MAT4010: Functional Analysis

Homework 10

ZEHE IS (116010114)
Due date: Nov. 19, 2019

Problem 7.2-5. Let (e;) be a total orthonormal sequence in a separable Hilbert space H and let
T : H — H be defined at ex by Te, = epyq for all £ > 1, and then linearly and continuously

extended to H. Find invariant subspaces. Show that 7" has no eigenvalues.

. - 3 oo
Invariance suspaces are Y,, = span{ey}p>n. For any z € Y,,, x = >~ axei, and

o) =1 (Yowe ] = 3wt = Yers €7,
k=n k=n k=n

To show T has no eigenvalue, only need to show AI — T is injective, i.e., (Al — T)x = 0 implies
x = 0. This is because
(M —T)x =ajle; + Z(ak)\ —ag_1)ex =0

k=2
implies that a1 A = 0 and a; . 1A —a; = 0 for all 4« > 1. If A = 0, then a; = 0 automatically for all
i>1. If A # 0, then a; = 0, but as A\ = 0 implies as = 0. Therefore, by this process, a; = 0 for all

1 > 1, this shows AI — T is injective, so T" has no eigenvalue.

Problem 7.3-2. Find a linear operator T : C[0, 1] — C[0, 1] whose spectrum is a given interval [a, b].

Define T by T(f(x)) = [(b — a)x + a]f(z), then it is easy to see T is linear. T is bounded

because (denote max(|al, |b]) as ¢)

IT(f @) < [f@ - a)z +al < f(2)] < el flllz] < cllf]

For simplicity, denote & = (b—a)x 4+ a. Note that AI — T is always injective, since if (A —T) f(z) =
(A — Z)f(x) = 0 implies that f(z) = 0 for all & # A, but f(z) is continuous, so f(x) = 0 for all
z € [0,1]. If A <aor X\>b, A\l —T is surjective, because A — & # 0. If X € [a,b], then g(z) =1 for
x € [0,1] is not in range of A\I — T, because (A — Z) f(z) = 0 at £ = A. This shows that resolvent of

T is [a,b]® and spectrum is [a, b].
Problem 7.3-3. If Y is the eigenspace corresponding to an eigenvalue A of an operator T', what is
the spectrum of T‘ ?

Y

Suppose Y corresponding to eigenvalue \g, then for all y € Y, we have (Aol — T)y = 0. This
shows that T‘ = MoI. Therefore, consider \I — \oI, it is (A — Ag)I. This operator is obviously
Y



invertible if A £ )\g, and obviously not surjective if A\ = A\g. This implies that the spectrum of Agl
is {A\o}, i.e., the spectrum of T'| is {Ag}.
Y

Problem 7.3-4. Let T : [? — [? be defined by y = Tz, x = (§;), y = (n;), n; = a;&;, where («;) is
dense in [0, 1]. Find 0,(T) and o(T).

Consider (A[—T)x = Ae—Tz = (A—aq)&1, (A—az)éa, - -+ ), if A € [0,1]¢, then |A—ay] is bounded
away from zero, and A\I — T is surjective, because for any y € [?, we can find z = (1;/(A — «;)) such

that Tz = y. To see z € [2, consider
o0 o0
n;[* 1 2
< = In;|° < o0

because y € [? and given any fixed A € [0,1]°, |\ — ;> > ¢ for all j. It is obvious that A\I — T is
injective because each A — a;; # 0, so to make (A —T')z = 0, each §; must be zero.

For all A € [0,1], since «; is dense in [0, 1], there always exists a subsequence ¢, of a; such

L

that o, — . For all n, we can select oy, such that |a;, — A < 55,

denote such «j, as aj, = by,.
Then consider y constructed by n; = 1/27 if j = j;,., and otherwise 0, then it is obvious that y € [2.
However, the preimage of y is z = (1) satisfies 3., [n;[* > 327", 1 = oo, i.e., z ¢ [*. This shows

that as long as A € [0, 1], T cannot be surjective. In conclusion, o,(T) = [0,1]¢, and o(T") = [0, 1].

Problem 7.3-9. Let T : [*° + [*° be defined by x — (§2,&3, . . .), where z is given by x = (&1, &, . . .).
If [A| > 1, show that A € p(T). If |A| < 1, show that A is an eigenvalue and find the eigenspace Y.

Notice that (M — Tz = (A — &2, A — &3,--+). If |A| < 1, then (A — T') is not injective,
because for any element z in span{(1,\,A\?---)}, (\[ — T)z = 0j~. Thus, if [A] < 1, X\ is an
eigenvalue. To find the eigenspace, consider \§; = & for all @ > 1, it is easy to see &, = A"71¢&;
and since A < 1, so x € [*°. Therefore, if & # 0, we conclude that such z is an eigenvector. Thus

the eigenspace Y of \ is one dimensional, and Y = span{(1,\,\?,---)}.

However, if |A| > 1, if & # 0, then |£,| — oo, which is impossible, so & = 0 for all =
satisfying (Al — T')z = 0;~. This implies that £ = 0 for all j, i.e., z = 0j, thus injectivity is
verified. To see surjectivity, consider y € [, to ensure Tx = y, we need to find & such that
En = AP — Z;:ll y; A" 177 to be bounded for all n. Take & = limy_, o0 577 Zf;ll y; AF=177 since

|A| > 1, this limit exists because |y;| < M for all j, and the summand is geometric series, so the

M
[Al-1

series converges and limit exists. It is not hard to see |€,| < < 0o where M = sup; |y;|.

Extra Problem 1. Let X be a Banach space and M be a closed subspace of X. Let N : X — X\ M
be the natural mapping, i.e., Nx =  + M. Prove that NV is an open mapping.

Since X is Banach, and M is closed subspace of X, so M is Banach. By HW3, X \ M is also
Banach. Also, N is obviously linear. N is bounded because ||z + M]||o = inf, ||z + y|| < ||z||. Since

N is obviously onto, so by open mapping theorem, N maps open sets to open sets.

Extra Problem 2. Let X and Y be Banach, and T': X — Y be linear, bounded and onto. Prove



that if 3, — yo in Y as n — oo, then there exists constant ¢ > 0 and x,, € X such that Tz, =y,
and x, — o, ||[T,] < cllynll, Y > 1.

Consider T : X /N(T) — Y defined by T(z + N(T)) = Tz. Then T is obviously linear. It is
bounded because for all z € N (T),

T(z+N(T)) =T(x) =T(z +2) < |Tll|l= + =[x
Take infimum over z on both sides, we have
T(x+N(T)) < |T]inflz + 2llx = T[]z + N(T)llx\wr)

Also, T is obviously surjective because T is onto. T is injective by construction of quotient space.
Thus, by bounded inverse mapping theorem, 7" exists and is linear and bounded. Since y,, — o,
there exists 2, — &, where &, = T7(y,) € X \N(T) and &y = T '(yo). If yo = Oy, then
2o = Ox\ar(1)- This implies,

lnllx < 202l = 20T ()| < 21T Hynlly

In this case ¢ = 2| T Y. If yo # Oy, then |lyolly > 0. We can choose z,, and z, such that
|z, — zollx < 2||&, — &o]|. Suppose ¢ does not exist, and there exists a subsequence x,, of x,
such that ||z, |x > kllyn, v, i-e., w > ||y, ||ly- Since x,, is bounded, take k — oo, we obtain
0 > ||lyo|ly. This is a contradiction to [|yo|ly > 0. Thus, ||z,|x < ¢||yn||y for all but finitely many
terms. For these finitely many terms, if y, # 0y, we can choose large ¢ so that ||z,|x < c||yn|ly

holds; if y,, = 0y, then we choose z,, = Ox.

Extra Problem 3. Let X and Y be normed spaces and A : X — Y be linear, closed, and injective.

Prove

(i) A71: R(A) — X is also closed, given R(A) is a normed space.

By definition, G4 = {(z,Az)|z € X}, and Ga-» = {(y, A 'y)|y € R(A)}. Consider a
convergent sequence in G4-1, i.e., (yn, A~ y,) where y,, — y and A=y, — u. There exists
unique x,, € X such that Az,, =y, — y, and z,, — u. Since G 4 is closed, we have (u,y) € G 4.

This shows y = Au, i.e., u = A~'y. Therefore, G4-1 is also closed.

(ii) If X is Banach, R(A) is dense in Y and A™' : R(A) — X is continuous, then R(A) =Y.

Since R(A) is dense in Y, for all y € Y, there exists y, € R(A) such that y, — y. Since
Yn € R(A), we have Az, = y,, where z,, € X. Since A™! is continuous and linear, thus
bounded (so Lipschitz continuous), y,, — y implies A~'y, is Cauchy. From the fact that X
is Banach, A~'y, — 1o € X. Then since A~! is closed, (zg,y) must be on the graph of A=,
hence A~!(y) = xo. Since y is arbitrarily chosen, R(A) =Y.

Extra Problem 4. Let X and Y be Banach spaces, and A : X — Y be linear and closed. Prove
(i) N(A) is closed;



Take a convergent sequence x, € N(A) such that =, € x € X, then Az,, = 0. Since A is
closed, (z,0) is also on the graph of A, i.e., Az =0, so z € N(T'). This shows N(A) is closed.

(ii) if A is also injective, then R(A) is closed in Y is equivalent to that there exists ¢ > 0 such
that ||z]|x < ¢||Az||y, for all z € X.

For “only if” part, since A is closed, A™! is closed. Since R(A) is closed, it is Banach.
Since X is also Banach, A~! is bounded by bounded inverse mapping theorem. Therefore,
lzllx = [[A7'yll < cllyl| = c]| Az[ly, for all z € X.

For “if” part, take convergent sequence Az, — y. Since we have ||z]|x < c¢|Ax|y, Ax, is
Cauchy implies that x, is also Cauchy, but X is Banach, so =, — = € X. Since A is closed,
y = Az, which means y € R(A), so R(A) is closed.

(iii) there exists constant ¢ > 0 such that dist(xz, N'(A)) < c||Az||y, for all z € X if and only if
R(A) is closed in Y.

Consider T': X \ N(A) — Y defined by T'() = Az. It is easy to see T is linear and bounded
(similar statement have been proved before). Notice that dist(x, N(A)) = ||Z| x\n(a), and T

is injective. Apply conclusion in (ii) on 7', we will obtain the required result.

Extra Problem 5. Let X be a normed space and M be a closed subspace of X. Note that
X = M & N is defined as Va € X, there exists unique m € M and n € N such that x = m + n.

Prove

(i) f X =M & N, then M NN = {0}.

Suppose there exists a # 0 such that a € M and a € N, then assume z = m + n, we also have
z = (m+a)+(n—a), where m+a € M and m+ a # m. This shows m and n are not unique,
which is a contradiction. Hence, M NN = {0}.

(ii) f X =M+ N and M NN = {0}, then X =M & N.

For all x € X, suppose © = my +n; = ms + ny where my # mo and ny # ny. This shows that
my — Mg = Ny — Ny. Since my; —mg € M and ny —ny € N, we obtain my —mo € M NN, but
my — me # 0, which contradicts the condition M NN = {0}. Therefore, X = M & N.

(iii) A mapping P : X +— M is called a projection of X onto M if P is linear and bounded,
P?2 =P, and P(X) = M. Prove that for such P, Pm = m for all m € M.

Since P(X) = M, for all m € M, there exists # € X, such that Pz = m. Then P?z = Pm,

and since P? = P, Pm = Pz, so this shows that Pm = m.

(iv) Suppose P exists for certain M and X, prove that there exists closed linear subspace N of
X such that X = M & N.



Let M = R(P) and N = R(I — P) where [ is identity map from X to X. For each z € X, we
have x = Iz = Px+ (I — P)x = m+n, where m € M and n € N, so X = M + N. Suppose
u € M N N, there exists z,y € X such that Px = u = (I — P)y. Multiple P on both sides,

Pr=P?2=P(I—-P)y=Py—P>*y=Py—Py=0
Therefore, u = Px = 0, which shows M NN = {0}. By part (ii), we obtain X = M @& N.

(v) Suppose X is Banach and there exists closed subspace N of X such that X = M & N.
Define P : X + M by P(m +n) =m for all m € M and n € N. Prove that P is a projection
of X onto M. (Hint: prove P is closed)

It is easy to see P is linear, P? = P, and P(X) = M. We only need to show P is bounded.
Since M, N are both closed, X is also Banach, M is Banach. We only need to show P is
closed. Suppose z;, € X and zp, — z, i.e., my +np — m+n, where my,m € M and ng,n € N,
and Pz, — y € M. Then since my = P(xy), my converges, so ny converges to v € N. Thus,
y+u=m+n,ie,y—m=mn—u. Sinccy—mée M andn—u € N,y—m=n—u = 0,

which means y = Px. Therefore, P is closed, and by closed graph theorem, it is bounded.

(vi) Under assumption in (v), prove that max(||m||,||n||) < c[|m+n|| for allm € M andn € N,

where c is a constant.

Since P is bounded, we have m = P(m + n) < ||PJ|[|m + n||. Also, since I — P is also
bounded, n = (I — P)(m +n) < |[I — P||||lm + n||. Take ¢ = 1+ ||P||, then we will have
max(||m||, |n]]) < ¢|lm + n]| for all m € M and n € N.

(vii) Let M be finite dimensional. Prove that there exists closed subspace N of X such that
X=Ma&N.

Consider the basis of M as {e;}?_, and the dual basis f; € X* such that f;(e;) = d;;. For
x €M,z =3 wxie;. Define fi(z) = z; on M, by Hahn-Banach, f; can be extended to X,
so are f;’s. Therefore, we obtain f; € X* such that fi(e;) = d;;. Define p(z) = >, fi(z)e;
for all x € X. Check p(z) is linear and bounded, p*(z) = p(x), and p(X) = M. Therefore
p(z) is a projection, so there exists N such that X = M @ N by part (iv).

(viii) Show that in general, for fixed M, in the decomposition X = M @ N, N is not unique.

Take X = R? and M = span(e;). It is easy to see that N is not unique because N; = span(ez)

is a possible choice, N5 = span(e; + e2) is another possible choice.



