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Problem 8.2-6. Define T : l2 7→ l2 by Tx = y = (ηj), where x = (ξj) and ηj =
∑∞

k=1 αjkξk,∑∞
j=1

∑∞
k=1 |αjk|2 < ∞. Show that T is compact.

Define TN : l2 → l2 by TNx = (η1, . . . , ηN , 0, . . .), where ηj =
∑∞

k=1 αjkξk. It is easy to see TN

is linear. It is also compact because l2 is Banach, and Im(TN ) is a finite dimensional vector space,
hence Banach. Then the compactness of TN follows from Example 1 in lecture. Consider

∥TNx− Tx∥ =

(
∞∑

j=N+1

|ηj |2
)1/2

=

(
∞∑

j=N+1

∞∑
k=1

|αjk|2
)1/2( ∞∑

k=1

|ξk|2
)1/2

≤ Mj∥x∥

where Mj → 0 since
∑∞

j=1

∑∞
k=1 |αjk|2 < ∞. Therefore, ∥TN−T∥ ≤ Mj → 0, which means TN → T .

By Theorem 8.1-5 in textbook, the limiting operator of TN , i.e., T is also compact.

Problem 8.2-8. Does there exist a surjective compact linear operator T : l∞ 7→ l∞?

No, actually there does not exist any surjective compact linear operator that maps from Banach
space into any infinite dimensional Banach space. Suppose there exists, then by open mapping
theorem, T must map a open set U to open set V . However, if T is compact, then V must be
precompact set in l∞. We need to prove that there does not exist precompact open set in any
infinite dimensional normed space (l∞ is an example of infinite dimensional Banach space).

For any open set V in l∞, it contains an open ball B(x0; r) for x0 ∈ V . Take e1 ∈ l∞ with
∥e1∥ = 1. By Riesz Lemma with M = span{e1} (which is closed) and θ = 1/2, there exists e2 such
that ∥e1∥ = 1 and ∥e2 − e1∥ ≥ 1/2. Continue this process, we obtain {ei}∞i=1 ⊂ B(0; 1) such that
∥ei − ej∥ ≥ 1/2 for all i ̸= j. Therefore, let ui = x0 +

r
2
ei, then {ui}∞i=1 ⊂ B(x0; r) is a bounded

sequence in X but has no convergent subsequence. This shows B(x0; r) is not precompact.

Problem 8.2-9. If T ∈ B(X,Y ) is not compact, can the restriction of T to an infinite dimensional
subspace of X be compact?

If T is not compact in B(X,Y ), then the restriction of T to an infinite dimensional subspace
M of X can be compact, but there does not always exist such M that the restriction of T on M is
compact.

To see T
∣∣∣
M

can be compact, consider T : l2 → l2 defined by T (x1, . . . , xn, . . .) = (x1, 0, x3, 0, . . .).
Then T is obviously linear and bounded. T is not compact, because consider T : l2 → S where
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S = {(xj)
∞
j=1 ∈ l2 |x2j = 0,∀ j ≥ 1} (note that S is a closed subspace of l2, hence Banach), then

T is surjective hence not compact by last problem, i.e., there exists bounded x(n) ∈ l2 such that
Tx(n) ∈ S does not have any convergent subsequence. Therefore, for T : l2 → l2, use the same x(n),
Tx(n) still has no convergent subsequence. This shows that T is not compact. However, if we take
M = {(xj)

∞
j=1 ∈ l2 |x2j−1 = 0,∀ j ≥ 1}, then T

∣∣∣
M

: M 7→ l2 maps all x ∈ l2 to 0l2 , so it must be
compact.

To see not all T can have some M such that T
∣∣∣
M

is compact, consider T : l2 7→ l2 as Tx = x

for x ∈ l2. No matter what M you choose, as long as it is a infinite dimensional vector space,
T
∣∣∣
M

: M → l2 can not be compact because T
∣∣∣
M

: M → M must be an open mapping, hence not

compact, but in fact T
∣∣∣
M

will map any element into M , so T
∣∣∣
M

: M → l2 is still not compact.

Problem 8.2-10. Let (λn) be a sequence of scalars such that λn → 0 as n → ∞. Define T : l2 7→ l2

by Tx = y = (ηj) where x = (ξj) and ηj = λjξj . Show that T is compact.

Consider TN : l2 7→ l2 defined by TNx = (λ1ξ1, . . . , λNξN , 0, . . .). Then TN is compact for all
fixed N . This is because dim(Im(TN )) < ∞, thus Banach, and l2 is also Banach. Since λj → 0, we
have

∥TNx− Tx∥ =

(
∞∑

j=N+1

|λjξj |2
)1/2

≤
(

sup
j≥N+1

|λj |
)( ∞∑

j=N+1

|ξj |2
)1/2

=

(
sup

j≥N+1
|λj |
)
∥x∥

Therefore, we conclude that ∥TN − T∥ ≤ supj≥N+1 |λj |. Therefore, take N → ∞, we have TN → T .
By Theorem 8.1-5 in textbook, the limiting operator of compact operators are still compact operator,
T is also compact.

Extra Problem 1. Let X and Y be Banach with dimX < ∞; let T : X 7→ Y be linear and
bounded. Prove that T is compact.

Take any bounded sequence xn ∈ X, since dim(X) < ∞, by Bolzano-Weierstrass there exists a
subsequence of xn, i.e., xnk

→ x ∈ X. Since T is linear and bounded, hence Lipschitz continuous,
so Txnk

→ Tx ∈ Y . Therefore, T is compact.

Extra Problem 2. Let X be Banach space with dimX = ∞. Prove that if T : X 7→ X is compact,
then 0 ∈ σ(T ).

Suppose 0 /∈ σ(T ), then −T is bijective. Thus, T is bijective and in particular surjective from
X to X. If T is compact, then we have a surjective linear operator maps from Banach space into
infinite dimensional Banach space, which contradicts Problem 8.2-8. Thus, 0 ∈ σ(T ).

Extra Problem 3. Let X and Y be Banach, and K : X 7→ Y be compact. Prove that if xn
w−→ x∞

in X, then Kxn → Kx∞ strongly in Y .

We first claim that if every subsequence of a sequence {xn} ⊂ X has a convergent subsequence
that converges to x, then this sequence {xn} converges to x. Assume this is true, then for any

2



f∗ ∈ Y , f∗ ◦ T is a linear functional on X, so f∗ ◦ T (xn) → f∗ ◦ T (x). This is equivalent to
say f∗(Txn) → f∗(Tx), therefore, Txn

w−→ Tx. Since each subsequence xnk
of xn is bounded,

by compactness of T , there exists a further subsequence xnkm
such that Txnkm

→ ynk
. Then

Txnkm

w−→ ynk
, but since Txn

w−→ Tx, Txnkm

w−→ Tx. By uniqueness of weak convergence limit, we
have Tx = ynk

. Thus each subsequence of Txn has a further subsequence that converges to Tx, this
implies that Txn → Tx.

To prove the claim, suppose xn ̸→ x, then there exists a subsequence xnk
of xn such that

∥xnk
− x∥ ≥ ϵ. This is because if such subsequence does not exist, then it means all but finitely

many xn satisfies ∥xn − x∥ < ϵ, and thus xn → x. However, if so, then xnk
as a subsequence of xn

contains no further subsequence that converges to x, which leads to contradiction.

Extra Problem 4. Let X be Banach and M be a closed subspace of X. Suppose K : X 7→ X is
compact with K(M) ⊂ M . Prove that K̄ : x̂ ∈ X \M 7→ K̂x ∈ X \M is compact.

For bounded sequence x̂n ∈ X \M , there exists yn such that ∥xn+yn∥ ≤ 2 infy∈M∥xn+y∥ < ∞.
Let zn = xn + yn, then zn is bounded in X. Therefore by compactness of K, there exists a
subsequence znk

such that Kznk
→ x ∈ X. Consider∥∥∥K̂znk

− x̂
∥∥∥
X\M

= inf
y∈M

∥Kznk
− x+ y∥ ≤ ∥Kznk

− x∥ → 0

Therefore, we have K̂xnk
= K̂xnk

+ K̂ynk
= K̂znk

→ x̂ since Kynk
∈ M for ynk

∈ M . Therefore,
there exists subsequence x̂nk

of x̂n such that K̄x̂nk
= K̂xnk

→ x̂n. This implies that K̄ is compact.

Extra Problem 5. Let X,Y, Z be Banach, X ⊂ Y ⊂ Z. Prove that if X ↪→ Y is compact and
Y ↪→ Z is continuous, then ∀ ϵ > 0, there exists Cϵ > 0 such that ∥x∥Y ≤ ϵ∥x∥X + Cϵ∥x∥Z for all
x ∈ X. (Hint: Prove by contradiction)

Suppose not true, then we can find a fixed ϵ > 0 such that for all n ≥ 1, there exists xn ∈ X

such that ∥xn∥Y > ϵ∥xn∥X + n∥xn∥Z , which implies ∥yn∥Y > ϵ + n∥yn∥Z , for yn = xn

∥xn∥X
, where

∥yn∥X = 1. Denote I : X 7→ Y as the embedded identity map for X ↪→ Y , and J : Y 7→ Z as the
embedded identity map for Y ↪→ Z. Since yn ∈ X is a bounded sequence, by compactness of I,
there exists a subsequence ynk

such that I(ynk
) converges to y in Y , i.e., ∥ynk

− y∥Y → 0 as k → ∞.
Since J is continuous, it is bounded, i.e., ∥J(u)∥Z ≤ c∥u∥Y for all u ∈ Y and some constant c ≥ 0.
Therefore, we have

∥ynk
− y∥Z = ∥J(ynk

)− J(y)∥Z ≤ c∥ynk
− y∥Y → 0

Therefore, take limit on both sides of ∥ynk
∥Y > ϵ + nk∥ynk

∥Z , we obtain ∥y∥Y ≥ ϵ + ∞ · ∥y∥Z .
Since y is bounded, if ∥y∥Z > 0, then ∥y∥Y ≥ ∞, contradiction. This implies that y = 0Z , then
we will have 0 ≥ ϵ, which is a contradiction. Therefore, ∀ ϵ > 0, there exists Cϵ > 0 such that
∥x∥Y ≤ ϵ∥x∥X + Cϵ∥x∥Z for all x ∈ X.

Extra Problem 6. Let X and Y be Banach; let T : X 7→ Y be bounded; K : X 7→ Y be compact,
with R(T ) ⊂ R(K). Prove T is compact.
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Define K̄ : X \N (K) 7→ R(K) by K̄(x+N (K)) = Kx. K̄ is well-defined. K̄ is linear. By the
same method as Extra Problem 4 to show that K̄ is compact. In addition, K̄ is bijective. For each
fixed x ∈ X, since R(T ) ⊂ R(K), we can consider T : X 7→ R(K), then the equation Tx = K̄y has
unique solution y ∈ X \ N (K). There exists A : X 7→ X \ N (K) such that Ax = y and A is linear
and closed. By closed graph theorem, A is bounded. Therefore, we can conclude that T = K̄A, but
K̄ is compact and A is bounded, so T is compact.

To prove K̄ is well-defined, consider x̂1 = x̂2 ∈ X \ N (K), then x1 − x2 ∈ N (K), which means
K(x1 − x2) = 0Y , i.e., Kx1 = Kx2, so K̄ is well-defined.

To prove K̄ is linear, consider x̂1, x̂2 ∈ X \ N (K) and scalar a, b, we have

K̄(ax̂1 + bx̂2) = K(ax1 + bx2) = aKx1 + bKx2 = aK̄(x̂1) + bK̄(x̂2)

Thus, K̄ is linear.
To prove K̄ is compact, For bounded sequence x̂n ∈ X \ N (K), there exists yn ∈ N (K) such

that ∥xn+yn∥ ≤ 2 infy∈N (K)∥xn+y∥ < ∞. Let zn = xn+yn, then zn is bounded in X. Therefore by
compactness of K, there exists a subsequence znk

such that Kznk
→ u ∈ R(K). Then it is obvious

that K̄(ẑnk
) → u. This implies that K̄ is compact. Since K̄ is compact, it must be bounded.

To prove K̄ is surjective, take any y = Kx, we can find K̄(x + N (K)) = Kx = y, thus it is
surjective. To prove K̄ is injective, let Kx = 0Y , then x ∈ N (K), which means x̂ = 0X\N (K). Thus,
it is injective.

To prove A is linear, consider any x1, x2 ∈ X and scalar a, b, denote Ax1 = y1 and Ax2 =

y2, then since Tx1 = K̄y1 and Tx2 = K̄y2, we have T (ax1 + bx2) = K̄(ay1 + by2). Therefore,
A(ax1 + bx2) = ay1 + by2 = aAx1 + bAx2 by uniqueness of solution. This implies that A is linear.

To prove A is closed, suppose xn → x∞ and yn = Axn → y∞. Since Txn = Kyn, Tx∞ = Ky∞,
we have Ax∞ = y∞, so A is closed. Notice that K is bounded, so K is closed, and N (K) ⊂ X is
closed. This together with previous HW, we can see X \ N (K) is Banach.
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