MAT4010: Functional Analysis

Homework 1

25 (116010114)
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Problem 2.1-14. Let Y be a subspace of a vector space X. The coset of an element x € X with
respect to Y is denoted by x + Y and is defined to be the set

zr+Y={vjv=oc+yyeY}
Show that under algebraic operations defined by
(w+Y)+(z+Y)=(w+2)+Y

alz+Y)=ar+Y

these cosets constitute the elements of a vector space. This space is called the quotient space (or
sometimes factor space) of X by Y (or modulo Y) and is denoted by X /Y. Its dimension is called
the codimension of Y and is denoted by codim Y, that is,

codim Y = dim (X/Y)

To prove all cosets consititute a vector space, we only need to check the standard definition.

Firstly, consider x1 +Y and x2 +Y which are two arbitrary cosets in X /Y and x1, 25 € X. We have

where the second equality is because X is a vector space and x1,zs € X. Also, consider arbitrary
T3 + Y € X/Y,

v+ (y+z)=(z,+Y)+ [(x2+Y)+(x3+Y)]

(

1 + (22 —|—x3)] +Y

=
[(5171 +x2) + Y]+ (23 +Y)
=[x +Y)+ (2 +Y)| + (z3+Y)

where the fourth equality is because x1, x5, r3 are vectors in vector space X. Then we need to find

the zero vector, which in this case is 0 + Y, where 0 € X is the zero vector of X. Then we have

(1 +Y)+0+Y)=(r1+0)+Y =2, +Y



where the second equality is because 0 is zero vector in X and z; € X. Similarly, we have
(1 +Y)+ (21 4+Y)=[r1+ (—21)]+Y =0+Y

where 1 + (—z1) = 0 is due to the fact that X is vector space, and x; € X, 0 is zero vector.

Now we verify the properties on scalar multiplication. Consider any a, b in the field over which
X is defined. We have

alb(z1 +Y)] =albry +Y) = [a(bxy)]+ Y = [(ab)x1] + Y = (ab)(z1 + V)

where the third equality is because 1 € X and X is a vector space. We also know 1x; = x; because

1 is the unit scalar and z; is in the vector space X. Thus, we have
(1 +Y)=(1a)+Y =2, +Y

Next, we consider the distributive laws

al(z1 +Y)+ (z2+Y)| =al(x1 + 22) + Y] = [a(z1 + 22)| + Y = (az1 +azs) + Y

=(ar1+Y)+ (axs+Y)=a(x;+Y)+a(zs +Y)

where the third equality is because of the distirbutive law of x1, x5 in vector space X. Finally, we

have

(a+b)(x1+Y) =[(a+b)x1]+Y = (ax; +bx1)+Y = (a1 +Y)+ (b1 +Y) = a(x1 +Y) +b(z1 +Y)

where the second equality is due to the distributive law of x1, x5 in vector space X.

Therefore, X /Y is a vector space because it satisfies all of the defining properties of a vector

space.

Problem 2.2-8. There are several norms of practical importance on the vector space of ordered

n-tuples of numbers, notably those defined by
[l =[] + |&a] + -+ + [&nl
2]l = (&P + [€2]” + - + [€a[) P

[2]loc = max{|&],- -, |€al}

In each case, verify that the four properties of norm are satisfied.

Firstly, for the L'-norm, since |§] > 0 and |§| = 0 < & =0 for all i = 1,...,n, we can
conclude that ||z||; > 0 and ||z]; =0 <= [&]| =0, Vi <= =0, Vi <= z = 0, where 0 is the
zero vector. Then consider any scalar a, we have |laz|; = |a&;| + - - + |a&,|, but since |a&;| = al&;],
it is easy to conclude that |jaz|y = al&| + -+ + al&| = a(|&] + -+ - + [€n]) = al|z]|:. For triangle
inequality, consider any vector y = (y;),

2 +ylli =& +y| + -+ &+ ynl
< (16l + lnl) + -+ + (€l + lynl)
= (‘£1|+"'+‘§n‘)+<yl+"'+yn>
= llzlls + llyllx



where the inequality is due to triangle inequality of absolute value (for number). Thus, ||z||; satisfies

all properties of a norm.

Then, for the LP-norm where 1 < p < oo, since |[§|P > 0 and [P =0 <= & =0 for all i =
1,...,n, we can conclude that ||z, > 0 and |z||, =0 <= |§|?P =0, Vi<=§, =0, Vi<= 2 =0,

where 0 is the zero vector. Then consider any scalar a, we have

laz|l, = (Ja&al? + - + |aga ")/
= (lal”l&l + - + lal?|€al?) P
= lal(|Ex]” + -+ + [€al”) VP = lall|]],

For triangle inequality, consider any vector y = (y;)™,

|z +yllp = Z &+ yill& + P!
i=1

< Z &ll& + vl + Z |yl l& + el P~
i=1 i=1

< (Zj; I&-IP)

= Jlel, (Z 6+ y|>

= (Il + llyll)llz + iy~

-

p—1

(Z(l&wilp‘l)*) +(Zlyn”) (Z<Ifi+ym—1>p”1>

i=1 i=1

p—1

S
El

p—1 p—1

+ Iyl (Z & + y)

p p

where the first inequality is due to triangle inequality of absolute value (for numbers), and the second
inequality is due to Holder’s inequality for LP-space equipped with counting measure. Therefore,
we can cancel out ||z +y|[?~" on both sides if z +y # 0, and then we obtain |z +yl, < [|z[, + [y,

If z+y =0, then ||z +y|, < ||z|l, + ||ly|l, will trivially hold. Thus, ||z||; satisfies all properties of a

norm.

Finally, for the L>-norm, since |§;| > 0, the maximum of all § must be nonnegative, i.e.,
|z]|s > 0. Also ||z]l« = 0 is equivalent to say the largest |§;| is zero, but since all |§;| > 0, so it is
equivalent to say all |;| = 0 and thus £ = 0. Therefore, ||z||oc = 0 <= = = 0. Then consider any

scalar a, we have
laz]loe = max{la&y,-- - |a&n|} = max{lal|&s], - - s |al[€nl} = [a] max{[&1], -, [€nl} = lall|2 ][
For triangle inequality, we need to first prove a claim that for a;,b; € R for alli =1,...,n,
max{a; + by, ,a, +b,} <max{ay,---,a,} +max{by, - ,b,}

This is because for all ¢ = 1,...,n, we have a; < max{ay,---,a,} and b; < max{by,---,b,}, then
a; +b; <max{ay, - ,a,}+max{by, - ,b,}. Since for all i = 1,... n, this is true, we can take the

maximum over all ¢, it will still hold, and our claim is proved. Then consider any vector y = (y; )",

Hx +y“<x> = maX{l& +y1|v' o a|§n +yn|} < maX{l&l + |y1‘?"' ?|£n| + |yn|}
< max{[&i], oo a4+ max{{yil, - [yl = (2]l + (Y]l



Therefore, |||/ satisfies all properties of a norm.

Problem 2.2-11. A subset A of a vector space X is said to be conver if z,y € A implies
M={zeX|z=az+(1-a)y, 0<a<1}CA

M is called a closed segment with boundary points x and y; any other z € M is called an interior
point of M. Show that the closed unit balls

B(0;1) = {z € X |[lz] <1}
in a normed space X is convex.
Take arbitrary point z,y € B(0;1), for all o € [0,1], consider
o + (1 = a)y| < flaz| + (1 = )yl = |edllz] + 1 = allly]]
Since o and 1 — « are both nonnegative, and x,y are both in the closed unit balls, we have

laz + (1 —a)yll <la| + 1 —af =1

Thus az + (1 — a)y € B(0;1). This shows that ,y € B(0; 1) implies M C B(0;1) for M defined in
the question, so B(0;

1) is a convex subset of X.

Problem 2.3-6. Show that the closure Y of a subspace Y of a normed space X is again a vector

subspace.

Consider any point z € Y, we can assign a sequence in Y that converges to it, i.e., z, =z
for all positive integer n. For any point z € Y \ 'Y, since Y is the closure of Y, these 2 must be a
limit point of Y. Therefore, there must exist a sequence x,, € Y such that x, — x asn — oco. In

conclusion, for any z € Y, we can find a sequence x,, € Y such that z,, — = as n — 0o.

Now we start to prove the subset is a subspace. First we prove the closedness of it under
addition. Take arbitary w,v € Y, then there exists sequences w,,v, € Y such that w, — w and
v, — v. Since Y is a subspace, so w,, + v, € Y. From w, — w and v,, — v, for arbitrary e, there
exists N1, Ny such that [|w,, —w| < €/2 for all n > N; and ||v,, —v|| < €/2 for all n > N,. Therefore,

[wn + o0 = (w + V)| < [lwn = w][ + [lon — v <€

Thus, w + v is a limit point of a sequence w,, + v,, which isin Y, i.e., w +v € Y.

Then we prove the closedness of it under scalar multiplication. Take arbitrary scalar a, for any
w € Y, similarly we can find convergent sequence w,, € Y such that w,, — w. Since Y is a subspace,

so aw, € Y. Then for arbitrary ¢, there exists N; such that ||w, —w|| < € for all n > N;. Therefore,
|aw, — aw|| = |a[[[w, —wl|| < |ale

Thus aw is a limit point of sequence aw,,, meaning that aw € Y.

Finally, we need to prove 0 € Y, where 0 is the zero vector of X. This is trivial because Y is a

subspace, so 0 € Y C Y. Therefore, the closure Y is also a subspace of X.



Problem 2.3-12. A seminorm on a vector space X is a mapping p : X — R satisfying all properties

of norm except the one ||z]| = 0 <= x = 0. (Some authors call this a pseudonorm.) Show that
p(0) =0

Ip(y) — p(z)| < ply — )

(Hence if p(z) = 0 implies = 0, then p is a norm.)

Since p is a seminorm, we have p(ax) = |a|p(z) for all scalar a. Thus we can fix any x and let
a = 0, then since X is a vector space and = € X, we have axz = 0 (zero vector of X) and since p(x)

is a real number, so 0 - p(z) = 0. Therefore, p(0) = 0.

From the definition of seminorm, we also have p(u + v) < p(u) + p(v) for all u,v € X. Let u =
x—y and v = y, then we have p(z) < p(x —y)+p(y), which is equivalent to —p(z —y) < p(y) —p(x).
Also notice that p(x —y) = p(y — x), so we have —p(y — x) < p(y) — p(z). Similarly, let u = = and
v =y — x, then we have p(y) < p(z) + p(y — z), i.e., p(y) — p(x) < p(y — x). In conclusion, we can
obtain |p(y) — p(z)| < p(y — ).

Problem 2.3-14. Let Y be a closed subspace of a normed space (X, ||-||). Show that a norm ||-||o
on X /Y is defined by

T
Illo = inf o]

where & € X /Y, that is, & is any coset of Y. Also prove that if X is complete, then so is X /Y.

Since # € X /Y, define & = u + Y, then for any =z € %, we can write © = u + y for some
y € Y. Since ||| is a norm in X, |lu+y|| > 0 for all y € Y, thus ||Z|o > 0, and further, we have
[Z]lo = infyey [lu + yl.

If # = 0x/y, then u = Ox, which means [|Z||¢ = infyey ||0 + y|| = infycy [Jy|| = 0 because 0 € Y.
Conversely, if inf ey ||u + y|| = 0, then there exists y,, € Y such that ||y, + u|| — 0, i.e., y, = —u.
Since Y is closed, —u € Y, so u € Y. However, if u € Y, then u +Y = 0x +Y = Ox/y. Thus, we
conclude that & = 0x )y <= |[|Z]|o = 0.

Consider any scalar a, then ||aZ || = inf ey [Jau+yl|. If a = 0, then ||aZ|lp = 0 and |a|inf ey ||u+
yll =0, so ||az|lo = |a]||Z|lo- If @ # 0, then

Sl inf ~inf —1al inf
lazllo = infllaw +yl| = inf |al|u +y/all = |a] inf Ju +y/all
Notice that {y/a|y € Y} =Y because Y is a vector space, so
Sl — gl inf 1ol inf _ N
llazllo = la| inf[lu+y/all = |a| inf llu+yll = lall|Z]o

Finally, also consider arbitrary 2 € X /Y where 2 = v+ Y, v € X. Since ||Z||o is the greatest
lower bound of ||u + y|| for y € Y, then for arbitrary small ¢ > 0, there exists y; € Y such that
lu+ yi|l < ||Z]]o + €. Similarly, there exists y» € Y such that ||v + ya|| < ||2]]o + €. Therefore,

lutv+y' | <llutv+y+ gl <lutyll+ v+l <2+ 120+ 2¢
where y* = y; + y2 € Y. Therefore, we have

12 + Zllo = influ+v +yll < [lut+ v+l <llllo + |20 +2e



Take € — 0, it yield ||Z + 2|0 < ||Z]o + ||Z|lo- Thus, ||-||o is a norm on X /Y.

Now we prove if X is complete, then X /Y is also complete. We first recall canonical projection
m(z): X = XY with n(z) =2 +Y =2 for all x € X. We can easily show that «(z) is bounded,
because ||7(z)|lo = infyey [|[x+y|| < ||z| with Ox € Y. Since 7 is bounded, it must be continuous, i.e.,
if we have a sequence z,, € X converges to € X, then the corresponding sequence 7(z,) € X/Y
converges to m(z) € X/Y.

Next we construct a Cauchy sequence in X from a Cauchy sequence in X /Y. Take any Cauchy
sequence in X /Y, denoted as 4, = u, + Y. Since it is Cauchy sequence in X /Y, we can find a

subsequence of it such that for all £ > 1,
N . . 1
”unk+1 — Upy, HO = ylg}f,Hunkﬂ — Up,, + y” < ?

This implies that 1/(2%) is not a lower bound of ||uy, ,, —tn, +y|| for y € Y. Therefore, for k = 1 there
exists y; such that [[u,, —u,, +91| < . Define z,,, = u,, —y1 € X, then &,,, = u,, —y1 +Y € X/Y.
Notice that in fact Z,, = u,,, so it belongs to the original sequence ,,. By the definition of quotient

norm and the fact that Y is a vector space, we have
||an2 - ﬂnl ||0 = ;2£,||un2 — Un, + yH = ;gé”unz —Yy-—- (unl - yl)”

Therefore, by the same argument, we can find y» such that |[un, — y2 — (un, — y1)|| < 3. Define
Tpy = Up, — Yo € X, then &, = u,, —y2+Y € X /Y. Again, &,, = 1,,, so it belongs to the original
sequence U,. Then let £k = 2 and obtain y3 and Z,, and so on. Finally, we can obtain a sequence

yr € Y and a subsequence %, of u, which satisfies

1
Hunk+1 — Yk+1 — (unk - yk)” < ﬁ
for K = 1,2,.... This implies that u,, — y is a Cauchy sequence in X, and since X is complete,

Up, — Y converges to x € X.

Notice that w(u,, —yx) = 7(Un, ) = Uy, , and from our previous argument, 7(u,, —yx) — 7(z) €
X /Y since u,, —yi — x. Therefore, 4, = m(u,,) — 7(z) € X /Y. This shows that for any Cauchy
sequence 4, € X/Y, it has a convergent subsequence in X /Y. Therefore, the whole sequence will

also converge with the same limit as its subsequence, and this shows that X /Y is complete.
Problem 2.3-15. If (Xy,|-]1) and (X3, ||-|l2) are normed spaces, show that the product vector
space X = X; X Xy becomes a normed space if we define
]| = max(f|z: |1, [|22]]2) [z = (21, 22)]
Since X is a vector space, we only need to prove the norm defined above satisfies the four defining

properties. Firstly, since ||z1]; > 0 and ||az2|l2 > 0, ||z]| = max(||x1||1,||z2]]2) > 0. Secondly, we

have
|z|| = 0 <= max(||x1]1, [|[z2]]2) =0 <= ||x1]1 = ||z2|p =0 <= 21 =22 =0<= 2 =0
Thirdly, for any scalar a, we have

laz]| = max([|az1 1, [|azsalls) = max(lalllz1]1; |al[|22]l2) = || max({|z1]l1, [[z2[l2) = |af[l]



Lastly, according to the claim we proved in Problem 2.2-8, max{a; + by, as + b} < max{a;,as} +
max{b; + by}, thus for any y = (y1,y2) € X, we have

[z +yll = max{llzy + y1lly, |22 + y2l2}
< max{||za[l + llyall, 222 + [ly2ll2}
< max{|[z1[|y, |#2[2} + max{{y: |1, ly2]l2} = [l + [yl

Therefore, X becomes a norm space under the norm defined in the question.

Problem 2.4-1. Give examples of subspaces of [° and [? which are not closed.

Consider set A to be the set of all vectors with only finitely many nonzero coordinates, i.e.,
there exists N such that for z = (21, ,2,, ) € A, x,, =0 for all n > N. Then A is certainly a
subset of [> because |z;| < ¢, for all i = 1,2,... where ¢, is a constant depending on x. Therefore,
we need to first prove A is a subspace and then not closed in [*°-space.

Firstly, the zero vector of [*°, (0,0,---,0,---) is definitely in A because it has finitely many
nonzero coordinates. Then consider any two x,y € A, since there exists N; such that x,, = 0 for all
n > Nj and Ny such that y,, = 0 for all n > N,. Take N = max{Ny, N2}, then for all z,,y, > N,

Tn =Y, =0, and =z, +y, = 0. This shows that x + y has only finitely many nonzero coordinates,

so z +y € A. Finally, consider any scalar a, ax = (axy, - ,ax,, ), since x, = 0 for all n > Ny,
ax, = 0 for all n > N7, which shows ax € A. Therefore, A is a subspace of [*°.

Consider a sequence z*) defined as (¥ = (xgk), xgk), e ,x;k), -+ ) where o) = % foralln < k
and 2 = 0 for all n > k. Then for each k, %) € A. Also define z* as z* = (a%, - - - ,xk, ) with
z;, = + for all n. Then it is easy to see that

. 1 1 1
2% — 2|00 :max{0,0,--- ’O’k—l-l’kr—f—?’“.} i

Therefore, limy, o, ||#*) —2*||o = 0, which shows z* is a limit point of z(*) € A, but z* has infinitely

many nonzero coordinates so it is not in A, then this implies that A is not closed.

Similarly for /2-space, we consider the same set A defined as above. It is obvious that A is a
subset of [?-space because any element x € A satisfies that |z,]?> + -+ |z,]|*> + -+ converges due to
only finitely many nonzero x;. Since we have proved that A is a subspace in [*°-space, this implies
that A is a vector space, and this property is independent on the norm you take, so A is also a
subspace of [?-space because it has been proved to be a subset of [2-space. Then we only need to
prove A is not closed in [2-space.

Consider the same sequence z(¥) and z* defined above. Then it is easy to see that
- 1/2 ~ 1/2
-l = (S i) = (X 5
=1 1=k+1

Since >°°°, 1/i? converges, the tail of the series must converge to zero, i.e., limy_, o [|2¥) —2*|| = 0.
This shows z* is a limit point of 2*) € A, but z* has infinitely many nonzero coordinates so it is

not in A, then this implies that A is not closed.



Extra Problem 1. Let C'[—1, 1] be the set of continuously differentiable functions on [—1,1], i.e
C'[-1,1] = {f € C[—1,1]]| f’ exists and is continuous on [—1,1]}. Let

1l = / (P + 17 de

(i) Prove that || ||; is a norm for C'[—1,1].

Since for any f € C[—1,1], |f|* + |f|* > 0 is continuous in [—1, 1], so it must be integrable

on [—1,1] and thus || f]|; is well-defined and nonnegative.

For any continuous function g(z) which is nonnegative on , if f ) dx = 0, then
g(z) =0 for x € [—1,1]. Therefore, if || f| = 0, we have |f|2 - |f’\2 =0, Wthh further implies
that f = f' =0 for all x € [-1,1]. Conversely if f = 0 for all z € [—1,1], then the integral
T AFP+1f/12)? de = 0. Thus, || f|| = 0 <= f = 0 where zero function is the zero vector in
Cl-1,1].

For any scalar a, consider
1 1
lafls = [ (afP+ lafy P do = [ (@\f+ @l )2 do
—1 —1

1

= Ia/ (1P +1f12)2 da = al | f]1a

-1
For any function f,h € C'[—1,1], for any fixed x, we have
(f +hP2+ [+ R P2 < (FP+ 1Y+ (R 022

This is because if we fix x, then f and g are constant, and consider Problem 2.2-8, let p = 2,
then we have |lulls = (|u1]? + |uz|?)*/? is a norm. Since it satisfies ||u + v||2 < [Julls + ||v]l2, if
we treat u = (f, f’) and v = (h, h’), then the above inequality will hold automatically. Since
for each x the inequality holds, and both sides of them are nonnegative, so

1
/ (If + R+ |f + 0'[HY? dz < /

1 -1

1 1

(F12 + 11272 da + / (B[ + |22 da

-1

Thus, ||f +glli <||f]li + |lgll:- Therefore, || ||; is a norm for C*[—1,1].

(ii) Prove that C'[—1, 1] under the norm || ||; is not complete. Hint: Let f,,(z) = /22 + (1/n)2.
Then f,(x) — |z| in C'[—1,1] under || ||; as n — oo.

Consider f,(z) = /22 + (1/n)?, since f)(z) = % is a continuous function on [—1, 1],

22+ (1/n)
fn(z) € C'[—1,1]. Consider
AP Gy 1

——0

1o =lellli~ = sup Vo) =lall = sup e e+ o~ ()~ m

as n — oo. Thus, we also have || f, — |z| HLl — 0 as n — oo because L°°-norm is stronger than

L'-norm.

Now we suppose C'[—1, 1] under the norm || ||; is complete, then any Cauchy sequence under

the norm || ||; is convergent. For all € > 0, consider all integers n > m > 1/(2¢), x € [—1,1],

T) — T (1/n)? = (1/m)?| (1/n)* = (1/m)?| = l—i €
@) = IO = e A + e AP+ mE =




Similarly, consider

() — £ (2)] = 1 |1/m271/n2|
(@) = fun(2)] \/1+1/(n2x2)\/1+1/(m2x2 \/962 (1/n)? +\/952 (1/m)?
<1- %_E <e€

Therefore, under the norm || ||,

an(x)_fm(x)nl </1(fn_fm|2+|f7ll_f;n|2)l/2 dl’g/l(€2+€2)l/2 dx:2\/§€

which shows f,, is Cauchy sequence under the norm || |[;. Then assume it converges to g(z) €
C'[—1,1], we have || f,,(x) — g(x)||; — 0 as n — oco. Notice that

1 1

a0 =9l = [ Ufam S o < [ (Ufam b1 Fu £ do = alo) - g0
—1 —1

Therefore, || f.(x) — g(z)||L: — 0 as n — oo. Combined with || f,, — |z|||L: — 0, we have

lg(x) = |zl < [fn@) = g(@) | + [1fn(2) — 2]

Take limit on both sides as n — oo, [|g(z) — |z|||z» = 0. Since g(z) and |z| are continuous
function, and g(x) = |z| almost everywhere, so it implies that g(x) = |z|, which is a contra-
diction, since g(x) is continuously differentiable on [—1, 1], but |z| is even not differentiable at

x = 0. Thus, C'[-1,1] under the norm || ||; is not complete.

(iii) Prove that C*[—1,1] under || f|| = max,e;—1,1) |f(x)] + max,e(—1,1) | f/(z)] is a Banach space.

Consider any Cauchy sequence f, € C*[—1,1] under || || defined above, for any € > 0, there

exists M, for n > m > M, we have

an_fm”Lx'i_Hfr/L_f?/n”Lm: max |fn fm|+ maX |f _f |_||fn me<€

ze[~1,1] —1,1]
Therefore, f,, and f; are both Cauchy sequence under L>-norm. Since we know C[—1, 1] under
L*>-norm is complete, so f, — f and f/ — ¢ uniformly with f,g € C[—1,1]. Since f/ and g
are continuous, they are integrable, and for = € [—1,1],

/xg@)dt lim fn() = lim fu(x) - F(-1) = f(x) — £(~1)

_1 n— o0 n— 00

Take the derivative with respect to = on both sides, we can obtain g(z) = f'(x).

Therefore, we have || f, — fllr~ — 0 and ||f/ — f'||L= — 0 as n — oo. Notice that f' =g €
C[-1,1], so f € ¢l —1,1], and thus we can consider

1o = FI = 11fn = Fllze + 1o = Flle

Since the right hand sides tends to zero as n — oo, we have || f,, — f|| — 0 as well, thus f,, — f
under norm || f|| = max,e;_1,1) | f(x)| + maxze;—1,1 |f'(2)|. Therefore, normed space C'[—1, 1]

is Banach under such norm.



Extra Problem 2. Given a function f € L?(a,b) (1 < p < 00), suppose we want to approximate f
by a polynomial ag + a1 + - - - + a,x™ of degree < n, in LP-norm. Then what should be the values
of ag,as, -+ ,a,? In other words, let fo(z) =1, fi(x) =z, -, fu(z) = 2". We want to find ao, a1,
-+, a, that minimize || f — (aofo + a1 fr + -+ anfn)|lLr(ap)- In general, let X be a normed space
over R, and let ey, -+ ,e, € X be linearly independent. Given x € X, find aq,--- ,a, € R such that

|z — (a1e1 + -+ - + aney)|| = . mineRHx — (arer + -+ ane,)||

1507 ,Qn

It is not possible to find a formula for the minimizer (aq,--- ,a,) for a general normed space X (it

would be easy, if X is a Hilbert space). But it is possible to prove the existence of (ay,- - ,ap).
Define F(ay,- -+ ,a,) = ||z — (a1e1 + -+ + anen)||, V(ar, - ,a,) € R™

(i) Prove that F is continuous on R";

For linearly independent e; in normed space X, there exists c¢;,co > 0 such that for all
(a1,...,a,) € R" c1(Jar| + -+ + |an]) < llarzr + -+ 4 anzn|| < eo(lar| + -+ + |an]). Thus,
any two norms of R and R™ are equivalent, then W.0O.L.G., we only consider Taxicab norm
lalli = |ai| + - -+ + |a,| for R and R". Fixed (a},--- ,a’) € R", for all (a1, - ,a,) € R" such

that [[(a1,---,an) — (af,- -+ ,ak)|l1 <9, we have

|F(af, - ,ap) — Flay, - ,an)ll = ||z — (afer + -+ anen) || — |z — (arer + - + anen) ||
<|(a1 —al)er + -+ (an — a;,)en)||
< Co(lay —aj| + - +a, — ay|)

= C2H(a1 _aTa"' 5 G, _CLZ)HI < 025

Thus, for arbitrary e > 0, there exists § = ¢/Cs, where C5 is a constant only depend on

e1, -+ , ey, such that |[F(a},---,af) — F(ay, -+ ,a,)||1 <e. This implies that F is continuous
on R™.
(ii) Prove that F(ay,--- ,a,) — ccas|(ai, - ,a,)| — 0o, where |(a1,- -+ ,a,)| = |a1|+- - +]an]

is a norm of R™.

Using the LHS of the fact, there exists C; > 0 such that

Flay, -+ san) = [z —(are14- - Fanen)|| = [lares+- - -Fanen|| = ||z]] = Cr(laa]+- -+ |an]) - [|2]
Since ||z|| is fixed and |(ay,- - ,a,)| — o0, it is east to see that F(ay, -+ ,a,) — 00.

(iii) Prove that F' has a global minimum point (ay, - ,ay).
Since F is continuous on R™, then F(0,---,0) = ||z| is a finite and fixed number. Thus, the
set

A={(ar,---an) ER[Flay,-- -, an) < ||z}

is nonempty. Also, A is bounded because if not, then there exists (aq,---,a,) € A and
(a1, - ,a,)| — oo implies F(ay, -+ ,a,) — oo, which contradicts to F'(ay, - ,a,) < |z].

Furthermore, A is closed because A is pre-image of a closed set under continuous function F'.
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Therefore, in R™, closed and bounded set A is compact. Continuous function F' on compact
set A must have its global minimum. Since F' on R™\ A has value larger than ||z||, which is the
upper bound of any value of F' on A, the global minimum of F' on A is the global minimum

of it over R™.

Extra Problem 3. Let X be a vector space equipped with a metric d(x,y). Suppose d(z, y) satisfies
o Translation invariance: d(x + z,y + z) = d(z,y), V,y,z € X.

o Degree 1 homogenity: d(ax,ay) = |ald(z,y), Va € F, where F =R or F = C is the field over

which X is a vector space.

Prove that X is a normed space.

Since X is a vector space, take zero vector 0 € X, and we can define the norm ||z|| = d(z, 0) for
any x € X. Then we need to check the norm satisfies four defining properties. Firstly, ||x| because
metric function d(z,0) > 0. Secondly, ||z|| = 0 <= d(x,0) = 0 <= x = 0 by the definition of
metric function d. Thirdly, consider any scalar a, we have ||az| = d(az,0) = |a|d(z,0) = |al||az]|,

where the second equality is due to degree 1 homogenity of d. Finally, for any z,y € X, we have
lz +yll = d(z +y,0) = d(z, —y) < d(z,0) +d(0, —y) = [[z]| + d(y,0) = [[=[| + [[y|
where the second and third equality is due to translation invariance, and the inequality here is due

to triangle inequality of metric function. Thus, X is a normed space.

Extra Problem 4. Consider L?(a,b) when 0 < p <1, p' = ﬁ < 0. Let’s agree that if g = 0 a.e.
on (a,b), then ||g||;»» = 0. With this agreement,

(i) Prove the reversed Holder’s inequality

1fgllerapy = 1 fller@nllglier @, VI € LP(a,b),g € L” (a,b) (%)

Hint: If ¢ = 0 a.e. on (a,b), then it is trivial to prove (). Assume |g| > 0 a.e. on (a,b).
Let ¢ =1/p, ¢ = q/(q—1), and u = |fg|P and v = |g|"?. Then wv = |f|P. Apply Hoélder’s

inequality to f; uv dx using ¢ and ¢'.

According to the hint, if g = 0 a.e. on (a,b), then it is trivial to prove the inequality because
both left and right sides are zero. Assume |g| > 0 on a subset of (a,b) with positive measure,

and let ¢ = 1/p, ¢ = q/(¢ — 1), and u = |fg|’ and v = |g|™?. Since ¢ > 1, from Holder’s
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inequality, we have

1

b b % b q’
Juvlzs oy < Nulzsian ol oy <= [ w0 do < ( [ dx) ( [ dx)
b b P b 1=p
o e (/”|fg|dx> </f|gw’dx)
b ? —
— (/ |fIP d;v)
b
— (/ |fIP dx)

b b P
< ( [ 119 dx> ( [ 1o dw)
where the last step is valid because |g| > 0 on a subset of (a, b) with positive measure, so the in-

Sl

=

b , i b
(/ gl? da:> < / fgl do

tegral of |g|" is positive. Therefore, we obtain the reversed Holder inequality || f|| s (a.s) 9l 2o (ap) <
19/l (a) for all f € LP(a,b) and g € L¥ (a,b).

(ii) Prove the reversed Minkowski inequality

Ifllee + llgllze < NF +gllee, Vg9 € LP(a,b), f>0,920

Notice that for f > 0,9 > 0, we have |f + g| = | f| + |g|, and then we have
b b b
[1sar = [C151s 49+ [ lglir g

z(/ Iflpdw) (/ |f+g|pdx> +</ |gpdx> (/ |f+g|”dx>
e F + gl + ligllon 1 + gl

where the inequality follows from reversed Hélder inequality. If f + ¢ > 0 on a subset with
positive measure, then ||f + ¢||%," > 0 and by cancelling that factor, we obtain the reversed
Minkowski inequality. If f +¢g =0 a.e., since f >0 and g >0, f =0 a.e. and g =0 a.e.. In
this case || f|lLr = |lg]lz» = 0 and ||f + g||z» = 0, so the both sides are equal. In conclusion,
the reversed Minkowski inequality holds for all f,g € L?(a,b), f > 0,9 > 0.

(iii) Let I, Iy be finite subintervals of (a,b) such that Iy NI, = @ and m(l;) = m(l3). Let
f = xu, be the characteristic function of 11, and g = xy,. Prove the reversed strict Minkowski
inequality.

[ fllze +llgllize < I1f + glle

Since 0 < p < 1, 27 > 2. Let m(I;) = m(ly) = [ > 0 assuming I, I, are not empty.
Therefore, |||z = (fjl 17 dx . I1Y/P and similarly, ||g|/z» = I*/P. Also, since I; and I, are
disjoint, ||f + gl|» = (20)'/P. Therefore, 21'/7 < 21/P[}/P = (2])}/P meaning that the reversed
strict Minkowski inequality holds.
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(iv) Prove ¥V f,g € LP(a,b),

b b b
/If—glpd:rg/ |f|”da;+/ gl? dz

then use this to prove LP(a,b) is metric space with metric d(f,g) = fab |f — g|” dx. Hint:
Va,b >0, a? +b" > (a+ b)P.

Since |f — g| < |f| + |g|, we have |f —g|” < (|f] + |g])? < |f|? + |g|? for 0 < p < 1. Therefore,

b b b
/If—gIPd:cS/ f|pdx+/ glP dz

holds automatically. Firstly, d(f,g) > 0, and d(f, g) = 0if and only if f = g almost everywhere.
Trivially, d(f,g) = d(g, f) because |f — g| = |g — f| for all € [a,b]. For triangle inequality,
consider h € LP(a,b),

b b b
d(f,g>=/ If—gl”dxg/ |f—h|”dx+/ g — WP dz = d(f, h) + d(g, h)

because f —g = (f —h) — (9 — h). Therefore, LP(a,b) with 0 < p < 1 under metric d defined

in the question is a metric space.
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