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Homework 2

李肖鹏 (116010114)

Due date: Sept. 17, 2019
Problem 2.7-5. Show that the operator T : l∞ 7→ l∞ defined by y = (ηj) = Tx, ηj = ξj/j, x = (ξj),
is linear and bounded.

For any x, z ∈ l∞, x = (ξj) and z = (zj), so x + z = (ξj + zj). We know that [T (x + z)]j =

(ξj + zj)/j, (Tx)j = ξj/j, and (Tz)j = zj/j. Therefore, [T (x + z)]j = (Tx)j + (Tz)j for all j,
so T (x + z) = Tx + Tz. For any scalar a, [T (ax)]j = (aξj)/j, while a(Tx)j = a(ξj)/j. Thus,
[T (ax)]j = a(Tx)j , which implies that T (ax) = aTx. Therefore, T is a linear map.

To prove T is bounded, notice that ∥Tx∥∞ = supi∈N+ ξj/j and ∥x∥∞ = supi∈N+ ξj . Since for
each j, we have |xj |/j ≤ |xj |, we conclude that

∥Tx∥∞ = sup
i∈N+

ξj/j ≤ sup
i∈N+

ξj = ∥x∥∞

This implies that T is bounded.

Problem 2.7-6. Show that the range R(T ) of a bounded linear operator T : X 7→ Y need not be
closed in Y . Hint: Use T in Problem 2.7-5.

Take X = Y = l∞, and consider T in Problem 2.7-5. We need to construct an sequence in
R(T ) that converges to element in Y but not in R(T ). Consider the vector y defined by yi =

1√
i

for i = 1, 2, . . .. It is obvious that yi ≤ 1, so y ∈ Y . Also, y /∈ R(T ), because if it is in the range, its
pre-image should be (1,

√
2, . . . ,

√
n, . . .), but the pre-image vector is not in Y since the entry tends

to infinity. This implies that y /∈ R(T ). We can consider the sequence of vector x(n) whose first n

entries are 1,
√
2, . . . ,

√
n and others are zero. Then all x(n) ∈ X, so we can apply T to them, their

images are y(n) whose first n entries are 1, 1/
√
2, . . . , 1/

√
n and others are zero. Then, as n → ∞,

∥y(n) − y∥∞ = sup
i=n+1

1√
i
=

1√
n+ 1

→ 0

Therefore, y in Y is a limit point of y(n) ∈ R(T ), but it is not in range of T , so the range of T is
not closed in Y .

Problem 2.7-7. Let T be a bounded linear operator from a normed space X onto a normed space
Y . If there is a positive b such that ∥Tx∥Y ≥ b∥x∥X for all x ∈ X, show that then T−1 : Y 7→ X

exists and is bounded.

Since we have known that T is onto mapping, we only need to prove that T is injective, that
is, the kernel of T is zero vector in X. Consider any x such that Tx = 0Y , ∥Tx∥Y = 0, but
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∥Tx∥Y ≥ b∥x∥X for all x ∈ X and b > 0, this impiles that x = 0X . Therefore, T is bijective linear
mapping from X to Y , so T−1 : Y 7→ X exists.

To prove it is bounded, we consider any y ∈ Y , there exists x ∈ X such that T−1y = x and
T (x) = y. Therefore, we have

∥T−1y∥X = ∥x∥X ≤ 1

b
∥Tx∥Y = ∥y∥Y

Therefore, T−1 is bounded.

Problem 2.7-8. Show that the inverse T−1 : R(T ) 7→ X of a bounded linear operator T : X 7→ Y

need not be bounded. Hint. Use T in Problem 2.7-5.

Let X = Y = l∞, and since T in Problem 2.7-5. is bounded linear operator, we need to prove
T is injective. Consider Tx = 0Y , it is easy to see that xi = iyi = 0 for all i, thus x = 0X and T

is injective. Therefore, on R(T ) 7→ X, T−1 is well-defined. However, consider the standard basis
of l∞, i.e., e1, e2, . . ., where ei means the vector with i-th entry equal to 1 and others all 0. All of
them are in R(T ) because their pre-images are just e1, 2e2, . . . and for all i, iei ∈ l∞. On the other
hand, ∥T−1ei∥ = i for all i. This implies that T−1 maps bounded vectors ei to unbounded vectors.
Therefore, T−1 cannot be bounded.

Problem 2.8-3. Find the norm of the linear functional f defined on C[−1, 1] by

f(x) =

ˆ 0

−1

x(t) dt−
ˆ 1

0

x(t) dt

Notice that for x ∈ C[−1, 1], we use the maximum norm. First we consider

|f(x)| ≤
∣∣∣∣ˆ 0

−1

x(t) dt

∣∣∣∣+ ∣∣∣∣ˆ 1

0

x(t) dt

∣∣∣∣ ≤ ˆ 0

−1

∥x(t)∥∞ dt+

ˆ 1

0

∥x(t)∥∞ dt ≤ 2∥x∥∞

Therefore, |f(x)|/∥x∥∞ ≤ 2. Then we consider a sequence of function xn(t) on C[−1, 1] defined by

xn(t) =


1 if t ∈ [ 1

n
, 1]

−1 if t ∈ [−1,− 1
n
]

nx if t ∈ (− 1
n
, 1
n
)

Then it is obvious that xn ∈ C[−1, 1] and ∥xn∥∞ = 1. Furthermore, for all n ≥ 1, we have

|f(xn)| =
∣∣∣∣−1 +

1

2n
−
(
1− 1

2n

)∣∣∣∣ = 2− 1

n

Therefore, sup∥x∥∞=1 |f(x)| = 2, so the norm of the linear functional f is 2.

Problem 2.8-4. Show that for J = [a, b],

f1(x) = max
t∈J

x(t)

f2(x) = min
t∈J

x(t)

define functionals on C[a, b]. Are they linear? Bounded?

2



Since x(t) is continuous function defined on compact set [a, b], x(t) must attained its maximum
and minimum point at some t1, t2 ∈ [a, b]. Therefore, f1(x), f2(x) are finite on a field, so they are
well-defined functionals.

They are not linear. Consider x(t) = t and y(t) = −t for all t ∈ J . Then f1(x) = b and
f1(y) = −a. Since x(t)+ y(t) ≡ 0, f1(x+ y) = 0, but f1(x)+ f1(y) = b−a. As long as a ̸= b, this f1
is not linear. Similarly, since f2(x) = a, f2(y) = −b, and f2(x + y) = 0, as long as a ̸= b, f2 is not
linear. Therefore, f1, f2 is not linear for any a ̸= b. However, when a = b, f1, f2 is indeed linear.

They are bounded. For f1, for any x ∈ C[a, b], we have

|f1| =
∣∣∣∣max
t∈J

x(t)

∣∣∣∣ ≤ max
t∈J

|x(t)| = ∥x∥∞

For f2, for any x ∈ C[a, b], we have

|f2| =
∣∣∣∣min
t∈J

x(t)

∣∣∣∣ ≤ max
t∈J

|x(t)| = ∥x∥∞

Therefore, f1, f2 are bounded.

Problem 2.8-7. If f is a bounded linear functional on a complex normed space, is f̄ bounded?
Linear? (The bar denotes the complex conjugate.)

Since f is bounded and |f(x)| = |f̄(x)| because the norm of complex number a is defined by
√
aā and the complex conjugate of ā is a. This implies that if |f(x)| ≤ c∥x∥ then |f̄(x)| ≤ c∥x∥.

Thus, f̄ is bounded.
It is not linear, because here the field is complex field. If it is linear, then for any a ∈ C, we

need to have f̄(ax) = af̄(x). Since f is linear, suppose f(x) = i and f(ix) = if(x) = −1. Let a = i,
then f̄(ix) = f(ix) = −1, but if̄(x) = i(−i) = 1, thus f̄ is not linear.

Problem 2.8-13. If Y is a subspace of a vector space X and f is a linear functional on X such
that f(Y ) is not the whole scalar field of X, show that f(y) = 0 for all y ∈ Y .

Suppose f(y0) ̸= 0 for some y0 ∈ Y , then suppose f(y0) = p ̸= 0. Since f is a linear functional,
assume the scalar field of X is F, then f : X 7→ F. Since p ∈ F and any nonzero element in a field
has inverse element, i.e., there exists p−1p = 1. Then for any a ∈ F, there exists a scalar ap−1 ∈ F
such that f(ap−1y0) = ap−1f(y0) = a. Since Y is a subspace, ap−1y0 ∈ Y , and this implies that
f(Y ) = F. Therefore, this contradiction shows that such y0 does not exist, i.e., f(y) = 0 for all
y ∈ Y .

Problem 2.8-14. Show that the norm ∥f∥ of a bounded linear functional f ̸= 0 on a normed space
X can be interpreted geometrically as the reciprocal of the distance d̃ = inf{∥x∥X | f(x) = 1} of the
hyperplane H1 = {x ∈ X | f(x) = 1} from the orgin.

We need to show that
sup

∥x∥X=1

|f(x)| = 1

inf
f(x)=1

∥x∥X
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To achieve this, we first prove
1

inf
f(x)=1

∥x∥X
= sup

f(x)=1

1

∥x∥X
(1)

For any x ∈ X such that f(x) = 1, we have ∥x∥X ≥ inff(x)=1∥x∥X , this implies that

1

inf
f(x)=1

∥x∥X
≥ 1

∥x∥X

Since the LHS is an upper bound of RHS, it must be larger than or equal to least upper bound of
RHS, i.e.,

1

inf
f(x)=1

∥x∥X
≥ sup

f(x)=1

1

∥x∥X

For any ϵ > 0, there exists xϵ with f(xϵ) = 1, and ∥xϵ∥X − ϵ < inff(x)=1∥x∥X , therefore,

1

inf
f(x)=1

∥x∥X − ϵ
<

1

∥xϵ∥X
≤ sup

f(x)=1

1

∥x∥X

Notice that inff(x)=1∥x∥X is positive fixed number, because if not, then there exists xn such that
∥xn∥X → 0. Since f is bounded, so |f(xn)| ≤ ∥f∥∥xn∥X → 0, but f(xn) = 1 for all n. This is
contradiction, so when ϵ is small enough, inff(x)=1∥x∥X − ϵ will always be positive. Let ϵ → 0, we
have

1

inf
f(x)=1

∥x∥X
≤ sup

f(x)=1

1

∥x∥X

Therefore, the first equality is proved. Now we consider to prove

sup
∥x∥X=1

|f(x)| = sup
f(x)=1

1

∥x∥X
(2)

Notice that by Fact 1 in lecture, we have

sup
∥x∥X=1

|f(x)| = sup
x ̸=0

|f(x)|
∥x∥X

= sup
f(x)̸=0,x ̸=0

1

∥ x
f(x)

∥X

We only need to prove the two sets are equal, i.e.,{
x

f(x)

∣∣∣∣ f(x) ̸= 0

}
= {x | f(x) = 1}

For any elements in LHS, it has form x/f(x), and f(x/f(x)) = f(x)/f(x) = 1, thus it is in RHS.
Similarly, for any elements x in RHS, x = x/f(x), thus in LHS. Therefore, these two sets are equal,
then

sup
∥x∥X=1

|f(x)| = sup
f(x) ̸=0

1

∥ x
f(x)

∥X
= sup

f(x)=1

1

∥x∥X

Therefore, combined (1) and (2), we can conclude the desired result.

Problem 2.8-15. Let f ̸= 0 be a bounded linear functional on a real normed space X. Then for
any scalar c we have a hyperplane Hc = {x ∈ X | f(x) = c}, and Hc determines the two half spaces

Xc1 = {x | f(x) ≤ c} and Xc2 = {x | f(x) ≥ c}
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Show that the closed unit ball lies in Xc1 where c = ∥f∥, but for no ϵ > 0, the half space Xc1 with
c = ∥f∥ − ϵ contains that ball.

To show that the closed unit ball lies in Xc1, consider the closed unit ball B(0; 1), then any
point x satisfying ∥x∥X ≤ 1 is in this ball. If ∥x∥X ≤ 1, then |f(x)| ≤ ∥f∥∥x∥X = c, therefore, any
points satisfies ∥x∥X ≤ 1 are in Xc1, and all points in B(0; 1) should satisfy ∥x∥X ≤ 1, thus B(0; 1)

is contained in Xc1.
Since ∥f∥ = sup∥x∥X=1 |f(x)|, for any ϵ > 0, there exists x with ∥x∥X = 1 such that |f(x)| >

∥f∥ − ϵ = c. However, such x is a point on the closed unit ball B(0; 1), while it does not satisfy
f(x) ≤ c. This implies that for any ϵ > 0, the half space Xc1 with c defined above cannot contain
B(0; 1).

Problem 2.9-8. If Z is an (n− 1)-dimensional subspace of an n-dimensional vector space X, show
that Z is the null space of a suitable linear functional f on X, which is uniquely determined to
within a scalar multiple.

For (n− 1)-dimensional vector space Z, we can find a basis of it, i.e., {e1, . . . , en−1}. By basis
extension theorem, we can extend this set of independent vectors to the basis of n-dimensional
vector space X, i.e., {e1, . . . , en−1, un}. Define a linear functional f such that f(ei) = 0 for all
i = 1, . . . , n− 1 and f(un) = 1. Then, by linearity, all x ∈ X is defined under f .

Now we check whether the null space of f is Z. Let f(x) = 0, then since x = a1e1 + . . . +

an−1en−1 + bnun, we have f(x) = bnf(un) = bn = 0. Therefore, x = a1e1 + . . . + an−1en−1, which
implies that x ∈ Z. In this way, Z is the null space of f .

For the uniqueness, since Z is null space, for all z ∈ Z, f(z) = 0. This implies that f(ei) = 0

for all i = 1, . . . , n− 1. If f(un) = 0, then the null space of f is X with n-dimension rather than Z

with (n− 1)-dimension. Therefore, f(un) = p ̸= 0, and this implies that for all x ∈ X, f(x) = bnp.
Notice that if we define another f̃(x) = bnp̃ for all x ∈ X, then f̃(x) = p̃

p
f(x). Since p ̸= 0, p̃

p
is a

scalar, and f is defined uniquely up to a scalar multiple.

Problem 2.9-10. Let Z be a proper subspace of an n-dimensional vector space X, and let x0 ∈
X − Z. Show that there is a linear functional f on X such that f(x0) = 1 and f(x) = 0 for all
x ∈ Z.

Since Z is a proper subspace of an n-dimensional vector space X, denote dim(Z) = p < n. By
choosing a basis of Z and extending it to a basis of X, we can use coordinates to express every vector
in Z, i.e., (x(1), . . . , x(p), 0, . . . , 0) and arbitrary vector in X as (x(1), . . . , x(n)). Define a functional
f such that for all x ∈ X,

fx0
(x) =

(x
(p+1)
0 , . . . , x

(n)
0 ) · (x(p+1), . . . , x(n))T

(x
(p+1)
0 , . . . , x

(n)
0 ) · (x(p+1)

0 , . . . , x
(n)
0 )T

Therefore, we can see that f(x0) = 1 and f(x) = 0 when x ∈ Z. This functional is linear because

5



for scalar a, b and x, y ∈ X, we have

fx0
(ax+ by) =

(x
(p+1)
0 , . . . , x

(n)
0 ) · ((ax+ by)(p+1), . . . , (ax+ by)(n))T

(x
(p+1)
0 , . . . , x

(n)
0 ) · (x(p+1)

0 , . . . , x
(n)
0 )T

=
(x

(p+1)
0 , . . . , x

(n)
0 ) · (ax(p+1) + by(p+1), . . . , ax(n) + bx(n))T

(x
(p+1)
0 , . . . , x

(n)
0 ) · (x(p+1)

0 , . . . , x
(n)
0 )T

= a
(x

(p+1)
0 , . . . , x

(n)
0 ) · (x(p+1), . . . , x(n))T

(x
(p+1)
0 , . . . , x

(n)
0 ) · (x(p+1)

0 , . . . , x
(n)
0 )T

+ b
(x

(p+1)
0 , . . . , x

(n)
0 ) · (y(p+1), . . . , y(n))T

(x
(p+1)
0 , . . . , x

(n)
0 ) · (x(p+1)

0 , . . . , x
(n)
0 )T

= afx0
(x) + bfx0

(y)

Therefore, we have construct a linear functional fx0
that satisfies the required property.

Problem 2.9-11. If x and y are different vectors in a finite dimensional vector space X, show that
there is a linear functional f on X such that f(x) ̸= f(y).

Since X is finite dimensional vector space, we can find a basis of X, i.e., {e1, . . . , en}. Therefore,
any vector can be written as linear combination of basis, i.e., u = a1e1 + . . . , anen, where ai’s are
scalar. After taking arbitrary distinct vectors x and y in X, we can define f(z) = (x− y)Tz for any
z ∈ X. Here the inner product is defined in the same way as before, i.e., for u = a1e1+. . .+anen and
v = b1e1 + . . .+ bnen, we have uTv =

∑n
i=1 aibi. We need to prove f(z) is linear and f(x) ̸= f(y).

First, f(z) is linear, because for u, v ∈ X, suppose x = x1e1+. . .+xnen and y = y1e1+. . .+ynen,
we have

f(u+ v) = (x− y)T(u+ v) =
n∑

i=1

(xi − yi)(ai + bi) =
n∑

i=1

(xi − yi)ai +
n∑

i=1

(xi − yi)bi

= (x− y)Tu+ (x− y)Tv = f(u) + f(v)

For any scalar p0, consider

f(p0u) =
n∑

i=1

(xi − yi)(p0ai) = p
n∑

i=1

(xi − yi)ai = p0(x− y)Tu = p0f(u)

Since f is linear, f(x) − f(y) = f(x − y) = ∥x − y∥22. Therefore, f(x) = f(y) if and only if x = y,
but x, y are distinct, so f(x) ̸= f(y).

Problem 2.9-12. If f1, . . . , fp are linear functionals on an n-dimensional vector space X, where
p < n, show that there is a vector x ̸= 0 in X such that f1(x) = 0, . . . , fp(x) = 0. What consequences
does this result have with respect to linear equations?

Assume (a1, . . . , an) as a basis of X. For any x ∈ X, x = x1a1+. . .+xnan. For any k = 1, . . . , p,

fk(x) = fk(x1a1 + . . .+ xnan) = x1fk(a1) + . . .+ xnfk(an)

Therefore, we can obtain a linear system, Ax = 0, where

A =


f1(a1) f1(a2) · · · f1(an)

f2(a1) f2(a2) · · · f2(an)
...

... . . . ...
fp(a1) fp(a2) · · · fp(an)


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and x = (x1, . . . , xn). By using Gaussian Elimination, the RREF of A has at most p pivots.
Therefore, the dimension of the null space is n− p ≥ 1. This implies that there must be nontrivial
solution to linear system Ax = 0.

The consequence is that every homogeneous system of linear equations in which the number of
variables is larger than the number of the equations has a nontrivial solution.

Problem 2.10-4. Let X and Y be normed spaces and Tn : X 7→ Y (n = 1, 2, . . .) bounded linear
operators. Show that convergence Tn → T implies that for every ϵ > 0 there is an N such that for
all n > N and all x in any given closed ball we have ∥Tnx− Tx∥ < ϵ.

Fix the radius of the given closed ball as r > 0. Since Tn → T , for ϵ > 0, there exists N such
that for all n > N , we have ∥Tn − T∥ < ϵ/r. For all x in the ball, ∥x∥X ≤ r. Thus, we have for

∥Tnx− Tx∥Y = ∥(Tn − T )x∥Y ≤ ∥Tn − T∥∥x∥X

For any ϵ > 0, for n > N , we have

∥Tnx− Tx∥Y ≤ ∥Tn − T∥∥x∥X < ϵ/r · r = ϵ

Therefore, we obtain the desired result.

Problem 2.10-13. Let M ̸= ∅ be any subset of a normed space X. The annihilator Ma of M is
defined to be the set of all bounded linear functionals on X which are zero everywhere on M . Thus
Ma is a subset of the dual space X ′ of X. Show that Ma is a vector subspace of X ′ and is closed.
What are Xa and {0}a?

For any f, g ∈ Ma and scalar α, β, we have f(x) = g(x) = 0 for all x ∈ M . Then for every
x ∈ M ,

(αf + βg)(x) = αf(x) + βg(x) = α0 + β0 = 0

Therefore, αf + βg ∈ Ma, so Ma is a vector subspace of X ′.
To prove Ma is closed, for each x ∈ X, we can define a set Px = {f ∈ X ′ | f(x) = 0}. Then

we first prove each Px is closed. Consider any convergent sequence in Px, i.e., fn → f ∈ X ′. Since
fn → f , then for any fixed u ∈ X, |fn(u) − f(u)| ≤ ∥fn − f∥∥u∥X → 0 as n → ∞. This implies
fn(x) → f(x), but since fn(x) is constant zero, so f(x) = 0 meaning that f ∈ Px and Px is closed.
Notice that Ma =

∩
x∈M Px, and any intersection of closed sets are closed, so Ma is closed.

It is easy to see Xa is a singleton of zero function defined on X, i.e., a set only contains zero
vector of X ′. For {0}a, it is just X ′ itself, because for all function in X ′, it must satisfy f(0) = 0.

Extra Problem 1. Let X be a compact metric space. Prove that X is separable, i.e., there exists
an at most countable subset of X that is dense in X. Hint: ∀n ≥ 1, since X is compact, there exists
finitely many balls of radius 1

n
, covering X. Denote the centers of these balls by xn

1 , . . . , x
n
kn

. Define
Sn = {xn

1 , . . . , x
n
kn
} and S =

∪∞
n=1 Sn.

For any integer n ≥ 1, denote B(x; 1
n
) where x ∈ X as the open ball centered at x with radius

1
n

. Clearly, the collection of B(x; 1
n
) for all x ∈ X forms an open cover of X. Since X is compact,
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there exists an finite subcover B(xn
1 ;

1
n
), . . . , B(xn

kn
; 1
n
) that covers X, where kn denote the number

of the open ball with radius 1
n

. Define Sn = {xn
1 , . . . , x

n
kn
} for all n ≥ 1, and S =

∪∞
n=1 Sn. Since

Sn is finite, so the countable union of finite set is at most countable. Therefore, we need to prove S

is dense in X.
Consider any point u in X \ S, we are going to prove it is a limit point of S. Take n = 1,

then since S1 covers X, there exists y1 ∈ {1, . . . , k1} such that d(x1
y1
, u) ≤ 1, where d is the metric

function defined on X. Similarly, for n = 2, we can find y2 ∈ {1, . . . , k2} such that d(x2
y2
, u) ≤ 1

2
.

Continue doing this, we can find a sequence yn such that d(xn
yn
, u) ≤ 1

n
. Therefore, there exists

sequence xyn
∈ S such that xyn

→ u, so u is a limit point of S. In conclusion, S is at most countable
and dense in X, so X is separable.

Extra Problem 2. Let Rm (m ≥ 1) be equipped with the standard norm

∥(x1, . . . , xm)∥Rm =
√

x2
1 + . . .+ x2

m

Let A = (aij)n×m be a n ×m real matrix. Define mapping T : Rm 7→ Rn by Tx = A(x1 · · · xm)T.
Prove that T is linear and

∥T∥ ≤

√√√√ m∑
j=1

n∑
i=1

a2ij

First, we prove T is linear. For x, y ∈ Rm, by the distributive law of matrix multiplication, we
have

T (x+y) = A(x1+y1, . . . , xm+ym)T = A(x+y) = Ax+Ay = A(x1 · · · xm)T+A(y1 · · · ym)T = Tx+Ty

For any scalar a ∈ R, we have

T (ax) = A(ax1 · · · axm)T = A(ax) = aAx = aA(x1 · · · xm)T = aTx

Therefore, T is obviously linear operator.
Now, we consider the norm of operator T . Since for ∥x∥Rm = 1, we have

∥Tx∥Rn = ∥Ax∥Rn =

∥∥∥∥∥∥
(

m∑
k=1

a1kxk, . . . ,
m∑

k=1

ankxk

)T
∥∥∥∥∥∥
Rn

=

√√√√ n∑
j=1

(
m∑

k=1

ajkxk

)2

≤

√√√√ n∑
j=1

(
m∑

k=1

a2jk

m∑
k=1

x2
k

)

≤

√√√√ n∑
j=1

(
m∑

k=1

a2jk∥x∥2Rm

)
=

√√√√ m∑
j=1

n∑
i=1

a2ij

Therefore, if we take the supremum on both sides, we have

∥T∥ = sup
∥x∥Rm=1

∥Tx∥Rn ≤

√√√√ m∑
j=1

n∑
i=1

a2ij
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Extra Problem 3. Let X = C[−1, 1] and f ∈ X∗ be the bounded functional defined by

f(x) =

ˆ 0

−1

x(t) dt−
ˆ 1

0

x(t) dt

Let Y = N (f) (null space of f). Thus Y is a closed subspace of X (why?). Let u = u(t) = −2t =⇒
f(u) = 2. Observe that infy∈Y ∥u − y∥ = infz∈X,f(z)=2∥z∥. Prove that the latter inf is not attained
and so the former inf is also not attained.

First, Y is subspace. Take any scalar a, b and x, y ∈ Y , then f(x) = 0 and f(y) = 0. Consider
linear combination

f(ax+ by) =

ˆ 0

−1

ax(t) + by(t) dt−
ˆ 1

0

ax(t) + by(t) dt

= a

ˆ 0

−1

x(t) dt+ b

ˆ 0

−1

y(t) dt− a

ˆ 1

0

x(t) dt− b

ˆ 1

0

y(t) dt

= a

(ˆ 0

−1

x(t) dt−
ˆ 1

0

x(t) dt

)
+ b

(ˆ 0

−1

y(t) dt−
ˆ 1

0

y(t) dt

)
= af(x) + bf(y) = 0

Therefore, ax + by ∈ Y , which means Y is a subspace of X. Then, to prove Y is closed, take a
convergent sequence xn(t) ∈ Y where xn(t) → x(t) ∈ X, we need to show f(x) = 0. This is true
because

f(x) = f
(

lim
n→∞

xn

)
=

ˆ 0

−1

lim
n→∞

xn(t) dt−
ˆ 1

0

lim
n→∞

xn(t) dt

Since norm on X is maximum norm, xn(t) → x(t) uniformly, and we can exchange the order of
integral and limit, i.e.,

ˆ 0

−1

lim
n→∞

xn(t) dt−
ˆ 1

0

lim
n→∞

xn(t) dt = lim
n→∞

(ˆ 0

−1

xn(t) dt−
ˆ 1

0

xn(t) dt

)
= lim

n→∞
f(xn)

Therefore, f(x) = limn→∞ f(xn) = 0, and x ∈ Y , Y is closed.

Next, we need to prove for y(t), z(t) ∈ C[−1, 1],

E = {u(t)− y(t) |u(t) = −2t, f(y) = 0} = {z(t) | f(z) = 2} = F

This is easy, since for any p(t) ∈ E, p(t) = u(t) − y(t), so f(p) = f(u) − f(y) = 2 − 0 = 2, and
p(t) ∈ F . For any q(t) ∈ F , since f(q) = 2, let y(t) = u(t) − q(t), then f(y) = 0 and y ∈ C[−1, 1],
so q(t) ∈ E. Thus, E = F .

Finally, we consider infz∈X,f(z)=2∥z∥. Since from Problem 2.8.3, we have |f(x)| ≤ 2∥x∥∞, for
all z satisfying f(z) = 2, ∥z∥∞ ≥ 1. Consider the sequence of function zk(t) defined by

zk(t) =


2k

2k−1
if t ∈ [−1,− 1

k
]

− 2k
2k−1

if t ∈ [ 1
k
, 1]

− 2k2

2k−1
x if t ∈ (− 1

k
, 1
k
)

It is easy to see that f(z) = 2 by calculating the integral in the definition of f . Notice that
∥z∥∞ = 2k

2k−1
, so when k → ∞, ∥z∥∞ → 1. This implies that infz∈X,f(z)=2∥z∥ = 1.

However, there does not exist z(t) ∈ C[−1, 1] such that f(z) = 2 and ∥z∥ = 1. Since∣∣∣∣ˆ 0

−1

z(t) dt

∣∣∣∣ ≤ ˆ 0

−1

∥z(t)∥∞ dt = 1 =⇒
ˆ 0

−1

z(t) dt ∈ [−1, 1]
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Similarly, we have
´ 1

0
x(t) dt ∈ [−1, 1]. However, f(z) = 2 implies that

´ 0

−1
z(t) dt = 1 and´ 1

0
z(t) dt = −1. From ∥z∥ = 1 we have |z(t)| ≤ 1 for all t ∈ [−1, 1], and combined with

´ 0

−1
z(t) dt =

1, we can conclude that z(t) = 1 almost everywhere on (−1, 0). By continuity of z(t), z(t) = 1 on
(−1, 0). Similarly from

´ 1

0
z(t) dt = −1 we can imply that z(t) = −1 on (0, 1). This is a contradiction

since z(t) has jump discontinuity at 0, but we assume z(t) ∈ C[−1, 1]. Therefore, ∥z∥ = 1 can not
be attained, ∥z∥ can be arbitrarily closed to 1 but must be strictly larger than 1.
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