MAT4010：Functional Analysis
 Homework 10

李肖鹏（116010114）

Due date：Nov．19， 2019
Problem 7．2－5．Let $\left(e_{k}\right)$ be a total orthonormal sequence in a separable Hilbert space H and let $T: H \mapsto H$ be defined at e_{k} by $T e_{k}=e_{k+1}$ for all $k \geq 1$ ，and then linearly and continuously extended to H ．Find invariant subspaces．Show that T has no eigenvalues．

Invariance suspaces are $Y_{n}=\overline{\operatorname{span}\left\{e_{k}\right\}_{k \geq n}}$ ．For any $x \in Y_{n}, x=\sum_{k=n}^{\infty} a_{k} e_{k}$ ，and

$$
T(x)=T\left(\sum_{k=n}^{\infty} a_{k} e_{k}\right)=\sum_{k=n}^{\infty} a_{k} T\left(e_{k}\right)=\sum_{k=n}^{\infty} a_{k} e_{k+1} \in Y_{n}
$$

To show T has no eigenvalue，only need to show $\lambda I-T$ is injective，i．e．，$(\lambda I-T) x=0$ implies $x=0$ ．This is because

$$
(\lambda I-T) x=a_{1} \lambda e_{1}+\sum_{k=2}\left(a_{k} \lambda-a_{k-1}\right) e_{k}=0
$$

implies that $a_{1} \lambda=0$ and $a_{i+1} \lambda-a_{i}=0$ for all $i \geq 1$ ．If $\lambda=0$ ，then $a_{i}=0$ automatically for all $i \geq 1$ ．If $\lambda \neq 0$ ，then $a_{1}=0$ ，but $a_{2} \lambda=0$ implies $a_{2}=0$ ．Therefore，by this process，$a_{i}=0$ for all $i \geq 1$ ，this shows $\lambda I-T$ is injective，so T has no eigenvalue．

Problem 7．3－2．Find a linear operator $T: \mathcal{C}[0,1] \mapsto \mathcal{C}[0,1]$ whose spectrum is a given interval $[a, b]$ ．
Define T by $T(f(x))=[(b-a) x+a] f(x)$ ，then it is easy to see T is linear．T is bounded because（denote $\max (|a|,|b|)$ as c ）

$$
|T(f(x))| \leq|f(x)||(b-a) x+a| \leq c|f(x)| \leq c\|f\||x| \leq c\|f\|
$$

For simplicity，denote $\tilde{x}=(b-a) x+a$ ．Note that $\lambda I-T$ is always injective，since if $(\lambda I-T) f(x)=$ $(\lambda-\tilde{x}) f(x)=0$ implies that $f(x)=0$ for all $\tilde{x} \neq \lambda$ ，but $f(x)$ is continuous，so $f(x)=0$ for all $x \in[0,1]$ ．If $\lambda<a$ or $\lambda>b, \lambda I-T$ is surjective，because $\lambda-\tilde{x} \neq 0$ ．If $\lambda \in[a, b]$ ，then $g(x)=1$ for $x \in[0,1]$ is not in range of $\lambda I-T$ ，because $(\lambda-\tilde{x}) f(x)=0$ at $\tilde{x}=\lambda$ ．This shows that resolvent of T is $[a, b]^{c}$ and spectrum is $[a, b]$ ．

Problem 7．3－3．If Y is the eigenspace corresponding to an eigenvalue λ of an operator T ，what is the spectrum of $\left.T\right|_{Y}$ ？

Suppose Y corresponding to eigenvalue λ_{0} ，then for all $y \in Y$ ，we have $\left(\lambda_{0} I-T\right) y=\mathbf{0}$ ．This shows that $\left.T\right|_{Y}=\lambda_{0} I$ ．Therefore，consider $\lambda I-\lambda_{0} I$ ，it is $\left(\lambda-\lambda_{0}\right) I$ ．This operator is obviously
invertible if $\lambda \neq \lambda_{0}$, and obviously not surjective if $\lambda=\lambda_{0}$. This implies that the spectrum of $\lambda_{0} I$ is $\left\{\lambda_{0}\right\}$, i.e., the spectrum of $\left.T\right|_{Y}$ is $\left\{\lambda_{0}\right\}$.

Problem 7.3-4. Let $T: l^{2} \mapsto l^{2}$ be defined by $y=T x, x=\left(\xi_{j}\right), y=\left(\eta_{j}\right), \eta_{j}=\alpha_{j} \xi_{j}$, where $\left(\alpha_{j}\right)$ is dense in $[0,1]$. Find $\sigma_{p}(T)$ and $\sigma(T)$.

Consider $(\lambda I-T) x=\lambda x-T x=\left(\left(\lambda-\alpha_{1}\right) \xi_{1},\left(\lambda-\alpha_{2}\right) \xi_{2}, \cdots\right)$, if $\lambda \in[0,1]^{c}$, then $\left|\lambda-\alpha_{i}\right|$ is bounded away from zero, and $\lambda I-T$ is surjective, because for any $y \in l^{2}$, we can find $z=\left(\eta_{j} /\left(\lambda-\alpha_{j}\right)\right)$ such that $T z=y$. To see $z \in l^{2}$, consider

$$
\sum_{j=1}^{\infty} \frac{\left|\eta_{j}\right|^{2}}{\left|\lambda-\alpha_{j}\right|^{2}} \leq \frac{1}{c^{2}} \sum_{j=1}^{\infty}\left|\eta_{j}\right|^{2}<\infty
$$

because $y \in l^{2}$ and given any fixed $\lambda \in[0,1]^{c},\left|\lambda-\alpha_{j}\right|^{2} \geq c$ for all j. It is obvious that $\lambda I-T$ is injective because each $\lambda-\alpha_{j} \neq 0$, so to make $(\lambda I-T) x=0$, each ξ_{j} must be zero.

For all $\lambda \in[0,1]$, since α_{j} is dense in $[0,1]$, there always exists a subsequence $\alpha_{j_{k}}$ of α_{j} such that $\alpha_{j_{k}} \rightarrow \lambda$. For all n, we can select $\alpha_{j_{k}}$ such that $\left|\alpha_{j_{k}}-\lambda\right|<\frac{1}{2^{n}}$, denote such $\alpha_{j_{k}}$ as $\alpha_{j_{k_{n}}}=b_{n}$. Then consider y constructed by $\eta_{j}=1 / 2^{j}$ if $j=j_{k_{n}}$, and otherwise 0 , then it is obvious that $y \in l^{2}$. However, the preimage of y is $z=\left(\eta_{j}\right)$ satisfies $\sum_{j=1}\left|\eta_{j}\right|^{2} \geq \sum_{n=1}^{\infty} 1=\infty$, i.e., $z \notin l^{2}$. This shows that as long as $\lambda \in[0,1], T$ cannot be surjective. In conclusion, $\sigma_{p}(T)=[0,1]^{c}$, and $\sigma(T)=[0,1]$.

Problem 7.3-9. Let $T: l^{\infty} \mapsto l^{\infty}$ be defined by $x \mapsto\left(\xi_{2}, \xi_{3}, \ldots\right)$, where x is given by $x=\left(\xi_{1}, \xi_{2}, \ldots\right)$. If $|\lambda|>1$, show that $\lambda \in \rho(T)$. If $|\lambda| \leq 1$, show that λ is an eigenvalue and find the eigenspace Y.

Notice that $(\lambda I-T) x=\left(\lambda \xi_{1}-\xi_{2}, \lambda \xi_{2}-\xi_{3}, \cdots\right)$. If $|\lambda| \leq 1$, then $(\lambda I-T)$ is not injective, because for any element x in $\operatorname{span}\left\{\left(1, \lambda, \lambda^{2}, \cdots\right)\right\},(\lambda I-T) x=\mathbf{0}_{l \infty}$. Thus, if $|\lambda| \leq 1, \lambda$ is an eigenvalue. To find the eigenspace, consider $\lambda \xi_{i}=\xi_{i+1}$ for all $i \geq 1$, it is easy to see $\xi_{n}=\lambda^{n-1} \xi_{1}$ and since $\lambda \leq 1$, so $x \in l^{\infty}$. Therefore, if $\xi_{1} \neq 0$, we conclude that such x is an eigenvector. Thus the eigenspace Y of λ is one dimensional, and $Y=\operatorname{span}\left\{\left(1, \lambda, \lambda^{2}, \cdots\right)\right\}$.

However, if $|\lambda|>1$, if $\xi_{1} \neq 0$, then $\left|\xi_{n}\right| \rightarrow \infty$, which is impossible, so $\xi_{1}=0$ for all x satisfying $(\lambda I-T) x=\mathbf{0}_{l \infty}$. This implies that $\xi_{j}=0$ for all j, i.e., $x=\mathbf{0}_{l \infty}$, thus injectivity is verified. To see surjectivity, consider $y \in l^{\infty}$, to ensure $T x=y$, we need to find ξ_{1} such that $\xi_{n}=\lambda^{n-1} \xi_{1}-\sum_{j=1}^{n-1} y_{j} \lambda^{n-1-j}$ to be bounded for all n. Take $\xi_{1}=\lim _{k \rightarrow \infty} \frac{1}{\lambda^{k-1}} \sum_{j=1}^{k-1} y_{j} \lambda^{k-1-j}$, since $|\lambda|>1$, this limit exists because $\left|y_{j}\right| \leq M$ for all j, and the summand is geometric series, so the series converges and limit exists. It is not hard to see $\left|\epsilon_{n}\right| \leq \frac{M}{|\lambda|-1}<\infty$ where $M=\sup _{j}\left|y_{j}\right|$.

Extra Problem 1. Let X be a Banach space and M be a closed subspace of X. Let $N: X \mapsto X \backslash M$ be the natural mapping, i.e., $N x=x+M$. Prove that N is an open mapping.

Since X is Banach, and M is closed subspace of X, so M is Banach. By HW3, $X \backslash M$ is also Banach. Also, N is obviously linear. N is bounded because $\|x+M\|_{0}=\inf _{y}\|x+y\| \leq\|x\|$. Since N is obviously onto, so by open mapping theorem, N maps open sets to open sets.

Extra Problem 2. Let X and Y be Banach, and $T: X \mapsto Y$ be linear, bounded and onto. Prove
that if $y_{n} \rightarrow y_{0}$ in Y as $n \rightarrow \infty$, then there exists constant $c>0$ and $x_{n} \in X$ such that $T x_{n}=y_{n}$ and $x_{n} \rightarrow x_{0},\left\|x_{n}\right\| \leq c\left\|y_{n}\right\|, \forall n \geq 1$.

Consider $\bar{T}: X / \mathcal{N}(T) \mapsto Y$ defined by $\bar{T}(x+\mathcal{N}(T))=T x$. Then \bar{T} is obviously linear. It is bounded because for all $z \in \mathcal{N}(T)$,

$$
\bar{T}(x+\mathcal{N}(T))=T(x)=T(x+z) \leq\|T\|\|x+z\|_{X}
$$

Take infimum over z on both sides, we have

$$
\bar{T}(x+\mathcal{N}(T)) \leq\|T\| \inf _{z}\|x+z\|_{X}=\|T\|\|x+\mathcal{N}(T)\|_{X \backslash \mathcal{N}(T)}
$$

Also, \bar{T} is obviously surjective because T is onto. \bar{T} is injective by construction of quotient space. Thus, by bounded inverse mapping theorem, \bar{T}^{-1} exists and is linear and bounded. Since $y_{n} \rightarrow y_{0}$, there exists $\hat{x}_{n} \rightarrow \hat{x}_{0}$ where $\hat{x}_{n}=\bar{T}^{-1}\left(y_{n}\right) \in X \backslash \mathcal{N}(T)$ and $\hat{x}_{0}=\bar{T}^{-1}\left(y_{0}\right)$. If $y_{0}=\mathbf{0}_{Y}$, then $\hat{x}_{0}=\mathbf{0}_{X \backslash \mathcal{N}(T)}$. This implies,

$$
\left\|x_{n}\right\|_{X} \leq 2\left\|\hat{x}_{n}\right\|=2\left\|\bar{T}^{-1}\left(y_{n}\right)\right\| \leq 2\left\|\bar{T}^{-1}\right\|\left\|y_{n}\right\|_{Y}
$$

In this case $c=2\left\|\bar{T}^{-1}\right\|$. If $y_{0} \neq \mathbf{0}_{Y}$, then $\left\|y_{0}\right\|_{Y}>0$. We can choose x_{n} and x_{0} such that $\left\|x_{n}-x_{0}\right\|_{X} \leq 2\left\|\hat{x}_{n}-\hat{x}_{0}\right\|$. Suppose c does not exist, and there exists a subsequence $x_{n_{k}}$ of x_{n} such that $\left\|x_{n_{k}}\right\|_{X}>k\left\|y_{n_{k}}\right\|_{Y}$, i.e., $\frac{\left\|x_{n_{k}}\right\|_{X}}{k}>\left\|y_{n_{k}}\right\|_{Y}$. Since x_{n} is bounded, take $k \rightarrow \infty$, we obtain $0 \geq\left\|y_{0}\right\|_{Y}$. This is a contradiction to $\left\|y_{0}\right\|_{Y}>0$. Thus, $\left\|x_{n}\right\|_{X} \leq c\left\|y_{n}\right\|_{Y}$ for all but finitely many terms. For these finitely many terms, if $y_{n} \neq \mathbf{0}_{Y}$, we can choose large c so that $\left\|x_{n}\right\|_{X} \leq c\left\|y_{n}\right\|_{Y}$ holds; if $y_{n}=\mathbf{0}_{Y}$, then we choose $x_{n}=\mathbf{0}_{X}$.

Extra Problem 3. Let X and Y be normed spaces and $A: X \mapsto Y$ be linear, closed, and injective. Prove
(i) $A^{-1}: \mathcal{R}(A) \mapsto X$ is also closed, given $\mathcal{R}(A)$ is a normed space.

By definition, $G_{A}=\{(x, A x) \mid x \in X\}$, and $G_{A^{-1}}=\left\{\left(y, A^{-1} y\right) \mid y \in \mathcal{R}(A)\right\}$. Consider a convergent sequence in $G_{A^{-1}}$, i.e., $\left(y_{n}, A^{-1} y_{n}\right)$ where $y_{n} \rightarrow y$ and $A^{-1} y_{n} \rightarrow u$. There exists unique $x_{n} \in X$ such that $A x_{n}=y_{n} \rightarrow y$, and $x_{n} \rightarrow u$. Since G_{A} is closed, we have $(u, y) \in G_{A}$. This shows $y=A u$, i.e., $u=A^{-1} y$. Therefore, $G_{A^{-1}}$ is also closed.
(ii) If X is Banach, $\mathcal{R}(A)$ is dense in Y and $A^{-1}: \mathcal{R}(A) \mapsto X$ is continuous, then $\mathcal{R}(A)=Y$.

Since $\mathcal{R}(A)$ is dense in Y, for all $y \in Y$, there exists $y_{n} \in \mathcal{R}(A)$ such that $y_{n} \rightarrow y$. Since $y_{n} \in \mathcal{R}(A)$, we have $A x_{n}=y_{n}$, where $x_{n} \in X$. Since A^{-1} is continuous and linear, thus bounded (so Lipschitz continuous), $y_{n} \rightarrow y$ implies $A^{-1} y_{n}$ is Cauchy. From the fact that X is Banach, $A^{-1} y_{n} \rightarrow x_{0} \in X$. Then since A^{-1} is closed, $\left(x_{0}, y\right)$ must be on the graph of A^{-1}, hence $A^{-1}(y)=x_{0}$. Since y is arbitrarily chosen, $\mathcal{R}(A)=Y$.

Extra Problem 4. Let X and Y be Banach spaces, and $A: X \mapsto Y$ be linear and closed. Prove (i) $\mathcal{N}(A)$ is closed;

Take a convergent sequence $x_{n} \in \mathcal{N}(A)$ such that $x_{n} \in x \in X$, then $A x_{n}=0$. Since A is closed, $(x, 0)$ is also on the graph of A, i.e., $A x=0$, so $x \in \mathcal{N}(T)$. This shows $\mathcal{N}(A)$ is closed.
(ii) if A is also injective, then $\mathcal{R}(A)$ is closed in Y is equivalent to that there exists $c>0$ such that $\|x\|_{X} \leq c\|A x\|_{Y}$, for all $x \in X$.

For "only if" part, since A is closed, A^{-1} is closed. Since $\mathcal{R}(A)$ is closed, it is Banach. Since X is also Banach, A^{-1} is bounded by bounded inverse mapping theorem. Therefore, $\|x\|_{X}=\left\|A^{-1} y\right\| \leq c\|y\|=c\|A x\|_{Y}$, for all $x \in X$.

For "if" part, take convergent sequence $A x_{n} \rightarrow y$. Since we have $\|x\|_{X} \leq c\|A x\|_{Y}, A x_{n}$ is Cauchy implies that x_{n} is also Cauchy, but X is Banach, so $x_{n} \rightarrow x \in X$. Since A is closed, $y=A x$, which means $y \in \mathcal{R}(A)$, so $\mathcal{R}(A)$ is closed.
(iii) there exists constant $c>0$ such that $\operatorname{dist}(x, \mathcal{N}(A)) \leq c\|A x\|_{Y}$, for all $x \in X$ if and only if $\mathcal{R}(A)$ is closed in Y.

Consider $T: X \backslash \mathcal{N}(A) \mapsto Y$ defined by $T(\hat{x})=A x$. It is easy to see T is linear and bounded (similar statement have been proved before). Notice that $\operatorname{dist}(x, \mathcal{N}(A))=\|\hat{x}\|_{X \backslash \mathcal{N}(A)}$, and T is injective. Apply conclusion in (ii) on T, we will obtain the required result.

Extra Problem 5. Let X be a normed space and M be a closed subspace of X. Note that $X=M \oplus N$ is defined as $\forall x \in X$, there exists unique $m \in M$ and $n \in N$ such that $x=m+n$. Prove
(i) If $X=M \oplus N$, then $M \cap N=\{0\}$.

Suppose there exists $a \neq 0$ such that $a \in M$ and $a \in N$, then assume $x=m+n$, we also have $x=(m+a)+(n-a)$, where $m+a \in M$ and $m+a \neq m$. This shows m and n are not unique, which is a contradiction. Hence, $M \cap N=\{0\}$.
(ii) If $X=M+N$ and $M \cap N=\{0\}$, then $X=M \oplus N$.

For all $x \in X$, suppose $x=m_{1}+n_{1}=m_{2}+n_{2}$ where $m_{1} \neq m_{2}$ and $n_{1} \neq n_{2}$. This shows that $m_{1}-m_{2}=n_{1}-n_{2}$. Since $m_{1}-m_{2} \in M$ and $n_{1}-n_{2} \in N$, we obtain $m_{1}-m_{2} \in M \cap N$, but $m_{1}-m_{2} \neq 0$, which contradicts the condition $M \cap N=\{0\}$. Therefore, $X=M \oplus N$.
(iii) A mapping $P: X \mapsto M$ is called a projection of X onto M if P is linear and bounded, $P^{2}=P$, and $P(X)=M$. Prove that for such $P, P m=m$ for all $m \in M$.

Since $P(X)=M$, for all $m \in M$, there exists $x \in X$, such that $P x=m$. Then $P^{2} x=P m$, and since $P^{2}=P, P m=P x$, so this shows that $P m=m$.
(iv) Suppose P exists for certain M and X, prove that there exists closed linear subspace N of X such that $X=M \oplus N$.

Let $M=\mathcal{R}(P)$ and $N=\mathcal{R}(I-P)$ where I is identity map from X to X. For each $x \in X$, we have $x=I x=P x+(I-P) x=m+n$, where $m \in M$ and $n \in N$, so $X=M+N$. Suppose $u \in M \cap N$, there exists $x, y \in X$ such that $P x=u=(I-P) y$. Multiple P on both sides,

$$
P x=P^{2} x=P(I-P) y=P y-P^{2} y=P y-P y=0
$$

Therefore, $u=P x=0$, which shows $M \cap N=\{0\}$. By part (ii), we obtain $X=M \oplus N$.
(v) Suppose X is Banach and there exists closed subspace N of X such that $X=M \oplus N$. Define $P: X \mapsto M$ by $P(m+n)=m$ for all $m \in M$ and $n \in N$. Prove that P is a projection of X onto M. (Hint: prove P is closed)

It is easy to see P is linear, $P^{2}=P$, and $P(X)=M$. We only need to show P is bounded. Since M, N are both closed, X is also Banach, M is Banach. We only need to show P is closed. Suppose $x_{k} \in X$ and $x_{k} \rightarrow x$, i.e., $m_{k}+n_{k} \rightarrow m+n$, where $m_{k}, m \in M$ and $n_{k}, n \in N$, and $P x_{k} \rightarrow y \in M$. Then since $m_{k}=P\left(x_{k}\right), m_{k}$ converges, so n_{k} converges to $u \in N$. Thus, $y+u=m+n$, i.e., $y-m=n-u$. Since $y-m \in M$ and $n-u \in N, y-m=n-u=0$, which means $y=P x$. Therefore, P is closed, and by closed graph theorem, it is bounded.
(vi) Under assumption in (v), prove that $\max (\|m\|,\|n\|) \leq c\|m+n\|$ for all $m \in M$ and $n \in N$, where c is a constant.

Since P is bounded, we have $m=P(m+n) \leq\|P\|\|m+n\|$. Also, since $I-P$ is also bounded, $n=(I-P)(m+n) \leq\|I-P\|\|m+n\|$. Take $c=1+\|P\|$, then we will have $\max (\|m\|,\|n\|) \leq c\|m+n\|$ for all $m \in M$ and $n \in N$.
(vii) Let M be finite dimensional. Prove that there exists closed subspace N of X such that $X=M \oplus N$.

Consider the basis of M as $\left\{e_{i}\right\}_{i=1}^{n}$ and the dual basis $f_{i} \in X^{*}$ such that $f_{i}\left(e_{j}\right)=\delta_{i j}$. For $x \in M, x=\sum_{i=1}^{n} x_{i} e_{i}$. Define $f_{1}(x)=x_{1}$ on M, by Hahn-Banach, f_{1} can be extended to X, so are f_{i} 's. Therefore, we obtain $f_{i} \in X^{*}$ such that $f_{i}\left(e_{j}\right)=\delta_{i j}$. Define $p(x)=\sum_{i=1}^{n} f_{i}(x) e_{i}$ for all $x \in X$. Check $p(x)$ is linear and bounded, $p^{2}(x)=p(x)$, and $p(X)=M$. Therefore $p(x)$ is a projection, so there exists N such that $X=M \oplus N$ by part (iv).
(viii) Show that in general, for fixed M, in the decomposition $X=M \oplus N, N$ is not unique.

Take $X=\mathbb{R}^{2}$, and $M=\operatorname{span}\left(e_{1}\right)$. It is easy to see that N is not unique because $N_{1}=\operatorname{span}\left(e_{2}\right)$ is a possible choice, $N_{2}=\operatorname{span}\left(e_{1}+e_{2}\right)$ is another possible choice.

