MAT4010：Functional Analysis
 Homework 13

李肖鹏（116010114）

Due date：Dec．10， 2019
Problem 8．4－8．Let $T: l^{2} \rightarrow l^{2}$ be defined by $x=\left(\xi_{1}, \xi_{2}, \ldots\right) \mapsto T x=\left(\xi_{2}, \xi_{3}, \ldots\right)$ ．Let $m=m_{0}$ and $n=n_{0}$ be the smallest numbers such that we have $\mathcal{N}\left(T^{m}\right)=\mathcal{N}\left(T^{m+1}\right)$ and $T^{n+1}(X)=T^{n}(X)$ ． Find $\mathcal{N}\left(T^{m}\right)$ ．Does there exist a finite m_{0} ？Find n_{0} ．

Notice that $T^{m}(x)=\left(\xi_{m+1}, \xi_{m+2}, \ldots\right)$ ，so by letting it equal to $(0,0, \ldots)$ ，we can obtain $\mathcal{N}\left(T^{m}\right)=\operatorname{span}\left(e_{1}, \cdots, e_{m}\right)$ ，where e_{i} is the standard basis of l^{2} ．Since $\operatorname{span}\left(e_{1}, \cdots, e_{m}\right)$ will never equal to $\operatorname{span}\left(e_{1}, \cdots, e_{m}, e_{m+1}\right)$ for finite m ，there does not exist finite m_{0} such that $\mathcal{N}\left(T^{m}\right)=$ $\mathcal{N}\left(T^{m+1}\right)$ ，so $m_{0}=+\infty$ ．Notice that T is surjective because for any $x^{\prime}=\left(x_{1}, x_{2}, \ldots\right) \in l^{2}$ ，we have $\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{2}\right)^{1 / 2}<\infty$ ，and we can find $x=\left(0, x_{1}, x_{2}, \ldots\right)$ such that $T x=x^{\prime}$ ．Also，$x \in l^{2}$ because $\|x\|_{l^{2}}=\left(\sum_{i=1}^{\infty}\left|x_{1}\right|^{2}\right)^{1 / 2}<\infty$ ．Therefore，$T(X)=X$ ，and $n_{0}=0$ ．

Extra Problem 1．Let X be Banach and $K: X \mapsto X$ be compact．Let
$p=\min \left\{n \geq 0 \mid \mathcal{N}\left((I-K)^{n+1}\right)=\mathcal{N}\left((I-K)^{n}\right)\right\}, \quad q=\min \left\{m \geq 0 \mid \mathcal{R}\left((I-K)^{m+1}\right)=\mathcal{R}\left((I-K)^{m}\right)\right\}$ Prove that $p=q$ ．

Suppose $p>q$ ，then we have

$$
\begin{gathered}
\mathcal{N}(S) \subsetneq \cdots \subsetneq \mathcal{N}\left(S^{q-1}\right) \subsetneq \mathcal{N}\left(S^{q}\right) \subsetneq \cdots \subsetneq \mathcal{N}\left(S^{p-1}\right) \subsetneq \mathcal{N}\left(S^{p}\right)=\mathcal{N}\left(S^{p+1}\right)=\cdots \\
\mathcal{R}(S) \supsetneq \cdots \supsetneq \mathcal{R}\left(S^{q-1}\right) \supsetneq \mathcal{R}\left(S^{q}\right)=\mathcal{R}\left(S^{q+1}\right)=\cdots
\end{gathered}
$$

Recall Lemma 6 in lecture， $\operatorname{dim}\left(\mathcal{N}\left(S^{k}\right)\right)=\operatorname{codim}\left(\mathcal{R}\left(S^{k}\right)\right)$ for all $k \geq 1$ ．Therefore，we know

$$
\operatorname{dim}\left(\mathcal{N}\left(S^{q}\right)\right)=\operatorname{codim}\left(\mathcal{R}\left(S^{q}\right)\right)=\operatorname{codim}\left(\mathcal{R}\left(S^{q+1}\right)\right)=\operatorname{dim}\left(\mathcal{N}\left(S^{q+1}\right)\right)
$$

This is a contradiction，since $\mathcal{N}\left(S^{q}\right)$ is a proper subspace of $\mathcal{N}\left(S^{q+1}\right)$ ，so they cannot have the same dimension（finite）．Notice that $\operatorname{dim}\left(\mathcal{N}\left(S^{0}\right)\right)=\operatorname{codim}\left(\mathcal{R}\left(S^{0}\right)\right)$ because $\mathcal{N}\left(S^{0}\right)=\{0\}$ and $\mathcal{R}\left(S^{0}\right)=X$ ．

Similarly，suppose $p<q$ ，we will obtain $\operatorname{codim}\left(\mathcal{R}\left(S^{p}\right)\right)=\operatorname{codim}\left(\mathcal{R}\left(S^{p+1}\right)\right)=d<\infty$ and $\mathcal{R}\left(S^{p+1}\right) \subsetneq \mathcal{R}\left(S^{p}\right)$ ．Consider $X=\mathcal{R}\left(S^{p+1}\right) \oplus M_{1}$ and $X=\mathcal{R}\left(S^{p}\right) \oplus M_{2}$ ，where $\operatorname{dim}\left(M_{1}\right)=\operatorname{dim}\left(M_{2}\right)$ ． However， $\mathcal{R}\left(S^{p}\right)$ can be decomposed as $\mathcal{R}\left(S^{p}\right)=\mathcal{R}\left(S^{p+1}\right) \oplus M_{3}$ where $\operatorname{dim}\left(M_{3}\right)>0$ ．This implies that $M_{3} \oplus M_{2}=M_{1}$ ，i．e．， $\operatorname{dim}\left(M_{3}\right)+\operatorname{dim}\left(M_{2}\right)=\operatorname{dim}\left(M_{1}\right)$ ，which is a contradiction to $\operatorname{dim}\left(M_{1}\right)=$ $\operatorname{dim}\left(M_{2}\right)$ ．Therefore，$p=q$ ．

Extra Problem 2. Let $K \in L^{2}((0,1) \times(0,1))$ with $\|K\|_{L^{2}((0,1) \times(0,1))}<1$. Prove that $\forall f \in L^{2}(0,1)$, the integral equation

$$
u(x)-\int_{0}^{1} K(x, y) u(y) d y=f(x), \quad x \in(0,1)
$$

has a solution $u \in L^{2}(0,1)$.
Define $A: L^{2}(0,1) \mapsto L^{2}(0,1)$ by $A u(x)=\int_{0}^{1} K(x, y) u(y) d y$. Since we have proved that such A is a compact operator in class, and it suffices to show that $(I-A)$ is surjective on $L^{2}(0,1)$. We tend to show $(I-A)$ is injective. Consider the integral equation

$$
u(x)=\int_{0}^{1} K(x, y) u(y) d y, \quad x \in(0,1)
$$

By generalized Minkowski inequality,

$$
\|u\|_{L^{2}(0,1)} \leq\|K\|_{L^{2}((0,1) \times(0,1))}\|u\|_{L^{2}(0,1)}
$$

If $\|u\|_{L^{2}(0,1)} \neq 0$, then by cancel out it on both sides, we obtain $\|K\|_{L^{2}((0,1) \times(0,1))} \geq 1$, which contradicts $\|K\|_{L^{2}((0,1) \times(0,1))}<1$. Thus, $\|u\|_{L^{2}(0,1)}=0$, i.e., $u(x)=0$ a.e. on $(0,1)$. This implies that $(I-A)$ is injective, by Fredholm alternative, $(I-A)$ is surjective, which proved the required statement.

Extra Problem 3. Let X be Banach and $K: X \mapsto X$ be compact. Prove
(i) For all $\hat{x} \in X \backslash \mathcal{N}(I-K)$, there exists $x_{0} \in \hat{x}$ such that $\left\|x_{0}\right\|=\|\hat{x}\|_{0}$.

For simplicity, we denote $S=I-K$, then since K is compact, by Lemma $5, \operatorname{dim}(\mathcal{N}(S))<\infty$. For any n, there exists $y_{n} \in \mathcal{N}(S)$, such that $\|\hat{x}\|_{0} \leq\left\|x-y_{n}\right\|<\|\hat{x}\|_{0}+\frac{1}{n}$. Since $\left\|y_{n}\right\| \leq$ $\|x\|+\left\|y_{n}-x\right\|<2\|x\|+1, y_{n}$ is a bounded sequence in $\mathcal{N}(S)$, by Bolzano-Weierstrass, y_{n} has a convergent subsequence $y_{n_{k}} \rightarrow y \in \mathcal{N}(S)$. Therefore, take limit as $k \rightarrow \infty$ on left, middle, and right of inequality $\|\hat{x}\|_{0} \leq\left\|x-y_{n_{k}}\right\|<\|\hat{x}\|_{0}+\frac{1}{n_{k}}$, we have $\|x-y\|=\|\hat{x}\|_{0}$. Therefore, let $x_{0}=x-y$, and such $x_{0} \in \hat{x}$ satisfies $\left\|x_{0}\right\|=\|\hat{x}\|_{0}$.
(ii) If $y \in X$ and $(I-K) x=y$ has a solution x, then there exists solution x_{0} which has the smallest norm among all solutions.

If x_{1}, x_{2} are two solutions of $S x=y$, then $S x_{1}=y$ and $S x_{2}=y$. Since S is linear, we can conclude $S\left(x_{1}-x_{2}\right)=\mathbf{0}$. Therefore, all solution of $S x=y$ are in \hat{x}. By (i), there exists $x_{0} \in \hat{x}$ such that $\left\|x_{0}\right\|=\|\hat{x}\|=\inf _{z \in \hat{x}}\|z\|$. Thus x_{0} has the smallest norm among all solutions.

