MAT4010：Functional Analysis

Homework 12

李肖鹏（116010114）

Due date：Dec．3， 2019
Problem 8．2－6．Define $T: l^{2} \mapsto l^{2}$ by $T x=y=\left(\eta_{j}\right)$ ，where $x=\left(\xi_{j}\right)$ and $\eta_{j}=\sum_{k=1}^{\infty} \alpha_{j k} \xi_{k}$ ， $\sum_{j=1}^{\infty} \sum_{k=1}^{\infty}\left|\alpha_{j k}\right|^{2}<\infty$ ．Show that T is compact．

Define $T_{N}: l^{2} \rightarrow l^{2}$ by $T_{N} x=\left(\eta_{1}, \ldots, \eta_{N}, 0, \ldots\right)$ ，where $\eta_{j}=\sum_{k=1}^{\infty} \alpha_{j k} \xi_{k}$ ．It is easy to see T_{N} is linear．It is also compact because l^{2} is Banach，and $\operatorname{Im}\left(T_{N}\right)$ is a finite dimensional vector space， hence Banach．Then the compactness of T_{N} follows from Example 1 in lecture．Consider

$$
\left\|T_{N} x-T x\right\|=\left(\sum_{j=N+1}^{\infty}\left|\eta_{j}\right|^{2}\right)^{1 / 2}=\left(\sum_{j=N+1}^{\infty} \sum_{k=1}^{\infty}\left|\alpha_{j k}\right|^{2}\right)^{1 / 2}\left(\sum_{k=1}^{\infty}\left|\xi_{k}\right|^{2}\right)^{1 / 2} \leq M_{j}\|x\|
$$

where $M_{j} \rightarrow 0$ since $\sum_{j=1}^{\infty} \sum_{k=1}^{\infty}\left|\alpha_{j k}\right|^{2}<\infty$ ．Therefore，$\left\|T_{N}-T\right\| \leq M_{j} \rightarrow 0$ ，which means $T_{N} \rightarrow T$ ． By Theorem 8．1－5 in textbook，the limiting operator of T_{N} ，i．e．，T is also compact．

Problem 8．2－8．Does there exist a surjective compact linear operator $T: l^{\infty} \mapsto l^{\infty}$ ？
No，actually there does not exist any surjective compact linear operator that maps from Banach space into any infinite dimensional Banach space．Suppose there exists，then by open mapping theorem，T must map a open set U to open set V ．However，if T is compact，then V must be precompact set in l^{∞} ．We need to prove that there does not exist precompact open set in any infinite dimensional normed space（ l^{∞} is an example of infinite dimensional Banach space）．

For any open set V in l^{∞} ，it contains an open ball $B\left(x_{0} ; r\right)$ for $x_{0} \in V$ ．Take $e_{1} \in l^{\infty}$ with $\left\|e_{1}\right\|=1$ ．By Riesz Lemma with $M=\operatorname{span}\left\{e_{1}\right\}$（which is closed）and $\theta=1 / 2$ ，there exists e_{2} such that $\left\|e_{1}\right\|=1$ and $\left\|e_{2}-e_{1}\right\| \geq 1 / 2$ ．Continue this process，we obtain $\left\{e_{i}\right\}_{i=1}^{\infty} \subset \overline{B(0 ; 1)}$ such that $\left\|e_{i}-e_{j}\right\| \geq 1 / 2$ for all $i \neq j$ ．Therefore，let $u_{i}=x_{0}+\frac{r}{2} e_{i}$ ，then $\left\{u_{i}\right\}_{i=1}^{\infty} \subset B\left(x_{0} ; r\right)$ is a bounded sequence in X but has no convergent subsequence．This shows $B\left(x_{0} ; r\right)$ is not precompact．

Problem 8．2－9．If $T \in B(X, Y)$ is not compact，can the restriction of T to an infinite dimensional subspace of X be compact？

If T is not compact in $B(X, Y)$ ，then the restriction of T to an infinite dimensional subspace M of X can be compact，but there does not always exist such M that the restriction of T on M is compact．

To see $\left.T\right|_{M}$ can be compact，consider $T: l^{2} \rightarrow l^{2}$ defined by $T\left(x_{1}, \ldots, x_{n}, \ldots\right)=\left(x_{1}, 0, x_{3}, 0, \ldots\right)$ ． Then T is obviously linear and bounded．T is not compact，because consider $T: l^{2} \rightarrow S$ where
$S=\left\{\left(x_{j}\right)_{j=1}^{\infty} \in l^{2} \mid x_{2 j}=0, \forall j \geq 1\right\}$ (note that S is a closed subspace of l^{2}, hence Banach), then T is surjective hence not compact by last problem, i.e., there exists bounded $x^{(n)} \in l^{2}$ such that $T x^{(n)} \in S$ does not have any convergent subsequence. Therefore, for $T: l^{2} \rightarrow l^{2}$, use the same $x^{(n)}$, $T x^{(n)}$ still has no convergent subsequence. This shows that T is not compact. However, if we take $M=\left\{\left(x_{j}\right)_{j=1}^{\infty} \in l^{2} \mid x_{2 j-1}=0, \forall j \geq 1\right\}$, then $\left.T\right|_{M}: M \mapsto l^{2}$ maps all $x \in l^{2}$ to $\mathbf{0}_{l^{2}}$, so it must be compact.

To see not all T can have some M such that $\left.T\right|_{M}$ is compact, consider $T: l^{2} \mapsto l^{2}$ as $T x=x$ for $x \in l^{2}$. No matter what M you choose, as long as it is a infinite dimensional vector space, $\left.T\right|_{M}: M \rightarrow l^{2}$ can not be compact because $\left.T\right|_{M}: M \rightarrow M$ must be an open mapping, hence not compact, but in fact $\left.T\right|_{M}$ will map any element into M, so $\left.T\right|_{M}: M \rightarrow l^{2}$ is still not compact.

Problem 8.2-10. Let $\left(\lambda_{n}\right)$ be a sequence of scalars such that $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$. Define $T: l^{2} \mapsto l^{2}$ by $T x=y=\left(\eta_{j}\right)$ where $x=\left(\xi_{j}\right)$ and $\eta_{j}=\lambda_{j} \xi_{j}$. Show that T is compact.

Consider $T_{N}: l^{2} \mapsto l^{2}$ defined by $T_{N} x=\left(\lambda_{1} \xi_{1}, \ldots, \lambda_{N} \xi_{N}, 0, \ldots\right)$. Then T_{N} is compact for all fixed N. This is because $\operatorname{dim}\left(\operatorname{Im}\left(T_{N}\right)\right)<\infty$, thus Banach, and l^{2} is also Banach. Since $\lambda_{j} \rightarrow 0$, we have

$$
\left\|T_{N} x-T x\right\|=\left(\sum_{j=N+1}^{\infty}\left|\lambda_{j} \xi_{j}\right|^{2}\right)^{1 / 2} \leq\left(\sup _{j \geq N+1}\left|\lambda_{j}\right|\right)\left(\sum_{j=N+1}^{\infty}\left|\xi_{j}\right|^{2}\right)^{1 / 2}=\left(\sup _{j \geq N+1}\left|\lambda_{j}\right|\right)\|x\|
$$

Therefore, we conclude that $\left\|T_{N}-T\right\| \leq \sup _{j \geq N+1}\left|\lambda_{j}\right|$. Therefore, take $N \rightarrow \infty$, we have $T_{N} \rightarrow T$. By Theorem 8.1-5 in textbook, the limiting operator of compact operators are still compact operator, T is also compact.

Extra Problem 1. Let X and Y be Banach with $\operatorname{dim} X<\infty$; let $T: X \mapsto Y$ be linear and bounded. Prove that T is compact.

Take any bounded sequence $x_{n} \in X$, since $\operatorname{dim}(X)<\infty$, by Bolzano-Weierstrass there exists a subsequence of x_{n}, i.e., $x_{n_{k}} \rightarrow x \in X$. Since T is linear and bounded, hence Lipschitz continuous, so $T x_{n_{k}} \rightarrow T x \in Y$. Therefore, T is compact.

Extra Problem 2. Let X be Banach space with $\operatorname{dim} X=\infty$. Prove that if $T: X \mapsto X$ is compact, then $0 \in \sigma(T)$.

Suppose $0 \notin \sigma(T)$, then $-T$ is bijective. Thus, T is bijective and in particular surjective from X to X. If T is compact, then we have a surjective linear operator maps from Banach space into infinite dimensional Banach space, which contradicts Problem 8.2-8. Thus, $0 \in \sigma(T)$.

Extra Problem 3. Let X and Y be Banach, and $K: X \mapsto Y$ be compact. Prove that if $x_{n} \xrightarrow{w} x_{\infty}$ in X, then $K x_{n} \rightarrow K x_{\infty}$ strongly in Y.

We first claim that if every subsequence of a sequence $\left\{x_{n}\right\} \subset X$ has a convergent subsequence that converges to x, then this sequence $\left\{x_{n}\right\}$ converges to x. Assume this is true, then for any
$f^{*} \in Y, f^{*} \circ T$ is a linear functional on X, so $f^{*} \circ T\left(x_{n}\right) \rightarrow f^{*} \circ T(x)$. This is equivalent to say $f^{*}\left(T x_{n}\right) \rightarrow f^{*}(T x)$, therefore, $T x_{n} \xrightarrow{w} T x$. Since each subsequence $x_{n_{k}}$ of x_{n} is bounded, by compactness of T, there exists a further subsequence $x_{n_{k_{m}}}$ such that $T x_{n_{k_{m}}} \rightarrow y_{n_{k}}$. Then $T x_{n_{k_{m}}} \xrightarrow{w} y_{n_{k}}$, but since $T x_{n} \xrightarrow{w} T x, T x_{n_{k_{m}}} \xrightarrow{w} T x$. By uniqueness of weak convergence limit, we have $T x=y_{n_{k}}$. Thus each subsequence of $T x_{n}$ has a further subsequence that converges to $T x$, this implies that $T x_{n} \rightarrow T x$.

To prove the claim, suppose $x_{n} \nrightarrow x$, then there exists a subsequence $x_{n_{k}}$ of x_{n} such that $\left\|x_{n_{k}}-x\right\| \geq \epsilon$. This is because if such subsequence does not exist, then it means all but finitely many x_{n} satisfies $\left\|x_{n}-x\right\|<\epsilon$, and thus $x_{n} \rightarrow x$. However, if so, then $x_{n_{k}}$ as a subsequence of x_{n} contains no further subsequence that converges to x, which leads to contradiction.

Extra Problem 4. Let X be Banach and M be a closed subspace of X. Suppose $K: X \mapsto X$ is compact with $K(M) \subset M$. Prove that $\bar{K}: \hat{x} \in X \backslash M \mapsto \widehat{K x} \in X \backslash M$ is compact.

For bounded sequence $\hat{x}_{n} \in X \backslash M$, there exists y_{n} such that $\left\|x_{n}+y_{n}\right\| \leq 2 \inf _{y \in M}\left\|x_{n}+y\right\|<\infty$. Let $z_{n}=x_{n}+y_{n}$, then z_{n} is bounded in X. Therefore by compactness of K, there exists a subsequence $z_{n_{k}}$ such that $K z_{n_{k}} \rightarrow x \in X$. Consider

$$
\left\|\widehat{K z_{n_{k}}}-\hat{x}\right\|_{X \backslash M}=\inf _{y \in M}\left\|K z_{n_{k}}-x+y\right\| \leq\left\|K z_{n_{k}}-x\right\| \rightarrow 0
$$

Therefore, we have $\widehat{K x_{n_{k}}}=\widehat{K x_{n_{k}}}+\widehat{K y_{n_{k}}}=\widehat{K z_{n_{k}}} \rightarrow \hat{x}$ since $K y_{n_{k}} \in M$ for $y_{n_{k}} \in M$. Therefore, there exists subsequence $\hat{x}_{n_{k}}$ of \hat{x}_{n} such that $\bar{K} \hat{x}_{n_{k}}=\widehat{K x_{n_{k}}} \rightarrow \hat{x}_{n}$. This implies that \bar{K} is compact.

Extra Problem 5. Let X, Y, Z be Banach, $X \subset Y \subset Z$. Prove that if $X \hookrightarrow Y$ is compact and $Y \hookrightarrow Z$ is continuous, then $\forall \epsilon>0$, there exists $C_{\epsilon}>0$ such that $\|x\|_{Y} \leq \epsilon\|x\|_{X}+C_{\epsilon}\|x\|_{Z}$ for all $x \in X$. (Hint: Prove by contradiction)

Suppose not true, then we can find a fixed $\epsilon>0$ such that for all $n \geq 1$, there exists $x_{n} \in X$ such that $\left\|x_{n}\right\|_{Y}>\epsilon\left\|x_{n}\right\|_{X}+n\left\|x_{n}\right\|_{Z}$, which implies $\left\|y_{n}\right\|_{Y}>\epsilon+n\left\|y_{n}\right\|_{Z}$, for $y_{n}=\frac{x_{n}}{\left\|x_{n}\right\|_{X}}$, where $\left\|y_{n}\right\|_{X}=1$. Denote $I: X \mapsto Y$ as the embedded identity map for $X \hookrightarrow Y$, and $J: Y \mapsto Z$ as the embedded identity map for $Y \hookrightarrow Z$. Since $y_{n} \in X$ is a bounded sequence, by compactness of I, there exists a subsequence $y_{n_{k}}$ such that $I\left(y_{n_{k}}\right)$ converges to y in Y, i.e., $\left\|y_{n_{k}}-y\right\|_{Y} \rightarrow 0$ as $k \rightarrow \infty$. Since J is continuous, it is bounded, i.e., $\|J(u)\|_{Z} \leq c\|u\|_{Y}$ for all $u \in Y$ and some constant $c \geq 0$. Therefore, we have

$$
\left\|y_{n_{k}}-y\right\|_{Z}=\left\|J\left(y_{n_{k}}\right)-J(y)\right\|_{Z} \leq c\left\|y_{n_{k}}-y\right\|_{Y} \rightarrow 0
$$

Therefore, take limit on both sides of $\left\|y_{n_{k}}\right\|_{Y}>\epsilon+n_{k}\left\|y_{n_{k}}\right\|_{Z}$, we obtain $\|y\|_{Y} \geq \epsilon+\infty \cdot\|y\|_{Z}$. Since y is bounded, if $\|y\|_{Z}>0$, then $\|y\|_{Y} \geq \infty$, contradiction. This implies that $y=\mathbf{0}_{Z}$, then we will have $0 \geq \epsilon$, which is a contradiction. Therefore, $\forall \epsilon>0$, there exists $C_{\epsilon}>0$ such that $\|x\|_{Y} \leq \epsilon\|x\|_{X}+C_{\epsilon}\|x\|_{Z}$ for all $x \in X$.

Extra Problem 6. Let X and Y be Banach; let $T: X \mapsto Y$ be bounded; $K: X \mapsto Y$ be compact, with $\mathcal{R}(T) \subset \mathcal{R}(K)$. Prove T is compact.

Define $\bar{K}: X \backslash \mathcal{N}(K) \mapsto \mathcal{R}(K)$ by $\bar{K}(x+\mathcal{N}(K))=K x . \bar{K}$ is well-defined. \bar{K} is linear. By the same method as Extra Problem 4 to show that \bar{K} is compact. In addition, \bar{K} is bijective. For each fixed $x \in X$, since $\mathcal{R}(T) \subset \mathcal{R}(K)$, we can consider $T: X \mapsto \mathcal{R}(K)$, then the equation $T x=\bar{K} y$ has unique solution $y \in X \backslash \mathcal{N}(K)$. There exists $A: X \mapsto X \backslash \mathcal{N}(K)$ such that $A x=y$ and A is linear and closed. By closed graph theorem, A is bounded. Therefore, we can conclude that $T=\bar{K} A$, but \bar{K} is compact and A is bounded, so T is compact.

To prove \bar{K} is well-defined, consider $\hat{x}_{1}=\hat{x}_{2} \in X \backslash \mathcal{N}(K)$, then $x_{1}-x_{2} \in \mathcal{N}(K)$, which means $K\left(x_{1}-x_{2}\right)=\mathbf{0}_{Y}$, i.e., $K x_{1}=K x_{2}$, so \bar{K} is well-defined.

To prove \bar{K} is linear, consider $\hat{x}_{1}, \hat{x}_{2} \in X \backslash \mathcal{N}(K)$ and scalar a, b, we have

$$
\bar{K}\left(a \hat{x}_{1}+b \hat{x}_{2}\right)=K\left(a x_{1}+b x_{2}\right)=a K x_{1}+b K x_{2}=a \bar{K}\left(\hat{x}_{1}\right)+b \bar{K}\left(\hat{x}_{2}\right)
$$

Thus, \bar{K} is linear.
To prove \bar{K} is compact, For bounded sequence $\hat{x}_{n} \in X \backslash \mathcal{N}(K)$, there exists $y_{n} \in \mathcal{N}(K)$ such that $\left\|x_{n}+y_{n}\right\| \leq 2 \inf _{y \in \mathcal{N}(K)}\left\|x_{n}+y\right\|<\infty$. Let $z_{n}=x_{n}+y_{n}$, then z_{n} is bounded in X. Therefore by compactness of K, there exists a subsequence $z_{n_{k}}$ such that $K z_{n_{k}} \rightarrow u \in \mathcal{R}(K)$. Then it is obvious that $\bar{K}\left(\hat{z}_{n_{k}}\right) \rightarrow u$. This implies that \bar{K} is compact. Since \bar{K} is compact, it must be bounded.

To prove \bar{K} is surjective, take any $y=K x$, we can find $\bar{K}(x+\mathcal{N}(K))=K x=y$, thus it is surjective. To prove \bar{K} is injective, let $K x=\mathbf{0}_{Y}$, then $x \in \mathcal{N}(K)$, which means $\hat{x}=\mathbf{0}_{X \backslash \mathcal{N}(K)}$. Thus, it is injective.

To prove A is linear, consider any $x_{1}, x_{2} \in X$ and scalar a, b, denote $A x_{1}=y_{1}$ and $A x_{2}=$ y_{2}, then since $T x_{1}=\bar{K} y_{1}$ and $T x_{2}=\bar{K} y_{2}$, we have $T\left(a x_{1}+b x_{2}\right)=\bar{K}\left(a y_{1}+b y_{2}\right)$. Therefore, $A\left(a x_{1}+b x_{2}\right)=a y_{1}+b y_{2}=a A x_{1}+b A x_{2}$ by uniqueness of solution. This implies that A is linear.

To prove A is closed, suppose $x_{n} \rightarrow x_{\infty}$ and $y_{n}=A x_{n} \rightarrow y_{\infty}$. Since $T x_{n}=K y_{n}, T x_{\infty}=K y_{\infty}$, we have $A x_{\infty}=y_{\infty}$, so A is closed. Notice that K is bounded, so K is closed, and $\mathcal{N}(K) \subset X$ is closed. This together with previous HW, we can see $X \backslash \mathcal{N}(K)$ is Banach.

