MAT4010：Functional Analysis
 Homework 11

李肖鹏（116010114）

Due date：Nov．26， 2019
Problem 7．5－9．If T is a normal operator，i．e．，$T^{*} T=T T^{*}$ ，on a Hilbert space H ，show that $r_{\sigma}(T)=\|T\|$ ．

Recall HW5，Problem 3．10－15，we have shown that for normal operator $T,\left\|T^{2}\right\|=\|T\|^{2}$（This holds for H both real and complex）．Now，we need to show T^{2} is also a normal operator．This is true because

$$
T^{2}\left(T^{2}\right)^{*}=T^{2}\left(T^{*}\right)^{2}=T\left(T T^{*}\right) T^{*}=T T^{*} T T^{*}=T^{*} T T^{*} T=T^{*}\left(T^{*} T\right) T=\left(T^{*}\right)^{2} T^{2}=\left(T^{2}\right)^{*} T^{2}
$$

This in general shows that the square of a normal operator is still normal．By induction，this shows $\left\|T^{2^{k}}\right\|=\|T\|^{2^{k}}$ for all positive integer k ．Recall Gelfand＇s formula，

$$
r_{\sigma}(T)=\lim _{n \rightarrow \infty}\left\|T^{n}\right\|^{1 / n}=\lim _{k \rightarrow \infty}\left\|T^{2^{k}}\right\|^{1 / 2^{k}}=\lim _{k \rightarrow \infty}\|T\|=\|T\|
$$

Therefore，$r_{\sigma}(T)=\|T\|$ if T is normal．

Extra Problem 1．Let X be complex Banach space and $T: X \mapsto X$ is linear and bounded． Suppose $R>r(T)$ ，where $r(T)$ is the spectral radius of $T, \Gamma=\{z \in \mathbb{C}| | z \mid=R\}$ is oriented counter－clockwise．Prove that

$$
\frac{1}{2 \pi i} \oint_{\Gamma}(z I-T)^{-1} d z=I
$$

Hint：independence on R and Neumann series．
Since $(z I-T)^{-1}$ is analytic in $|z|>r(T)$ ，by Cauchy－Goursat theorem，the integral value of a holomorphic is independent of path connecting two same points．Therefore，we can only consider Γ such that $R>\|T\|$ ，and the integral value remains the same．In $R>\|T\|$ ，the Neumann series converges uniformly，i．e．，we can exchange the order of infinite sum and integral，so

$$
\frac{1}{2 \pi i} \oint_{\Gamma}(z I-T)^{-1} d z=\frac{1}{2 \pi i} \oint_{\Gamma} \sum_{k=0}^{\infty} z^{-(k+1)} T^{k} d z=\sum_{k=0}^{\infty} T^{k}\left(\frac{1}{2 \pi i} \oint_{\Gamma} z^{-(k+1)} d z\right)
$$

By Cauchy＇s integral formula，$\frac{1}{2 \pi i} \oint_{\Gamma} z^{-(k+1)} d z=0$ when $k \geq 1$ ，and $\frac{1}{2 \pi i} \oint_{\Gamma} z^{-(k+1)} d z=1$ when $k=0$ ．Therefore，we have

$$
\frac{1}{2 \pi i} \oint_{\Gamma}(z I-T)^{-1} d z=T^{0} \frac{1}{2 \pi i} \oint_{\Gamma} z^{-1} d z=I
$$

Extra Problem 2. Let X and T be given as in last problem. Prove that for all $z_{1}, z_{2} \in \rho(T)$, $R\left(z_{1}\right)-R\left(z_{2}\right)=\left(z_{2}-z_{1}\right) R\left(z_{1}\right) R\left(z_{2}\right)$, where $R(z)=(z I-T)^{-1}$.

Consider the identity

$$
z_{1} I-T=z_{2} I-T+\left(z_{1}-z_{2}\right) I
$$

Multiply $\left(z_{1} I-T\right)^{-1}$ to the left on both sides, we have

$$
I=\left(z_{1} I-T\right)^{-1}\left(z_{2} I-T\right)+\left(z_{1}-z_{2}\right)\left(z_{1} I-T\right)^{-1}
$$

Multiply $\left(z_{2}-T\right)^{-1}$ to the right on both sides, we have

$$
\left(z_{2}-T\right)^{-1}=\left(z_{1} I-T\right)^{-1}+\left(z_{1}-z_{2}\right)\left(z_{1} I-T\right)^{-1}\left(z_{2}-T\right)^{-1}
$$

which is equivalent to

$$
R\left(z_{2}\right)=R\left(z_{1}\right)+\left(z_{1}-z_{2}\right) R\left(z_{1}\right) R\left(z_{2}\right)
$$

Therefore, we verified that $R\left(z_{1}\right)-R\left(z_{2}\right)=\left(z_{2}-z_{1}\right) R\left(z_{1}\right) R\left(z_{2}\right)$.

Extra Problem 3. Let $X=L^{2}(0,1), T: f \in L^{2}(0,1) \mapsto \int_{0}^{x} f(t) d t$. Explore this example to show $\lim _{n \rightarrow \infty}\left\|T^{n}\right\|^{1 / n} \neq\|T\|$.
(i) Show T is linear and bounded as a mapping from X to X.

Since $f \in L^{2}(0,1), F(x)=\int_{0}^{x} f(t) d t$ is absolutely continuous, so it is continuous, thus in $L^{2}(0,1)$. This shows T is from X to X. T is linear because for all scalar a, b and $f, g \in L^{2}(0,1)$, we have

$$
T(a f+b g)=\int_{0}^{x}(a f+b g)(t) d t=a \int_{0}^{x} f(t) d t+b \int_{0}^{x} g(t) d t=a T(f)+b T(g)
$$

T is bounded because by Cauchy-Schwarz, for all $x \in[0,1]$,

$$
|T(f)(x)|=\left|\int_{0}^{x} f(t) d t\right| \leq\left(\int_{0}^{x}|f(t)|^{2} d t\right)^{1 / 2}\left(\int_{0}^{x} 1^{2} d t\right)^{1 / 2} \leq\|f\|_{L^{2}(0,1)}
$$

Therefore, we have

$$
\|T(f)\|_{L^{2}(0,1)}=\left(\int_{0}^{1}|T(f)(x)|^{2} d x\right)^{1 / 2} \leq\|f\|_{L^{2}(0,1)}
$$

Therefore, T is bounded with norm $\|T\| \leq 1$.
(ii) Show $\sigma(T)=\{0\}$. (Hint: The integral of function in $L^{2}(0,1)$ is absolutely continuous and differentiable almost everywhere)

Consider $(\lambda I-T) f=g$ for $g \in L^{2}(0,1)$, we have

$$
\lambda f(x)-\int_{0}^{x} f(t) d t=g(x)
$$

If $\lambda=0$, then $f(x)$ does not exists for $g(x)$ equal to Cantor function defined on $[0,1]$. This is because Cantor function is in $L^{2}(0,1)$ but not absolutely continuous. Thus $0 \in \sigma(T)$.

If $\lambda \neq 0$, let $F(x)=\int_{0}^{x} f(t) d t$, we have $F^{\prime}(x)-\frac{1}{\lambda} F(x)=\frac{1}{\lambda} g(x)$ almost everywhere and $F(0)=$ 0 . This is first order linear ODE, so by integrating factor, we have $F(x)=e^{x / \lambda} \int_{0}^{x} e^{-t / \lambda} \frac{1}{\lambda} g(t) d t$. Since $g(t) \in L^{2}(0,1)$ and $e^{-t / \lambda}$ is bounded, so the solution exists. Since this is a linear ODE, $F(x)$ is unique up to a zero measure set on $[0,1]$. Therefore, $\sigma(T)=\{0\}$.

Extra Problem 4. Let H be a Hilbert space and $T: H \mapsto H$ is linear and bounded. Let $J: H^{*} \mapsto H$ be the mapping determined by Riesz Representation Theorem, i.e., $\forall h^{*} \in H^{*}$, there exists unique $h \in H$ such that $\left\langle h^{*}, x\right\rangle_{H^{*}, H}=(x, h)_{H}$ for all $x \in H$, then $J h^{*}=h$. Denote the Hilbert adjoint as T^{\prime} and usual dual operator as $T^{*}: H^{*} \mapsto H^{*}$, then prove that $T^{*}=J^{-1} T^{\prime} J$.

For any fixed $f^{*} \in H^{*}$, for one thing, we have $\left\langle T^{*} f^{*}, h\right\rangle_{H^{*}, H}=\left\langle f^{*}, T h\right\rangle_{H^{*}, H}=(T h, x)_{H}$ where $x \in H$ is uniquely determined by $f^{*} \in H$, and $J f^{*}=x$. Therefore, we have $\left\langle T^{*} f^{*}, h\right\rangle_{H^{*}, H}=$ $\left(T h, J f^{*}\right)_{H}$ for all $h \in H$.

For another thing, $\left\langle J^{-1} T^{\prime} J f^{*}, h\right\rangle_{H^{*}, H}=\left\langle J^{-1} T^{\prime} x, h\right\rangle_{H^{*}, H}$. Since J is bijective mapping, so there exists a unique $g^{*} \in H^{*}$ such that $J g^{*}=T^{\prime} x$, so

$$
\left\langle J^{-1} T^{\prime} x, h\right\rangle_{H^{*}, H}=\left\langle g^{*}, h\right\rangle_{H^{*}, H}=\left(h, J g^{*}\right)_{H}=\left(h, T^{\prime} x\right)_{H}=(T h, x)_{H}=\left(T h, J f^{*}\right)_{H}
$$

Therefore, $\left\langle J^{-1} T^{\prime} J f^{*}, h\right\rangle_{H^{*}, H}=\left(T h, J f^{*}\right)_{H}$. Combined with previous result, we have shown that $\left\langle J^{-1} T^{\prime} J f^{*}, h\right\rangle_{H^{*}, H}=\left\langle T^{*} f^{*}, h\right\rangle_{H^{*}, H}$ for all $h \in H$, so $T^{*} f^{*}=J^{-1} T^{\prime} J f^{*}$. Since f^{*} is arbitrary in $H^{*}, T^{*}=J^{-1} T^{\prime} J$.

Extra Problem 5. Let X and Y be normed spaces, $T: X \mapsto Y$ is linear and bounded. Prove that $\mathcal{R}\left(T^{*}\right)=X^{*}$ if and only if there exists $c>0$ such that $\|T x\|_{Y} \geq c\|x\|_{X}$ for all $x \in X$.

For "only if" part, suppose not, there exists $x_{n} \in X$ such that $\left\|T x_{n}\right\|_{Y} \leq \frac{1}{n}\left\|x_{n}\right\|_{X}$. Let $y_{n}=\frac{x_{n}}{\left\|x_{n}\right\|}$, then $\left\|T y_{n}\right\|<\frac{1}{n} \rightarrow 0$, and $\left\|y_{n}\right\|=1$. Let $z_{n}=\frac{y_{n}}{\left\|T y_{n}\right\|^{1 / 2}}$ if $T y_{n} \neq \mathbf{0}_{Y}$, and $z_{n}=n y_{n}$ if $T y_{n}=\mathbf{0}_{Y}$. Then we can observe $\left\|z_{n}\right\|_{X} \rightarrow \infty$ while $\left\|T z_{n}\right\|_{Y} \rightarrow 0$. Since T^{*} is onto, so for any $x^{*} \in X$, there exists $y^{*} \in Y^{*}$ such that $T^{*} y^{*}=x^{*}$ and $\left\langle x^{*}, z_{n}\right\rangle_{X^{*}, X}=\left\langle T^{*} y^{*}, z_{n}\right\rangle_{X^{*}, X}=\left\langle y^{*}, T z_{n}\right\rangle_{Y^{*}, Y} \rightarrow 0$. This shows $z_{n} \xrightarrow{w} \mathbf{0}_{X}$, so z_{n} must be bounded, which contradicts to $\left\|z_{n}\right\|_{X} \rightarrow \infty$. Therefore, there exists $c>0$ such that $\|T x\|_{Y} \geq c\|x\|_{X}$ for all $x \in X$.

For "if" part, for all $x \in X$ such that $T x=\mathbf{0}_{Y}$, since $\|T x\|_{Y} \geq c\|x\|_{X}$, we have $\|x\|_{X}=0$, so $x=\mathbf{0}_{X}$, which means T is injective. For $x^{*} \in X^{*}$, we can define $f: \mathcal{R}(T): \mathbb{C}$ by $f(y)=f(T x)=$ $\left\langle x^{*}, x\right\rangle_{X^{*}, X}$ where x is uniquely defined for any $y \in \mathcal{R}(T)$ because T is injective. Now we need to prove f is bounded and linear. f is bounded because

$$
|f(T x)|=\left|\left\langle x^{*}, x\right\rangle_{X^{*}, X}\right| \leq\left\|x^{*}\right\|\|x\|_{X} \leq \frac{\left\|x^{*}\right\|}{c}\|T x\|_{Y}
$$

f is linear because for all scalar a, b and $y_{1}, y_{2} \in Y$,

$$
\begin{aligned}
f\left(a y_{1}+b y_{2}\right) & =f\left(a T x_{1}+b T x_{2}\right)=f\left(T\left(a x_{1}+b x_{2}\right)\right)=\left\langle x^{*}, a x_{1}+b x_{2}\right\rangle_{X^{*}, X} \\
& =a\left\langle x^{*}, x_{1}\right\rangle_{X^{*}, X}+b\left\langle x^{*}, x_{2}\right\rangle_{X^{*}, X}=a f\left(y_{1}\right)+b f\left(y_{2}\right)
\end{aligned}
$$

Then by Hahn-Banach, there exists $F \in Y^{*}$ such that $\left.F\right|_{\mathcal{R}(T)}=f$. For such F,

$$
\left\langle T^{*} F, x\right\rangle_{X^{*}, X}=\langle F, T x\rangle_{Y^{*}, Y}=\left\langle x^{*}, x\right\rangle_{X^{*}, X}, \quad \forall x \in X
$$

Therefore, $T^{*} F=x^{*}$, which shows T^{*} is surjective.

Extra Problem 6. Let X and Y be Banach space and $T: X \mapsto Y$ is linear and bounded. Then prove $T: X \mapsto Y$ is bijective if and only if $T^{*}: Y^{*} \mapsto X^{*}$ is bijective. In this case, also prove $\left(T^{-1}\right)^{*}=\left(T^{*}\right)^{-1}$.

For "only if" part, by bounded inverse mapping theorem, T^{-1} exists and is bounded, i.e., $\left\|T^{-1} y\right\|_{X} \leq\left\|T^{-1}\right\|\|y\|_{Y}$. This is equivalent to say $c\|x\|_{X} \leq\|T x\|_{Y}$. By Extra Problem $5, T^{*}$ is surjective. By Fact 5 in lecture, $\mathcal{N}\left(T^{*}\right)={ }^{\Perp} \mathcal{R}(T)$. Since T is surjective, $\mathcal{N}\left(T^{*}\right)={ }^{\Perp} Y=\left\{\mathbf{0}_{Y^{*}}\right\}$, so T^{*} is injective, hence it is bijective.

For "if" part, since by Fact 5 in lecture, $\mathcal{N}(T) \subset \mathcal{R}\left(T^{*}\right)^{\Perp}=\left(X^{*}\right)^{\Perp}=\left\{\mathbf{0}_{X}\right\}$, so T is injective. Since T^{*} is surjective, by Extra Problem 5, there exists $c>0$ such that $\|T x\| \geq c\|x\|$ for all $x \in X$. Then for any convergent sequence $T x_{n} \rightarrow y$, since $T x_{n}$ is Cauchy, x_{n} is also Cauchy. Since X is Banach, $x_{n} \rightarrow x \in X$, and by continuity of $T, T x_{n} \rightarrow T x=y$. This shows that $y \in \mathcal{R}(T)$, so $\mathcal{R}(T)$ is closed. Suppose T is not surjective, then by Hahn-Banach, there exists $f \in Y^{*}$ such that $f \neq \mathbf{0}_{Y^{*}},\left.f\right|_{\mathcal{R}(T)}=0$. This shows $\langle f, T x\rangle=0$, for all $x \in X$, i.e., $\left\langle T^{*} f, x\right\rangle=0$. Therefore, $T^{*} f=\mathbf{0}_{X^{*}}$, which means $f \in \mathcal{N}\left(T^{*}\right)$. However, T^{*} is injective, so $\mathcal{N}\left(T^{*}\right)=\left\{\mathbf{0}_{Y^{*}}\right\}$, but $f \neq \mathbf{0}_{Y^{*}}$, contradiction. Therefore, T is surjective, hence bijective.

Finally, for all $f \in X^{*},\left\langle f, T^{-1} y\right\rangle_{X^{*}, X}=\left\langle\left(T^{-1}\right)^{*} f, y\right\rangle_{Y^{*}, Y}$, let $y=T x$, then LHS is equal to $\langle f, x\rangle_{X^{*}, X}$, while RHS is given by

$$
\left\langle\left(T^{-1}\right)^{*} f, y\right\rangle_{Y^{*}, Y}=\left\langle\left(T^{-1}\right)^{*} f, T x\right\rangle_{Y^{*}, Y}=\left\langle T^{*}\left(T^{-1}\right)^{*} f, x\right\rangle_{X^{*}, X}
$$

Therefore, $T^{*}\left(T^{-1}\right)^{*} f=f$ for all $f \in X^{*}$, so $T^{*}\left(T^{-1}\right)^{*}=I_{Y^{*}}$. This shows $\left(T^{-1}\right)^{*}=\left(T^{*}\right)^{-1}$.

