Additional Exercises: Convexity

- 1. Why a real symmetric matrix will always have real (as opposed to complex) eigenvalues?
- 2. Prove the following Cauchy-Schwarz inequality.

For any $u, v \in \mathbf{R}^n$, we have

$$u^{\mathrm{T}}v \leq ||u||_2 \cdot ||v||_2.$$

3. Use the Cauchy-Schwarz inequality to prove the so-called triangle inequality for the Euclidean norm:

$$||x + y||_2 < ||x||_2 + ||y||_2$$

for all $x, y \in \mathbf{R}^n$.

- 4. For a square matrix $A \in \mathbf{R}^{n \times n}$, its trace is $\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$. Prove: For any $X \in \mathbf{R}^{m \times n}$ and $Y \in \mathbf{R}^{n \times m}$, we have $\operatorname{tr}(XY^{\mathrm{T}}) = \operatorname{tr}(YX^{\mathrm{T}}) = \sum_{i=1}^{m} \sum_{j=1}^{n} X_{ij} Y_{ij}$.
- 5. Let $X \in \mathbf{R}^{m \times n}$ be a real matrix. The so-called Frobenius norm of X is defined as

$$||X||_F := \left(\sum_{i=1}^m \sum_{j=1}^n X_{ij}^2\right)^{1/2}$$

and its spectrum norm is defined as $||X||_2 := (\lambda_{\max}(X^TX))^{1/2}$. Prove: Both $||\cdot||_F$ and $||\cdot||_2$ are indeed matrix norms.

6. Prove: For any $X \in \mathbf{R}^{m \times n}$ and $y \in \mathbf{R}^m$,

$$||Xy||_2 \le ||X||_2 \cdot ||y||_2.$$

- 7. Prove: For any X, it holds that $||X||_2 \le ||X||_F$.
- 8. Compute the gradient of the quartic function

$$f(x) = (x^{\mathrm{T}} A x)^2$$

where $A \in \mathcal{S}^n$.

9. Compute the Hessian matrix of the quartic function

$$f(x) = (x^{\mathrm{T}} A x)^2$$

where $A \in \mathcal{S}^n$.

- 10. Prove: If h(x) is twice continuously differentiable, then h(x) is convex in \mathbb{R}^n is equivalent to $\nabla^2 h(x) \succeq 0$ for all $x \in \mathbb{R}^n$.
- 11. Prove: $(\prod_{i=1}^{n} x_i)^{1/n}$ is a concave function in \mathbf{R}_{++}^n .
- 12. Prove:

$$\frac{x_1^n}{x_2x_3\cdots x_n}$$

is a convex function in \mathbf{R}_{++}^n .

13. Consider $X \in \mathcal{S}^{n \times n}$, and so X has n real eigenvalues as we discussed before. Let them be

$$\lambda_1(X) \ge \lambda_2(X) \ge \cdots \ge \lambda_n(X).$$

Prove: $\lambda_1(X)$ is a convex function.

14. Prove:

$$\ln\left(\sum_{i=1}^{n} e^{x_i}\right)$$

is a convex function.

15. Suppose that f(x) is convex for $x \in S$, and g(x) > 0 is concave for $x \in S$. Prove:

$$\frac{f(x)}{g(x)}$$

is a quasi-convex function.

16. Show that

$$\frac{a^{\mathrm{T}}x + b}{c^{\mathrm{T}}x + d}$$

is quasi-linear in $\{x \mid c^{\mathrm{T}}x + d > 0\}$.

17. Suppose that f(x) is convex for $x \in S$, and g(x) > 0 is concave for $x \in S$. Prove:

$$\frac{f(x)^2}{g(x)}$$

is a convex function.

- 18. Prove: $\prod_{i=1}^{n} x_i$ is quasi-concave in \mathbb{R}^n_{++} .
- 19. Show that $S := \{x \mid ||x a||_2 \le ||x b||_2\}$ is a convex region. Further prove: $||x a||_2 / ||x b||_2$ is quasi-convex in S.
- 20. Prove:

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$$

is a log-concave function.

21. Suppose $Q \in \mathcal{S}_{++}^{n \times n}$. Prove:

$$2x^{\mathrm{T}}y \le x^{\mathrm{T}}Qx + y^{\mathrm{T}}Q^{-1}y$$

for any $x, y \in \mathbf{R}^n$.

22. Suppose 0 . Show that

$$\left(\sum_{i=1}^{n} x_i^p\right)^{1/p}$$

is a *concave* function in \mathbb{R}^n_{++} .

23. If f(x) is twice continuously differentiable and quasi-convex, then for any $x \in \text{dom}(f)$:

$$d^{\mathrm{T}}\nabla f(x) = 0 \Longrightarrow d^{\mathrm{T}}\nabla^2 f(x)d \ge 0.$$

24. Prove: If the above condition holds, then there must exist some real value α such that

$$\nabla^2 f(x) + \alpha \nabla f(x) (\nabla f(x))^{\mathrm{T}} \succeq 0.$$

[The Hessian matrix of a quasi-convex function can have at most one negative eigenvalue!]

25. For $X \in \mathcal{S}^{n \times n}$, its eigenvalues are denoted to be

$$\lambda_1(X) \ge \lambda_2(X) \ge \cdots \ge \lambda_{n-1}(X) \ge \lambda_n(X).$$

Let $1 \le k \le n$. Consider

$$f(X) := \sum_{i=1}^{k} \lambda_i(X).$$

Prove: f(X) is a convex function.

Hint: Show that

$$f(X) = \sup\{\operatorname{tr}(U^{\mathsf{T}}XU) \mid U \in \mathbf{R}^{n \times k}, U^{\mathsf{T}}U = I_k\}.$$

26. A function $f: \mathbf{R}_{++}^n \to \mathbf{R}$

$$h(x) = cx_1^{\lambda_1} x_2^{\lambda_2} \cdots x_n^{\lambda_n}$$

with c > 0 and $\lambda \in \mathbf{R}^n$ is called a *monomial*. Sum of monomials, $f(x) = \sum_{i=1}^k h_i(x)$, is called a *posynomial*.

The so-called *geometric programming* problem is as follows:

(G) min
$$f_0(x)$$

s.t. $f_i(x) \le 1, i = 1, 2, ..., m$
 $h_j(x) = 1, j = 1, 2, ..., p$

where $f_i(x)$ are posynomials (i = 1, 2, ..., m), and $h_j(x)$ are monomials (j = 1, 2, ..., p).

Show that (G) can be formulated as convex optimization through a variable transformation.

27. Formulate the following L_4 -norm approximation problem as QCQP:

min
$$||Ax - b||_4 = \left(\sum_{i=1}^m (a_i^{\mathrm{T}}x - b_i)^4\right)^{1/4}$$
.

- 28. The so-called *Chebyshev center* of a polyhedron is the deepest point inside the polyhedron. Suppose that the polyhedron is given by $P = \{x \mid a_i^T x \leq b_i, i = 1, 2, ..., m\}$. Formulate the problem of finding the Chebyshev center of P by a convex optimization model.
- 29. An ellipsoid may be given by the image of a ball under some linear transformation, e.g. $E = \{Bu + b \mid ||u||_2 \le 1\}$. Without losing generality we can also assume B > 0. Then the volume of E is proportional to det B.

Consider again the polyhedron $P = \{x \mid a_i^T x \leq b_i, i = 1, 2, ..., m\}$. Now the problem is to find the maximum volume ellipsoid inscribed inside P. Formulate the problem by convex optimization.

- 30. Let $A_i \in \mathcal{S}^{n \times n}$, i = 1, 2, ..., m. Therefore, $A_0 + x_1 A_1 + \cdots + x_m A_m$ is a symmetric matrix. We wish to find the values of $x_1, ..., x_m$ so as to minimize the gap between the largest and the smallest eigenvalues of $A_0 + x_1 A_1 + \cdots + x_m A_m$. Formulate this problem by SDP.
- 31. Let

$$\mathcal{K} := \{ x \in \mathbf{R}^n \mid x_1 \ge x_2 \ge \dots \ge x_n \ge 0 \}.$$

Show that K is a proper cone.

- 32. Find $A \in \mathbf{R}^{n \times n}$ such that $\mathcal{K} = A \mathbf{R}_{+}^{n}$.
- 33. In general, if $\mathcal{K} \subseteq \mathbf{R}^n$ is a proper cone, and $M \in \mathbf{R}^{n \times n}$ is a non-singular matrix, then $M \mathcal{K}$ is also a proper cone.
- 34. Compute K^* .
- 35. Derive the dual of the following non-standard conic optimization problem:

min
$$c^{\mathrm{T}}x$$

s.t. $A_1x + b_1 \in \mathcal{K}_1$
 $A_2x + b_2 \in \mathcal{K}_2$
 \vdots
 $A_mx + b_m \in \mathcal{K}_m$,

where $\mathcal{K}_1, \mathcal{K}_2, \cdots, \mathcal{K}_m$ are all closed convex cones.

36. Suppose that f(x) is a convex function, and its conjugate function is known to be $f^*(s)$. Consider the following optimization model

$$min f(x)
s.t. Ax \le b.$$

Derive the Lagrangian dual of the above problem.

37. The channel capacity optimization problem is:

min
$$-c^{\mathrm{T}}x + \sum_{i=1}^{m} y_i \ln y_i$$

s.t. $Px = y$
 $x \ge 0, e^{\mathrm{T}}x = 1.$

What is the dual of the above problem?

- 38. The sum of first k largest components of vector $x \in \mathbf{R}^n$ (k < n) is known to be a convex function. (Why?) Denote this function to be f(x). Formulate the following portfolio selection problem using f(x): We wish to select from a total of n assets to form a portfolio (no short-selling is allowed). Asset i has an expected rate of return $\mu_i > 0$, and the covariance matrix is Σ . We wish to minimize the variance of the portfolio while requiring that the expected rate of return to the portfolio is at least μ . Moreover, the weight of the first k largest components of investment should not exceed half of the total investment.
- 39. The condition that $f(x) \leq 0.5$ can be formulated by linear programming. How?