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Problem 2.1-14. Let Y be a subspace of a vector space X. The coset of an element x ∈ X with
respect to Y is denoted by x+ Y and is defined to be the set

x+ Y = {v | v = x+ y, y ∈ Y }

Show that under algebraic operations defined by

(w + Y ) + (x+ Y ) = (w + x) + Y

α(x+ Y ) = αx+ Y

these cosets constitute the elements of a vector space. This space is called the quotient space (or
sometimes factor space) of X by Y (or modulo Y ) and is denoted by X/Y . Its dimension is called
the codimension of Y and is denoted by codim Y , that is,

codim Y = dim (X/Y )

To prove all cosets consititute a vector space, we only need to check the standard definition.
Firstly, consider x1+Y and x2+Y which are two arbitrary cosets in X/Y and x1, x2 ∈ X. We have

(x1 + Y ) + (x2 + Y ) = (x1 + x2) + Y = (x2 + x1) + Y = (x2 + Y ) + (x1 + Y )

where the second equality is because X is a vector space and x1, x2 ∈ X. Also, consider arbitrary
x3 + Y ∈ X/Y ,

x+ (y + z) = (x1 + Y ) + [(x2 + Y ) + (x3 + Y )]

= (x1 + Y ) + [(x1 + x2) + Y ]

= [x1 + (x2 + x3)] + Y

= [(x1 + x2) + x3] + Y

= [(x1 + x2) + Y ] + (x3 + Y )

= [(x1 + Y ) + (x2 + Y )] + (x3 + Y )

where the fourth equality is because x1, x2, x3 are vectors in vector space X. Then we need to find
the zero vector, which in this case is 0+ Y , where 0 ∈ X is the zero vector of X. Then we have

(x1 + Y ) + (0+ Y ) = (x1 + 0) + Y = x1 + Y
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where the second equality is because 0 is zero vector in X and x1 ∈ X. Similarly, we have

(x1 + Y ) + (−x1 + Y ) = [x1 + (−x1)] + Y = 0+ Y

where x1 + (−x1) = 0 is due to the fact that X is vector space, and x1 ∈ X, 0 is zero vector.

Now we verify the properties on scalar multiplication. Consider any a, b in the field over which
X is defined. We have

a[b(x1 + Y )] = a(bx1 + Y ) = [a(bx1)] + Y = [(ab)x1] + Y = (ab)(x1 + Y )

where the third equality is because x1 ∈ X and X is a vector space. We also know 1x1 = x1 because
1 is the unit scalar and x1 is in the vector space X. Thus, we have

1(x1 + Y ) = (1x1) + Y = x1 + Y

Next, we consider the distributive laws

a[(x1 + Y ) + (x2 + Y )] = a[(x1 + x2) + Y ] = [a(x1 + x2)] + Y = (ax1 + ax2) + Y

= (ax1 + Y ) + (ax2 + Y ) = a(x1 + Y ) + a(x2 + Y )

where the third equality is because of the distirbutive law of x1, x2 in vector space X. Finally, we
have

(a+ b)(x1+Y ) = [(a+ b)x1]+Y = (ax1+ bx1)+Y = (ax1+Y )+(bx1+Y ) = a(x1+Y )+ b(x1+Y )

where the second equality is due to the distributive law of x1, x2 in vector space X.

Therefore, X/Y is a vector space because it satisfies all of the defining properties of a vector
space.

Problem 2.2-8. There are several norms of practical importance on the vector space of ordered
n-tuples of numbers, notably those defined by

∥x∥1 = |ξ1|+ |ξ2|+ · · ·+ |ξn|

∥x∥p = (|ξ1|p + |ξ2|p + · · ·+ |ξn|p)1/p

∥x∥∞ = max{|ξ1|, · · · , |ξn|}

In each case, verify that the four properties of norm are satisfied.

Firstly, for the L1-norm, since |ξi| ≥ 0 and |ξi| = 0 ⇐⇒ ξi = 0 for all i = 1, . . . , n, we can
conclude that ∥x∥1 ≥ 0 and ∥x∥1 = 0 ⇐⇒ |ξi| = 0, ∀ i ⇐⇒ ξi = 0, ∀ i ⇐⇒ x = 0, where 0 is the
zero vector. Then consider any scalar a, we have ∥ax∥1 = |aξ1|+ · · ·+ |aξn|, but since |aξi| = a|ξi|,
it is easy to conclude that ∥ax∥1 = a|ξ1| + · · · + a|ξn| = a(|ξ1| + · · · + |ξn|) = a∥x∥1. For triangle
inequality, consider any vector y = (yi)

n
i=1,

∥x+ y∥1 = |ξ1 + y1|+ · · ·+ |ξn + yn|

≤ (|ξ1|+ |y1|) + · · ·+ (|ξn|+ |yn|)

= (|ξ1|+ · · ·+ |ξn|) + (y1 + · · ·+ yn)

= ∥x∥1 + ∥y∥1
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where the inequality is due to triangle inequality of absolute value (for number). Thus, ∥x∥1 satisfies
all properties of a norm.

Then, for the Lp-norm where 1 < p < ∞, since |ξi|p ≥ 0 and |ξi|p = 0 ⇐⇒ ξi = 0 for all i =
1, . . . , n, we can conclude that ∥x∥p ≥ 0 and ∥x∥p = 0 ⇐⇒ |ξi|p = 0, ∀ i ⇐⇒ ξi = 0, ∀ i ⇐⇒ x = 0,
where 0 is the zero vector. Then consider any scalar a, we have

∥ax∥p = (|aξ1|p + · · ·+ |aξn|p)1/p

= (|a|p|ξ1|p + · · ·+ |a|p|ξn|p)1/p

= |a|(|ξ1|p + · · ·+ |ξn|p)1/p = |a|∥x∥p

For triangle inequality, consider any vector y = (yi)
n
i=1,

∥x+ y∥pp =
n∑

i=1

|ξi + yi||ξi + yi|p−1

≤
n∑

i=1

|ξi||ξi + yi|p−1 +
n∑

i=1

|yi||ξi + yi|p−1

≤

(
n∑

i=1

|ξi|p
) 1

p
(

n∑
i=1

(|ξi + yi|p−1)
p

p−1

) p−1
p

+

(
n∑

i=1

|yi|p
) 1

p
(

n∑
i=1

(|ξi + yi|p−1)
p

p−1

) p−1
p

= ∥x∥p

(
n∑

i=1

|ξi + yi|p
) p−1

p

+ ∥y∥p

(
n∑

i=1

|ξi + yi|p
) p−1

p

= (∥x∥p + ∥y∥p)∥x+ y∥p−1
p

where the first inequality is due to triangle inequality of absolute value (for numbers), and the second
inequality is due to Hölder’s inequality for Lp-space equipped with counting measure. Therefore,
we can cancel out ∥x+y∥p−1

p on both sides if x+y ̸= 0, and then we obtain ∥x+y∥p ≤ ∥x∥p+∥y∥p.
If x+ y = 0, then ∥x+ y∥p ≤ ∥x∥p + ∥y∥p will trivially hold. Thus, ∥x∥1 satisfies all properties of a
norm.

Finally, for the L∞-norm, since |ξi| ≥ 0, the maximum of all ξi must be nonnegative, i.e.,
∥x∥∞ ≥ 0. Also ∥x∥∞ = 0 is equivalent to say the largest |ξi| is zero, but since all |ξi| ≥ 0, so it is
equivalent to say all |ξi| = 0 and thus ξ = 0. Therefore, ∥x∥∞ = 0 ⇐⇒ x = 0. Then consider any
scalar a, we have

∥ax∥∞ = max{|aξ1|, · · · , |aξn|} = max{|a||ξ1|, · · · , |a||ξn|} = |a|max{|ξ1|, · · · , |ξn|} = |a|∥x∥∞

For triangle inequality, we need to first prove a claim that for ai, bi ∈ R for all i = 1, . . . , n,

max{a1 + b1, · · · , an + bn} ≤ max{a1, · · · , an}+ max{b1, · · · , bn}

This is because for all i = 1, . . . , n, we have ai ≤ max{a1, · · · , an} and bi ≤ max{b1, · · · , bn}, then
ai + bi ≤ max{a1, · · · , an}+max{b1, · · · , bn}. Since for all i = 1, . . . , n, this is true, we can take the
maximum over all i, it will still hold, and our claim is proved. Then consider any vector y = (yi)

n
i=1,

∥x+ y∥∞ = max{|ξ1 + y1|, · · · , |ξn + yn|} ≤ max{|ξ1|+ |y1|, · · · , |ξn|+ |yn|}

≤ max{|ξ1|, · · · , |ξn|}+ max{|y1|, · · · , |yn|} = ∥x∥∞ + ∥y∥∞
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Therefore, ∥x∥∞ satisfies all properties of a norm.

Problem 2.2-11. A subset A of a vector space X is said to be convex if x, y ∈ A implies

M = {z ∈ X | z = αx+ (1− α)y, 0 ≤ α ≤ 1} ⊂ A

M is called a closed segment with boundary points x and y; any other z ∈ M is called an interior
point of M . Show that the closed unit balls

B̃(0; 1) = {x ∈ X | ∥x∥ ≤ 1}

in a normed space X is convex.

Take arbitrary point x, y ∈ B̃(0; 1), for all α ∈ [0, 1], consider

∥αx+ (1− α)y∥ ≤ ∥αx∥+ ∥(1− α)y∥ = |α|∥x∥+ |1− α|∥y∥

Since α and 1− α are both nonnegative, and x, y are both in the closed unit balls, we have

∥αx+ (1− α)y∥ ≤ |α|+ |1− α| = 1

Thus αx+ (1− α)y ∈ B̃(0; 1). This shows that x, y ∈ B̃(0; 1) implies M ⊂ B̃(0; 1) for M defined in
the question, so B̃(0; 1) is a convex subset of X.

Problem 2.3-6. Show that the closure Ȳ of a subspace Y of a normed space X is again a vector
subspace.

Consider any point x ∈ Y , we can assign a sequence in Y that converges to it, i.e., xn ≡ x

for all positive integer n. For any point x ∈ Ȳ \ Y , since Ȳ is the closure of Y , these x must be a
limit point of Y . Therefore, there must exist a sequence xn ∈ Y such that xn → x as n → ∞. In
conclusion, for any x ∈ Ȳ , we can find a sequence xn ∈ Y such that xn → x as n → ∞.

Now we start to prove the subset is a subspace. First we prove the closedness of it under
addition. Take arbitary w, v ∈ Ȳ , then there exists sequences wn, vn ∈ Y such that wn → w and
vn → v. Since Y is a subspace, so wn + vn ∈ Y . From wn → w and vn → v, for arbitrary ϵ, there
exists N1, N2 such that ∥wn−w∥ < ϵ/2 for all n ≥ N1 and ∥vn−v∥ < ϵ/2 for all n ≥ N2. Therefore,

∥wn + vn − (w + v)∥ ≤ ∥wn − w∥+ ∥vn − v∥ < ϵ

Thus, w + v is a limit point of a sequence wn + vn which is in Y , i.e., w + v ∈ Ȳ .

Then we prove the closedness of it under scalar multiplication. Take arbitrary scalar a, for any
w ∈ Ȳ , similarly we can find convergent sequence wn ∈ Y such that wn → w. Since Y is a subspace,
so awn ∈ Y . Then for arbitrary ϵ, there exists N1 such that ∥wn−w∥ < ϵ for all n ≥ N1. Therefore,

∥awn − aw∥ = |a|∥wn − w∥ < |a|ϵ

Thus aw is a limit point of sequence awn, meaning that aw ∈ Ȳ .

Finally, we need to prove 0 ∈ Ȳ , where 0 is the zero vector of X. This is trivial because Y is a
subspace, so 0 ∈ Y ⊂ Ȳ . Therefore, the closure Ȳ is also a subspace of X.
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Problem 2.3-12. A seminorm on a vector space X is a mapping p : X 7→ R satisfying all properties
of norm except the one ∥x∥ = 0 ⇐⇒ x = 0. (Some authors call this a pseudonorm.) Show that

p(0) = 0

|p(y)− p(x)| ≤ p(y − x)

(Hence if p(x) = 0 implies x = 0, then p is a norm.)

Since p is a seminorm, we have p(ax) = |a|p(x) for all scalar a. Thus we can fix any x and let
a = 0, then since X is a vector space and x ∈ X, we have ax = 0 (zero vector of X) and since p(x)

is a real number, so 0 · p(x) = 0. Therefore, p(0) = 0.

From the definition of seminorm, we also have p(u+ v) ≤ p(u) + p(v) for all u, v ∈ X. Let u =

x−y and v = y, then we have p(x) ≤ p(x−y)+p(y), which is equivalent to −p(x−y) ≤ p(y)−p(x).
Also notice that p(x− y) = p(y − x), so we have −p(y − x) ≤ p(y)− p(x). Similarly, let u = x and
v = y − x, then we have p(y) ≤ p(x) + p(y − x), i.e., p(y)− p(x) ≤ p(y − x). In conclusion, we can
obtain |p(y)− p(x)| ≤ p(y − x).

Problem 2.3-14. Let Y be a closed subspace of a normed space (X, ∥·∥). Show that a norm ∥·∥0
on X/Y is defined by

∥x̂∥0 = inf
x∈x̂

∥x∥

where x̂ ∈ X/Y , that is, x̂ is any coset of Y . Also prove that if X is complete, then so is X/Y .

Since x̂ ∈ X/Y , define x̂ = u + Y , then for any x ∈ x̂, we can write x = u + y for some
y ∈ Y . Since ∥·∥ is a norm in X, ∥u + y∥ ≥ 0 for all y ∈ Y , thus ∥x̂∥0 ≥ 0, and further, we have
∥x̂∥0 = infy∈Y ∥u+ y∥.

If x̂ = 0X/Y , then u = 0X , which means ∥x̂∥0 = infy∈Y ∥0+ y∥ = infy∈Y ∥y∥ = 0 because 0 ∈ Y .
Conversely, if infy∈Y ∥u + y∥ = 0, then there exists yn ∈ Y such that ∥yn + u∥ → 0, i.e., yn → −u.
Since Y is closed, −u ∈ Y , so u ∈ Y . However, if u ∈ Y , then u+ Y = 0X + Y = 0X/Y . Thus, we
conclude that x̂ = 0X/Y ⇐⇒ ∥x̂∥0 = 0.

Consider any scalar a, then ∥ax̂∥0 = infy∈Y ∥au+y∥. If a = 0, then ∥ax̂∥0 = 0 and |a| infy∈Y ∥u+
y∥ = 0, so ∥ax̂∥0 = |a|∥x̂∥0. If a ̸= 0, then

∥ax̂∥0 = inf
y∈Y

∥au+ y∥ = inf
y∈Y

|a|∥u+ y/a∥ = |a| inf
y∈Y

∥u+ y/a∥

Notice that {y/a | y ∈ Y } = Y because Y is a vector space, so

∥ax̂∥0 = |a| inf
y∈Y

∥u+ y/a∥ = |a| inf
y∈Y

∥u+ y∥ = |a|∥x̂∥0

Finally, also consider arbitrary ẑ ∈ X/Y where ẑ = v + Y , v ∈ X. Since ∥x̂∥0 is the greatest
lower bound of ∥u + y∥ for y ∈ Y , then for arbitrary small ϵ > 0, there exists y1 ∈ Y such that
∥u+ y1∥ < ∥x̂∥0 + ϵ. Similarly, there exists y2 ∈ Y such that ∥v + y2∥ < ∥ẑ∥0 + ϵ. Therefore,

∥u+ v + y∗∥ ≤ ∥u+ v + y1 + y2∥ ≤ ∥u+ y1∥+ ∥v + y2∥ < ∥x̂∥0 + ∥ẑ∥0 + 2ϵ

where y∗ = y1 + y2 ∈ Y . Therefore, we have

∥x̂+ ẑ∥0 = inf
y∈Y

∥u+ v + y∥ ≤ ∥u+ v + y∗∥ < ∥x̂∥0 + ∥ẑ∥0 + 2ϵ
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Take ϵ → 0, it yield ∥x̂+ ẑ∥0 ≤ ∥x̂∥0 + ∥ẑ∥0. Thus, ∥·∥0 is a norm on X/Y .

Now we prove if X is complete, then X/Y is also complete. We first recall canonical projection
π(x) : X 7→ X/Y with π(x) = x+ Y = x̂ for all x ∈ X. We can easily show that π(x) is bounded,
because ∥π(x)∥0 = infy∈Y ∥x+y∥ ≤ ∥x∥ with 0X ∈ Y . Since π is bounded, it must be continuous, i.e.,
if we have a sequence xn ∈ X converges to x ∈ X, then the corresponding sequence π(xn) ∈ X/Y

converges to π(x) ∈ X/Y .
Next we construct a Cauchy sequence in X from a Cauchy sequence in X/Y . Take any Cauchy

sequence in X/Y , denoted as ûn = un + Y . Since it is Cauchy sequence in X/Y , we can find a
subsequence of it such that for all k ≥ 1,

∥ûnk+1
− ûnk

∥0 = inf
y∈Y

∥unk+1
− unk

+ y∥ <
1

2k

This implies that 1/(2k) is not a lower bound of ∥unk+1
−unk

+y∥ for y ∈ Y . Therefore, for k = 1 there
exists y1 such that ∥un2

−un1
+y1∥ < 1

2
. Define xn1

= un1
−y1 ∈ X, then x̂n1

= un1
−y1+Y ∈ X/Y .

Notice that in fact x̂n1
= ûn1

, so it belongs to the original sequence ûn. By the definition of quotient
norm and the fact that Y is a vector space, we have

∥ûn2
− ûn1

∥0 = inf
y∈Y

∥un2
− un1

+ y∥ = inf
y∈Y

∥un2
− y − (un1

− y1)∥

Therefore, by the same argument, we can find y2 such that ∥un2
− y2 − (un1

− y1)∥ < 1
2
. Define

xn2
= un2

−y2 ∈ X, then x̂n2
= un2

−y2+Y ∈ X/Y . Again, x̂n2
= ûn2

, so it belongs to the original
sequence ûn. Then let k = 2 and obtain y3 and x̂n3

and so on. Finally, we can obtain a sequence
yk ∈ Y and a subsequence x̂nk

of ûn which satisfies

∥unk+1
− yk+1 − (unk

− yk)∥ <
1

2k

for k = 1, 2, . . .. This implies that unk
− yk is a Cauchy sequence in X, and since X is complete,

unk
− yk converges to x ∈ X.
Notice that π(unk

−yk) = π(unk
) = ûnk

, and from our previous argument, π(unk
−yk) → π(x) ∈

X/Y since unk
−yk → x. Therefore, ûnk

= π(unk
) → π(x) ∈ X/Y . This shows that for any Cauchy

sequence ûn ∈ X/Y , it has a convergent subsequence in X/Y . Therefore, the whole sequence will
also converge with the same limit as its subsequence, and this shows that X/Y is complete.

Problem 2.3-15. If (X1, ∥·∥1) and (X2, ∥·∥2) are normed spaces, show that the product vector
space X = X1 ×X2 becomes a normed space if we define

∥x∥ = max(∥x1∥1, ∥x2∥2) [x = (x1, x2)]

Since X is a vector space, we only need to prove the norm defined above satisfies the four defining
properties. Firstly, since ∥x1∥1 ≥ 0 and ∥x2∥2 ≥ 0, ∥x∥ = max(∥x1∥1, ∥x2∥2) ≥ 0. Secondly, we
have

∥x∥ = 0 ⇐⇒ max(∥x1∥1, ∥x2∥2) = 0 ⇐⇒ ∥x1∥1 = ∥x2∥2 = 0 ⇐⇒ x1 = x2 = 0 ⇐⇒ x = 0

Thirdly, for any scalar a, we have

∥ax∥ = max(∥ax1∥1, ∥ax2∥2) = max(|a|∥x1∥1, |a|∥x2∥2) = |a|max(∥x1∥1, ∥x2∥2) = |a|∥x∥
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Lastly, according to the claim we proved in Problem 2.2-8, max{a1 + b1, a2 + b2} ≤ max{a1, a2} +
max{b1 + b2}, thus for any y = (y1, y2) ∈ X, we have

∥x+ y∥ = max{∥x1 + y1∥1, ∥x2 + y2∥2}

≤ max{∥x1∥1 + ∥y1∥1, ∥x2∥2 + ∥y2∥2}

≤ max{∥x1∥1, ∥x2∥2}+ max{∥y1∥1, ∥y2∥2} = ∥x∥+ ∥y∥

Therefore, X becomes a norm space under the norm defined in the question.

Problem 2.4-1. Give examples of subspaces of l∞ and l2 which are not closed.

Consider set A to be the set of all vectors with only finitely many nonzero coordinates, i.e.,
there exists N such that for x = (x1, · · · , xn, · · · ) ∈ A, xn = 0 for all n ≥ N . Then A is certainly a
subset of l∞ because |xi| ≤ cx for all i = 1, 2, . . . where cx is a constant depending on x. Therefore,
we need to first prove A is a subspace and then not closed in l∞-space.

Firstly, the zero vector of l∞, (0, 0, · · · , 0, · · · ) is definitely in A because it has finitely many
nonzero coordinates. Then consider any two x, y ∈ A, since there exists N1 such that xn = 0 for all
n ≥ N1 and N2 such that yn = 0 for all n ≥ N2. Take N = max{N1, N2}, then for all xn, yn ≥ N ,
xn = yn = 0, and xn + yn = 0. This shows that x + y has only finitely many nonzero coordinates,
so x+ y ∈ A. Finally, consider any scalar a, ax = (ax1, · · · , axn, · · · ), since xn = 0 for all n ≥ N1,
axn = 0 for all n ≥ N1, which shows ax ∈ A. Therefore, A is a subspace of l∞.

Consider a sequence x(k) defined as x(k) = (x
(k)
1 , x

(k)
2 , · · · , x(k)

n , · · · ) where x
(k)
n = 1

n
for all n ≤ k

and x
(k)
n = 0 for all n > k. Then for each k, x(k) ∈ A. Also define x∗ as x∗ = (x∗

1, · · · , x∗
n, · · · ) with

x∗
n = 1

n
for all n. Then it is easy to see that

∥x(k) − x∗∥∞ = max
{
0, 0, · · · , 0, 1

k + 1
,

1

k + 2
, · · ·

}
=

1

k + 1

Therefore, limk→∞∥x(k)−x∗∥∞ = 0, which shows x∗ is a limit point of x(k) ∈ A, but x∗ has infinitely
many nonzero coordinates so it is not in A, then this implies that A is not closed.

Similarly for l2-space, we consider the same set A defined as above. It is obvious that A is a
subset of l2-space because any element x ∈ A satisfies that |x1|2 + · · ·+ |xn|2 + · · · converges due to
only finitely many nonzero xi. Since we have proved that A is a subspace in l∞-space, this implies
that A is a vector space, and this property is independent on the norm you take, so A is also a
subspace of l2-space because it has been proved to be a subset of l2-space. Then we only need to
prove A is not closed in l2-space.

Consider the same sequence x(k) and x∗
n defined above. Then it is easy to see that

∥x(k) − x∗∥2 =

(
∞∑
i=1

|x(k)
i − x∗

i |2
)1/2

=

(
∞∑

i=k+1

1

i2

)1/2

Since
∑∞

i=1 1/i
2 converges, the tail of the series must converge to zero, i.e., limk→∞∥x(k)−x∗∥∞ = 0.

This shows x∗ is a limit point of x(k) ∈ A, but x∗ has infinitely many nonzero coordinates so it is
not in A, then this implies that A is not closed.
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Extra Problem 1. Let C1[−1, 1] be the set of continuously differentiable functions on [−1, 1], i.e.,
C1[−1, 1] = {f ∈ C[−1, 1] | f ′ exists and is continuous on [−1, 1]}. Let

∥f∥1 =
ˆ 1

−1

(|f |2 + |f ′|2)1/2 dx

(i) Prove that ∥ ∥1 is a norm for C1[−1, 1].

Since for any f ∈ C1[−1, 1], |f |2 + |f ′|2 ≥ 0 is continuous in [−1, 1], so it must be integrable
on [−1, 1] and thus ∥f∥1 is well-defined and nonnegative.

For any continuous function g(x) which is nonnegative on [−1, 1], if
´ 1

−1
g(x) dx = 0, then

g(x) ≡ 0 for x ∈ [−1, 1]. Therefore, if ∥f∥ = 0, we have |f |2 + |f ′|2 = 0, which further implies
that f = f ′ = 0 for all x ∈ [−1, 1]. Conversely if f = 0 for all x ∈ [−1, 1], then the integral´ 1

−1
(|f |2 + |f ′|2)1/2 dx = 0. Thus, ∥f∥ = 0 ⇐⇒ f ≡ 0 where zero function is the zero vector in

C1[−1, 1].

For any scalar a, consider

∥af∥1 =
ˆ 1

−1

(|af |2 + |(af)′|2)1/2 dx =

ˆ 1

−1

(a2|f |2 + a2|f ′|2)1/2 dx

= |a|
ˆ 1

−1

(|f |2 + |f ′|2)1/2 dx = |a|∥f∥1

For any function f, h ∈ C1[−1, 1], for any fixed x, we have

(|f + h|2 + |f ′ + h′|2)1/2 ≤ (|f |2 + |f ′|2)1/2 + (|h|2 + |h′|2)1/2

This is because if we fix x, then f and g are constant, and consider Problem 2.2-8, let p = 2,
then we have ∥u∥2 = (|u1|2 + |u2|2)1/2 is a norm. Since it satisfies ∥u+ v∥2 ≤ ∥u∥2 + ∥v∥2, if
we treat u = (f, f ′) and v = (h, h′), then the above inequality will hold automatically. Since
for each x the inequality holds, and both sides of them are nonnegative, so

ˆ 1

−1

(|f + h|2 + |f ′ + h′|2)1/2 dx ≤
ˆ 1

−1

(|f |2 + |f ′|2)1/2 dx+

ˆ 1

−1

(|h|2 + |h′|2)1/2 dx

Thus, ∥f + g∥1 ≤ ∥f∥1 + ∥g∥1. Therefore, ∥ ∥1 is a norm for C1[−1, 1].

(ii) Prove that C1[−1, 1] under the norm ∥ ∥1 is not complete. Hint: Let fn(x) =
√
x2 + (1/n)2.

Then fn(x) → |x| in C1[−1, 1] under ∥ ∥1 as n → ∞.

Consider fn(x) =
√
x2 + (1/n)2, since f ′

n(x) =
x√

x2+(1/n)2
is a continuous function on [−1, 1],

fn(x) ∈ C1[−1, 1]. Consider

∥fn − |x|∥L∞ = sup
x∈[−1,1]

|fn(x)− |x|| = sup
x∈[−1,1]

(1/n)2√
x2 + (1/n)2 + |x|

=
(1/n)2

(1/n)
=

1

n
→ 0

as n → ∞. Thus, we also have ∥fn − |x|∥L1 → 0 as n → ∞ because L∞-norm is stronger than
L1-norm.

Now we suppose C1[−1, 1] under the norm ∥ ∥1 is complete, then any Cauchy sequence under
the norm ∥ ∥1 is convergent. For all ϵ > 0, consider all integers n ≥ m ≥ 1/(2ϵ), x ∈ [−1, 1],

|fn(x)− fm(x)| = |(1/n)2 − (1/m)2|√
x2 + (1/n)2 +

√
x2 + (1/m)2

≤ |(1/n)2 − (1/m)2|√
(1/n)2 +

√
(1/m)2

=

∣∣∣∣ 1n − 1

m

∣∣∣∣ ≤ ϵ
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Similarly, consider

|f ′
n(x)− f ′

m(x)| = 1√
1 + 1/(n2x2)

√
1 + 1/(m2x2)

· |1/m2 − 1/n2|√
x2 + (1/n)2 +

√
x2 + (1/m)2

< 1 ·
∣∣∣∣ 1n − 1

m

∣∣∣∣ ≤ ϵ

Therefore, under the norm ∥ ∥1,

∥fn(x)− fm(x)∥1 <
ˆ 1

−1

(|fn − fm|2 + |f ′
n − f ′

m|2)1/2 dx ≤
ˆ 1

−1

(ϵ2 + ϵ2)1/2 dx = 2
√
2ϵ

which shows fn is Cauchy sequence under the norm ∥ ∥1. Then assume it converges to g(x) ∈
C1[−1, 1], we have ∥fn(x)− g(x)∥1 → 0 as n → ∞. Notice that

∥fn(x)−g(x)∥L1 =

ˆ 1

−1

(|fn−fm|2)1/2 dx ≤
ˆ 1

−1

(|fn−fm|2+|f ′
n−f ′

m|2)1/2 dx = ∥fn(x)−g(x)∥1

Therefore, ∥fn(x)− g(x)∥L1 → 0 as n → ∞. Combined with ∥fn − |x|∥L1 → 0, we have

∥g(x)− |x|∥L1 ≤ ∥fn(x)− g(x)∥L1 + ∥fn(x)− |x|∥L1

Take limit on both sides as n → ∞, ∥g(x) − |x|∥L1 = 0. Since g(x) and |x| are continuous
function, and g(x) = |x| almost everywhere, so it implies that g(x) = |x|, which is a contra-
diction, since g(x) is continuously differentiable on [−1, 1], but |x| is even not differentiable at
x = 0. Thus, C1[−1, 1] under the norm ∥ ∥1 is not complete.

(iii) Prove that C1[−1, 1] under ∥f∥ = maxx∈[−1,1] |f(x)|+maxx∈[−1,1] |f ′(x)| is a Banach space.

Consider any Cauchy sequence fn ∈ C1[−1, 1] under ∥ ∥ defined above, for any ϵ > 0, there
exists M , for n ≥ m ≥ M , we have

∥fn − fm∥L∞ + ∥f ′
n − f ′

m∥L∞ = max
x∈[−1,1]

|fn − fm|+ max
x∈[−1,1]

|f ′
n − f ′

m| = ∥fn − fm∥ < ϵ

Therefore, fn and f ′
n are both Cauchy sequence under L∞-norm. Since we know C[−1, 1] under

L∞-norm is complete, so fn → f and f ′
n → g uniformly with f, g ∈ C[−1, 1]. Since f ′

n and g

are continuous, they are integrable, and for x ∈ [−1, 1],
ˆ x

−1

g(t) dt = lim
n→∞

ˆ x

−1

f ′
n(t) dt = lim

n→∞
fn(x)− f(−1) = f(x)− f(−1)

Take the derivative with respect to x on both sides, we can obtain g(x) = f ′(x).

Therefore, we have ∥fn − f∥L∞ → 0 and ∥f ′
n − f ′∥L∞ → 0 as n → ∞. Notice that f ′ = g ∈

C[−1, 1], so f ∈ C[ − 1, 1], and thus we can consider

∥fn − f∥ = ∥fn − f∥L∞ + ∥f ′
n − f ′∥L∞

Since the right hand sides tends to zero as n → ∞, we have ∥fn− f∥ → 0 as well, thus fn → f

under norm ∥f∥ = maxx∈[−1,1] |f(x)| + maxx∈[−1,1] |f ′(x)|. Therefore, normed space C1[−1, 1]

is Banach under such norm.
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Extra Problem 2. Given a function f ∈ Lp(a, b) (1 ≤ p ≤ ∞), suppose we want to approximate f

by a polynomial a0 + a1x+ · · ·+ anx
n of degree ≤ n, in Lp-norm. Then what should be the values

of a0, a1, · · · , an? In other words, let f0(x) = 1, f1(x) = x, · · · , fn(x) = xn. We want to find a0, a1,
· · · , an that minimize ∥f − (a0f0 + a1f1 + · · ·+ anfn)∥Lp(a,b). In general, let X be a normed space
over R, and let e1, · · · , en ∈ X be linearly independent. Given x ∈ X, find ā1, · · · , ān ∈ R such that

∥x− (ā1e1 + · · ·+ ānen)∥ = min
a1,··· ,an∈R

∥x− (a1e1 + · · ·+ anen)∥

It is not possible to find a formula for the minimizer (ā1, · · · , ān) for a general normed space X (it
would be easy, if X is a Hilbert space). But it is possible to prove the existence of (ā1, · · · , ān).
Define F (a1, · · · , an) = ∥x− (a1e1 + · · ·+ anen)∥, ∀ (a1, · · · , an) ∈ Rn.

(i) Prove that F is continuous on Rn;

For linearly independent ei in normed space X, there exists c1, c2 > 0 such that for all
(a1, . . . , an) ∈ Rn, c1(|a1| + · · · + |an|) ≤ ∥a1x1 + · · · + anxn∥ ≤ c2(|a1| + · · · + |an|). Thus,
any two norms of R and Rn are equivalent, then W.O.L.G., we only consider Taxicab norm
∥a∥1 = |a1|+ · · ·+ |an| for R and Rn. Fixed (a∗1, · · · , a∗n) ∈ Rn, for all (a1, · · · , an) ∈ Rn such
that ∥(a1, · · · , an)− (a∗1, · · · , a∗n)∥1 < δ, we have

∥F (a∗1, · · · , a∗n)− F (a1, · · · , an)∥1 =
∣∣∥x− (a∗1e1 + · · ·+ a∗nen)∥ − ∥x− (a1e1 + · · ·+ anen)∥

∣∣
≤ ∥(a1 − a∗1)e1 + · · ·+ (an − a∗n)en)∥

≤ C2(|a1 − a∗1|+ · · ·+ |an − a∗n|)

= C2∥(a1 − a∗1, · · · , an − a∗n)∥1 < C2δ

Thus, for arbitrary ϵ > 0, there exists δ = ϵ/C2, where C2 is a constant only depend on
e1, · · · , en, such that ∥F (a∗1, · · · , a∗n)− F (a1, · · · , an)∥1 < ϵ. This implies that F is continuous
on Rn.

(ii) Prove that F (a1, · · · , an) → ∞ as |(a1, · · · , an)| → ∞, where |(a1, · · · , an)| = |a1|+· · ·+|an|
is a norm of Rn.

Using the LHS of the fact, there exists C1 > 0 such that

F (a1, · · · , an) = ∥x−(a1e1+· · ·+anen)∥ ≥ ∥a1e1+· · ·+anen∥−∥x∥ ≥ C1(|a1|+· · ·+|an|)−∥x∥

Since ∥x∥ is fixed and |(a1, · · · , an)| → ∞, it is east to see that F (a1, · · · , an) → ∞.

(iii) Prove that F has a global minimum point (ā1, · · · , ān).

Since F is continuous on Rn, then F (0, · · · , 0) = ∥x∥ is a finite and fixed number. Thus, the
set

A = {(a1, · · · , an) ∈ Rn |F (a1, · · · , an) ≤ ∥x∥}

is nonempty. Also, A is bounded because if not, then there exists (a1, · · · , an) ∈ A and
|(a1, · · · , an)| → ∞ implies F (a1, · · · , an) → ∞, which contradicts to F (a1, · · · , an) ≤ ∥x∥.
Furthermore, A is closed because A is pre-image of a closed set under continuous function F .
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Therefore, in Rn, closed and bounded set A is compact. Continuous function F on compact
set A must have its global minimum. Since F on Rn \A has value larger than ∥x∥, which is the
upper bound of any value of F on A, the global minimum of F on A is the global minimum
of it over Rn.

Extra Problem 3. Let X be a vector space equipped with a metric d(x, y). Suppose d(x, y) satisfies

• Translation invariance: d(x+ z, y + z) = d(x, y), ∀x, y, z ∈ X.

• Degree 1 homogenity: d(αx, αy) = |α|d(x, y), ∀α ∈ F , where F = R or F = C is the field over
which X is a vector space.

Prove that X is a normed space.

Since X is a vector space, take zero vector 0 ∈ X, and we can define the norm ∥x∥ = d(x,0) for
any x ∈ X. Then we need to check the norm satisfies four defining properties. Firstly, ∥x∥ because
metric function d(x,0) ≥ 0. Secondly, ∥x∥ = 0 ⇐⇒ d(x,0) = 0 ⇐⇒ x = 0 by the definition of
metric function d. Thirdly, consider any scalar a, we have ∥ax∥ = d(ax,0) = |a|d(x,0) = |a|∥ax∥,
where the second equality is due to degree 1 homogenity of d. Finally, for any x, y ∈ X, we have

∥x+ y∥ = d(x+ y,0) = d(x,−y) ≤ d(x,0) + d(0,−y) = ∥x∥+ d(y,0) = ∥x∥+ ∥y∥

where the second and third equality is due to translation invariance, and the inequality here is due
to triangle inequality of metric function. Thus, X is a normed space.

Extra Problem 4. Consider Lp(a, b) when 0 < p < 1, p′ = p
p−1

< 0. Let’s agree that if g = 0 a.e.
on (a, b), then ∥g∥Lp′ = 0. With this agreement,

(i) Prove the reversed Hölder’s inequality

∥fg∥L1(a,b) ≥ ∥f∥Lp(a,b)∥g∥Lp′ (a,b), ∀f ∈ Lp(a, b), g ∈ Lp′
(a, b) (∗)

Hint: If g = 0 a.e. on (a, b), then it is trivial to prove (∗). Assume |g| > 0 a.e. on (a, b).
Let q = 1/p, q′ = q/(q − 1), and u = |fg|p and v = |g|−p. Then uv = |f |p. Apply Hölder’s
inequality to

´ b

a
uv dx using q and q′.

According to the hint, if g = 0 a.e. on (a, b), then it is trivial to prove the inequality because
both left and right sides are zero. Assume |g| > 0 on a subset of (a, b) with positive measure,
and let q = 1/p, q′ = q/(q − 1), and u = |fg|p and v = |g|−p. Since q > 1, from Hölder’s
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inequality, we have

∥uv∥L1(a,b) ≤ ∥u∥Lq(a,b)∥v∥Lq′ (a,b) ⇐⇒
ˆ b

a

uv dx ≤

(ˆ b

a

uq dx

) 1
q
(ˆ b

a

vq
′
dx

) 1
q′

⇐⇒
ˆ b

a

|f |p dx ≤

(ˆ b

a

|fg| dx

)p(ˆ b

a

|g|p
′
dx

)1−p

⇐⇒

(ˆ b

a

|f |p dx

) 1
p

≤

(ˆ b

a

|fg| dx

)(ˆ b

a

|g|p
′
dx

)− 1
p′

⇐⇒

(ˆ b

a

|f |p dx

) 1
p
(ˆ b

a

|g|p
′
dx

) 1
p′

≤
ˆ b

a

|fg| dx

where the last step is valid because |g| > 0 on a subset of (a, b) with positive measure, so the in-
tegral of |g|p′ is positive. Therefore, we obtain the reversed Hölder inequality ∥f∥Lp(a,b)∥g∥Lp′ (a,b) ≤
∥fg∥L1(a,b) for all f ∈ Lp(a, b) and g ∈ Lp′

(a, b).

(ii) Prove the reversed Minkowski inequality

∥f∥Lp + ∥g∥Lp ≤ ∥f + g∥Lp , ∀ f, g ∈ Lp(a, b), f ≥ 0, g ≥ 0

Notice that for f ≥ 0, g ≥ 0, we have |f + g| = |f |+ |g|, and then we have
ˆ b

a

|f + g|p =

ˆ b

a

|f ||f + g|p−1 +

ˆ b

a

|g||f + g|p−1

≥

(ˆ b

a

|f |p dx

) 1
p
(ˆ b

a

|f + g|p dx

) p−1
p

+

(ˆ b

a

|g|p dx

) 1
p
(ˆ b

a

|f + g|p dx

) p−1
p

= ∥f∥Lp∥f + g∥p−1
Lp + ∥g∥Lp∥f + g∥p−1

Lp

where the inequality follows from reversed Hölder inequality. If f + g > 0 on a subset with
positive measure, then ∥f + g∥p−1

Lp > 0 and by cancelling that factor, we obtain the reversed
Minkowski inequality. If f + g = 0 a.e., since f ≥ 0 and g ≥ 0, f = 0 a.e. and g = 0 a.e.. In
this case ∥f∥Lp = ∥g∥Lp = 0 and ∥f + g∥Lp = 0, so the both sides are equal. In conclusion,
the reversed Minkowski inequality holds for all f, g ∈ Lp(a, b), f ≥ 0, g ≥ 0.

(iii) Let I1, I2 be finite subintervals of (a, b) such that I1 ∩ I2 = ∅ and m(I1) = m(I2). Let
f = χI1 be the characteristic function of I1, and g = χI2 . Prove the reversed strict Minkowski
inequality.

∥f∥Lp + ∥g∥Lp < ∥f + g∥Lp

Since 0 < p < 1, 21/p > 2. Let m(I1) = m(I2) = l > 0 assuming I1, I2 are not empty.
Therefore, ∥f∥Lp =

(´
I1
1p dx

)1/p
= l1/p, and similarly, ∥g∥Lp = l1/p. Also, since I1 and I2 are

disjoint, ∥f + g∥Lp = (2l)1/p. Therefore, 2l1/p < 21/pl1/p = (2l)1/p, meaning that the reversed
strict Minkowski inequality holds.
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(iv) Prove ∀ f, g ∈ Lp(a, b),
ˆ b

a

|f − g|p dx ≤
ˆ b

a

|f |p dx+

ˆ b

a

|g|p dx

then use this to prove Lp(a, b) is metric space with metric d(f, g) =
´ b

a
|f − g|p dx. Hint:

∀ a, b ≥ 0, ap + bp ≥ (a+ b)p.

Since |f − g| ≤ |f |+ |g|, we have |f − g|p ≤ (|f |+ |g|)p ≤ |f |p + |g|p for 0 < p < 1. Therefore,
ˆ b

a

|f − g|p dx ≤
ˆ b

a

|f |p dx+

ˆ b

a

|g|p dx

holds automatically. Firstly, d(f, g) ≥ 0, and d(f, g) = 0 if and only if f = g almost everywhere.
Trivially, d(f, g) = d(g, f) because |f − g| = |g − f | for all x ∈ [a, b]. For triangle inequality,
consider h ∈ Lp(a, b),

d(f, g) =

ˆ b

a

|f − g|p dx ≤
ˆ b

a

|f − h|p dx+

ˆ b

a

|g − h|p dx = d(f, h) + d(g, h)

because f − g = (f − h)− (g − h). Therefore, Lp(a, b) with 0 < p < 1 under metric d defined
in the question is a metric space.
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