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Problem 2.7-5. Show that the operator T" : [*® + [ defined by y = (n;) =Tz, n; =&,/7, x = (&),

is linear and bounded.

For any =,z € [*°, x = (&) and z = (z;), so v+ z = (§; + 2;). We know that [T'(z + 2)]; =
(& + z;)/3, (Tx); = &/j, and (Tz); = z;/j. Therefore, [T'(z + 2)]; = (Tz); + (T'z); for all j,
so T(z + z) = Tx + Tz. For any scalar a, [T'(ax)]; = (a;)/j, while a(Tz); = a(&;)/j. Thus,
[T'(ax)]; = a(Tx);, which implies that T'(ax) = aTx. Therefore, T is a linear map.

To prove T' is bounded, notice that |7zl = sup;cn+ &/J and ||z]|oc = sup;ens+ & Since for
each j, we have |z;|/j < |z;|, we conclude that

ITz]|oc = sup &;/j < sup & = [l
iENt iENT

This implies that T is bounded.

Problem 2.7-6. Show that the range R(T") of a bounded linear operator 7' : X — Y need not be
closed in Y. Hint: Use T in Problem 2.7-5.

Take X =Y = [, and consider T in Problem 2.7-5. We need to construct an sequence in
R(T') that converges to element in Y but not in R(T). Consider the vector y defined by y; = %
fori=1,2,.... Tt is obvious that y; < 1,s0 y € Y. Also, y ¢ R(T), because if it is in the range, its
pre-image should be (1,v/2,...,y/n,...), but the pre-image vector is not in Y since the entry tends
to infinity. This implies that y ¢ R(T). We can consider the sequence of vector z(™) whose first n
entries are 1,1/2,...,v/n and others are zero. Then all (™ € X, so we can apply 7" to them, their
images are y(™ whose first n entries are 1, 1/\/5, ..., 1/y/n and others are zero. Then, as n — oo,

5"~y = sUp — = ——— 0

i=n+1 7 VvV +1

Therefore, 3 in Y is a limit point of y™ € R(T), but it is not in range of T, so the range of T is

not closed in Y.

Problem 2.7-7. Let T be a bounded linear operator from a normed space X onto a normed space
Y. If there is a positive b such that ||Tz||y > b||z|x for all z € X, show that then 77! : Y — X

exists and is bounded.

Since we have known that T is onto mapping, we only need to prove that T is injective, that

is, the kernel of T is zero vector in X. Consider any x such that Tx = Oy, ||[Tz|y = 0, but



ITx|ly > b||z| x for all z € X and b > 0, this impiles that 2z = 0x. Therefore, T is bijective linear
mapping from X to Y, so 77! : Y + X exists.

To prove it is bounded, we consider any y € Y, there exists x € X such that T-'y = z and
T(z) = y. Therefore, we have

_ 1
1T yllx = [lz]lx < gHTﬂCHY = llylly

Therefore, T~! is bounded.

Problem 2.7-8. Show that the inverse T-! : R(T) — X of a bounded linear operator T : X Y
need not be bounded. Hint. Use 7" in Problem 2.7-5.

Let X =Y =1, and since T in Problem 2.7-5. is bounded linear operator, we need to prove
T is injective. Consider T'x = 0Oy, it is easy to see that x; = iy; = 0 for all 4, thus ¢ = 0x and T

is injective. Therefore, on R(T) — X, T~ ' is well-defined. However, consider the standard basis

of [*°, i.e., e, eq,..., where e; means the vector with i-th entry equal to 1 and others all 0. All of
them are in R(T') because their pre-images are just ey, 2es, ... and for all 7, ie; € [°°. On the other
hand, || T~ 'e;|| = i for all i. This implies that 7! maps bounded vectors e; to unbounded vectors.

Therefore, T~! cannot be bounded.

Problem 2.8-3. Find the norm of the linear functional f defined on C[—1,1] by

f(a;):/O (1) dt—/olx(t) dt

-1

Notice that for z € C[—1, 1], we use the maximum norm. First we consider

sl [ sy arf+| [ () a< [ inx(mm a+ [ o0l di < 2]

Therefore, |f(x)]/||z|l« < 2. Then we consider a sequence of function z,(¢) on C[—1,1] defined by

1 ifte[r1]

za(t) =4 -1 ifte[-1,-1]

nx ifte (-1 1)

n’

Then it is obvious that x,, € C[—1,1] and ||z,||~ = 1. Furthermore, for all n > 1, we have

1 1 1
|f(xn)|:’—1+2n—<1—)‘:2_

2n n

Therefore, sup -1 [f(2)] = 2, so the norm of the linear functional f is 2.

Problem 2.8-4. Show that for J = [a, b,

f1(2) = max (1)

f2(z) = min ()

define functionals on Cla, b]. Are they linear? Bounded?



Since z(t) is continuous function defined on compact set [a, b], x(t) must attained its maximum
and minimum point at some ¢, ts € [a,b]. Therefore, fi(z), f2(z) are finite on a field, so they are
well-defined functionals.

They are not linear. Consider z(t) = t and y(t) = —t for all t € J. Then fi(x) = b and
fi(y) = —a. Since z(t) +y(t) =0, fi(x+y) =0, but fi(x)+ fi(y) = b—a. Aslong as a # b, this f,
is not linear. Similarly, since fa(x) = a, fa(y) = —b, and fo(x +y) =0, as long as a # b, f5 is not
linear. Therefore, fi, fo is not linear for any a # b. However, when a = b, fi, f2 is indeed linear.

They are bounded. For f, for any x € C[a, b], we have

121 = e ()] < o (0] = ol
For fy, for any x € C[a, b], we have
g 1 < el
|2l mtel;lw(t)‘ < max|z(f)] = ||zl

Therefore, f1, fo are bounded.

Problem 2.8-7. If f is a bounded linear functional on a complex normed space, is f bounded?

Linear? (The bar denotes the complex conjugate.)

Since f is bounded and |f(x)| = |f(x)| because the norm of complex number a is defined by
Vvaa and the complex conjugate of @ is a. This implies that if |f(z)| < ¢z then |f(x)| < ¢|z|.
Thus, f is bounded.

It is not linear, because here the field is complex field. If it is linear, then for any a € C, we
need to have f(axz) = af(x). Since f is linear, suppose f(x) =i and f(iz) = if(z) = —1. Let a = i,

then f(ix) = f(ix) = —1, but if(x) = i(—i) = 1, thus f is not linear.

Problem 2.8-13. If Y is a subspace of a vector space X and f is a linear functional on X such
that f(Y') is not the whole scalar field of X, show that f(y) =0 for all y € Y.

Suppose f(y°) # 0 for some y° € Y, then suppose f(y°) = p # 0. Since f is a linear functional,
assume the scalar field of X is I, then f : X +— F. Since p € F and any nonzero element in a field
has inverse element, i.e., there exists p~!p = 1. Then for any a € F, there exists a scalar ap~! € F
such that f(ap~'y®) = ap=1f(y°) = a. Since Y is a subspace, ap~'y® € Y, and this implies that
f(Y) = F. Therefore, this contradiction shows that such y° does not exist, i.e., f(y) = 0 for all
yeyY.

Problem 2.8-14. Show that the norm || f|| of a bounded linear functional f # 0 on a normed space
X can be interpreted geometrically as the reciprocal of the distance d = inf{||z||x | f(z) = 1} of the
hyperplane H; = {z € X | f(x) = 1} from the orgin.

We need to show that

1
sup | f(2)] = —————
ol =1 S0t llellx



To achieve this, we first prove

1 1

inf Jlzllx s olx W
11 T (2 X

f(@)=1 fe=t

For any x € X such that f(z) =1, we have ||z||x > inf;)—1||z| x, this implies that
1 1

inf [lzflx — flz/lx
flz)=1

Since the LHS is an upper bound of RHS, it must be larger than or equal to least upper bound of

RHS, i.e.,
1

inf |z = op [z
inf ||z =1 |7
P X f(w)=1 X

For any € > 0, there exists z. with f(z.) = 1, and ||z.[|x — € < infy)=1||z| x, therefore,

1 1 1

" < S Sup ;——
inf [lz]x —¢ = |zllx 7 pw=1 [l7lx
fa)=1

Notice that infy)—1||z| x is positive fixed number, because if not, then there exists x,, such that
|lzn]|x — 0. Since f is bounded, so |f(z,)| < |[fllllzn]lx — 0, but f(z,) = 1 for all n. This is
contradiction, so when e is small enough, inf,)—1[|z||x — € will always be positive. Let € — 0, we

have
1

inf || ”X =0 = || ||X
mn X T x
f(z)=1 Flz)=1

Therefore, the first equality is proved. Now we consider to prove

sup |[f(x)] = sup

ll2]lx =1 f=1 1zl x

Notice that by Fact 1 in lecture, we have

sup [f(@) =sup N 1

] x=1 20 |zllx  @z0am0 1555 1x

We only need to prove the two sets are equal, i.e.,

{J@\ﬂx)#o}:{w(x):l}

For any elements in LHS, it has form x/f(x), and f(z/f(z)) = f(z)/f(z) = 1, thus it is in RHS.
Similarly, for any elements x in RHS, x = 2/ f(x), thus in LHS. Therefore, these two sets are equal,
then

sup |f(z)| = sup —p—— = sup ——
el x =1 r@#o I 5G5llx r@= 2llx

Therefore, combined (1) and (2), we can conclude the desired result.

Problem 2.8-15. Let f # 0 be a bounded linear functional on a real normed space X. Then for
any scalar ¢ we have a hyperplane H. = {x € X | f(z) = ¢}, and H, determines the two half spaces

X =A{z| f(z) <c¢} and Xep ={z| f(z) > ¢}



Show that the closed unit ball lies in X.; where ¢ = || f]|, but for no € > 0, the half space X.; with
¢ = ||f]| — € contains that ball.

To show that the closed unit ball lies in X, consider the closed unit ball B(0;1), then any
point z satisfying ||z||x < 1 is in this ball. If ||z||x < 1, then |f(z)| < | f|l|lz]|x = ¢, therefore, any
points satisfies ||z||x <1 are in X, and all points in B(0; 1) should satisfy ||z||x < 1, thus B(0;1)
is contained in X,;.

Since [|f[| = sup| =1 |f(2)|, for any € > 0, there exists x with [|z||x = 1 such that |f(z)| >
Il — € = c. However, such z is a point on the closed unit ball B(0;1), while it does not satisfy
f(z) < c. This implies that for any € > 0, the half space X.; with ¢ defined above cannot contain
B(0;1).

Problem 2.9-8. If Z is an (n — 1)-dimensional subspace of an n-dimensional vector space X, show
that Z is the null space of a suitable linear functional f on X, which is uniquely determined to

within a scalar multiple.

For (n — 1)-dimensional vector space Z, we can find a basis of it, i.e., {e1,...,e,_1}. By basis
extension theorem, we can extend this set of independent vectors to the basis of n-dimensional
vector space X, i.e., {e1,...,€,_1,u,}. Define a linear functional f such that f(e;) = 0 for all
i=1,...,n—1and f(u,) =1. Then, by linearity, all z € X is defined under f.

Now we check whether the null space of f is Z. Let f(z) = 0, then since z = aje; + ... +
ap_1€n_1 + bpuy,, we have f(x) = b, f(u,) = b, = 0. Therefore, z = aje; + ...+ a,_1€,_1, which
implies that x € Z. In this way, Z is the null space of f.

For the uniqueness, since Z is null space, for all z € Z, f(z) = 0. This implies that f(e;) =0
foralli=1,...,n— 1. If f(u,) = 0, then the null space of f is X with n-dimension rather than Z
with (n — 1)-dimension. Therefore, f(u,) = p # 0, and this implies that for all x € X, f(z) = b,p.
Notice that if we define another f(z) = b,p for all z € X, then f(z) = %f(x). Since p # 0, % is a

scalar, and f is defined uniquely up to a scalar multiple.

Problem 2.9-10. Let Z be a proper subspace of an n-dimensional vector space X, and let zy €
X — Z. Show that there is a linear functional f on X such that f(z¢) = 1 and f(z) = 0 for all
T € Z.

Since Z is a proper subspace of an n-dimensional vector space X, denote dim(Z) = p < n. By
choosing a basis of Z and extending it to a basis of X, we can use coordinates to express every vector
in Z, ie., (xM,... 2® 0,...,0) and arbitrary vector in X as (z(*),..., 2(™). Define a functional
f such that for all z € X,

+1 n n
by = @) @, e
o - n n
(xép+1),...,z(() ))-(J:((Jerl),...,xé ))T

Therefore, we can see that f(zo) = 1 and f(x) = 0 when = € Z. This functional is linear because



for scalar a,b and z,y € X, we have

(2, wl”) - ((am+ by) oD, (az + by)™)T

foolaz +by) = (xép+1), .. ,xg")) . (xép+1), e ,xén))T
@ 2l (a4 by @Y g™ 4 pp™)T
(a:épﬂ), e ,mén)) . (:r(()p+1), .. ,xén))T
@) @ et @) Yy )
(:U[()p+1), . ,xén)) . (;v(()pﬂ), . ,xé"))T (xépH), ... ,xé")) . (a:(()p+1), . ,xé"))T
= afuo(x) 4 bfaq ()

Therefore, we have construct a linear functional f,, that satisfies the required property.

Problem 2.9-11. If x and y are different vectors in a finite dimensional vector space X, show that
there is a linear functional f on X such that f(z) # f(y).

Since X is finite dimensional vector space, we can find a basis of X, i.e., {ey, ..., e,}. Therefore,
any vector can be written as linear combination of basis, i.e., u = a1e; + ..., a,e,, where a;’s are
scalar. After taking arbitrary distinct vectors z and y in X, we can define f(z) = (z —y)T2 for any
z € X. Here the inner product is defined in the same way as before, i.e., for u = a,e;+...+a,e, and
v=bie; + ...+ bye,, we have uTv =37 a;b;. We need to prove f(z) is linear and f(z) # f(y).

First, f(z) is linear, because for u,v € X, suppose © = x1e1+...+x,e, and y = yre1+. . .+ ynen,

we have

n n

flutv)=(z—y) (utov)= Z(xz —yi)(ai +b;) = Z(% —Yi)a; + Z(% —yi)b;

=(@—y)'ut(@—yTv=[f(u)+ f(v)

For any scalar pg, consider

n n

f(pou) = Z(% = ¥i)(poa;) = PZ(% —yi)ai = po(x — y)'u = pof(u)

i=1 i=1
Since f is linear, f(z) — f(y) = f(z —y) = ||z — y||3. Therefore, f(z) = f(y) if and only if z = y,
but x,y are distinct, so f(z) # f(y).

Problem 2.9-12. If f;,..., f, are linear functionals on an n-dimensional vector space X, where
p < n, show that there is a vector x # 0 in X such that fi(z) =0,..., f,() = 0. What consequences

does this result have with respect to linear equations?
Assume (ay,...,a,) asabasisof X. Forany z € X, x = zya;+...+x,a,. Forany k=1,...,p,

fk(x) = fk(‘rlal +...+ xnan) = xlfk(al) +...+ xnfk(an)
Therefore, we can obtain a linear system, Az = 0, where

filar) filaz) -+ filan)

A f2(-a1) fz(-a2) f2(fln)

folar)  fplaz) -+ fplan)



and ¢ = (z1,...,%,). By using Gaussian Elimination, the RREF of A has at most p pivots.
Therefore, the dimension of the null space is n — p > 1. This implies that there must be nontrivial
solution to linear system Ax = 0.

The consequence is that every homogeneous system of linear equations in which the number of

variables is larger than the number of the equations has a nontrivial solution.

Problem 2.10-4. Let X and Y be normed spaces and T;, : X — Y (n = 1,2,...) bounded linear
operators. Show that convergence T,, — T implies that for every e > 0 there is an N such that for

all n > N and all x in any given closed ball we have ||T,,z — Tz|| < e.

Fix the radius of the given closed ball as r > 0. Since T,, — T, for € > 0, there exists IV such
that for all n > N, we have ||T,, — T|| < ¢/r. For all x in the ball, ||z||x < r. Thus, we have for

[The = Ty = [[(Tn — T)ally < T, —Tlll=lx
For any € > 0, for n > N, we have
[Tz = Tally < [T —T||lz]x <e/r-r=e

Therefore, we obtain the desired result.

Problem 2.10-13. Let M # @ be any subset of a normed space X. The annihilator M* of M is
defined to be the set of all bounded linear functionals on X which are zero everywhere on M. Thus
M*? is a subset of the dual space X’ of X. Show that M* is a vector subspace of X’ and is closed.
What are X* and {0}*?

For any f,g € M® and scalar a, §, we have f(z) = g(z) = 0 for all z € M. Then for every
reM,

(af +Bg)(x) = af(x) + Bg(x) = a0+ B0 =0

Therefore, af + Bg € M*, so M* is a vector subspace of X'.

To prove M® is closed, for each z € X, we can define a set P, = {f € X’| f(z) = 0}. Then
we first prove each P, is closed. Consider any convergent sequence in P,, i.e., f, — f € X'. Since
fn — f, then for any fixed u € X, |f.(u) — f(u)| < ||fn — fll/Jullx — 0 as n — oo. This implies
fu(x) = f(z), but since f,(z) is constant zero, so f(r) = 0 meaning that f € P, and P, is closed.
Notice that M® = [, ., P, and any intersection of closed sets are closed, so M*® is closed.

It is easy to see X* is a singleton of zero function defined on X, i.e., a set only contains zero
vector of X'. For {0}, it is just X’ itself, because for all function in X', it must satisfy f(0) = 0.

Extra Problem 1. Let X be a compact metric space. Prove that X is separable, i.e., there exists
an at most countable subset of X that is dense in X. Hint: Vn > 1, since X is compact, there exists
finitely many balls of radius %, covering X. Denote the centers of these balls by z7, ..., x} . Define
Sp=A{at,...,2p }and S =,_; Sn.

For any integer n > 1, denote B(x; %) where x € X as the open ball centered at x with radius

%. Clearly, the collection of B(x; %) for all z € X forms an open cover of X. Since X is compact,



there exists an finite subcover B(z7; %), oo By %) that covers X, where k,, denote the number
of the open ball with radius +. Define S, = {zf,..., 2} } foralln > 1, and S = |J,_, S,. Since
S, is finite, so the countable union of finite set is at most countable. Therefore, we need to prove S
is dense in X.

Consider any point u in X \ S, we are going to prove it is a limit point of S. Take n = 1,
then since S; covers X, there exists y; € {1,...,k;} such that d(mél,u) < 1, where d is the metric
function defined on X. Similarly, for n = 2, we can find y, € {1,...,ky} such that d(z},,u) < %
Continue doing this, we can find a sequence ¥, such that d(:r;‘n,u) < % Therefore, there exists
sequence x,, € S such that z,, — w, so uis a limit point of S. In conclusion, S is at most countable

and dense in X, so X is separable.

Extra Problem 2. Let R™ (m > 1) be equipped with the standard norm

”(xlw‘~aan”Rm = x%‘%-..+'$%
Let A = (aij)nxm be a n x m real matrix. Define mapping 7" : R™ — R" by Tw = A(xy -+ z,) 7.

Prove that T is linear and

17| <

First, we prove T is linear. For z,y € R™, by the distributive law of matrix multiplication, we

have
T(z4y) = A(x1+y1, . o, T +ym) T = Alx+y) = Axt+-Ay = Az - 20) +AMWY1 - ym) T = Ta+Ty
For any scalar a € R, we have

T(ax) = Aaz; --- ax,,)" = A(ax) = Az = aA(xy -+ x,)" = aTx

Therefore, T' is obviously linear operator.

Now, we consider the norm of operator 7. Since for |z|gm = 1, we have

m m T
g = || AZ||gn = (Z 15T, - - .,Zankmk>
k=1 k=1

17|

R

3

- i(iajkxk>2< ] (iaﬁiﬂi)

j=1 \k=1 i=1 \k=1 =
n m m n

< Z(Zaﬁlwllﬁm>— Y e
j=1 \k=1 j=1 i=1

Therefore, if we take the supremum on both sides, we have

IT|| = sup [Tz

lzllzm =1

R <




Extra Problem 3. Let X = C[—1,1] and f € X* be the bounded functional defined by
0 1
(@) = / () dt — / () dt
-1 0
Let Y = N(f) (null space of f). Thus Y is a closed subspace of X (why?). Let u = u(t) = -2t =
f(u) = 2. Observe that infyey ||u — y|| = inf.cx f()=2|/2||. Prove that the latter inf is not attained

and so the former inf is also not attained.

First, Y is subspace. Take any scalar a,b and x,y € Y, then f(x) =0 and f(y) = 0. Consider

linear combination

flaz+b) = |

i ax(t) + by(t) dt — /1 ax(t) + by(t) dt

:a/_ola:(t)dt—i—b/_oly(t)dt—a/olx(t)dt—b/oly(t) dt

:a</_01$(t) dt—/olx(t) dt> —I—b(/_oly(t) dt—/oly(t) dt) =af(x)+bf(y) =0

Therefore, ax + by € Y, which means Y is a subspace of X. Then, to prove Y is closed, take a
convergent sequence z,(t) € Y where z,(t) — z(t) € X, we need to show f(z) = 0. This is true

because

flx)y=f ( lim xn) = /0 lim x,(t) dt — /01 lim x,(t) dt

n—oo 1 n—oo n—oo

Since norm on X is maximum norm, z,(¢) — z(t) uniformly, and we can exchange the order of

integral and limit, i.e.,

0 1 0 1
/ lim x,(t) dt —/ lim x,(t) dt = lim </ X, (t) dt —/ Zp(t) dt) = lim f(x,)

- 1

Therefore, f(z) = lim, o f(z,) =0, and x € Y, Y is closed.

Next, we need to prove for y(t), z(t) € C[—1, 1],

E={u(t) —y(t) |u(t) = =2t, f(y) = 0} ={2()) [ f(2) =2} = F

This is easy, since for any p(t) € E, p(t) = u(t) — y(t), so f(p) = f(u) — f(y) =2 -0 =2, and
p(t) € F. For any q(t) € F, since f(q) = 2, let y(t) = u(t) — q(t), then f(y) =0 and y € C[—1,1],
so q(t) € E. Thus, E = F.

Finally, we consider inf.cx f(.)=2|/2||. Since from Problem 2.8.3, we have |f(z)| < 2[/z||«, for

all z satisfying f(z) = 2, ||z]|oc > 1. Consider the sequence of function z(t) defined by

k .
a(t) = —525  ifteli,]]
k2 :
——Qi_lx ift e (—%,%)

It is easy to see that f(z) = 2 by calculating the integral in the definition of f. Notice that

|2]|oc = 322, so when k — 00, ||z]|sc — 1. This implies that inf.ecx,¢(.)=2| 2|| = 1.

However, there does not exist z(t) € C[—1, 1] such that f(z) =2 and ||2]| = 1. Since
0 0 0
’/ 2(t) dt’ < / |2(t)||oo dt =1 => z(t) dt € [-1,1]
—1 —1 -1

9



Similarly, we have fol x(t) dt € [-1,1]. However, f(z) = 2 implies that f: 2(t) dt = 1 and
fol z(t) dt = —1. From ||z|| = 1 we have |2(t)| < 1 for all ¢ € [—1, 1], and combined with ffl z(t) dt =
1, we can conclude that z(t) = 1 almost everywhere on (—1,0). By continuity of z(¢), z(t) = 1 on
(—1,0). Similarly from fol z(t) dt = —1 we can imply that z(¢) = —1 on (0, 1). This is a contradiction
since z(¢) has jump discontinuity at 0, but we assume z(t) € C[—1,1]. Therefore, ||z|| = 1 can not

be attained, ||z|| can be arbitrarily closed to 1 but must be strictly larger than 1.
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