
MAT4010: Functional Analysis
Homework 11

李肖鹏 (116010114)

Due date: Nov. 26, 2019

Problem 7.5-9. If T is a normal operator, i.e., T ∗T = TT ∗, on a Hilbert space H, show that
rσ(T ) = ∥T∥.

Recall HW5, Problem 3.10-15, we have shown that for normal operator T , ∥T 2∥ = ∥T∥2 (This
holds for H both real and complex). Now, we need to show T 2 is also a normal operator. This is
true because

T 2(T 2)∗ = T 2(T ∗)2 = T (TT ∗)T ∗ = TT ∗TT ∗ = T ∗TT ∗T = T ∗(T ∗T )T = (T ∗)2T 2 = (T 2)∗T 2

This in general shows that the square of a normal operator is still normal. By induction, this shows
∥T 2k∥ = ∥T∥2k for all positive integer k. Recall Gelfand’s formula,

rσ(T ) = lim
n→∞

∥Tn∥1/n = lim
k→∞

∥T 2k∥1/2
k

= lim
k→∞

∥T∥ = ∥T∥

Therefore, rσ(T ) = ∥T∥ if T is normal.

Extra Problem 1. Let X be complex Banach space and T : X 7→ X is linear and bounded.
Suppose R > r(T ), where r(T ) is the spectral radius of T , Γ = {z ∈ C | |z| = R} is oriented
counter-clockwise. Prove that

1

2πi

˛
Γ

(zI − T )−1 dz = I

Hint: independence on R and Neumann series.

Since (zI − T )−1 is analytic in |z| > r(T ), by Cauchy–Goursat theorem, the integral value of
a holomorphic is independent of path connecting two same points. Therefore, we can only consider
Γ such that R > ∥T∥, and the integral value remains the same. In R > ∥T∥, the Neumann series
converges uniformly, i.e., we can exchange the order of infinite sum and integral, so

1

2πi

˛
Γ

(zI − T )−1 dz =
1

2πi

˛
Γ

∞∑
k=0

z−(k+1)T k dz =
∞∑
k=0

T k

(
1

2πi

˛
Γ

z−(k+1) dz

)
By Cauchy’s integral formula, 1

2πi

¸
Γ
z−(k+1) dz = 0 when k ≥ 1, and 1

2πi

¸
Γ
z−(k+1) dz = 1 when

k = 0. Therefore, we have

1

2πi

˛
Γ

(zI − T )−1 dz = T 0 1

2πi

˛
Γ

z−1 dz = I
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Extra Problem 2. Let X and T be given as in last problem. Prove that for all z1, z2 ∈ ρ(T ),
R(z1)−R(z2) = (z2 − z1)R(z1)R(z2), where R(z) = (zI − T )−1.

Consider the identity
z1I − T = z2I − T + (z1 − z2)I

Multiply (z1I − T )−1 to the left on both sides, we have

I = (z1I − T )−1(z2I − T ) + (z1 − z2)(z1I − T )−1

Multiply (z2 − T )−1 to the right on both sides, we have

(z2 − T )−1 = (z1I − T )−1 + (z1 − z2)(z1I − T )−1(z2 − T )−1

which is equivalent to
R(z2) = R(z1) + (z1 − z2)R(z1)R(z2)

Therefore, we verified that R(z1)−R(z2) = (z2 − z1)R(z1)R(z2).

Extra Problem 3. Let X = L2(0, 1), T : f ∈ L2(0, 1) 7→
´ x

0
f(t) dt. Explore this example to show

limn→∞∥Tn∥1/n ̸= ∥T∥.

(i) Show T is linear and bounded as a mapping from X to X.

Since f ∈ L2(0, 1), F (x) =
´ x

0
f(t) dt is absolutely continuous, so it is continuous, thus in

L2(0, 1). This shows T is from X to X. T is linear because for all scalar a, b and f, g ∈ L2(0, 1),
we have

T (af + bg) =

ˆ x

0

(af + bg)(t) dt = a

ˆ x

0

f(t) dt+ b

ˆ x

0

g(t) dt = aT (f) + bT (g)

T is bounded because by Cauchy-Schwarz, for all x ∈ [0, 1],

|T (f)(x)| =
∣∣∣∣ˆ x

0

f(t) dt

∣∣∣∣ ≤ (ˆ x

0

|f(t)|2 dt
)1/2 (ˆ x

0

12 dt

)1/2

≤ ∥f∥L2(0,1)

Therefore, we have

∥T (f)∥L2(0,1) =

(ˆ 1

0

|T (f)(x)|2 dx
)1/2

≤ ∥f∥L2(0,1)

Therefore, T is bounded with norm ∥T∥ ≤ 1.

(ii) Show σ(T ) = {0}. (Hint: The integral of function in L2(0, 1) is absolutely continuous and
differentiable almost everywhere)

Consider (λI − T )f = g for g ∈ L2(0, 1), we have

λf(x)−
ˆ x

0

f(t) dt = g(x)

If λ = 0, then f(x) does not exists for g(x) equal to Cantor function defined on [0, 1]. This is
because Cantor function is in L2(0, 1) but not absolutely continuous. Thus 0 ∈ σ(T ).
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If λ ̸= 0, let F (x) =
´ x

0
f(t) dt, we have F ′(x)− 1

λ
F (x) = 1

λ
g(x) almost everywhere and F (0) =

0. This is first order linear ODE, so by integrating factor, we have F (x) = ex/λ
´ x

0
e−t/λ 1

λ
g(t) dt.

Since g(t) ∈ L2(0, 1) and e−t/λ is bounded, so the solution exists. Since this is a linear ODE,
F (x) is unique up to a zero measure set on [0, 1]. Therefore, σ(T ) = {0}.

Extra Problem 4. Let H be a Hilbert space and T : H 7→ H is linear and bounded. Let
J : H∗ 7→ H be the mapping determined by Riesz Representation Theorem, i.e., ∀h∗ ∈ H∗, there
exists unique h ∈ H such that ⟨h∗, x⟩H∗,H = (x, h)H for all x ∈ H, then Jh∗ = h. Denote the
Hilbert adjoint as T ′ and usual dual operator as T ∗ : H∗ 7→ H∗, then prove that T ∗ = J−1T ′J .

For any fixed f∗ ∈ H∗, for one thing, we have ⟨T ∗f∗, h⟩H∗,H = ⟨f∗, Th⟩H∗,H = (Th, x)H where
x ∈ H is uniquely determined by f∗ ∈ H, and Jf∗ = x. Therefore, we have ⟨T ∗f∗, h⟩H∗,H =

(Th, Jf∗)H for all h ∈ H.

For another thing, ⟨J−1T ′Jf∗, h⟩H∗,H = ⟨J−1T ′x, h⟩H∗,H . Since J is bijective mapping, so
there exists a unique g∗ ∈ H∗ such that Jg∗ = T ′x, so

⟨J−1T ′x, h⟩H∗,H = ⟨g∗, h⟩H∗,H = (h, Jg∗)H = (h, T ′x)H = (Th, x)H = (Th, Jf∗)H

Therefore, ⟨J−1T ′Jf∗, h⟩H∗,H = (Th, Jf∗)H . Combined with previous result, we have shown that
⟨J−1T ′Jf∗, h⟩H∗,H = ⟨T ∗f∗, h⟩H∗,H for all h ∈ H, so T ∗f∗ = J−1T ′Jf∗. Since f∗ is arbitrary in
H∗, T ∗ = J−1T ′J .

Extra Problem 5. Let X and Y be normed spaces, T : X 7→ Y is linear and bounded. Prove that
R(T ∗) = X∗ if and only if there exists c > 0 such that ∥Tx∥Y ≥ c∥x∥X for all x ∈ X.

For “only if” part, suppose not, there exists xn ∈ X such that ∥Txn∥Y ≤ 1
n
∥xn∥X . Let

yn = xn

∥xn∥ , then ∥Tyn∥ < 1
n
→ 0, and ∥yn∥ = 1. Let zn = yn

∥Tyn∥1/2 if Tyn ̸= 0Y , and zn = nyn if
Tyn = 0Y . Then we can observe ∥zn∥X → ∞ while ∥Tzn∥Y → 0. Since T ∗ is onto, so for any x∗ ∈ X,
there exists y∗ ∈ Y ∗ such that T ∗y∗ = x∗ and ⟨x∗, zn⟩X∗,X = ⟨T ∗y∗, zn⟩X∗,X = ⟨y∗, T zn⟩Y ∗,Y → 0.
This shows zn

w−→ 0X , so zn must be bounded, which contradicts to ∥zn∥X → ∞. Therefore, there
exists c > 0 such that ∥Tx∥Y ≥ c∥x∥X for all x ∈ X.

For “if” part, for all x ∈ X such that Tx = 0Y , since ∥Tx∥Y ≥ c∥x∥X , we have ∥x∥X = 0, so
x = 0X , which means T is injective. For x∗ ∈ X∗, we can define f : R(T ) : C by f(y) = f(Tx) =

⟨x∗, x⟩X∗,X where x is uniquely defined for any y ∈ R(T ) because T is injective. Now we need to
prove f is bounded and linear. f is bounded because

|f(Tx)| = |⟨x∗, x⟩X∗,X | ≤ ∥x∗∥∥x∥X ≤ ∥x∗∥
c

∥Tx∥Y

f is linear because for all scalar a, b and y1, y2 ∈ Y ,

f(ay1 + by2) = f(aTx1 + bTx2) = f(T (ax1 + bx2)) = ⟨x∗, ax1 + bx2⟩X∗,X

= a⟨x∗, x1⟩X∗,X + b⟨x∗, x2⟩X∗,X = af(y1) + bf(y2)

Then by Hahn-Banach, there exists F ∈ Y ∗ such that F
∣∣∣
R(T )

= f . For such F ,

⟨T ∗F, x⟩X∗,X = ⟨F, Tx⟩Y ∗,Y = ⟨x∗, x⟩X∗,X , ∀x ∈ X
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Therefore, T ∗F = x∗, which shows T ∗ is surjective.

Extra Problem 6. Let X and Y be Banach space and T : X 7→ Y is linear and bounded. Then
prove T : X 7→ Y is bijective if and only if T ∗ : Y ∗ 7→ X∗ is bijective. In this case, also prove
(T−1)∗ = (T ∗)−1.

For “only if” part, by bounded inverse mapping theorem, T−1 exists and is bounded, i.e.,
∥T−1y∥X ≤ ∥T−1∥∥y∥Y . This is equivalent to say c∥x∥X ≤ ∥Tx∥Y . By Extra Problem 5, T ∗ is
surjective. By Fact 5 in lecture, N (T ∗) = ⊥⊥R(T ). Since T is surjective, N (T ∗) = ⊥⊥Y = {0Y ∗}, so
T ∗ is injective, hence it is bijective.

For “if” part, since by Fact 5 in lecture, N (T ) ⊂ R(T ∗)⊥⊥ = (X∗)⊥⊥ = {0X}, so T is injective.
Since T ∗ is surjective, by Extra Problem 5, there exists c > 0 such that ∥Tx∥ ≥ c∥x∥ for all x ∈ X.
Then for any convergent sequence Txn → y, since Txn is Cauchy, xn is also Cauchy. Since X

is Banach, xn → x ∈ X, and by continuity of T , Txn → Tx = y. This shows that y ∈ R(T ),
so R(T ) is closed. Suppose T is not surjective, then by Hahn-Banach, there exists f ∈ Y ∗ such
that f ̸= 0Y ∗ , f

∣∣∣
R(T )

= 0. This shows ⟨f, Tx⟩ = 0, for all x ∈ X, i.e., ⟨T ∗f, x⟩ = 0. Therefore,
T ∗f = 0X∗ , which means f ∈ N (T ∗). However, T ∗ is injective, so N (T ∗) = {0Y ∗}, but f ̸= 0Y ∗ ,
contradiction. Therefore, T is surjective, hence bijective.

Finally, for all f ∈ X∗, ⟨f, T−1y⟩X∗,X = ⟨(T−1)∗f, y⟩Y ∗,Y , let y = Tx, then LHS is equal to
⟨f, x⟩X∗,X , while RHS is given by

⟨(T−1)∗f, y⟩Y ∗,Y = ⟨(T−1)∗f, Tx⟩Y ∗,Y = ⟨T ∗(T−1)∗f, x⟩X∗,X

Therefore, T ∗(T−1)∗f = f for all f ∈ X∗, so T ∗(T−1)∗ = IY ∗ . This shows (T−1)∗ = (T ∗)−1.
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