
MAT4010: Functional Analysis
Homework 10

李肖鹏 (116010114)

Due date: Nov. 19, 2019

Problem 7.2-5. Let (ek) be a total orthonormal sequence in a separable Hilbert space H and let
T : H 7→ H be defined at ek by Tek = ek+1 for all k ≥ 1, and then linearly and continuously
extended to H. Find invariant subspaces. Show that T has no eigenvalues.

Invariance suspaces are Yn = span{ek}k≥n. For any x ∈ Yn, x =
∑∞

k=n akek, and

T (x) = T

(
∞∑

k=n

akek

)
=

∞∑
k=n

akT (ek) =
∞∑

k=n

akek+1 ∈ Yn

To show T has no eigenvalue, only need to show λI − T is injective, i.e., (λI − T )x = 0 implies
x = 0. This is because

(λI − T )x = a1λe1 +
∑
k=2

(akλ− ak−1)ek = 0

implies that a1λ = 0 and ai+1λ − ai = 0 for all i ≥ 1. If λ = 0, then ai = 0 automatically for all
i ≥ 1. If λ ̸= 0, then a1 = 0, but a2λ = 0 implies a2 = 0. Therefore, by this process, ai = 0 for all
i ≥ 1, this shows λI − T is injective, so T has no eigenvalue.

Problem 7.3-2. Find a linear operator T : C[0, 1] 7→ C[0, 1] whose spectrum is a given interval [a, b].

Define T by T (f(x)) = [(b − a)x + a]f(x), then it is easy to see T is linear. T is bounded
because (denote max(|a|, |b|) as c)

|T (f(x))| ≤ |f(x)||(b− a)x+ a| ≤ c|f(x)| ≤ c∥f∥|x| ≤ c∥f∥

For simplicity, denote x̃ = (b−a)x+a. Note that λI−T is always injective, since if (λI−T )f(x) =

(λ − x̃)f(x) = 0 implies that f(x) = 0 for all x̃ ̸= λ, but f(x) is continuous, so f(x) = 0 for all
x ∈ [0, 1]. If λ < a or λ > b, λI − T is surjective, because λ− x̃ ̸= 0. If λ ∈ [a, b], then g(x) = 1 for
x ∈ [0, 1] is not in range of λI − T , because (λ− x̃)f(x) = 0 at x̃ = λ. This shows that resolvent of
T is [a, b]c and spectrum is [a, b].

Problem 7.3-3. If Y is the eigenspace corresponding to an eigenvalue λ of an operator T , what is
the spectrum of T

∣∣∣
Y

?

Suppose Y corresponding to eigenvalue λ0, then for all y ∈ Y , we have (λ0I − T )y = 0. This
shows that T

∣∣∣
Y

= λ0I. Therefore, consider λI − λ0I, it is (λ − λ0)I. This operator is obviously
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invertible if λ ̸= λ0, and obviously not surjective if λ = λ0. This implies that the spectrum of λ0I

is {λ0}, i.e., the spectrum of T
∣∣∣
Y

is {λ0}.

Problem 7.3-4. Let T : l2 7→ l2 be defined by y = Tx, x = (ξj), y = (ηj), ηj = αjξj , where (αj) is
dense in [0, 1]. Find σp(T ) and σ(T ).

Consider (λI−T )x = λx−Tx = ((λ−α1)ξ1, (λ−α2)ξ2, · · · ), if λ ∈ [0, 1]c, then |λ−αi| is bounded
away from zero, and λI −T is surjective, because for any y ∈ l2, we can find z = (ηj/(λ−αj)) such
that Tz = y. To see z ∈ l2, consider

∞∑
j=1

|ηj |2

|λ− αj |2
≤ 1

c2

∞∑
j=1

|ηj |2 < ∞

because y ∈ l2 and given any fixed λ ∈ [0, 1]c, |λ − αj |2 ≥ c for all j. It is obvious that λI − T is
injective because each λ− αj ̸= 0, so to make (λI − T )x = 0, each ξj must be zero.

For all λ ∈ [0, 1], since αj is dense in [0, 1], there always exists a subsequence αjk of αj such
that αjk → λ. For all n, we can select αjk such that |αjk − λ| < 1

2n
, denote such αjk as αjkn

= bn.
Then consider y constructed by ηj = 1/2j if j = jkn

, and otherwise 0, then it is obvious that y ∈ l2.
However, the preimage of y is z = (ηj) satisfies

∑
j=1 |ηj |2 ≥

∑∞
n=1 1 = ∞, i.e., z /∈ l2. This shows

that as long as λ ∈ [0, 1], T cannot be surjective. In conclusion, σp(T ) = [0, 1]c, and σ(T ) = [0, 1].

Problem 7.3-9. Let T : l∞ 7→ l∞ be defined by x 7→ (ξ2, ξ3, . . .), where x is given by x = (ξ1, ξ2, . . .).
If |λ| > 1, show that λ ∈ ρ(T ). If |λ| ≤ 1, show that λ is an eigenvalue and find the eigenspace Y .

Notice that (λI − T )x = (λξ1 − ξ2, λξ2 − ξ3, · · · ). If |λ| ≤ 1, then (λI − T ) is not injective,
because for any element x in span{(1, λ, λ2, · · · )}, (λI − T )x = 0l∞ . Thus, if |λ| ≤ 1, λ is an
eigenvalue. To find the eigenspace, consider λξi = ξi+1 for all i ≥ 1, it is easy to see ξn = λn−1ξ1

and since λ ≤ 1, so x ∈ l∞. Therefore, if ξ1 ̸= 0, we conclude that such x is an eigenvector. Thus
the eigenspace Y of λ is one dimensional, and Y = span{(1, λ, λ2, · · · )}.

However, if |λ| > 1, if ξ1 ̸= 0, then |ξn| → ∞, which is impossible, so ξ1 = 0 for all x

satisfying (λI − T )x = 0l∞ . This implies that ξj = 0 for all j, i.e., x = 0l∞ , thus injectivity is
verified. To see surjectivity, consider y ∈ l∞, to ensure Tx = y, we need to find ξ1 such that
ξn = λn−1ξ1−

∑n−1
j=1 yjλ

n−1−j to be bounded for all n. Take ξ1 = limk→∞
1

λk−1

∑k−1
j=1 yjλ

k−1−j , since
|λ| > 1, this limit exists because |yj | ≤ M for all j, and the summand is geometric series, so the
series converges and limit exists. It is not hard to see |ϵn| ≤ M

|λ|−1
< ∞ where M = supj |yj |.

Extra Problem 1. Let X be a Banach space and M be a closed subspace of X. Let N : X 7→ X\M
be the natural mapping, i.e., Nx = x+M . Prove that N is an open mapping.

Since X is Banach, and M is closed subspace of X, so M is Banach. By HW3, X \M is also
Banach. Also, N is obviously linear. N is bounded because ∥x+M∥0 = infy∥x+ y∥ ≤ ∥x∥. Since
N is obviously onto, so by open mapping theorem, N maps open sets to open sets.

Extra Problem 2. Let X and Y be Banach, and T : X 7→ Y be linear, bounded and onto. Prove
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that if yn → y0 in Y as n → ∞, then there exists constant c > 0 and xn ∈ X such that Txn = yn

and xn → x0, ∥xn∥ ≤ c∥yn∥, ∀n ≥ 1.

Consider T̄ : X/N (T ) 7→ Y defined by T̄ (x +N (T )) = Tx. Then T̄ is obviously linear. It is
bounded because for all z ∈ N (T ),

T̄ (x+N (T )) = T (x) = T (x+ z) ≤ ∥T∥∥x+ z∥X

Take infimum over z on both sides, we have

T̄ (x+N (T )) ≤ ∥T∥ inf
z
∥x+ z∥X = ∥T∥∥x+N (T )∥X\N (T )

Also, T̄ is obviously surjective because T is onto. T̄ is injective by construction of quotient space.
Thus, by bounded inverse mapping theorem, T̄−1 exists and is linear and bounded. Since yn → y0,
there exists x̂n → x̂0 where x̂n = T̄−1(yn) ∈ X \ N (T ) and x̂0 = T̄−1(y0). If y0 = 0Y , then
x̂0 = 0X\N (T ). This implies,

∥xn∥X ≤ 2∥x̂n∥ = 2∥T̄−1(yn)∥ ≤ 2∥T̄−1∥∥yn∥Y

In this case c = 2∥T̄−1∥. If y0 ̸= 0Y , then ∥y0∥Y > 0. We can choose xn and x0 such that
∥xn − x0∥X ≤ 2∥x̂n − x̂0∥. Suppose c does not exist, and there exists a subsequence xnk

of xn

such that ∥xnk
∥X > k∥ynk

∥Y , i.e., ∥xnk
∥X

k
> ∥ynk

∥Y . Since xn is bounded, take k → ∞, we obtain
0 ≥ ∥y0∥Y . This is a contradiction to ∥y0∥Y > 0. Thus, ∥xn∥X ≤ c∥yn∥Y for all but finitely many
terms. For these finitely many terms, if yn ̸= 0Y , we can choose large c so that ∥xn∥X ≤ c∥yn∥Y
holds; if yn = 0Y , then we choose xn = 0X .

Extra Problem 3. Let X and Y be normed spaces and A : X 7→ Y be linear, closed, and injective.
Prove

(i) A−1 : R(A) 7→ X is also closed, given R(A) is a normed space.

By definition, GA = {(x,Ax) |x ∈ X}, and GA−1 = {(y,A−1y) | y ∈ R(A)}. Consider a
convergent sequence in GA−1 , i.e., (yn, A−1yn) where yn → y and A−1yn → u. There exists
unique xn ∈ X such that Axn = yn → y, and xn → u. Since GA is closed, we have (u, y) ∈ GA.
This shows y = Au, i.e., u = A−1y. Therefore, GA−1 is also closed.

(ii) If X is Banach, R(A) is dense in Y and A−1 : R(A) 7→ X is continuous, then R(A) = Y .

Since R(A) is dense in Y , for all y ∈ Y , there exists yn ∈ R(A) such that yn → y. Since
yn ∈ R(A), we have Axn = yn, where xn ∈ X. Since A−1 is continuous and linear, thus
bounded (so Lipschitz continuous), yn → y implies A−1yn is Cauchy. From the fact that X

is Banach, A−1yn → x0 ∈ X. Then since A−1 is closed, (x0, y) must be on the graph of A−1,
hence A−1(y) = x0. Since y is arbitrarily chosen, R(A) = Y .

Extra Problem 4. Let X and Y be Banach spaces, and A : X 7→ Y be linear and closed. Prove

(i) N (A) is closed;
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Take a convergent sequence xn ∈ N (A) such that xn ∈ x ∈ X, then Axn = 0. Since A is
closed, (x, 0) is also on the graph of A, i.e., Ax = 0, so x ∈ N (T ). This shows N (A) is closed.

(ii) if A is also injective, then R(A) is closed in Y is equivalent to that there exists c > 0 such
that ∥x∥X ≤ c∥Ax∥Y , for all x ∈ X.

For “only if” part, since A is closed, A−1 is closed. Since R(A) is closed, it is Banach.
Since X is also Banach, A−1 is bounded by bounded inverse mapping theorem. Therefore,
∥x∥X = ∥A−1y∥ ≤ c∥y∥ = c∥Ax∥Y , for all x ∈ X.

For “if” part, take convergent sequence Axn → y. Since we have ∥x∥X ≤ c∥Ax∥Y , Axn is
Cauchy implies that xn is also Cauchy, but X is Banach, so xn → x ∈ X. Since A is closed,
y = Ax, which means y ∈ R(A), so R(A) is closed.

(iii) there exists constant c > 0 such that dist(x,N (A)) ≤ c∥Ax∥Y , for all x ∈ X if and only if
R(A) is closed in Y .

Consider T : X \ N (A) 7→ Y defined by T (x̂) = Ax. It is easy to see T is linear and bounded
(similar statement have been proved before). Notice that dist(x,N (A)) = ∥x̂∥X\N (A), and T

is injective. Apply conclusion in (ii) on T , we will obtain the required result.

Extra Problem 5. Let X be a normed space and M be a closed subspace of X. Note that
X = M ⊕ N is defined as ∀x ∈ X, there exists unique m ∈ M and n ∈ N such that x = m + n.
Prove

(i) If X = M ⊕N , then M ∩N = {0}.

Suppose there exists a ̸= 0 such that a ∈ M and a ∈ N , then assume x = m+ n, we also have
x = (m+a)+ (n−a), where m+a ∈ M and m+a ̸= m. This shows m and n are not unique,
which is a contradiction. Hence, M ∩N = {0}.

(ii) If X = M +N and M ∩N = {0}, then X = M ⊕N .

For all x ∈ X, suppose x = m1 + n1 = m2 + n2 where m1 ̸= m2 and n1 ̸= n2. This shows that
m1 −m2 = n1 − n2. Since m1 −m2 ∈ M and n1 − n2 ∈ N , we obtain m1 −m2 ∈ M ∩N , but
m1 −m2 ̸= 0, which contradicts the condition M ∩N = {0}. Therefore, X = M ⊕N .

(iii) A mapping P : X 7→ M is called a projection of X onto M if P is linear and bounded,
P 2 = P , and P (X) = M . Prove that for such P , Pm = m for all m ∈ M .

Since P (X) = M , for all m ∈ M , there exists x ∈ X, such that Px = m. Then P 2x = Pm,
and since P 2 = P , Pm = Px, so this shows that Pm = m.

(iv) Suppose P exists for certain M and X, prove that there exists closed linear subspace N of
X such that X = M ⊕N .
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Let M = R(P ) and N = R(I −P ) where I is identity map from X to X. For each x ∈ X, we
have x = Ix = Px+ (I − P )x = m+ n, where m ∈ M and n ∈ N , so X = M +N . Suppose
u ∈ M ∩N , there exists x, y ∈ X such that Px = u = (I − P )y. Multiple P on both sides,

Px = P 2x = P (I − P )y = Py − P 2y = Py − Py = 0

Therefore, u = Px = 0, which shows M ∩N = {0}. By part (ii), we obtain X = M ⊕N .

(v) Suppose X is Banach and there exists closed subspace N of X such that X = M ⊕ N .
Define P : X 7→ M by P (m+ n) = m for all m ∈ M and n ∈ N . Prove that P is a projection
of X onto M . (Hint: prove P is closed)

It is easy to see P is linear, P 2 = P , and P (X) = M . We only need to show P is bounded.
Since M,N are both closed, X is also Banach, M is Banach. We only need to show P is
closed. Suppose xk ∈ X and xk → x, i.e., mk+nk → m+n, where mk,m ∈ M and nk, n ∈ N ,
and Pxk → y ∈ M . Then since mk = P (xk), mk converges, so nk converges to u ∈ N . Thus,
y + u = m + n, i.e., y −m = n − u. Since y −m ∈ M and n − u ∈ N , y −m = n − u = 0,
which means y = Px. Therefore, P is closed, and by closed graph theorem, it is bounded.

(vi) Under assumption in (v), prove that max(∥m∥, ∥n∥) ≤ c∥m+n∥ for all m ∈ M and n ∈ N ,
where c is a constant.

Since P is bounded, we have m = P (m + n) ≤ ∥P∥∥m + n∥. Also, since I − P is also
bounded, n = (I − P )(m + n) ≤ ∥I − P∥∥m + n∥. Take c = 1 + ∥P∥, then we will have
max(∥m∥, ∥n∥) ≤ c∥m+ n∥ for all m ∈ M and n ∈ N .

(vii) Let M be finite dimensional. Prove that there exists closed subspace N of X such that
X = M ⊕N .

Consider the basis of M as {ei}ni=1 and the dual basis fi ∈ X∗ such that fi(ej) = δij . For
x ∈ M , x =

∑n
i=1 xiei. Define f1(x) = x1 on M , by Hahn-Banach, f1 can be extended to X,

so are fi’s. Therefore, we obtain fi ∈ X∗ such that fi(ej) = δij . Define p(x) =
∑n

i=1 fi(x)ei

for all x ∈ X. Check p(x) is linear and bounded, p2(x) = p(x), and p(X) = M . Therefore
p(x) is a projection, so there exists N such that X = M ⊕N by part (iv).

(viii) Show that in general, for fixed M , in the decomposition X = M ⊕N , N is not unique.

Take X = R2, and M = span(e1). It is easy to see that N is not unique because N1 = span(e2)
is a possible choice, N2 = span(e1 + e2) is another possible choice.
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