MAT4010：Functional Analysis Homework 2

李肖鹏（116010114）

Due date：Sept．17， 2019
Problem 2．7－5．Show that the operator $T: l^{\infty} \mapsto l^{\infty}$ defined by $y=\left(\eta_{j}\right)=T x, \eta_{j}=\xi_{j} / j, x=\left(\xi_{j}\right)$ ， is linear and bounded．

For any $x, z \in l^{\infty}, x=\left(\xi_{j}\right)$ and $z=\left(z_{j}\right)$ ，so $x+z=\left(\xi_{j}+z_{j}\right)$ ．We know that $[T(x+z)]_{j}=$ $\left(\xi_{j}+z_{j}\right) / j,(T x)_{j}=\xi_{j} / j$ ，and $(T z)_{j}=z_{j} / j$ ．Therefore，$[T(x+z)]_{j}=(T x)_{j}+(T z)_{j}$ for all j ， so $T(x+z)=T x+T z$ ．For any scalar $a,[T(a x)]_{j}=\left(a \xi_{j}\right) / j$ ，while $a(T x)_{j}=a\left(\xi_{j}\right) / j$ ．Thus， $[T(a x)]_{j}=a(T x)_{j}$ ，which implies that $T(a x)=a T x$ ．Therefore，T is a linear map．

To prove T is bounded，notice that $\|T x\|_{\infty}=\sup _{i \in \mathbb{N}^{+}} \xi_{j} / j$ and $\|x\|_{\infty}=\sup _{i \in \mathbb{N}^{+}} \xi_{j}$ ．Since for each j ，we have $\left|x_{j}\right| / j \leq\left|x_{j}\right|$ ，we conclude that

$$
\|T x\|_{\infty}=\sup _{i \in \mathbb{N}^{+}} \xi_{j} / j \leq \sup _{i \in \mathbb{N}^{+}} \xi_{j}=\|x\|_{\infty}
$$

This implies that T is bounded．

Problem 2．7－6．Show that the range $\mathcal{R}(T)$ of a bounded linear operator $T: X \mapsto Y$ need not be closed in Y ．Hint：Use T in Problem 2．7－5．

Take $X=Y=l^{\infty}$ ，and consider T in Problem 2．7－5．We need to construct an sequence in $\mathcal{R}(T)$ that converges to element in Y but not in $\mathcal{R}(T)$ ．Consider the vector y defined by $y_{i}=\frac{1}{\sqrt{i}}$ for $i=1,2, \ldots$ ．It is obvious that $y_{i} \leq 1$ ，so $y \in Y$ ．Also，$y \notin \mathcal{R}(T)$ ，because if it is in the range，its pre－image should be $(1, \sqrt{2}, \ldots, \sqrt{n}, \ldots)$ ，but the pre－image vector is not in Y since the entry tends to infinity．This implies that $y \notin \mathcal{R}(T)$ ．We can consider the sequence of vector $x^{(n)}$ whose first n entries are $1, \sqrt{2}, \ldots, \sqrt{n}$ and others are zero．Then all $x^{(n)} \in X$ ，so we can apply T to them，their images are $y^{(n)}$ whose first n entries are $1,1 / \sqrt{2}, \ldots, 1 / \sqrt{n}$ and others are zero．Then，as $n \rightarrow \infty$ ，

$$
\left\|y^{(n)}-y\right\|_{\infty}=\sup _{i=n+1} \frac{1}{\sqrt{i}}=\frac{1}{\sqrt{n+1}} \rightarrow 0
$$

Therefore，y in Y is a limit point of $y^{(n)} \in \mathcal{R}(T)$ ，but it is not in range of T ，so the range of T is not closed in Y ．

Problem 2．7－7．Let T be a bounded linear operator from a normed space X onto a normed space Y ．If there is a positive b such that $\|T x\|_{Y} \geq b\|x\|_{X}$ for all $x \in X$ ，show that then $T^{-1}: Y \mapsto X$ exists and is bounded．

Since we have known that T is onto mapping，we only need to prove that T is injective，that is，the kernel of T is zero vector in X ．Consider any x such that $T x=0_{Y},\|T x\|_{Y}=0$ ，but
$\|T x\|_{Y} \geq b\|x\|_{X}$ for all $x \in X$ and $b>0$, this impiles that $x=0_{X}$. Therefore, T is bijective linear mapping from X to Y, so $T^{-1}: Y \mapsto X$ exists.

To prove it is bounded, we consider any $y \in Y$, there exists $x \in X$ such that $T^{-1} y=x$ and $T(x)=y$. Therefore, we have

$$
\left\|T^{-1} y\right\|_{X}=\|x\|_{X} \leq \frac{1}{b}\|T x\|_{Y}=\|y\|_{Y}
$$

Therefore, T^{-1} is bounded.

Problem 2.7-8. Show that the inverse $T^{-1}: \mathcal{R}(T) \mapsto X$ of a bounded linear operator $T: X \mapsto Y$ need not be bounded. Hint. Use T in Problem 2.7-5.

Let $X=Y=l^{\infty}$, and since T in Problem 2.7-5. is bounded linear operator, we need to prove T is injective. Consider $T x=0_{Y}$, it is easy to see that $x_{i}=i y_{i}=0$ for all i, thus $x=0_{X}$ and T is injective. Therefore, on $\mathcal{R}(T) \mapsto X, T^{-1}$ is well-defined. However, consider the standard basis of l^{∞}, i.e., e_{1}, e_{2}, \ldots, where e_{i} means the vector with i-th entry equal to 1 and others all 0 . All of them are in $\mathcal{R}(T)$ because their pre-images are just $e_{1}, 2 e_{2}, \ldots$ and for all $i, i e_{i} \in l^{\infty}$. On the other hand, $\left\|T^{-1} e_{i}\right\|=i$ for all i. This implies that T^{-1} maps bounded vectors e_{i} to unbounded vectors. Therefore, T^{-1} cannot be bounded.

Problem 2.8-3. Find the norm of the linear functional f defined on $\mathcal{C}[-1,1]$ by

$$
f(x)=\int_{-1}^{0} x(t) d t-\int_{0}^{1} x(t) d t
$$

Notice that for $x \in \mathcal{C}[-1,1]$, we use the maximum norm. First we consider

$$
|f(x)| \leq\left|\int_{-1}^{0} x(t) d t\right|+\left|\int_{0}^{1} x(t) d t\right| \leq \int_{-1}^{0}\|x(t)\|_{\infty} d t+\int_{0}^{1}\|x(t)\|_{\infty} d t \leq 2\|x\|_{\infty}
$$

Therefore, $|f(x)| /\|x\|_{\infty} \leq 2$. Then we consider a sequence of function $x_{n}(t)$ on $\mathcal{C}[-1,1]$ defined by

$$
x_{n}(t)= \begin{cases}1 & \text { if } t \in\left[\frac{1}{n}, 1\right] \\ -1 & \text { if } t \in\left[-1,-\frac{1}{n}\right] \\ n x & \text { if } t \in\left(-\frac{1}{n}, \frac{1}{n}\right)\end{cases}
$$

Then it is obvious that $x_{n} \in \mathcal{C}[-1,1]$ and $\left\|x_{n}\right\|_{\infty}=1$. Furthermore, for all $n \geq 1$, we have

$$
\left|f\left(x_{n}\right)\right|=\left|-1+\frac{1}{2 n}-\left(1-\frac{1}{2 n}\right)\right|=2-\frac{1}{n}
$$

Therefore, $\sup _{\|x\|_{\infty}=1}|f(x)|=2$, so the norm of the linear functional f is 2 .

Problem 2.8-4. Show that for $J=[a, b]$,

$$
\begin{aligned}
f_{1}(x) & =\max _{t \in J} x(t) \\
f_{2}(x) & =\min _{t \in J} x(t)
\end{aligned}
$$

define functionals on $\mathcal{C}[a, b]$. Are they linear? Bounded?

Since $x(t)$ is continuous function defined on compact set $[a, b], x(t)$ must attained its maximum and minimum point at some $t_{1}, t_{2} \in[a, b]$. Therefore, $f_{1}(x), f_{2}(x)$ are finite on a field, so they are well-defined functionals.

They are not linear. Consider $x(t)=t$ and $y(t)=-t$ for all $t \in J$. Then $f_{1}(x)=b$ and $f_{1}(y)=-a$. Since $x(t)+y(t) \equiv 0, f_{1}(x+y)=0$, but $f_{1}(x)+f_{1}(y)=b-a$. As long as $a \neq b$, this f_{1} is not linear. Similarly, since $f_{2}(x)=a, f_{2}(y)=-b$, and $f_{2}(x+y)=0$, as long as $a \neq b, f_{2}$ is not linear. Therefore, f_{1}, f_{2} is not linear for any $a \neq b$. However, when $a=b, f_{1}, f_{2}$ is indeed linear.

They are bounded. For f_{1}, for any $x \in \mathcal{C}[a, b]$, we have

$$
\left|f_{1}\right|=\left|\max _{t \in J} x(t)\right| \leq \max _{t \in J}|x(t)|=\|x\|_{\infty}
$$

For f_{2}, for any $x \in \mathcal{C}[a, b]$, we have

$$
\left|f_{2}\right|=\left|\min _{t \in J} x(t)\right| \leq \max _{t \in J}|x(t)|=\|x\|_{\infty}
$$

Therefore, f_{1}, f_{2} are bounded.

Problem 2.8-7. If f is a bounded linear functional on a complex normed space, is \bar{f} bounded? Linear? (The bar denotes the complex conjugate.)

Since f is bounded and $|f(x)|=|\bar{f}(x)|$ because the norm of complex number a is defined by $\sqrt{a \bar{a}}$ and the complex conjugate of \bar{a} is a. This implies that if $|f(x)| \leq c\|x\|$ then $|\bar{f}(x)| \leq c\|x\|$. Thus, \bar{f} is bounded.

It is not linear, because here the field is complex field. If it is linear, then for any $a \in \mathbb{C}$, we need to have $\bar{f}(a x)=a \bar{f}(x)$. Since f is linear, suppose $f(x)=i$ and $f(i x)=i f(x)=-1$. Let $a=i$, then $\bar{f}(i x)=\overline{f(i x)}=-1$, but $i \bar{f}(x)=i(-i)=1$, thus \bar{f} is not linear.

Problem 2.8-13. If Y is a subspace of a vector space X and f is a linear functional on X such that $f(Y)$ is not the whole scalar field of X, show that $f(y)=0$ for all $y \in Y$.

Suppose $f\left(y^{0}\right) \neq 0$ for some $y^{0} \in Y$, then suppose $f\left(y^{0}\right)=p \neq 0$. Since f is a linear functional, assume the scalar field of X is \mathbb{F}, then $f: X \mapsto \mathbb{F}$. Since $p \in \mathbb{F}$ and any nonzero element in a field has inverse element, i.e., there exists $p^{-1} p=1$. Then for any $a \in \mathbb{F}$, there exists a scalar $a p^{-1} \in \mathbb{F}$ such that $f\left(a p^{-1} y^{0}\right)=a p^{-1} f\left(y^{0}\right)=a$. Since Y is a subspace, $a p^{-1} y^{0} \in Y$, and this implies that $f(Y)=\mathbb{F}$. Therefore, this contradiction shows that such y^{0} does not exist, i.e., $f(y)=0$ for all $y \in Y$.

Problem 2.8-14. Show that the norm $\|f\|$ of a bounded linear functional $f \neq 0$ on a normed space X can be interpreted geometrically as the reciprocal of the distance $\tilde{d}=\inf \left\{\|x\|_{X} \mid f(x)=1\right\}$ of the hyperplane $H_{1}=\{x \in X \mid f(x)=1\}$ from the orgin.

We need to show that

$$
\sup _{\|x\|_{X}=1}|f(x)|=\frac{1}{\inf _{f(x)=1}\|x\|_{X}}
$$

To achieve this, we first prove

$$
\begin{equation*}
\frac{1}{\inf _{f(x)=1}\|x\|_{X}}=\sup _{f(x)=1} \frac{1}{\|x\|_{X}} \tag{1}
\end{equation*}
$$

For any $x \in X$ such that $f(x)=1$, we have $\|x\|_{X} \geq \inf _{f(x)=1}\|x\|_{X}$, this implies that

$$
\frac{1}{\inf _{f(x)=1}\|x\|_{X}} \geq \frac{1}{\|x\|_{X}}
$$

Since the LHS is an upper bound of RHS, it must be larger than or equal to least upper bound of RHS, i.e.,

$$
\frac{1}{\inf _{f(x)=1}\|x\|_{X}} \geq \sup _{f(x)=1} \frac{1}{\|x\|_{X}}
$$

For any $\epsilon>0$, there exists x_{ϵ} with $f\left(x_{\epsilon}\right)=1$, and $\left\|x_{\epsilon}\right\|_{X}-\epsilon<\inf _{f(x)=1}\|x\|_{X}$, therefore,

$$
\frac{1}{\inf _{f(x)=1}\|x\|_{X}-\epsilon}<\frac{1}{\left\|x_{\epsilon}\right\|_{X}} \leq \sup _{f(x)=1} \frac{1}{\|x\|_{X}}
$$

Notice that $\inf _{f(x)=1}\|x\|_{X}$ is positive fixed number, because if not, then there exists x_{n} such that $\left\|x_{n}\right\|_{X} \rightarrow 0$. Since f is bounded, so $\left|f\left(x_{n}\right)\right| \leq\|f\|\left\|x_{n}\right\|_{X} \rightarrow 0$, but $f\left(x_{n}\right)=1$ for all n. This is contradiction, so when ϵ is small enough, $\inf _{f(x)=1}\|x\|_{X}-\epsilon$ will always be positive. Let $\epsilon \rightarrow 0$, we have

$$
\frac{1}{\inf _{f(x)=1}\|x\|_{X}} \leq \sup _{f(x)=1} \frac{1}{\|x\|_{X}}
$$

Therefore, the first equality is proved. Now we consider to prove

$$
\begin{equation*}
\sup _{\|x\|_{X}=1}|f(x)|=\sup _{f(x)=1} \frac{1}{\|x\|_{X}} \tag{2}
\end{equation*}
$$

Notice that by Fact 1 in lecture, we have

$$
\sup _{\|x\|_{X}=1}|f(x)|=\sup _{x \neq 0} \frac{|f(x)|}{\|x\|_{X}}=\sup _{f(x) \neq 0, x \neq 0} \frac{1}{\left\|\frac{x}{f(x)}\right\|_{X}}
$$

We only need to prove the two sets are equal, i.e.,

$$
\left\{\left.\frac{x}{f(x)} \right\rvert\, f(x) \neq 0\right\}=\{x \mid f(x)=1\}
$$

For any elements in LHS, it has form $x / f(x)$, and $f(x / f(x))=f(x) / f(x)=1$, thus it is in RHS. Similarly, for any elements x in RHS, $x=x / f(x)$, thus in LHS. Therefore, these two sets are equal, then

$$
\sup _{\|x\|_{X}=1}|f(x)|=\sup _{f(x) \neq 0} \frac{1}{\left\|\frac{x}{f(x)}\right\|_{X}}=\sup _{f(x)=1} \frac{1}{\|x\|_{X}}
$$

Therefore, combined (1) and (2), we can conclude the desired result.

Problem 2.8-15. Let $f \neq 0$ be a bounded linear functional on a real normed space X. Then for any scalar c we have a hyperplane $H_{c}=\{x \in X \mid f(x)=c\}$, and H_{c} determines the two half spaces

$$
X_{c 1}=\{x \mid f(x) \leq c\} \quad \text { and } \quad X_{c 2}=\{x \mid f(x) \geq c\}
$$

Show that the closed unit ball lies in $X_{c 1}$ where $c=\|f\|$, but for no $\epsilon>0$, the half space $X_{c 1}$ with $c=\|f\|-\epsilon$ contains that ball.

To show that the closed unit ball lies in $X_{c 1}$, consider the closed unit ball $B(0 ; 1)$, then any point x satisfying $\|x\|_{X} \leq 1$ is in this ball. If $\|x\|_{X} \leq 1$, then $|f(x)| \leq\|f\|\|x\|_{X}=c$, therefore, any points satisfies $\|x\|_{X} \leq 1$ are in $X_{c 1}$, and all points in $B(0 ; 1)$ should satisfy $\|x\|_{X} \leq 1$, thus $B(0 ; 1)$ is contained in $X_{c 1}$.

Since $\|f\|=\sup _{\|x\|_{X=1}}|f(x)|$, for any $\epsilon>0$, there exists x with $\|x\|_{X}=1$ such that $|f(x)|>$ $\|f\|-\epsilon=c$. However, such x is a point on the closed unit ball $B(0 ; 1)$, while it does not satisfy $f(x) \leq c$. This implies that for any $\epsilon>0$, the half space $X_{c 1}$ with c defined above cannot contain $B(0 ; 1)$.

Problem 2.9-8. If Z is an $(n-1)$-dimensional subspace of an n-dimensional vector space X, show that Z is the null space of a suitable linear functional f on X, which is uniquely determined to within a scalar multiple.

For $(n-1)$-dimensional vector space Z, we can find a basis of it, i.e., $\left\{e_{1}, \ldots, e_{n-1}\right\}$. By basis extension theorem, we can extend this set of independent vectors to the basis of n-dimensional vector space X, i.e., $\left\{e_{1}, \ldots, e_{n-1}, u_{n}\right\}$. Define a linear functional f such that $f\left(e_{i}\right)=0$ for all $i=1, \ldots, n-1$ and $f\left(u_{n}\right)=1$. Then, by linearity, all $x \in X$ is defined under f.

Now we check whether the null space of f is Z. Let $f(x)=0$, then since $x=a_{1} e_{1}+\ldots+$ $a_{n-1} e_{n-1}+b_{n} u_{n}$, we have $f(x)=b_{n} f\left(u_{n}\right)=b_{n}=0$. Therefore, $x=a_{1} e_{1}+\ldots+a_{n-1} e_{n-1}$, which implies that $x \in Z$. In this way, Z is the null space of f.

For the uniqueness, since Z is null space, for all $z \in Z, f(z)=0$. This implies that $f\left(e_{i}\right)=0$ for all $i=1, \ldots, n-1$. If $f\left(u_{n}\right)=0$, then the null space of f is X with n-dimension rather than Z with $(n-1)$-dimension. Therefore, $f\left(u_{n}\right)=p \neq 0$, and this implies that for all $x \in X, f(x)=b_{n} p$. Notice that if we define another $\tilde{f}(x)=b_{n} \tilde{p}$ for all $x \in X$, then $\tilde{f}(x)=\frac{\tilde{p}}{p} f(x)$. Since $p \neq 0, \frac{\tilde{p}}{p}$ is a scalar, and f is defined uniquely up to a scalar multiple.

Problem 2.9-10. Let Z be a proper subspace of an n-dimensional vector space X, and let $x_{0} \in$ $X-Z$. Show that there is a linear functional f on X such that $f\left(x_{0}\right)=1$ and $f(x)=0$ for all $x \in Z$.

Since Z is a proper subspace of an n-dimensional vector space X, denote $\operatorname{dim}(Z)=p<n$. By choosing a basis of Z and extending it to a basis of X, we can use coordinates to express every vector in Z, i.e., $\left(x^{(1)}, \ldots, x^{(p)}, 0, \ldots, 0\right)$ and arbitrary vector in X as $\left(x^{(1)}, \ldots, x^{(n)}\right)$. Define a functional f such that for all $x \in X$,

$$
f_{x_{0}}(x)=\frac{\left(x_{0}^{(p+1)}, \ldots, x_{0}^{(n)}\right) \cdot\left(x^{(p+1)}, \ldots, x^{(n)}\right)^{\mathrm{T}}}{\left(x_{0}^{(p+1)}, \ldots, x_{0}^{(n)}\right) \cdot\left(x_{0}^{(p+1)}, \ldots, x_{0}^{(n)}\right)^{\mathrm{T}}}
$$

Therefore, we can see that $f\left(x_{0}\right)=1$ and $f(x)=0$ when $x \in Z$. This functional is linear because
for scalar a, b and $x, y \in X$, we have

$$
\begin{aligned}
f_{x_{0}}(a x+b y) & =\frac{\left(x_{0}^{(p+1)}, \ldots, x_{0}^{(n)}\right) \cdot\left((a x+b y)^{(p+1)}, \ldots,(a x+b y)^{(n)}\right)^{\mathrm{T}}}{\left(x_{0}^{(p+1)}, \ldots, x_{0}^{(n)}\right) \cdot\left(x_{0}^{(p+1)}, \ldots, x_{0}^{(n)}\right)^{\mathrm{T}}} \\
& =\frac{\left(x_{0}^{(p+1)}, \ldots, x_{0}^{(n)}\right) \cdot\left(a x^{(p+1)}+b y^{(p+1)}, \ldots, a x^{(n)}+b x^{(n)}\right)^{\mathrm{T}}}{\left(x_{0}^{(p+1)}, \ldots, x_{0}^{(n)}\right) \cdot\left(x_{0}^{(p+1)}, \ldots, x_{0}^{(n)}\right)^{\mathrm{T}}} \\
& =a \frac{\left(x_{0}^{(p+1)}, \ldots, x_{0}^{(n)}\right) \cdot\left(x^{(p+1)}, \ldots, x^{(n)}\right)^{\mathrm{T}}}{\left(x_{0}^{(p+1)}, \ldots, x_{0}^{(n)}\right) \cdot\left(x_{0}^{(p+1)}, \ldots, x_{0}^{(n)}\right)^{\mathrm{T}}}+b \frac{\left(x_{0}^{(p+1)}, \ldots, x_{0}^{(n)}\right) \cdot\left(y^{(p+1)}, \ldots, y^{(n)}\right)^{\mathrm{T}}}{\left(x_{0}^{(p+1)}, \ldots, x_{0}^{(n)}\right) \cdot\left(x_{0}^{(p+1)}, \ldots, x_{0}^{(n)}\right)^{\mathrm{T}}} \\
& =a f_{x_{0}}(x)+b f_{x_{0}}(y)
\end{aligned}
$$

Therefore, we have construct a linear functional $f_{x_{0}}$ that satisfies the required property.

Problem 2.9-11. If x and y are different vectors in a finite dimensional vector space X, show that there is a linear functional f on X such that $f(x) \neq f(y)$.

Since X is finite dimensional vector space, we can find a basis of X, i.e., $\left\{e_{1}, \ldots, e_{n}\right\}$. Therefore, any vector can be written as linear combination of basis, i.e., $u=a_{1} e_{1}+\ldots, a_{n} e_{n}$, where a_{i} 's are scalar. After taking arbitrary distinct vectors x and y in X, we can define $f(z)=(x-y)^{\mathrm{T}} z$ for any $z \in X$. Here the inner product is defined in the same way as before, i.e., for $u=a_{1} e_{1}+\ldots+a_{n} e_{n}$ and $v=b_{1} e_{1}+\ldots+b_{n} e_{n}$, we have $u^{\mathrm{T}} v=\sum_{i=1}^{n} a_{i} b_{i}$. We need to prove $f(z)$ is linear and $f(x) \neq f(y)$.

First, $f(z)$ is linear, because for $u, v \in X$, suppose $x=x_{1} e_{1}+\ldots+x_{n} e_{n}$ and $y=y_{1} e_{1}+\ldots+y_{n} e_{n}$, we have

$$
\begin{aligned}
f(u+v) & =(x-y)^{\mathrm{T}}(u+v)=\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)\left(a_{i}+b_{i}\right)=\sum_{i=1}^{n}\left(x_{i}-y_{i}\right) a_{i}+\sum_{i=1}^{n}\left(x_{i}-y_{i}\right) b_{i} \\
& =(x-y)^{\mathrm{T}} u+(x-y)^{\mathrm{T}} v=f(u)+f(v)
\end{aligned}
$$

For any scalar p_{0}, consider

$$
f\left(p_{0} u\right)=\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)\left(p_{0} a_{i}\right)=p \sum_{i=1}^{n}\left(x_{i}-y_{i}\right) a_{i}=p_{0}(x-y)^{\mathrm{T}} u=p_{0} f(u)
$$

Since f is linear, $f(x)-f(y)=f(x-y)=\|x-y\|_{2}^{2}$. Therefore, $f(x)=f(y)$ if and only if $x=y$, but x, y are distinct, so $f(x) \neq f(y)$.

Problem 2.9-12. If f_{1}, \ldots, f_{p} are linear functionals on an n-dimensional vector space X, where $p<n$, show that there is a vector $x \neq 0$ in X such that $f_{1}(x)=0, \ldots, f_{p}(x)=0$. What consequences does this result have with respect to linear equations?

Assume $\left(a_{1}, \ldots, a_{n}\right)$ as a basis of X. For any $x \in X, x=x_{1} a_{1}+\ldots+x_{n} a_{n}$. For any $k=1, \ldots, p$,

$$
f_{k}(x)=f_{k}\left(x_{1} a_{1}+\ldots+x_{n} a_{n}\right)=x_{1} f_{k}\left(a_{1}\right)+\ldots+x_{n} f_{k}\left(a_{n}\right)
$$

Therefore, we can obtain a linear system, $A x=\mathbf{0}$, where

$$
A=\left[\begin{array}{cccc}
f_{1}\left(a_{1}\right) & f_{1}\left(a_{2}\right) & \cdots & f_{1}\left(a_{n}\right) \\
f_{2}\left(a_{1}\right) & f_{2}\left(a_{2}\right) & \cdots & f_{2}\left(a_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
f_{p}\left(a_{1}\right) & f_{p}\left(a_{2}\right) & \cdots & f_{p}\left(a_{n}\right)
\end{array}\right]
$$

and $x=\left(x_{1}, \ldots, x_{n}\right)$. By using Gaussian Elimination, the RREF of A has at most p pivots. Therefore, the dimension of the null space is $n-p \geq 1$. This implies that there must be nontrivial solution to linear system $A x=\mathbf{0}$.

The consequence is that every homogeneous system of linear equations in which the number of variables is larger than the number of the equations has a nontrivial solution.

Problem 2.10-4. Let X and Y be normed spaces and $T_{n}: X \mapsto Y(n=1,2, \ldots)$ bounded linear operators. Show that convergence $T_{n} \rightarrow T$ implies that for every $\epsilon>0$ there is an N such that for all $n>N$ and all x in any given closed ball we have $\left\|T_{n} x-T x\right\|<\epsilon$.

Fix the radius of the given closed ball as $r>0$. Since $T_{n} \rightarrow T$, for $\epsilon>0$, there exists N such that for all $n>N$, we have $\left\|T_{n}-T\right\|<\epsilon / r$. For all x in the ball, $\|x\|_{X} \leq r$. Thus, we have for

$$
\left\|T_{n} x-T x\right\|_{Y}=\left\|\left(T_{n}-T\right) x\right\|_{Y} \leq\left\|T_{n}-T\right\|\|x\|_{X}
$$

For any $\epsilon>0$, for $n>N$, we have

$$
\left\|T_{n} x-T x\right\|_{Y} \leq\left\|T_{n}-T\right\|\|x\|_{X}<\epsilon / r \cdot r=\epsilon
$$

Therefore, we obtain the desired result.

Problem 2.10-13. Let $M \neq \varnothing$ be any subset of a normed space X. The annihilator M^{a} of M is defined to be the set of all bounded linear functionals on X which are zero everywhere on M. Thus M^{a} is a subset of the dual space X^{\prime} of X. Show that M^{a} is a vector subspace of X^{\prime} and is closed. What are X^{a} and $\{0\}^{a}$?

For any $f, g \in M^{a}$ and scalar α, β, we have $f(x)=g(x)=0$ for all $x \in M$. Then for every $x \in M$,

$$
(\alpha f+\beta g)(x)=\alpha f(x)+\beta g(x)=\alpha 0+\beta 0=0
$$

Therefore, $\alpha f+\beta g \in M^{a}$, so M^{a} is a vector subspace of X^{\prime}.
To prove M^{a} is closed, for each $x \in X$, we can define a set $P_{x}=\left\{f \in X^{\prime} \mid f(x)=0\right\}$. Then we first prove each P_{x} is closed. Consider any convergent sequence in P_{x}, i.e., $f_{n} \rightarrow f \in X^{\prime}$. Since $f_{n} \rightarrow f$, then for any fixed $u \in X,\left|f_{n}(u)-f(u)\right| \leq\left\|f_{n}-f\right\|\|u\|_{X} \rightarrow 0$ as $n \rightarrow \infty$. This implies $f_{n}(x) \rightarrow f(x)$, but since $f_{n}(x)$ is constant zero, so $f(x)=0$ meaning that $f \in P_{x}$ and P_{x} is closed. Notice that $M^{a}=\bigcap_{x \in M} P_{x}$, and any intersection of closed sets are closed, so M^{a} is closed.

It is easy to see X^{a} is a singleton of zero function defined on X, i.e., a set only contains zero vector of X^{\prime}. For $\{0\}^{a}$, it is just X^{\prime} itself, because for all function in X^{\prime}, it must satisfy $f(0)=0$.

Extra Problem 1. Let X be a compact metric space. Prove that X is separable, i.e., there exists an at most countable subset of X that is dense in X. Hint: $\forall n \geq 1$, since X is compact, there exists finitely many balls of radius $\frac{1}{n}$, covering X. Denote the centers of these balls by $x_{1}^{n}, \ldots, x_{k_{n}}^{n}$. Define $S_{n}=\left\{x_{1}^{n}, \ldots, x_{k_{n}}^{n}\right\}$ and $S=\bigcup_{n=1}^{\infty} S_{n}$.

For any integer $n \geq 1$, denote $B\left(x ; \frac{1}{n}\right)$ where $x \in X$ as the open ball centered at x with radius $\frac{1}{n}$. Clearly, the collection of $B\left(x ; \frac{1}{n}\right)$ for all $x \in X$ forms an open cover of X. Since X is compact,
there exists an finite subcover $B\left(x_{1}^{n} ; \frac{1}{n}\right), \ldots, B\left(x_{k_{n}}^{n} ; \frac{1}{n}\right)$ that covers X, where k_{n} denote the number of the open ball with radius $\frac{1}{n}$. Define $S_{n}=\left\{x_{1}^{n}, \ldots, x_{k_{n}}^{n}\right\}$ for all $n \geq 1$, and $S=\bigcup_{n=1}^{\infty} S_{n}$. Since S_{n} is finite, so the countable union of finite set is at most countable. Therefore, we need to prove S is dense in X.

Consider any point u in $X \backslash S$, we are going to prove it is a limit point of S. Take $n=1$, then since S_{1} covers X, there exists $y_{1} \in\left\{1, \ldots, k_{1}\right\}$ such that $d\left(x_{y_{1}}^{1}, u\right) \leq 1$, where d is the metric function defined on X. Similarly, for $n=2$, we can find $y_{2} \in\left\{1, \ldots, k_{2}\right\}$ such that $d\left(x_{y_{2}}^{2}, u\right) \leq \frac{1}{2}$. Continue doing this, we can find a sequence y_{n} such that $d\left(x_{y_{n}}^{n}, u\right) \leq \frac{1}{n}$. Therefore, there exists sequence $x_{y_{n}} \in S$ such that $x_{y_{n}} \rightarrow u$, so u is a limit point of S. In conclusion, S is at most countable and dense in X, so X is separable.

Extra Problem 2. Let $\mathbb{R}^{m}(m \geq 1)$ be equipped with the standard norm

$$
\left\|\left(x_{1}, \ldots, x_{m}\right)\right\|_{\mathbb{R}^{m}}=\sqrt{x_{1}^{2}+\ldots+x_{m}^{2}}
$$

Let $A=\left(a_{i j}\right)_{n \times m}$ be a $n \times m$ real matrix. Define mapping $T: \mathbb{R}^{m} \mapsto \mathbb{R}^{n}$ by $T x=A\left(x_{1} \cdots x_{m}\right)^{\mathrm{T}}$. Prove that T is linear and

$$
\|T\| \leq \sqrt{\sum_{j=1}^{m} \sum_{i=1}^{n} a_{i j}^{2}}
$$

First, we prove T is linear. For $x, y \in \mathbb{R}^{m}$, by the distributive law of matrix multiplication, we have
$T(x+y)=A\left(x_{1}+y_{1}, \ldots, x_{m}+y_{m}\right)^{\mathrm{T}}=A(x+y)=A x+A y=A\left(x_{1} \cdots x_{m}\right)^{\mathrm{T}}+A\left(y_{1} \cdots y_{m}\right)^{\mathrm{T}}=T x+T y$

For any scalar $a \in \mathbb{R}$, we have

$$
T(a x)=A\left(a x_{1} \cdots a x_{m}\right)^{\mathrm{T}}=A(a x)=a A x=a A\left(x_{1} \cdots x_{m}\right)^{\mathrm{T}}=a T x
$$

Therefore, T is obviously linear operator.
Now, we consider the norm of operator T. Since for $\|x\|_{\mathbb{R}^{m}}=1$, we have

$$
\begin{aligned}
\|T x\|_{\mathbb{R}^{n}} & =\|A x\|_{\mathbb{R}^{n}}=\left\|\left(\sum_{k=1}^{m} a_{1 k} x_{k}, \ldots, \sum_{k=1}^{m} a_{n k} x_{k}\right)^{\mathrm{T}}\right\|_{\mathbb{R}^{n}} \\
& =\sqrt{\sum_{j=1}^{n}\left(\sum_{k=1}^{m} a_{j k} x_{k}\right)^{2}} \leq \sqrt{\sum_{j=1}^{n}\left(\sum_{k=1}^{m} a_{j k}^{2} \sum_{k=1}^{m} x_{k}^{2}\right)} \\
& \leq \sqrt{\sum_{j=1}^{n}\left(\sum_{k=1}^{m} a_{j k}^{2}\|x\|_{\mathbb{R}^{m}}^{2}\right)}=\sqrt{\sum_{j=1}^{m} \sum_{i=1}^{n} a_{i j}^{2}}
\end{aligned}
$$

Therefore, if we take the supremum on both sides, we have

$$
\|T\|=\sup _{\|x\|_{\mathbb{R}^{m}=1}}\|T x\|_{\mathbb{R}^{n}} \leq \sqrt{\sum_{j=1}^{m} \sum_{i=1}^{n} a_{i j}^{2}}
$$

Extra Problem 3. Let $X=\mathcal{C}[-1,1]$ and $f \in X^{*}$ be the bounded functional defined by

$$
f(x)=\int_{-1}^{0} x(t) d t-\int_{0}^{1} x(t) d t
$$

Let $Y=\mathcal{N}(f)$ (null space of f). Thus Y is a closed subspace of X (why?). Let $u=u(t)=-2 t \Longrightarrow$ $f(u)=2$. Observe that $\inf _{y \in Y}\|u-y\|=\inf _{z \in X, f(z)=2}\|z\|$. Prove that the latter inf is not attained and so the former inf is also not attained.

First, Y is subspace. Take any scalar a, b and $x, y \in Y$, then $f(x)=0$ and $f(y)=0$. Consider linear combination

$$
\begin{aligned}
f(a x+b y) & =\int_{-1}^{0} a x(t)+b y(t) d t-\int_{0}^{1} a x(t)+b y(t) d t \\
& =a \int_{-1}^{0} x(t) d t+b \int_{-1}^{0} y(t) d t-a \int_{0}^{1} x(t) d t-b \int_{0}^{1} y(t) d t \\
& =a\left(\int_{-1}^{0} x(t) d t-\int_{0}^{1} x(t) d t\right)+b\left(\int_{-1}^{0} y(t) d t-\int_{0}^{1} y(t) d t\right)=a f(x)+b f(y)=0
\end{aligned}
$$

Therefore, $a x+b y \in Y$, which means Y is a subspace of X. Then, to prove Y is closed, take a convergent sequence $x_{n}(t) \in Y$ where $x_{n}(t) \rightarrow x(t) \in X$, we need to show $f(x)=0$. This is true because

$$
f(x)=f\left(\lim _{n \rightarrow \infty} x_{n}\right)=\int_{-1}^{0} \lim _{n \rightarrow \infty} x_{n}(t) d t-\int_{0}^{1} \lim _{n \rightarrow \infty} x_{n}(t) d t
$$

Since norm on X is maximum norm, $x_{n}(t) \rightarrow x(t)$ uniformly, and we can exchange the order of integral and limit, i.e.,

$$
\int_{-1}^{0} \lim _{n \rightarrow \infty} x_{n}(t) d t-\int_{0}^{1} \lim _{n \rightarrow \infty} x_{n}(t) d t=\lim _{n \rightarrow \infty}\left(\int_{-1}^{0} x_{n}(t) d t-\int_{0}^{1} x_{n}(t) d t\right)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)
$$

Therefore, $f(x)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=0$, and $x \in Y, Y$ is closed.
Next, we need to prove for $y(t), z(t) \in \mathcal{C}[-1,1]$,

$$
E=\{u(t)-y(t) \mid u(t)=-2 t, f(y)=0\}=\{z(t) \mid f(z)=2\}=F
$$

This is easy, since for any $p(t) \in E, p(t)=u(t)-y(t)$, so $f(p)=f(u)-f(y)=2-0=2$, and $p(t) \in F$. For any $q(t) \in F$, since $f(q)=2$, let $y(t)=u(t)-q(t)$, then $f(y)=0$ and $y \in \mathcal{C}[-1,1]$, so $q(t) \in E$. Thus, $E=F$.

Finally, we consider $\inf _{z \in X, f(z)=2}\|z\|$. Since from Problem 2.8.3, we have $|f(x)| \leq 2\|x\|_{\infty}$, for all z satisfying $f(z)=2,\|z\|_{\infty} \geq 1$. Consider the sequence of function $z_{k}(t)$ defined by

$$
z_{k}(t)= \begin{cases}\frac{2 k}{2 k-1} & \text { if } t \in\left[-1,-\frac{1}{k}\right] \\ -\frac{2 k}{2 k-1} & \text { if } t \in\left[\frac{1}{k}, 1\right] \\ -\frac{2 k^{2}}{2 k-1} x & \text { if } t \in\left(-\frac{1}{k}, \frac{1}{k}\right)\end{cases}
$$

It is easy to see that $f(z)=2$ by calculating the integral in the definition of f. Notice that $\|z\|_{\infty}=\frac{2 k}{2 k-1}$, so when $k \rightarrow \infty,\|z\|_{\infty} \rightarrow 1$. This implies that $\inf _{z \in X, f(z)=2}\|z\|=1$.

However, there does not exist $z(t) \in \mathcal{C}[-1,1]$ such that $f(z)=2$ and $\|z\|=1$. Since

$$
\left|\int_{-1}^{0} z(t) d t\right| \leq \int_{-1}^{0}\|z(t)\|_{\infty} d t=1 \Longrightarrow \int_{-1}^{0} z(t) d t \in[-1,1]
$$

Similarly, we have $\int_{0}^{1} x(t) d t \in[-1,1]$. However, $f(z)=2$ implies that $\int_{-1}^{0} z(t) d t=1$ and $\int_{0}^{1} z(t) d t=-1$. From $\|z\|=1$ we have $|z(t)| \leq 1$ for all $t \in[-1,1]$, and combined with $\int_{-1}^{0} z(t) d t=$ 1 , we can conclude that $z(t)=1$ almost everywhere on $(-1,0)$. By continuity of $z(t), z(t)=1$ on $(-1,0)$. Similarly from $\int_{0}^{1} z(t) d t=-1$ we can imply that $z(t)=-1$ on $(0,1)$. This is a contradiction since $z(t)$ has jump discontinuity at 0 , but we assume $z(t) \in \mathcal{C}[-1,1]$. Therefore, $\|z\|=1$ can not be attained, $\|z\|$ can be arbitrarily closed to 1 but must be strictly larger than 1 .

