-
definite, so all of its eigenvalues are non-negative, hence ∥X∥2 :=

(
λmax(X

TX)
)1/2 ≥ 0. For

property (2), if ∥X∥2 = 0, we can derive that all eigenvalues of XTX are zero, but since it is
symmetric, so it must be zero matrix. If XTX is zero matrix, consider its (i, i)-th entry,

(XTX)ii = XT
i Xi = 0 =⇒ Xi =

#»
0
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where Xi denote the i-th column of X. It is obvious that X is zero matrix, and we finish the proof
of property (2). For property (3), we have

∥αX∥2 :=
(
λmax(α

2XTX)
)1/2

=
(
α2λmax(X

TX)
)1/2

= |α|∥X∥2

For property (4), we only need to prove,(
λmax((X + Y )T(X + Y ))

)1/2 ≤ (λmax(X
TX)

)1/2
+
(
λmax(Y

TY )
)1/2

Let µ = λmax((X + Y )T(X + Y )), then we can take a unit eigenvetor #»v corresponding to µ, i.e.,

(X + Y )T(X + Y ) #»v = µ #»v , ∥ #»v ∥2 = 1

Then, we know

µ = #»v TXTX #»v + #»v TY TY #»v + 2(X #»v )T(Y #»v )

≤ #»v TXTX #»v + #»v TY TY #»v + 2∥X #»v ∥2∥Y #»v ∥2

= (∥X #»v ∥2 + ∥Y #»v ∥2)2 =
(√

#»v TXTX #»v +
√

#»v TY TY #»v
)2

Since XTX is a real symmetric matrix, according to spectral decomposition, there exists orthogonal
matrix T , such that T−1XTXT = diag (λ1, . . . , λn), where λ1 ≥ . . . ≥ λn is the eigenvalues of XTX.
For any vector #»v , suppose (TT #»v )T = (w1, . . . , wn), then

#»v TXTX #»v = #»v TTdiag (λ1, . . . , λn)T
−1 #»v = (TT #»v )Tdiag (λ1, . . . , λn)(T

T #»v )

= (w1, . . . , wn)diag (λ1, . . . , λn)(w1, . . . , wn)
T = λ1w

2
1 + . . .+ λnw

2
n

≤ λ1(w
2
1 + . . .+ w2

n) = λ1∥TT #»v ∥22 = λ1∥ #»v ∥22 = λ1

Hence, #»v TXTX #»v ≤ λmax(X
TX). Similarly, we have #»v TY TY #»v ≤ λmax(Y

TY ). Therefore, we have

λmax((X + Y )T(X + Y )) ≤
(
(λmax(X

TX))1/2 + (λmax(Y
TY ))1/2

)2
which proves property (4). For property (5), we need to prove

µ = λmax((XY )T(XY )) ≤ λmax(X
TX)λmax(Y

TY )

Similar to property (4), we will obtain

µ = #»v TY TXTXY #»v ≤ λmax(X
TX)∥Y #»v ∥22

≤ λmax(X
TX)λmax(Y

TY )∥ #»v ∥22 = λmax(X
TX)λmax(Y

TY )

Hence, ∥ · ∥2 is matrix norm.

Question 6. Prove that for any X ∈ Rm×n and #»y ∈ Rm,

∥X #»y ∥2 ≤ ∥X∥2 · ∥ #»y ∥2

Actually, we have already prove this during the proof of Question 5. Since XTX is a real
symmetric matrix, according to spectral decomposition, there exists orthogonal matrix T , such that

4



T−1XTXT = diag (λ1, . . . , λn), where λ1 ≥ . . . ≥ λn is the eigenvalues of XTX. For any vector #»y ,
suppose (TT #»y )T = (w1, . . . , wn), then

#»y TXTX #»y = #»y TTdiag (λ1, . . . , λn)T
−1 #»y = (TT #»y )Tdiag (λ1, . . . , λn)(T

T #»y )

= (w1, . . . , wn)diag (λ1, . . . , λn)(w1, . . . , wn)
T = λ1w

2
1 + . . .+ λnw

2
n

≤ λ1(w
2
1 + . . .+ w2

n) = λ1∥TT #»y ∥22 = λ1∥ #»y ∥22

However, by definition, λ1 = λmax(X
TX) = ∥X∥22, we then conclude that

∥X #»y ∥2 ≤ ∥X∥2 · ∥ #»y ∥2

Question 7. Prove that for any X, it holds that ∥X∥2 ≤ ∥X∥F .

Use the same method as we did in Question 4, we can obtain

tr (XTX) =
m∑
i=1

n∑
j=1

X2
ij

Since XTX is positive semi-definite matrix, all of its eigenvalue is nonegative, so the trace of it is
larger than or equal to the largest eigenvalue of it, i.e.,

tr (XTX) ≥ λmax (X
TX)

Therefore,

∥X∥2 =
(
λmax (X

TX)
)1/2 ≤ (tr (XTX)

)1/2
=

(
m∑
i=1

n∑
j=1

X2
ij

)1/2

= ∥X∥F

Question 8. Compute the gradient of the quartic function

f(x) = ( #»xTA #»x )2

where A ∈ Sn.

First, we know that the derivative of the quadratic form with respect to vector #»x is given by
(assuming that A is symmetric)

∇ #»x

(
#»xTA #»x

)
= 2A #»x

Hence, by chain rule, we have

∇ #»x f(
#»x ) = 2 #»xTA #»x (2A #»x ) = 4( #»xTA #»x )A #»x

Question 9. Compute the Hessian matrix of the quartic function

f(x) = ( #»xTA #»x )2
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where A ∈ Sn.

We can see that the hessian matrix is given by

∇2
#»x f(

#»x ) = ∇ #»x (4(
#»xTA #»x )A #»x )

Therefore, we have
∇2

#»x f(
#»x ) = 4(A #»x )(A #»x )T + 8( #»xTA #»x )A

Question 10. Prove that if h( #»x ) is twice continuously differentiable, then that h( #»x ) is convex in
Rn is equivalent to ∇2h( #»x ) ⪰ 0 for all #»x ∈ Rn.

We first claim that h( #»x ) is convex in Rn if and only if for any #»x , #»y , we have

h( #»y ) ≥ h( #»x ) +∇h( #»x )T( #»y − #»x )

If so, suppose Hh(
#»z ) = ∇2h( #»x ) ⪰ 0 for all #»x ∈ Rn, by Taylor expansion, we have

h( #»y ) = h( #»x ) +∇h( #»x )T( #»y − #»x ) +
1

2

[
( #»y − #»x )THh(

#»z )( #»y − #»x )
]

for some #»z ∈ [ #»x , #»y ]. Therefore, we obtain

h( #»y ) ≥ h( #»x ) +∇h( #»x )T( #»y − #»x )

By our claim, we can conclude that h( #»x ) is convex.

If we suppose h( #»x ) is convex, then for any #»x and #»
d , some λ > 0 will yield #»x +λ

#»
d . By Taylor

expansion, we have

h( #»x + λ
#»
d ) = h( #»x ) + λ∇h( #»x )T #»

d +
λ2

2

#»
d THh(

#»x )
#»
d + o(∥λ #»

d ∥2)

From our claim, we have
h( #»x + λ

#»
d ) ≥ h( #»x ) + λ∇h( #»x )T #»

d

Hence, we have
λ2

2

#»
d THh(

#»x )
#»
d + o(∥λ #»

d ∥2) ≥ 0

which implies
1

2

#»
d THh(

#»x )
#»
d + ∥ #»

d ∥2o(1) ≥ 0

Take λ → 0, we conclude that #»
d THh(

#»x )
#»
d ≥ 0, which means Hh(

#»x ) is positive semi-definite for all
#»x . Thus, that h( #»x ) is convex in Rn is equivalent to ∇2h( #»x ) ⪰ 0 for all #»x ∈ Rn.

Now we prove our claim. First assume h is convex, and let #»z = λ #»y + (1− λ) #»x for some #»x , #»y

and λ ∈ [0, 1]. Since h is convex, we have

h( #»z ) = h(λ #»y + (1− λ) #»x ) ≤ λh( #»y ) + (1− λ)h( #»x )

and therefore,

h( #»z )− h( #»x ) ≤ λh( #»y ) + (1− λ)h( #»x )− h( #»x ) = λh( #»y )− λh( #»x )
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Since we know

∇h( #»x )T #»
d = lim

λ→0+

h( #»x + λ
#»
d )− h( #»x )

λ

and therefore,

∇h( #»x )T( #»y − #»x ) = lim
λ→0+

h( #»x + λ( #»y − #»x ))− h( #»x )

λ
= lim

λ→0+

h( #»z )− h( #»x )

λ
≤ h( #»y )− h( #»x )

Now we assume h( #»y ) ≥ h( #»x ) +∇h( #»x )T( #»y − #»x ) for any #»x , #»y . Let #»z = λ #»y + (1 − λ) #»x , we
have

h( #»y ) ≥ h( #»z ) +∇h( #»z )T( #»y − #»z ) (1)

h( #»x ) ≥ h( #»z ) +∇h( #»z )T( #»x − #»z ) (2)

Therefore, we have

λh( #»y ) + (1− λ)h( #»x ) ≥ λh( #»z ) + λ∇h( #»z )T( #»y − #»z ) + (1− λ)h( #»z ) + (1− λ)∇h( #»z )T( #»x − #»z )

= h( #»z ) +∇h( #»z )T(λ #»y − λ #»z ) +∇h( #»z )T((1− λ) #»x − (1− λ) #»z )

= h( #»z ) +∇h( #»z )T(λ #»y + (1− λ) #»x − #»z )

= h( #»z ) = h(λ #»y + (1− λ) #»x )

Hence, we conclude that h is convex. Therefore, we finish the proof of our claim.

Question 11. Prove that (
∏n

i=1 xi)
1/n is a concave function in Rn

++.

Let f( #»x ) = (
∏n

i=1 xi)
1/n, and we need to compute the hessian matrix of f( #»x ). First we have

∂f

∂xi

( #»x ) =
f( #»x )

nxi

for all i = 1, . . . , n

Then we compute the second-order partial derivative, we have

∂2f

∂xi∂xj

( #»x ) =
f( #»x )

n2xixj

, for i ̸= j;
∂2f

∂x2
i

( #»x ) =
f( #»x )

n2x2
i

(1− n)

Therefore, we check the quadratic form of arbitrary vector #»u = (u1, u2, . . . , un)
T.

#»uTHf (
#»x ) #»u =

n∑
i=1

n∑
j=1

Hijuiuj =
f( #»x )

n2

 n∑
i=1

1− n

x2
i

u2
i +

n∑
i=1

n∑
j=1
j ̸=i

1

xixj

uiuj


=

f( #»x )

n2

(
n∑

i=1

n∑
j=1

uiuj

xixj

− n
n∑

i=1

u2
i

x2
i

)

=
f( #»x )

n2

( n∑
i=1

ui

xi

· 1

)2

−

(
n∑

i=1

12

)(
n∑

i=1

(
ui

xi

)2
)

≤ f( #»x )

n2
· 0 = 0

By what we proved previously, if the hessian matrix Hf (
#»x ) is negative semi-definite, then f is

concave function in Rn
++.
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Question 12. Prove that
xn
1

x2x3 · · ·xn

is a convex function in Rn
++.

Let
f( #»x ) =

xn
1

x2x3 · · ·xn

, g( #»x ) = ln f( #»x ) = n lnx1 −
n∑

i=2

lnxi

Then, we can compute

∇f( #»x ) = f( #»x )∇g( #»x ), where ∇g( #»x ) =
[

n
x1

− 1
x2

· · · − 1
xn

]T

Also, by chain rule, we have

∇2f( #»x ) = f( #»x )
(
∇g( #»x )∇g( #»x )T +∇2g( #»x )

)
, where ∇2g( #»x ) =


− n

x2
1

0 · · · 0

0 1
x2

· · · 0
...

... . . . ...
0 0 · · · 1

x2
n


For any vector #»u ∈ Rn, we have

#»uT∇2f( #»x ) #»u = f( #»x )

−n

(
u1

x1

)2

+

n∑
i=2

(
ui

xi

)2

+

(
n
u1

x1

−
n∑

i=2

ui

xi

)2


= f( #»x )

−n

(
u1

x1

)2

+
n∑

i=2

(
ui

xi

)2

+

(
(n− 1)

u1

x1

−
n∑

i=2

ui

xi

)2

+ (2n− 1)
u2
1

x2
1

− 2
u1

x1

n∑
i=2

ui

xi


= f( #»x )

 n∑
i=2

(
u1

x1

)2

−
n∑

i=2

2
u1

x1

ui

xi

+
n∑

i=2

(
ui

xi

)2

+

(
(n− 1)

u1

x1

−
n∑

i=2

ui

xi

)2


= f( #»x )

 n∑
i=2

(
u1

x1

− ui

xi

)2

+

(
(n− 1)

u1

x1

−
n∑

i=2

ui

xi

)2
 ≥ 0

Hence, the Hessian of f( #»x ) is always positive semi-definite, which implies that f( #»x ) is a convex
function on Rn

++.

Question 13. Consider X ∈ Sn×n, and so X has n real eigenvalues as we discussed before. Let
them be

λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X)

Prove that λ1(X) is a convex function.

First we prove a lemma. Suppose fγ : X → R is a family of convex functions, with γ ∈ A, some
index set, and let f(x) = supγ∈A fγ(x). Then, for any fixed α ∈ A, λ ∈ [0, 1],

fα(λx+ (1− λ)y) ≤ λfα(x) + (1− λ)fα(y)

≤ sup
γ∈A

(λfγ(x) + (1− λ)fγ(y))

≤ λ sup
γ∈A

fγ(x) + (1− λ) sup
γ∈A

fγ(y)

= λf(x) + (1− λ)f(y)
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By taking the supremum of the left hand side, we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

Hence, f(x) is also convex.

From Question 5, we know that for any unit vector #»v , if X is symmetric matrix, then #»v TX #»v ≤
λ1, and when #»v is the unit eigenvector corresponding to λ1, the maximum value λ1 can be obtained.
Thus, we could consider

λ1(X) = sup
∥ #»v ∥2=1

g #»v (X), where g #»v (X) = #»v TX #»v

For any fixed #»v , g #»v (X) is linear with respect to X, hence convex. By the lemma we proved just
now, the supreme of it, that is, λ(X), must be convex.

Question 14. Prove that

ln
(

n∑
i=1

exi

)
is a convex function.

Let f( #»x ) denote the original function, then we can compute

∇f( #»x ) =
1∑n

i=1 e
xi

[
ex1 · · · exn

]T

and denote H = ∇2f( #»x ), we have

Ĥ =

(
n∑

k=1

exk

)2

[H]ij =


exi

n∑
k=1

exk − exi+xj when i = j

− exi+xj when i ̸= j

We only need to prove Ĥ is positive semi-definite matrix. For any #»u ∈ R, we have

#»uTĤ #»u =
n∑

i=1

n∑
j=1

[Ĥ]ijuiuj

=

(
n∑

i=1

exiu2
i

)
·

(
n∑

i=1

exi

)
−

n∑
i,j=1

exiexjuiuj

=

(
n∑

i=1

exiu2
i

)
·

(
n∑

i=1

exi

)
−

(
n∑

i=1

exiui

)2

≥ 0

where the last line holds by Cauchy-Schwarz inequality. Hence, Ĥ is positive semi-definite, which
means H is PSD, and f is a convex function.

Question 15. Suppose that f( #»x ) ≥ 0 is convex for #»x ∈ S, and g( #»x ) > 0 is concave for #»x ∈ S.
Prove that

f( #»x )

g( #»x )

is a quasi-convex function.
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We only need to prove that for all a, the level set (when g( #»x ) > 0)

La =

{
#»x ∈ S

∣∣∣∣ f( #»x )

g( #»x )
< a

}
= { #»x ∈ S | f( #»x ) < ag( #»x )}

is a convex set. Take any two elements #»x , #»y in La, we have

f( #»x ) < ag( #»x ), f( #»y ) < ag( #»y )

Therefore, since f is convex, g is concave, we have for λ ∈ (0, 1),

f(λ #»x + (1− λ) #»y ) ≤ λf( #»x ) + (1− λ)f( #»y )

< λag( #»x ) + (1− λ)ag( #»y )

≤ ag(λ #»x + (1− λ) #»y )

Hence, λ #»x + (1− λ) #»y ∈ La, which means La is a convex set, and

f( #»x )

g( #»x )

is quasi-convex.

Question 16. Show that
#»a T #»x + b
#»c T #»x + d

is quasi-linear in { #»x | #»c T #»x + d > 0}.

Let f( #»x ) denote the original function, we tend to prove both f( #»x ) and −f( #»x ) are quasi-convex.
Consider the level set of f( #»x ),

Sα =

{
#»x

∣∣∣∣ #»c T #»x + d > 0,
#»a T #»x + b
#»c T #»x + d

≤ α

}
=
{

#»x
∣∣ #»c T #»x + d > 0

}
∩
{

#»x
∣∣ #»a T #»x + b ≤ α( #»c T #»x + d)

}
=
{

#»x
∣∣ #»c T #»x + d > 0

}
∩
{

#»x
∣∣ ( #»a − α #»c )T #»x ≤ αd− b

}
= S(1)

α ∩ S(2)
α

Since S
(1)
α and S

(2)
α are both half spaces, so they are both convex, and the intersection of two convex

sets are convex, so Sα is convex, which shows f( #»x ) is quasi-convex.

Similarly, we can show that the level set of −f( #»x ) can also be written as the intersection of
two half spaces, which are convex, so −f( #»x ) is also quasi-convex. Therefore, f( #»x ) is quasi-linear.

Question 17. Suppose that f( #»x ) is convex for x ∈ S, and g( #»x ) > 0 is concave for #»x ∈ S. Prove
that

[f( #»x )]2

g( #»x )

is a convex function.

First we prove a lemma, for a, b, c, d ∈ R and c, d > 0,

(a+ b)2

c+ d
≤ a2

c
+

b2

d

10



This is indeed true because
(a+ b)2

c+ d
−
(
a2

c
+

b2

d

)
=

(a+ b)2cd− (a2d+ b2c)(c+ d)

(c+ d)cd

=
(a2cd+ 2abcd+ b2cd)− (a2dc+ b2c2 + a2d2 + b2cd)

(c+ d)cd

=
−(bc− ad)2

(c+ d)cd
≤ 0

Let h( #»x ) = [f( #»x )]2/g( #»x ), then for λ ∈ (0, 1), we have

h(λ #»x + (1− λ) #»y ) =
[f(λ #»x + (1− λ) #»y )]2

g(λ #»x + (1− λ) #»y )

≤ [λf( #»x ) + (1− λ)f( #»y )]2

λg( #»x ) + (1− λ)g( #»y )

≤ λ2[f( #»x )]2

λg( #»x )
+

(1− λ)2[f( #»y )]2

(1− λ)g( #»y )
(By lemma)

= λh( #»x ) + (1− λ)h( #»y )

Hence, h( #»x ) is a convex function.

Question 18. Prove that
∏n

i=1 xi is quasi-concave in Rn
++.

To prove
∏n

i=1 xi is quasi-concave, we only need to prove that the level set

Sα =

{
#»x ∈ Rn

++

∣∣∣∣∣
n∏

i=1

xi ≥ α

}
is convex for any α (because the domain of the function is convex). If α ≤ 0, then the level set is
reduced to be Sα = Rn

++, which is obviously convex. If α > 0, then Sα is equivalent to

Sα =

{
#»x ∈ Rn

++

∣∣∣∣∣
n∑

i=1

lnxi ≥ lnα

}
Consider any #»x , #»y ∈ Sα, and λ ∈ [0, 1], it is easy to know λ #»x + (1 − λ) #»y ∈ Rn

++. Also, since∑n
i=1 lnxi ≥ lnα and

∑n
i=1 ln yi ≥ lnα, we have
n∑

i=1

ln(λxi + (1− λ)yi) ≥
n∑

i=1

(λ lnxi + (1− λ) ln yi)

≥ λ lnα+ (1− λ) lnα = lnα

Therefore, λ #»x + (1− λ) #»y ∈ Sα, which shows that Sα is convex.

Question 19. Show that S := { #»x | ∥ #»x − #»a ∥2 ≤ ∥ #»x − #»
b ∥2} is a convex region. Further prove that

∥ #»x − #»a ∥2/∥ #»x − #»
b ∥2 is quasi-convex in S.

Consider the set S, we have

{ #»x | ∥ #»x − #»a ∥2 ≤ ∥ #»x − #»
b ∥2} = { #»x | #»xT #»x − 2 #»a T #»x + #»a T #»a ≤ #»xT #»x − 2

#»
b T #»x +

#»
b T #»

b }

= { #»x | 2( #»
b − #»a )T #»x ≤ #»

b T #»
b − #»a T #»a }

11



which shows that S is a half-space. It is very easy to show by definition that a half-space is convex,
and hence S is convex.

Next we need to prove the level set of ∥ #»x − #»a ∥2/∥ #»x − #»
b ∥2, which is given by

Sα = { #»x ∈ S | ∥ #»x − #»a ∥2/∥ #»x − #»
b ∥2 ≤ α}

is convex for all α. If α < 0, then Sα is empty set, hence trivially convex. If α ≥ 1, then Sα = S,
which we have proved is convex, so we only need to consider the case when α ∈ [0, 1). In this case,
Sα is equivalent to

{ #»x ∈ S | (1− α2) #»xT #»x + 2(α2 #»
b − #»a )T #»x ≤ α2 #»

b T #»
b − #»a T #»a }

Take #»x and #»y in Sα, we have

(1− α2) #»xT #»x + 2(α2 #»
b − #»a )T #»x ≤ α2 #»

b T #»
b − #»a T #»a (1)

(1− α2) #»y T #»y + 2(α2 #»
b − #»a )T #»y ≤ α2 #»

b T #»
b − #»a T #»a (2)

Multiply (1) by λ and (2) by (1− λ), then consider the sum of them, for λ ∈ [0.1], we have

(1− α2)
[
λ #»xT #»x + (1− λ) #»y T #»y

]
+ 2(α2 #»

b − #»a )T(λ #»x + (1− λ) #»y ) ≤ α2 #»
b T #»

b − #»a T #»a (∗)

Since

λ #»xT #»x + (1− λ) #»y T #»y ≥ (λ #»x + (1− λ) #»y )T(λ #»x + (1− λ) #»y )

⇐⇒ λ(1− λ) #»xT #»x + λ(1− λ) #»y T #»y ≥ 2λ(1− λ) #»xT #»y

which is obviously true, and since 1− α2 > 0, we can obtain

(1− α2)(λ #»x + (1− λ) #»y )T(λ #»x + (1− λ) #»y ) + 2(α2 #»
b − #»a )T(λ #»x + (1− λ) #»y )

≤ (1− α2)
[
λ #»xT #»x + (1− λ) #»y T #»y

]
+ 2(α2 #»

b − #»a )T(λ #»x + (1− λ) #»y )

≤ α2 #»
b T #»

b − #»a T #»a

which means λ #»x + (1 − λ) #»y ∈ Sα, and we conclude that Sα is convex, and the function is quasi-
convex.

Question 20. Prove that
Φ(x) =

1√
2π

ˆ x

−∞
e−t2/2 dt

is a log-concave function.

We need to prove that g(x) = lnΦ(x) is concave function. Consider the first-order derivative
of it, we have

g′(x) =
e−x2/2´ x

−∞ e−t2/2 dt

Then consider the second-order derivative of it, we have

g′′(x) = e−x2/2
−x
´ x

−∞ e−t2/2 dt− e−x2/2(´ x

−∞ e−t2/2 dt
)2

12



Let
h(x) = −x

ˆ x

−∞
e−t2/2 dt− e−x2/2

we consider the monotonicity and limit of it. Compute

h′(x) = −x

ˆ x

−∞
e−t2/2 dt− e−x2/2 < 0

We know that h(x) is strictly decreasing, the the supremum of it is its limit as t → −∞, however,

lim
x→−∞

[
−x

ˆ x

−∞
e−t2/2 dt− e−x2/2

]
= lim

x→−∞

´ x

−∞ e−t2/2 dt

−x−1
= lim

x→−∞

e−x2/2

x−2
= 0

Therefore, h(x) < 0 for all x ∈ R, and we know that g′′(x) < 0, which shows g(x) is concave.

Question 21. Suppose Q ∈ Sn×n
++ . Prove that

2 #»xT #»y ≤ #»xTQ #»x + #»y TQ−1 #»y

for any #»x , #»y ∈ Rn.

Since Q is positive definite matrix, there exists orthogonal matrix P such that

#»xTQ #»x + #»y TQ−1 #»y = #»xTPTDP #»x + #»y TPD−1PT #»y =
#»
x̄TD

#»
x̄ +

#»
ȳ TDT #»

ȳ

If we suppose D = diag {λ1, . . . , λn}, #»
x̄ = (x̄1, . . . , x̄n)

T, and #»
ȳ = (ȳ1, . . . , ȳn)

T, since all λi > 0, we
have

#»xTQ #»x + #»y TQ−1 #»y = λ1x̄
2
1 + . . .+ λnx̄

2
n + λ−1ȳ21 + . . .+ λ−1ȳ2n

≥ 2(x̄1ȳ1 + . . .+ x̄nȳn)

= 2(P #»x )TPT #»y = 2 #»xTPPT #»y

= 2 #»xTIn
#»y = 2 #»xT #»y

Hence, we finish the proof.

Question 22. Suppose 0 < p < 1. Show that(
n∑

i=1

xp
i

)1/p

is a concave function in Rn
++.

Let f( #»x ) denote the original function, and g( #»x ) = ln f( #»x ), we have

[∇g( #»x )]i =
1∑n

k=1 x
p
k

xp−1
i

and

[∇2g( #»x )]ij =


1

(
∑n

k=1 xp
k)

2

[
(p− 1)xp−2

i

∑n
k=1 x

p
k − pxp−1

i xp−1
j

]
when i = j

1

(
∑n

k=1 xp
k)

2

[
−pxp−1

i xp−1
j

]
when i ̸= j

13



Since we know
∇2f( #»x ) = f( #»x )

[
∇g( #»x )∇g( #»xT) +∇2g( #»x )

]
If we let H̄ = f( #»x )2∇2f( #»x ), we only need to check H̄ is negative semi-definite, then we can conclude
that f( #»x ) is concave function. Take any vector #»u , we consider for 1− p > 0,

#»uTH̄ #»u = (1− p)
n∑

i=1

n∑
j=1

xp−1
i xp−1

j uiuj + (p− 1)

(
n∑

k=1

xp−2
k u2

k

)(
n∑

k=1

xp
k

)

= (1− p)

( n∑
i=1

xp−1
i ui

)2

−

(
n∑

k=1

xp−2
k u2

k

)(
n∑

k=1

xp
k

)
≤ 0

Therefore, H̄ is negative semi-definite, and f( #»x ) is concave function in Rn
++.

Question 23. If f( #»x ) is twice continuously differentiable and quasi-convex, then for any #»x ∈
dom(f),

#»
d

T
∇f( #»x ) = 0 =⇒ #»

d
T
∇2f( #»x )

#»
d ≥ 0

Suppose for some #»x , #»
d

T
∇2f( #»x )

#»
d < 0 under that condition. Let h(t) = f( #»x + t

#»
d ), then

h′(0) =
#»
d

T
∇f( #»x ) = 0 and h′′(0) =

#»
d

T
∇2f( #»x )

#»
d < 0. Then in a small neighborhood (−δ, δ), 0 is

a local maximum of h(t). Then, we will have h(0) > max{h(t1), h(−t1)} for some 0 ̸= t1 ∈ (−δ, δ).
Now we consider the level set Sα of f( #»x ), let α = max{h(t1), h(−t1)}, then h(t1) = f( #»x + t1

#»
d ) and

h(−t1) = f( #»x − t1
#»
d ) are both in Sα, but their convex combination h(0) = f( #»x ) is not in Sα, so f

is not quasi-convex at least in that small neighborhood. Contradiction shows that our assumption
is wrong, and #»

d
T
∇2f( #»x )

#»
d ≥ 0 for all #»x .

Question 24. If the condition in Question 23 holds, then there must exist some real value α such
that

∇2f( #»x ) + α∇f( #»x )(∇f( #»x ))T ⪰ 0

Also, the Hessian matrix of a quasi-convex function can have at most one negative eigenvalue

We first prove that the hessian matrix of quasi-convex function can never have two or more
negative eigenvalues. If it does have, then take any two negative of them λ1 and λ2, with cor-
responding eigenvector #»v 1 and #»v 2. Since for symmetric matrix, it has orthogonal eigenbasis, we
have #»v 1 ⊥ #»v 2. Let #»u = ∇f( #»x ), the orthogonal complement space of #»u has dimension n− 1, but
span { #»v 1,

#»v 2} has dimension 2, so the intersection of them always contains nontrivial vector #»
d .

Therefore, #»
d T #»u = 0, but if we consider H = ∇2f( #»x ), we have

#»
d TH

#»
d =

#»
d TH(a #»v 1 + b #»v 2)

=
#»
d T(λ1a

#»v 1 + λ2b
#»v 2)

= (a #»v 1 + b #»v 2)
T(λ1a

#»v 1 + λ2b
#»v 2)

= λ1a
2∥ #»v 1∥22 + λ2b

2∥ #»v 2∥22 < 0

which contradicts to what we proved in Question 23.
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If H is PSD, then we are done by choosing α = 0. If H has exactly one negative eigenvalue,
λ1 < 0, so H is indefinite matrix. We now prove a more general theorem as follows

Theorem [Finsler]. For symmetric matrix A,B ∈ Rn×n with B indefinite, if #»xTB #»x = 0 =⇒
#»xTA #»x ≥ 0, then A+ tB is positive semidefinite for some t ∈ R.

Proof. Define two sets as follows

F1 = {t ∈ R | #»x ∈ Rn, #»xT(−B) #»x ≥ 0 =⇒ #»xTA(t) #»x ≥ 0}

F2 = {t ∈ R | #»x ∈ Rn, #»xTB #»x ≥ 0 =⇒ #»xTA(t) #»x ≥ 0}

where A(t) = A+ tB. If there exists real number t0 ∈ F1 ∩ F2, then A(t0) is positive semidefinite.
Thus, we need to show F1 ∩ F2 ̸= ∅.

From our assumption, we have for t ∈ R,

#»xTB #»x = 0 =⇒ #»xTA(t) #»x ≥ 0

which implies E(t) ⊂ C ∪D, where

E(t) = { #»x ∈ Rn | #»xTA(t) #»x < 0}, C = { #»x ∈ Rn | #»xTB #»x > 0}, D = { #»x ∈ Rn | #»xTB #»x < 0}

The set E(t) consists of at most two connected components (This is not trivial, you can consider
the canonical form of quadratic form #»xTA(t) #»x = y21 + . . . + y2p − y2p+1 − . . . − y2r , when there is
only one negative term, E(t) will be disconnected and has only two connected components; when
the number of negative term is larger than or equal to 2, E(t) will be connected), and these two
components are symmetric (though each single component is not symmetric) with respect to the
origin; the sets C and D, whose union is disconnected, are also symmetric (here C and D itself
is symmetric) with respect to origin. Since we can easily check that any connected component(s)
of E(t) must be contained in C or D, the whole set E(t) is contained in C or D for each fixed t.
Therefore, for any t ∈ R, t ∈ F1 or t ∈ F2, and this means F1 ∪ F2 = R.

Since B is indefinite, It is easy to show that F1 and F2 are nonempty sets. Also, since quadratic
function is always continuous, so F1 and F2 can be shown to be closed set easily. In this way, we can
conclude that F1 ∩ F2 ̸= ∅. This just means there exists a t, no matter what the result of #»xTB #»x

is, we always have #»xTA(t) #»x ≥ 0, meaning that A(t) ⪰ 0.

Then let B = #»u #»uT and A = H in the above theorem, we can directly obtain what we need to
prove.

Question 25. For X ∈ Sn×n, its eigenvalues are denoted to be

λ1(X) ≥ λ2(X) ≥ · · · ≥ λn−1(X) ≥ λn(X)

Let 1 ≤ k ≤ n. Consider

f(X) :=
k∑

i=1

λi(X)

15



Prove that f(X) is a convex function. You could first show that

f(X) = sup{tr (UTXU) |U ∈ Rn×k, UTU = Ik}

If we prove that
f(X) = sup{tr (UTXU) |U ∈ Rn×k, UTU = Ik} (∗)

then f(X) is obviously convex, because it can be regared as the supremum of g(X) = tr (UTXU),
which is linear with respect to X (trace function is linear, and UTXU is also linear). Since linear
function is convex, so the supremum of it must be convex. Thus, it suffices to prove (∗) is correct.

Take the eigen-decomposition of X = QTDQ, where Q is orthogonal matrix and D is diagonal
matrix with eigenvalues λ1, . . . , λn of X as its diagonal entries. If we let U = QU for all UTU = Ik,
then

U
T
U = UTQTQU = UTInU = UTU = Ik

Thus, we have{
tr
(
UTXU

)
|U ∈ Rn×k, UTU = Ik

}
=
{

tr
(
U

T
DU

)
|U ∈ Rn×k, U

T
U = Ik

}
If we denote the I-th row of U to be

#»

U i, and the j-th entry of
#»

U i to be U ij , then we have

tr
(
U

T
DU

)
= tr

(
DUU

T)
=

n∑
i=1

λi

∥∥∥ #»

U i

∥∥∥2
2

Since tr
(
U

T
U
)
= tr (Ik) = k, we have

∑n
i=1

∥∥∥ #»

U i

∥∥∥2
2
= k. Also, notice that U is a n×k matrix whose

k ≤ n columns form an orthonormal set of vectors in Rn, hence linearly independent. Thus, we can
extend it to a basis of Rn, and by applying Gram-Schmidt process, we can obtain an orthonormal
basis of Rn including all k columns of U . In other words, we have extended the orginal U to a larger
orthogonal matrix Ũ =

[
U, V

]
. Therefore, if we denote

#»

V i as the i-th row of V∥∥∥ #»

U i

∥∥∥2
2
+
∥∥∥ #»

V i

∥∥∥2
2
= 1 =⇒

∥∥∥ #»

U i

∥∥∥2
2
≤ 1

Therefore, if we consider the weighted average of
∥∥∥ #»

U i

∥∥∥2
2
, i.e.,

∑n
i=1 λi

∥∥∥ #»

U i

∥∥∥2
2
, to maximize it, we

should assign the maximum value to the maximum weight. However, each weight can be at most
1, and we have k units in total, hence, the maximized case is that we allocate 1 to the largest k

weights, i.e.,
n∑

i=1

λi

∥∥∥ #»

U i

∥∥∥2
2
≤

k∑
i=1

λi

If we choose the k columns of U to be k eigenvectors of X, then we have tr (UTXU) = λ1+ · · ·+λk.
Therefore,

sup{tr (UTXU) |U ∈ Rn×k, UTU = Ik} = λ1 + · · ·+ λk = f(X)

and the proof is finished.

Question 26. A function f : Rn
++ 7→ R

h( #»x ) = cxλ1
1 xλ2

2 · · ·xλn
n
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with c > 0 and λ ∈ Rn is called a monomial. Sum of monomials, f( #»x ) =
∑k

i=1 hi(
#»x ), is called a

posynomial.
The so-called geometric programming problem is as follows,

(G) min
#»x

f0(
#»x )

s.t. fi(
#»x ) ≤ 1, i = 1, 2, . . . ,m

hj(
#»x ) = 1, j = 1, 2, . . . , p

where fi(
#»x ) are posynomials (i = 1, 2, . . . ,m), and hj(

#»x ) are monomials (j = 1, 2, . . . , p).
Show that (G) can be formulated as convex optimization through a variable transformation.

First, we clarify some notations,

hj(
#»x ) = cjx

λj,1

1 x
λj,2

2 · · ·xλj,n
n , j = 1, . . . , p

Similarly,

fi(
#»x ) =

ai∑
k=1

h
(i)
k ( #»x ), i = 0, 1, . . . ,m, h

(i)
k ( #»x ) = c

(i)
k x

λ
(i)
k,1

1 x
λ
(i)
k,2

2 · · ·xλ
(i)
k,n

n

Take xt = eyt for t = 1, . . . , n, the reformulation is

(G1) min
#»y

a0∑
k=1

c
(0)
k exp

{
n∑

t=1

λ
(0)
k,tyt

}

s.t.

ai∑
k=1

c
(i)
k exp

{
n∑

t=1

λ
(i)
k,tyt

}
≤ 1, i = 1, 2, . . . ,m

cj exp
{

n∑
t=1

λj,tyt

}
= 1, j = 1, 2, . . . , p

To simplify it, we have

(G2) min
#»y

ln
{

a0∑
k=1

c
(0)
k exp

{
n∑

t=1

λ
(0)
k,tyt

}}

s.t. ln
{

ai∑
k=1

c
(i)
k exp

{
n∑

t=1

λ
(i)
k,tyt

}}
≤ 0, i = 1, 2, . . . ,m

n∑
t=1

λj,tyt = − ln cj , j = 1, 2, . . . , p

From Question 14, we have known that the log-sum-exponential function ln
(∑k

t=1 e
yt

)
is convex,

since all ct > 0 are positive, this result can be easily generalized to the function ln
(∑k

t=1 cte
yt

)
.

The objective function and inequality constraints of (G2) can be regarded as the composite of log-
sum-exponential and affine function, so they are all convex. The equality constraints are all affine
functions, so (G2) is a convex problem.

Question 27. Formulate the following L4-norm approximation problem as QCQP,

min
#»x

∥A #»x − b∥4 =

(
m∑
i=1

(
#»ai

T #»x − bi
)4)1/4
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First, we know that the original problem is equivalent to

min
#»x

m∑
i=1

(
#»ai

T #»x − bi
)4

Using change of variable, let ti =
(

#»ai
T #»x − bi

)2. Thus, we have

min
#»x ,ti

m∑
i=1

t2i

s.t. ti =
(

#»ai
T #»x − bi

)2
, i = 1, 2, . . . ,m

Since QCQP cannot have non-linear equality constraints, so we need to transform equality to in-
equality constraints. Suppose ti >

(
#»ai

T #»x − bi
)2, then to minimize the sum of square of ti, we can

decrease ti until it is equal to
(

#»ai
T #»x − bi

)2, thus we can reformulate it into

min
#»x ,ti

m∑
i=1

t2i

s.t. ti ≥
(

#»ai
T #»x − bi

)2
, i = 1, 2, . . . ,m

Question 28. The so-called Chebyshev center of a polyhedron is the deepest point inside the
polyhedron. Suppose that the polyhedron is given by P = { #»x | #»ai

T #»x ≤ bi, i = 1, 2, . . . ,m}.
Formulate the problem of finding the Chebyshev center of P by a convex optimization model.

Suppose the Chebyshev center is at point #»p , and the radius of the Euclidean ball is r ≥ 0. The
only constrain is that the whole ball should lie in the polyhedron (we only need the sphere to be in
the polyhedron). Therefore,

#»ai
T( #»p + r #»u ) ≤ bi, ∀ ∥ #»u∥2 = 1, ∀ i = 1, . . . ,m

However, this is the case when uncountable constraints are involved, so we need to change it into
finite many constraints. Consider the supremum of all constraints, we have

sup
∥ #»u∥2=1

#»ai
T( #»p + r #»u ) = #»ai

T #»p + r∥ #»ai∥2 ≤ bi, ∀ i = 1, . . . ,m

Therefore, we can obtain the formulation

max
#»p ,r

r

s.t. #»ai
T #»p + r∥ #»ai∥2 ≤ bi, i = 1, 2, . . . ,m

Since the objective function and constraints are linear with respect to #»p and r, it is a convex
problem.

Question 29. An ellipsoid may be given by the image of a ball under some linear transformation,
e.g. E = {Bu + b | ∥u∥2 ≤ 1}. Without losing generality we can also assume B ≻ 0. Then the
volume of E is proportional to detB.

18



Consider again the polyhedron P = { #»x | aT
i

#»x ≤ bi, i = 1, 2, . . . ,m}. Now the problem is to find the
maximum volume ellipsoid inscribed inside P . Formulate the problem by convex optimization.

The constraint can be dealt with in a similar manner as that in the Question 28, but we need
to be careful about the objective function here. We tend to maximize the volume, i..e, maximize the
determinant of B. However, it is easy to show that det(B) is nonconvex and nonconcave function.
Hence, we need to maximize log(det(B)) instead, because it is a concave function on Sn

++. Thus,
we have the formulation as follows

max
B,

#»
b

log(det(B))

s.t. #»ai
T #»
b + ∥B #»ai∥2 ≤ bi, i = 1, 2, . . . ,m

B ≻ 0

To prove the log-determinant function is concave on Sn
++, it suffices to show f(X) is concave in any

direction. Define g(t) = log(det(X + tV )), where X and X + tV are both positive definite. Then,
there exists X = X1/2X1/2, such that

g(t) = log(det(X1/2X1/2 + tX1/2X−1/2V X−1/2X1/2))

= log(det(X1/2(I + tX−1/2V X−1/2)X1/2))

= log(det(X)det(I + tX−1/2V X−1/2))

= log(det(X)) + log(det(I + tX−1/2V X−1/2))

Note that X1/2 and I + tX−1/2V X−1/2 are also positive definite, and assume the eigenvalues of
X−1/2V X−1/2 are λ1, . . . , λn, then

g(t) = log(det(X)) + log(det(I + tX−1/2V X−1/2)) = log(det(X)) +
n∑

i=1

log(1 + tλi)

Thus, we have

g′(t) =
n∑

i=1

λi

1 + tλi

, g′′(t) = −
n∑

i=1

λ2
i

(1 + tλi)2
≤ 0

Hence g(t) is concave, meaning that f(X) is concave in V -direction, but V is arbitrary, so f(X) is
concave in general.

Question 30. Let Ai ∈ Sn×n, i = 1, 2, . . . ,m. Therefore, A0 + x1A1 + · · ·+ xmAm is a symmetric
matrix. We wish to find the values of x1, . . . , xm so as to minimize the gap between the largest and
the smallest eigenvalues of A0 + x1A1 + · · ·+ xmAm. Formulate this problem by SDP.

This question is trivial, the formulation is

min
#»x ,L,U

U − L

s.t. L · In ⪯ A0 + x1A1 + · · ·+ xmAm ⪯ U · In

where #»x = (x1, x2, · · · , xn)
T ∈ Rn, L,U ∈ R, and In is n× n identity matrix.

Question 31. Let
K = { #»x ∈ R |x1 ≥ x2 ≥ · · · ≥ xn ≥ 0}
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Show that K is a proper cone.

First, we show that K is closed. Take any convergent subsequence { #»v n}∞n=1 ∈ K, for any #»v n,
we have #»v

(i)
n ≥ 0 for i = 1, . . . , n. Suppose the limit of this sequence is #»v , then we have

#»v (i) = lim
n→∞

#»v (i)
n ≥ 0

which means #»v is also in K. This means any limit point of K is in itself, hence it is closed.

Second, we need to show that K is solid. For unit ball B, we can see that [2n 2n−2 · · · 2]T+B

is a ball in K. This is because B = { #»v | ∥ #»v ∥2 = 1}, so any point in [2n 2n− 2 · · · 2]T + B can be
expressed as [v1 + 2n, v2 + 2n − 2, · · · , vn + 2]T. Consider any two consecutive entries, W.O.L.G.,
we take the first two entries, v1 + 2n− v2 − 2n+ 2 = v1 − v2 + 2, since v21 + v22 ≤ 1, |v1 − v2| <

√
2,

so v1 − v2 + 2 > 0 and this point is in K. Hence, K cantains a ball and thus is solid.

Finally, we prove K is pointed. If #»x ∈ K, and − #»x ∈ K, then we will have xi ≥ xi+1 and
xi ≤ xi+1 for i = 1, . . . , n − 1. Thus, xi = xi+1 for i = 1, . . . , n − 1, but xn ≥ 0 and xn ≤ 0, so
#»x =

#»
0 .

It’s easy to check this is a convex cone by definition. For any #»x ∈ K, α #»x is also in K for any
α ≥ 0. For λ ∈ [0, 1], it is trivial that λ #»x +(1−λ) #»y is also in K, if #»x and #»y are both in K. Hence,
K is a proper cone.

Question 32. Find A ∈ Rn×n such that K = ARn
+.

Take A as

A =



1 1 1 · · · 1

0 1 1 · · · 1

0 0 1 · · · 1
...

...
... . . . ...

0 0 0 · · · 1


Then for any #»x ∈ Rn

+, we have

A #»x = [x1 + · · ·+ xn, x2 + · · ·+ xn, · · · , x1]
T

which shows that A #»x ∈ K, because all xi are nonnegative.

Also, for any #»x ∈ K, A−1 #»x is in Rn
+, because

A−1 =



1 −1 0 · · · 0

0 1 −1 · · · 0

0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1


, A−1 #»x =



x1 − x2

x2 − x3

x3 − x4

...
xn−1 − xn


≥ #»

0

Therefore, K = ARn
+.

Question 33. In general, if K ⊂ Rn is a proper cone, and M ∈ Rn×n is a non-singular matrix, then
MK is also a proper cone.
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First, we prove that MK is a convex cone. Since by definition, MK = {M #»x | #»x ∈ K}, for any
element #»y ∈ MK, we have #»y = M #»x . Consider any α ≥ 0, α #»y = M(α #»x ), since #»x is in cone K,
so is α #»x , and thus α #»y ∈ MK. The convexity of MK also follows from the convexity of K, similar
arguments can be applied.

Then, we prove that MK is closed. This is trivial, since M is a linear transformation hence
continuous. Continuous function maps a closed set to closed set, thus MK is closed because K is
closed.

Next, we prove that MK is solid. Since there exists a unit ball in K, take its interior, it is an
open set, and will be mapped to an open set by M . Therefore, there is an open set in MK, and
there is a open ball contained in this open set, and of course in MK.

Finally, we prove that MK is pointed. This is trivial, since #»x ∈ MK means M−1 #»x ∈ K, and
− #»x ∈ MK means −M−1 #»x ∈ K. We know K is pointed, so M−1 #»x =

#»
0 , which is equivalent to say

#»x =
#»
0 . Therefore, MK is pointed, and hence it is a proper cone.

Question 34. Compute (MK)∗.

By definition, we have

(MK)∗ = { #»y | #»xTMT #»y ≥ 0, ∀ #»x ∈ K}

= { #»y |MT #»y ∈ K∗}

=
(
MT)−1 K∗

Question 35. Derive the dual of the following non-standard conic optimization problem:

min
#»x

#»c T #»x

s.t. Ai
#»x +

#»
b i ∈ Ki, i = 1, 2, . . . ,m

where K1,K2, · · · ,Km are all closed convex cones.

Consider the Lagrangian function

L( #»x , #»y i) =
#»c T #»x +

m∑
i=1

#»y T
i (Ai

#»x +
#»
b )

where #»y i ∈ K∗
i . Then the dual function is

d( #»y i) = min
#»x

L( #»x , #»y i) =


∑m

i=1

#»
b T #»y i when #»c +

∑m
i=1 A

T
i

#»y i =
#»
0

−∞ when #»c +
∑m

i=1 A
T
i

#»y i ̸=
#»
0
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Hence, the Lagrange dual problem is

max
#»y i

m∑
i=1

#»
b T #»y i

s.t. #»c +
m∑
i=1

AT
i

#»y i =
#»
0

#»y i ∈ K∗
i , i = 1, 2, . . . ,m

Question 36. Suppose that f( #»x ) is a convex function, and its conjugate function is known to be
f∗( #»s ). Consider the following optimization model

min
#»x

f( #»x )

s.t. A #»x ≤ #»
b

Derive the Lagrangian dual of the above problem.

Recall the conjugate function f∗( #»s ) is given by

f∗( #»s ) = sup
#»x
( #»s T #»x − f( #»x ))

The Lagrangian function is given by

L( #»x , #»y ) = f( #»x ) + #»y T(A #»x − #»
b )

Hence, the dual function d( #»y ) is given by

d( #»y ) = min
#»x

L( #»x , #»y ) = −max
#»x

(
(−AT #»y )T #»x − f( #»x )

)
− #»

b T #»y = −f∗(−AT #»y )− #»
b T #»y

where #»y ≥ 0. Therefore, the Lagrange dual problem is

max
#»y

− f∗(−AT #»y )− #»
b T #»y

s.t. #»y ≥ #»
0

Question 37. The channel capacity optimization problem is:

min
#»x , #»y

− #»c T #»x +
m∑
i=1

yi ln yi

s.t. P #»x = #»y

#»x ≥ #»
0 , #»e T #»x = 1

What is the dual of the above problem?

The Lagrangian function is

L( #»x , #»y , #»u , u0,
#»
λ ) = − #»c T #»x +

m∑
i=1

yi ln yi +
#»uT(P #»x − #»y ) + u0(

#»e T #»x − 1) +
#»
λT(− #»x )
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where #»
λ ≥ #»

0 and #»u = (u1, · · · , um)T. The dual function

d( #»u , u0,
#»
λ ) = min

#»x , #»y
L( #»x , #»y , #»u , u0,

#»
λ )

We can rewrite the Lagrangian function into separated form (separate #»x , #»y ), which is

L( #»x , #»y , #»u , u0,
#»
λ ) = (− #»c + PT #»u + u0

#»e − #»
λ )T #»x +

m∑
i=1

yi ln yi − #»uT #»y − u0

Since for #»x part, it is an linear function, the coefficient must be zero, otherwise it will be unbounded
(because in Lagrangian function, #»x is free variable). Thus,

− #»c + PT #»u + u0
#»e − #»

λ =
#»
0

For #»y part, it is a convex function, hence the minimum is attained at the point where the gradient
is zero, i.e.,

ln yi + 1− ui = 0 =⇒ yi = eui−1, ∀ i = 1, 2, . . . ,m

Hence, we can obtain the dual function

d( #»u , u0,
#»
λ ) = −

m∑
i=1

eui−1 − u0

And the Lagrange dual problem is given by

max
#»u ,u0,

#»
λ

−
m∑
i=1

eui−1 − u0

s.t. − #»c + PT #»u + u0
#»e − #»

λ =
#»
0

#»
λ ≥ #»

0

Eliminate #»
λ , we have

max
#»u ,u0

−
m∑
i=1

eui−1 − u0

s.t. − #»c + PT #»u + u0
#»e ≥ #»

0

Question 38. The sum of first k largest components of vector #»x ∈ Rn (k < n) is known to be
a convex function (Why?). Denote this function to be f( #»x ). Formulate the following portfolio
selection problem using f( #»x ): We wish to select from a total of n assets to form a portfolio (no
short-selling is allowed). Asset i has an expected rate of return µi > 0, and the covariance matrix is
Σ. We wish to minimize the variance of the portfolio while requiring that the expected rate of return
to the portfolio is at least µ. Moreover, the weight of the first k largest components of investment
should not exceed half of the total investment.

To see why f( #»x ) is convex, we can see that

f( #»x ) =
k∑

i=1

xni
= max{xn1

+ · · ·+ xnk
| 1 ≤ n1 < n2 < · · · < nk ≤ n}
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f is the maximum of Ck
n linear functions, so it must be convex.

Now let us formulate the portfolio problem. Since #»x = (x1, · · · , xn)
T means the percentage

of different portfolio, so the sum of all entries must be one. Not short-selling means xi ≥ 0 for all
i. If we denote #»u = (µ1, · · · , µn)

T, then since the expected rate of return is at least µ, we have
#»uT #»x ≥ µ. The requirement on first k largest components yields f( #»x ) ≤ 0.5. Finally, we need to
minimize the variance of portfolio, so the objective function is #»xTΣ #»x . Therefore,

min
#»x

#»xTΣ #»x

s.t. #»e T #»x = 1

#»uT #»x ≥ µ

f( #»x ) ≤ 0.5

#»x ≥ #»
0

Question 39. The condition that f(x) ≤ 0.5 in Question 38 can be formulated by linear program-
ming. How?

This is trivial if you use definition of f( #»x ),

f( #»x ) = max{xn1
+ · · ·+ xnk

| 1 ≤ n1 < n2 < · · · < nk ≤ n} ≤ 1

2

The above constraint is equivalent to

xn1
+ · · ·+ xnk

≤ 1

2
, ∀ 1 ≤ n1 < n2 < · · · < nk ≤ n

Notice that there are Ck
n different choices of {n1, . . . , nk}, so the original one non-linear constraint

will be reformulated into Ck
n linear constraints.
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