MAT4010：Functional Analysis
 Homework 3

李肖鹏（116010114）
Due date：Sept．24， 2019
Problem 2．10－8．Show that the dual space of the space $c_{0}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right) \mid x_{n} \rightarrow 0\right.$ ，as $n \rightarrow$ $\infty\}$ is l^{1} ．Also prove that c_{0} is Banach under the norm of l^{∞} ，i．e．，$\left\|\left(x_{1}, \ldots, x_{n}, \ldots\right)\right\|=\sup _{n \geq 1}\left|x_{n}\right|$ ．

We first prove that for all $x=\left(x_{1}, \ldots, x_{n}, \ldots\right) \in c_{0}$ ，if $e_{i} \in c_{0}$ are standard basis，then $\sum_{i=1}^{n} x_{i} e_{i} \rightarrow x$ as $n \rightarrow \infty$ under l^{∞} norm．This is trivial because

$$
\lim _{n \rightarrow \infty}\left|x_{n}\right|=0 \Longrightarrow \lim _{n \rightarrow \infty} \sup _{m \geq n}\left|x_{m}\right|=0 \Longrightarrow\left\|x-\sum_{i=1}^{n} x_{i} e_{i}\right\|_{\infty}=\sup _{m \geq n}\left|x_{m}\right| \rightarrow 0
$$

This implies that for all $f \in\left(c_{0}\right)^{\prime}$ ，we have

$$
f(x)=f\left(\lim _{n \rightarrow \infty} \sum_{i=1}^{n} x_{i} e_{i}\right)=\lim _{n \rightarrow \infty} f\left(\sum_{i=1}^{n} x_{i} e_{i}\right)=\sum_{i=1}^{\infty} x_{i} f\left(e_{i}\right)
$$

Then we need to prove $\left(f\left(e_{1}\right), \ldots, f\left(e_{n}\right), \ldots\right) \in l^{1}$ ．Let $z^{(n)}=\left(y_{1}, \ldots, y_{n}, 0,0, \ldots\right)$ ，where $y_{n}=\frac{\left|f\left(e_{n}\right)\right|}{f\left(e_{n}\right)}$ if $f\left(e_{n}\right) \neq 0 ; y_{n}=0$ if $f\left(e_{n}\right)=0$ ．Clearly all $z^{(n)} \in c_{0}$ ，so we consider

$$
\left|f\left(z^{(n)}\right)\right|=\left|\sum_{i=1}^{n} y_{i} f\left(e_{i}\right)\right|=\sum_{i=1}^{n}\left|f\left(e_{i}\right)\right| \leq\|f\| \max _{i=1, \ldots, n}\left|y_{n}\right| \leq\|f\|
$$

because the maximum of $\left|y_{n}\right|$ can only be 0 or 1 ．Consider $\sum_{i=1}^{n}\left|f\left(e_{i}\right)\right| \leq\|f\|$ ，since it is satisifed for all n ，so take $n \rightarrow \infty$ ，we have

$$
\sum_{i=1}^{\infty}\left|f\left(e_{i}\right)\right| \leq\|f\| \Longrightarrow\left(f\left(e_{1}\right), \ldots, f\left(e_{n}\right), \ldots\right) \in l^{1}
$$

Now we can define $T:\left(c_{0}\right)^{\prime} \mapsto l^{1}$ as $T f=\left(f\left(e_{1}\right), \ldots, f\left(e_{n}\right), \ldots\right)$ ．First，we prove T is linear．For all scalar a, b and $f, g \in\left(c_{0}\right)^{\prime}$ ，we have

$$
\begin{aligned}
T(a f+b g) & =\left((a f+b g)\left(e_{1}\right), \ldots,(a f+b g)\left(e_{n}\right), \ldots\right) \\
& =\left(a f\left(e_{1}\right)+b g\left(e_{1}\right), \ldots, a f\left(e_{n}\right)+b g\left(e_{n}\right), \ldots\right) \\
& =a\left(f\left(e_{1}\right), \ldots, f\left(e_{n}\right), \ldots\right)+b\left(g\left(e_{1}\right), \ldots, g\left(e_{n}\right), \ldots\right) \\
& =a T f+b T g
\end{aligned}
$$

So T is linear．
Then we prove T is bijective．For injectivity，we only need to prove the kernel of T is the zero map．If $T f=(0, \ldots, 0, \ldots)$ ，then $f\left(e_{i}\right)=0$ for all i ．This indeed means f is zero maps on c_{0} ．For
surjectivity, we take any $y=\left(y_{1}, \ldots, y_{n}, \ldots\right) \in l^{1}$, then define linear mapping f so that $f\left(e_{i}\right)=y_{i}$, then such f is in $\left(c_{0}\right)^{\prime}$, because for all $x=\left(x_{1}, \ldots, x_{n}, \ldots\right) \in c_{0}$, (boundedness)

$$
|f(x)|=\left|\sum_{i=1}^{\infty} x_{i} y_{i}\right| \leq \sup _{i}\left|x_{i}\right| \sum_{i=1}^{\infty}\left|y_{i}\right|=\|x\|_{\infty}\|y\|_{l^{1}}
$$

Finally, we need to prove the isometry of $\left(c_{0}\right)^{\prime}$ and l^{1}. Since we have already had for all $f \in\left(c_{0}\right)^{\prime}$,

$$
\sum_{i=1}^{\infty}\left|f\left(e_{i}\right)\right| \leq\|f\|
$$

However, consider the function f defined above, since $|f(x)| \leq\|x\|_{\infty}\|y\|_{l^{1}}$, take the supremum over $\|x\|_{\infty}=1$ yields

$$
\|f\| \leq\|y\|_{l^{1}}
$$

This means that $\|f\|=\|y\|_{l^{1}}$. Therefore, the dual space of c_{0} is indeed l^{1}.
To prove c_{0} is Banach under l^{∞} norm, we only need to prove it is a closed subspace of l^{∞}-space. This is because we have known l^{∞}-space is Banach, and any closed subspace of Banach space is also Bananch. According to the question, c_{0} is a vector space, and it is obviously a subset of l^{∞} because for any element x in $c_{0}, x_{n} \rightarrow 0$, thus $\left|x_{n}\right|$ must be bounded above, and thus in l^{∞}. Therefore, the only thing we need to show is that c_{0} is closed in l^{∞}.

Suppose there exists sequence $y^{(n)}=\left(y_{1}^{(n)}, \ldots, y_{k}^{(n)}, \ldots\right) \in c_{0}$ such that $y^{(n)} \rightarrow x$ where $x=$ $\left(x_{1}, \ldots, x_{k}, \ldots\right) \notin c_{0}$. Then there exists some $\epsilon_{0}>0$ such that for all $N \in \mathbb{R}$ and $k \geq N$, we have $\left|x_{k}\right| \geq \epsilon_{0}$. Since $y^{(n)} \rightarrow x$, there exists N_{2}, such that for $n \geq N_{2},\left|y_{k}^{(n)}-x_{k}\right| \leq \epsilon_{0} / 2$ for all k. This implies that for $k \geq N$ and $n \geq N_{2}$, we have

$$
\left|y_{k}^{(n)}\right| \geq\left|x_{k}\right|-\left|y_{k}^{(n)}-x_{k}\right| \geq \frac{\epsilon_{0}}{2}
$$

This impiles that $y_{k}^{(n)}$ will not converge to zero as $k \rightarrow \infty$, i.e., $y^{(n)} \notin c_{0}$ for $n \geq N_{2}$. Contradiction shows that such $y^{(n)}$ and x doesn't exist, which means no limit point of c_{0} can exist outside c_{0}, so it is closed.

Problem 3.1-4. If an inner product space X is real, show that the condition $\|x\|=\|y\|$ implies $\langle x+y, x-y\rangle=0$. What does this mean geometrically if $X=\mathbb{R}^{2}$? What does the condition imply if X is complex?

If X is real, then $\langle x, y\rangle=\langle y, x\rangle$. Also, $\|x\|=\|y\|$ implies that $\langle x, x\rangle=\langle y, y\rangle$. Consider

$$
\begin{aligned}
\langle x+y, x-y\rangle & =\langle x, x-y\rangle+\langle y, x-y\rangle \\
& =\langle x, x\rangle-\langle x, y\rangle+\langle y, x\rangle-\langle y, y\rangle \\
& =\langle x, x\rangle-\langle y, y\rangle=0
\end{aligned}
$$

Therefore, $\|x\|=\|y\|$ implies $\langle x+y, x-y\rangle=0$.
If $X=\mathbb{R}^{2}$, then this just implies that the two diagonals of any diamond are perpendicular. If X is complex, then we don't have $\langle x, y\rangle=\langle y, x\rangle$. Instead, $\|x\|=\|y\|$ implies that

$$
\langle x+y, x-y\rangle=-2 i \operatorname{Im}\{\langle x, y\rangle\}, \quad \operatorname{Re}\{\langle x+y, x-y\rangle\}=0
$$

Furthermore, we can say

$$
\langle x+y, x-y\rangle+\langle x-y, x+y\rangle=0
$$

Problem 3.1-8. Prove that for a real inner product space we have

$$
\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)
$$

Note that for real inner product space, $\langle x, y\rangle=\langle y, x\rangle$. Therefore, by linearity, we have

$$
\begin{aligned}
\|x+y\|^{2}=\langle x+y, x+y\rangle & =\langle x, x+y\rangle+\langle y, x+y\rangle \\
& =\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle \\
& =\langle x, x\rangle+2\langle x, y\rangle+\langle y, y\rangle
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\|x-y\|^{2}=\langle x-y, x-y\rangle & =\langle x, x-y\rangle-\langle y, x-y\rangle \\
& =\langle x, x\rangle-\langle x, y\rangle-\langle y, x\rangle+\langle y, y\rangle \\
& =\langle x, x\rangle-2\langle x, y\rangle+\langle y, y\rangle
\end{aligned}
$$

Therefore,

$$
\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)=\frac{4\langle x, y\rangle}{4}=\langle x, y\rangle
$$

Problem 3.1-9. Prove that for a complex inner product space we have

$$
\begin{aligned}
\operatorname{Re}\langle x, y\rangle & =\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right) \\
\operatorname{Im}\langle x, y\rangle & =\frac{1}{4}\left(\|x+i y\|^{2}-\|x-i y\|^{2}\right)
\end{aligned}
$$

For complex inner product space, $\langle x, y\rangle=\overline{\langle y, x\rangle},\langle x, y\rangle+\overline{\langle y, x\rangle}=2 \operatorname{Re}\langle y, x\rangle$, and $\langle x, y\rangle-\overline{\langle y, x\rangle}=$ $2 i \operatorname{Im}\langle y, x\rangle$. Therefore, by linearity, we have

$$
\begin{aligned}
\|x+y\|^{2}=\langle x+y, x+y\rangle & =\langle x, x+y\rangle+\langle y, x+y\rangle \\
& =\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle \\
& =\langle x, x\rangle+2 \operatorname{Re}\langle x, y\rangle+\langle y, y\rangle
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\|x-y\|^{2}=\langle x-y, x-y\rangle & =\langle x, x-y\rangle-\langle y, x-y\rangle \\
& =\langle x, x\rangle-\langle x, y\rangle-\langle y, x\rangle+\langle y, y\rangle \\
& =\langle x, x\rangle-2 \operatorname{Re}\langle x, y\rangle+\langle y, y\rangle
\end{aligned}
$$

Therefore,

$$
\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)=\frac{4 \operatorname{Re}\langle x, y\rangle}{4}=\operatorname{Re}\langle x, y\rangle
$$

Also consider

$$
\begin{aligned}
\|x+i y\|^{2}=\langle x+i y, x+i y\rangle & =\langle x, x+i y\rangle+i\langle y, x+i y\rangle \\
& =\langle x, x\rangle-i\langle x, y\rangle+i\langle y, x\rangle+i \cdot(-i)\langle y, y\rangle \\
& =\langle x, x\rangle-i \cdot 2 i \operatorname{Im}\langle x, y\rangle+\langle y, y\rangle \\
& =\langle x, x\rangle+2 \operatorname{Im}\langle x, y\rangle+\langle y, y\rangle
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\|x-i y\|^{2}=\langle x-i y, x-i y\rangle & =\langle x, x-i y\rangle-i\langle y, x-i y\rangle \\
& =\langle x, x\rangle+i\langle x, y\rangle-i\langle y, x\rangle+(-i) \cdot i\langle y, y\rangle \\
& =\langle x, x\rangle+i \cdot 2 i \operatorname{Im}\langle x, y\rangle+\langle y, y\rangle \\
& =\langle x, x\rangle-2 \operatorname{Im}\langle x, y\rangle+\langle y, y\rangle
\end{aligned}
$$

Therefore,

$$
\frac{1}{4}\left(\|x+i y\|^{2}-\|x-i y\|^{2}\right)=\frac{4 \operatorname{Im}\langle x, y\rangle}{4}=\operatorname{Im}\langle x, y\rangle
$$

Problem 3.2-3. Let X be the inner product space consisting of the polynomial $x=0$ and all real polynomials in t, of degree not exceeding 2 , considered for real $t \in[a, b]$, with inner product $\langle x, y\rangle=\int_{a}^{b} x(t) y(t) d t$. Show that X is complete. Let Y consist of all $x \in X$ such that $x(a)=0$. Is Y a subspace of X ? Do all $x \in X$ of degree 2 form a subspace of X ?

First, it is easy to see that $\left\{1, t, t^{2}\right\}$ forms a basis of X. Also, $1, t, t^{2} \in L^{2}(a, b)$ and X is a vector space, so X is a subspace of $L^{2}(a, b)$ with dimension 3 . Since $L^{2}(a, b)$ is a normed space with usual norm, and any finite dimensional subspace of a normed space with the same norm must be closed, X is closed under norm $\|x\|=\sqrt{\langle x, x\rangle}$ in $L^{2}(a, b)$. Now consider $L^{2}(a, b)$ equipped with the same inner product $\langle x, y\rangle$ in the question, since it is a Hilbert space, and thus complete, its closed subspace X must be also complete.
Y is a subspace of X, because for all scalar b, c and $y_{1}(t), y_{2}(t) \in Y$, we have $y_{1}(a)=y_{2}(a)=0$. Consider

$$
\left(b y_{1}+c y_{2}\right)(a)=b y_{1}(a)+c y_{2}(a)=b \cdot 0+c \cdot 0=0
$$

we can conclude that $b y_{1}(t)+c y_{2}(t)$ is in Y, thus Y is a subspace of X. Finally, all $x \in X$ of degree 2 cannot form a subspace of X, because the zero vector of X, i.e., zero polynomial is not of degree two, so all $x \in X$ of degree 2 does not contain zero vector and cannot form a vector space.

Problem 3.2-5. Show that for a sequence $\left(x_{n}\right)$ in an inner product space the conditions $\left\|x_{n}\right\| \rightarrow\|x\|$ and $\left\langle x_{n}, x\right\rangle \rightarrow\langle x, x\rangle$ imply convergence $x_{n} \rightarrow x$.

Notice that

$$
\begin{aligned}
\left|\left\langle x_{n}-x, x_{n}-x\right\rangle\right| & =\left|\left\langle x_{n}, x_{n}-x\right\rangle-\left\langle x, x_{n}-x\right\rangle\right| \\
& =\left|\left\langle x_{n}, x_{n}\right\rangle-\left\langle x_{n}, x\right\rangle-\left\langle x, x_{n}\right\rangle+\langle x, x\rangle\right| \\
& =\left|\left(\left\langle x_{n}, x_{n}\right\rangle-\langle x, x\rangle\right)-\left(\left\langle x_{n}, x\right\rangle-\langle x, x\rangle\right)-\left(\left\langle x, x_{n}\right\rangle-\langle x, x\rangle\right)\right| \\
& \leq\left|\left\langle x_{n}, x_{n}\right\rangle-\langle x, x\rangle\right|+\left|\left\langle x_{n}, x\right\rangle-\langle x, x\rangle\right|+\left|\left\langle x, x_{n}\right\rangle-\langle x, x\rangle\right|
\end{aligned}
$$

Since $\left\|x_{n}\right\| \rightarrow\|x\|$, we have $\left\langle x_{n}, x_{n}\right\rangle \rightarrow\langle x, x\rangle$. Also, $\left\langle x_{n}, x\right\rangle-\langle x, x\rangle \rightarrow 0$. Furthermore,

$$
\left\langle x_{n}, x\right\rangle-\langle x, x\rangle=\overline{\left\langle x, x_{n}\right\rangle-\langle x, x\rangle} \Longrightarrow\left|\left\langle x_{n}, x\right\rangle-\langle x, x\rangle\right|=\left|\left\langle x, x_{n}\right\rangle-\langle x, x\rangle\right|
$$

Therefore,

$$
\left|\left\langle x_{n}-x, x_{n}-x\right\rangle\right| \leq\left|\left\langle x_{n}, x_{n}\right\rangle-\langle x, x\rangle\right|+2\left|\left\langle x_{n}, x\right\rangle-\langle x, x\rangle\right| \rightarrow 0+2 \cdot 0=0
$$

We can conclude that $\left\|x_{n}-x\right\| \rightarrow 0$, thus $x_{n} \rightarrow x$.

Problem 3.2-7. Show that in an inner product space, $x \perp y$ if and only if we have $\|x+\alpha y\|=$ $\|x-\alpha y\|$ for all scalars α.

Consider the quantity

$$
\begin{aligned}
\|x+\alpha y\|^{2}-\|x-\alpha y\|^{2} & =\langle x+\alpha y, x+\alpha y\rangle-\langle x-\alpha y, x-\alpha y\rangle \\
& =\langle x, x+\alpha y\rangle+\alpha\langle y, x+\alpha y\rangle-[\langle x, x-\alpha y\rangle-\alpha\langle y, x-\alpha y\rangle] \\
& =2 \bar{\alpha}\langle x, y\rangle+2 \alpha\langle y, x\rangle \\
& =4 \operatorname{Re}\{\bar{\alpha}\langle x, y\rangle\}
\end{aligned}
$$

If $x \perp y$, then $\langle x, y\rangle=0$, thus $4 \operatorname{Re}\{\bar{\alpha}\langle x, y\rangle\}=0$. This implies that $\|x+\alpha y\|^{2}=\|x-\alpha y\|^{2}$, so $\|x+\alpha y\|=\|x-\alpha y\|$ for all α.

Conversely, if $\operatorname{Re}\{\bar{\alpha}\langle x, y\rangle\}=0$ for all α, then take $\alpha=1$, then $\operatorname{Re}\{\langle x, y\rangle\}=0$ implies that $\langle x, y\rangle=b i$. However, if we take $\alpha=i$, then $\operatorname{Re}\{\bar{\alpha}\langle x, y\rangle\}=b=0$. Thus, $\langle x, y\rangle=0$, and $x \perp y$.

Problem 3.2-8. Show that in an inner product space, $x \perp y$ if and only if $\|x+\alpha y\| \geq\|x\|$ for all scalars α.

Compute the quantity

$$
\begin{aligned}
\|x+\alpha y\|^{2}-\|x\|^{2} & =\langle x+\alpha y, x+\alpha y\rangle-\langle x, x\rangle \\
& =\langle x, x+\alpha y\rangle+\alpha\langle y, x+\alpha y\rangle-\langle x, x\rangle \\
& =\bar{\alpha}\langle x, y\rangle+\alpha\langle y, x\rangle+|\alpha|^{2}\langle y, y\rangle
\end{aligned}
$$

If $x \perp y,\langle x, y\rangle=\langle y, x\rangle=0$. This implies that for all α,

$$
\|x+\alpha y\|-\|x\|=|\alpha|^{2}\langle y, y\rangle \geq 0
$$

Conversely, since for all α,

$$
\bar{\alpha}\langle x, y\rangle+\alpha\langle y, x\rangle+|\alpha|^{2}\langle y, y\rangle=2 \operatorname{Re}\{\bar{\alpha}\langle x, y\rangle\}+|\alpha|^{2}\langle y, y\rangle \geq 0
$$

Take $\alpha= \pm \frac{1}{k}$ for all $k \in \mathbb{N}^{+}$, we have

$$
\operatorname{Re}\{\langle x, y\rangle\} \geq-\frac{1}{2 k}\langle y, y\rangle, \quad \operatorname{Re}\{\langle x, y\rangle\} \leq \frac{1}{2 k}\langle y, y\rangle
$$

This implies that $|\operatorname{Re}\{\langle x, y\rangle\}| \leq \frac{1}{2 k}\langle y, y\rangle$ for all k. Take $k \rightarrow \infty$, we conclude that $\operatorname{Re}\{\langle x, y\rangle\}=0$. Therefore, $\langle x, y\rangle=b i$ for some real number b.

Similarly, take $\alpha= \pm \frac{i}{k}$ for all $k \in \mathbb{N}^{+}$, we have

$$
b \geq-\frac{1}{2 k}\langle y, y\rangle, \quad b \leq \frac{1}{2 k}\langle y, y\rangle
$$

This implies that $|b| \leq \frac{1}{2 k}\langle y, y\rangle$ for all k. Take $k \rightarrow \infty$, we conclude that $b=0$. Therefore, $\langle x, y\rangle=0$, and $x \perp y$.

Extra Problem 1. Let X be a normed space over \mathbb{C}, with its norm satisfying the parallelogram rule, i.e., for all $x, y \in X$,

$$
2\left(\|x\|^{2}+\|y\|^{2}\right)=\|x-y\|^{2}+\|x+y\|^{2}
$$

Prove that you can introduce an inner product (x, y) such that $\langle x, x\rangle=\|x\|^{2}$, for all $x \in X$.
We can define for all $x, y \in X$,

$$
\operatorname{Re}\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right), \quad \operatorname{Im}\langle x, y\rangle=\frac{1}{4}\left(\|x+i y\|^{2}-\|x-i y\|^{2}\right)
$$

Then by homogeneity of norm, we can easily check $\operatorname{Re}\langle x, x\rangle=\|x\|^{2}$. For the imaginary part,

$$
\begin{aligned}
\operatorname{Im}\langle x, x\rangle & =\frac{1}{4}\left(\|x+i x\|^{2}-\|x-i x\|^{2}\right)=\frac{1}{4}\left(\|(1+i) x\|^{2}-\|(1-i) x\|^{2}\right) \\
& =\frac{1}{4}\left(|1+i|^{2}\|x\|^{2}-|1-i|^{2}\|x\|^{2}\right)=\frac{1}{4}\left(4\|x\|^{2}-4\|x\|^{2}\right)=0
\end{aligned}
$$

This implies that $\langle x, x\rangle=\|x\|^{2}$, for all $x \in X$.
Then we only need to check the inner product we defined above satisfies all of the defining properties of any inner product. Since $\langle x, x\rangle=\|x\|^{2}$, we have $\langle x, x\rangle \geq 0$. For all $x \neq 0,\|x\| \neq 0$, so $\langle x, x\rangle>0$.

To prove $\langle x, y\rangle=\overline{\langle y, x\rangle}$, we only need to prove $\operatorname{Re}\langle x, y\rangle=\operatorname{Re}\langle y, x\rangle$ and $\operatorname{Im}\langle x, y\rangle=-\operatorname{Im}\langle y, x\rangle$. Consider the real part, since $x+y=y+x,\|x+y\|=\|y+x\|$; also since $x-y=-(y-x)$, we have

$$
\|x-y\|=\|-(y-x)\|=|-1|\|y-x\|=\|y-x\|
$$

This implies that

$$
\operatorname{Re}\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)=\frac{1}{4}\left(\|y+x\|^{2}-\|y-x\|^{2}\right)=\operatorname{Re}\langle y, x\rangle
$$

For the imaginary part,

$$
\begin{aligned}
\operatorname{Im}\langle x, y\rangle & =\frac{1}{4}\left(\|x+i y\|^{2}-\|x-i y\|^{2}\right)=\frac{1}{4}\left(\|i(y-i x)\|^{2}-\|(-i)(y+i x)\|^{2}\right) \\
& =\frac{1}{4}\left(|i|\|y-i x\|^{2}-\mid-i\|y+i x\|^{2}\right)=\frac{1}{4}\left(\|y-i x\|^{2}-\|y+i x\|^{2}\right) \\
& =-\frac{1}{4}\left(\|y+i x\|^{2}-\|y-i x\|^{2}\right)=-\operatorname{Im}\langle y, x\rangle
\end{aligned}
$$

Thus, we conclude that $\langle x, y\rangle=\overline{\langle y, x\rangle}$.
To prove the linearity, firstly, by definition we can observe that as long as $x=0$ or $y=0$,

$$
\operatorname{Re}\langle 0, y\rangle=\operatorname{Re}\langle x, 0\rangle=\operatorname{Im}\langle 0, y\rangle=\operatorname{Im}\langle x, 0\rangle=0
$$

Consider arbitrary $x, y, z \in X$, and apply parallelogram rule, we have

$$
\begin{aligned}
8(\operatorname{Re}\langle x, z\rangle+\operatorname{Re}\langle y, z\rangle) & =2\|x+z\|^{2}-2\|x-z\|^{2}+2\|y+z\|^{2}-2\|y-z\|^{2} \\
& =\|x+y+2 z\|^{2}-\|x+y-2 z\|^{2}=4 \operatorname{Re}\langle x+y, 2 z\rangle
\end{aligned}
$$

Let $y=0$, then we have $2 \operatorname{Re}\langle x, z\rangle=\operatorname{Re}\langle x, 2 z\rangle$ for all $x, z \in X$. This implies that

$$
2(\operatorname{Re}\langle x, z\rangle+\operatorname{Re}\langle y, z\rangle)=\operatorname{Re}\langle x, 2 z\rangle+\operatorname{Re}\langle y, 2 z\rangle=\operatorname{Re}\langle x+y, 2 z\rangle
$$

This simply means for all $x, y, z \in X$, we have $\operatorname{Re}\langle x, z\rangle+\operatorname{Re}\langle y, z\rangle=\operatorname{Re}\langle x+y, z\rangle$. Similarly, we can prove $\operatorname{Im}\langle x, z\rangle+\operatorname{Im}\langle y, z\rangle=\operatorname{Im}\langle x+y, z\rangle$. This implies that $\langle x, z\rangle+\langle y, z\rangle=\langle x+y, z\rangle$.

Finally we need to prove $\langle a x, y\rangle=a\langle x, y\rangle$ for any $a \in \mathbb{C}$. Since we have additive property now, we have

$$
2\langle x, y\rangle=\langle x, y\rangle+\langle x, y\rangle=\langle 2 x, y\rangle
$$

Hence by induction, we can derive that for all $n \in \mathbb{N}$, we have $n\langle x, y\rangle=\langle n x, y\rangle$. Furthermore, for all $m \in \mathbb{N}^{+}$, regard x / m as x above, we have

$$
\frac{n}{m}\langle x, y\rangle=\frac{n}{m} m\left\langle\frac{x}{m}, y\right\rangle=n\left\langle\frac{x}{m}, y\right\rangle=\left\langle\frac{n}{m} x, y\right\rangle
$$

This implies that for $q \in \mathbb{Q}^{+}$, we have $q\langle x, y\rangle=\langle q x, y\rangle$. Since every positive real number $r \in \mathbb{R}^{+}$ is a limit point of positive rational number set, for each r, we have $q_{n} \in \mathbb{Q}^{+}$such that $q_{n} \rightarrow r$. By continuity of norm, we have the continuity of inner product defined above, i.e., $\left\langle q_{n} x, y\right\rangle \rightarrow\langle r x, y\rangle$ as $q_{n} \rightarrow r$. Therefore,

$$
r\langle x, y\rangle=\lim _{n \rightarrow \infty} q_{n}\langle x, y\rangle=\lim _{n \rightarrow \infty}\left\langle q_{n} x, y\right\rangle=\left\langle\lim _{n \rightarrow \infty} q_{n} x, y\right\rangle=\langle r x, y\rangle
$$

Now we have for $r \in \mathbb{R}^{+}, r\langle x, y\rangle=\langle r x, y\rangle$. For $r=0$, this is trivially correct. Recall the definition again, it is trivial that $\operatorname{Re}\langle-x, y\rangle=-\operatorname{Re}\langle x, y\rangle$ by taking out a factor -1 . Similarly, for imaginary part, take out a factor -1 , and we have $\operatorname{Im}\langle-x, y\rangle=-\operatorname{Im}\langle x, y\rangle$. Thus for all x, y, we have $\langle-x, y\rangle=$ $-\langle x, y\rangle$. For all $r<0,-r>0$, thus $(-r)\langle x, y\rangle=\langle(-r) x, y\rangle=-\langle r x, y\rangle$ implies that $r\langle x, y\rangle=\langle r x, y\rangle$. Therefore, for all real number $r \in \mathbb{R}, r\langle x, y\rangle=\langle r x, y\rangle$.

For $a \in \mathbb{C}$, we only need to prove $i\langle x, y\rangle=\langle i x, y\rangle$, then the same conclusion will hold for arbitrary complex number a. Consider

$$
4 \operatorname{Re}\langle i x, y\rangle=\|i x+y\|^{2}-\|i x-y\|^{2}=\|x-i y\|^{2}-\|x+i y\|^{2}=-4 \operatorname{Im}\langle x, y\rangle
$$

Similary, we will obtain $\operatorname{Im}\langle i x, y\rangle=\operatorname{Re}\langle x, y\rangle$. Therefore,

$$
i\langle x, y\rangle=-\operatorname{Im}\langle x, y\rangle+i \operatorname{Re}\langle x, y\rangle=\operatorname{Re}\langle i x, y\rangle+i \operatorname{Im}\langle i x, y\rangle=\langle i x, y\rangle
$$

Lastly, suppose $a=r_{1}+i r_{2}$, we have

$$
\begin{aligned}
a\langle x, y\rangle & =r_{1}\langle x, y\rangle+r_{2} i\langle x, y\rangle=\left\langle r_{1} x, y\right\rangle+r_{2}\langle i x, y\rangle \\
& =\left\langle r_{1} x, y\right\rangle+\left\langle r_{2} i x, y\right\rangle=\left\langle\left(r_{1}+i r_{2}\right) x, y\right\rangle=\langle a x, y\rangle
\end{aligned}
$$

Therefore, for all $a \in \mathbb{C}$, we have $a\langle x, y\rangle=\langle a x, y\rangle$.

Extra Problem 2. Let X be a pre-Hilbert space over \mathbb{C}. Prove that for all $x \in X$,

$$
\|x\|=\sup _{y \in X, y \neq 0} \frac{|\langle x, y\rangle|}{\|y\|}=\sup _{y \in X, y \neq 0} \frac{\operatorname{Re}\langle x, y\rangle}{\|y\|}=\sup _{y \in X, y \neq 0} \frac{\operatorname{Im}\langle x, y\rangle}{\|y\|}
$$

First we consider if $x=0$, then all of the above are zero, so the equalities hold trivially. Thus, we only consider $x \neq 0$. By Cauchy Schwarz inequality, we have $|\langle x, y\rangle| \leq\|x\|\|y\|$. Since this is true for all $y \neq 0$, thus, $\|x\| \geq \frac{|\langle x, y\rangle|}{\|y\|}$. Since $\|x\|$ is an upper bound, so it is larger than or equal to the least upper bound, i.e.,

$$
\|x\| \geq \sup _{y \in X, y \neq 0} \frac{|\langle x, y\rangle|}{\|y\|}
$$

However, if we take $y=x$, since $x \neq 0$, so is y, thus,

$$
\sup _{y \in X, y \neq 0} \frac{|\langle x, y\rangle|}{\|y\|} \geq \frac{|\langle x, x\rangle|}{\|x\|}=\|x\|
$$

Therefore, we conclude that

$$
\|x\|=\sup _{y \in X, y \neq 0} \frac{|\langle x, y\rangle|}{\|y\|}
$$

Similarly, since $\operatorname{Re}\{\langle x, y\rangle\} \leq|\langle x, y\rangle| \leq\|x\|\|y\|$, we have $\|x\| \geq \frac{\operatorname{Re}\{\langle x, y\rangle\}}{\|y\|}$ if $y \neq 0$. Therefore, by the same argument, we obtain

$$
\|x\| \geq \sup _{y \in X, y \neq 0} \frac{\operatorname{Re}\langle x, y\rangle}{\|y\|}
$$

Take $y=x \neq 0$ again, we have

$$
\sup _{y \in X, y \neq 0} \frac{\operatorname{Re}\langle x, y\rangle}{\|y\|} \geq \frac{\operatorname{Re}\langle x, x\rangle}{\|x\|}=\|x\|
$$

Therefore, we have

$$
\|x\|=\sup _{y \in X, y \neq 0} \frac{\operatorname{Re}\langle x, y\rangle}{\|y\|}
$$

Again, since $\operatorname{Im}\{\langle x, y\rangle\} \leq|\langle x, y\rangle| \leq\|x\|\|y\|$, we have $\|x\| \geq \frac{\operatorname{Im}\{\langle x, y\rangle\}}{\|y\|}$ if $y \neq 0$. Therefore, by the same argument, we obtain

$$
\|x\| \geq \sup _{y \in X, y \neq 0} \frac{\operatorname{Im}\langle x, y\rangle}{\|y\|}
$$

This time take $y=-i x \neq 0$, we have

$$
\sup _{y \in X, y \neq 0} \frac{\operatorname{Im}\langle x, y\rangle}{\|y\|} \geq \frac{\operatorname{Im}\langle x,-i x\rangle}{\|-i x\|}=\frac{\operatorname{Im}\left\{i\|x\|^{2}\right\}}{\|x\|}=\|x\|
$$

Therefore, we have

$$
\|x\|=\sup _{y \in X, y \neq 0} \frac{\operatorname{Im}\langle x, y\rangle}{\|y\|}
$$

In conclusion, we proved that for all $x \in X$,

$$
\|x\|=\sup _{y \in X, y \neq 0} \frac{|\langle x, y\rangle|}{\|y\|}=\sup _{y \in X, y \neq 0} \frac{\operatorname{Re}\langle x, y\rangle}{\|y\|}=\sup _{y \in X, y \neq 0} \frac{\operatorname{Im}\langle x, y\rangle}{\|y\|}
$$

Extra Problem 3. Let $L^{p}(a, b)$ be equipped with the usual norm, where $p \neq 2$ and $1 \leq p \leq \infty$. Prove that $L^{p}(a, b)$ is not pre-Hilbert. Hint: construct examples of $f, g \in L^{p}(a, b)$ such that the parallelogram rule is violated.

Consider the function defined on (a, b),

$$
f(x)=I_{\left(a, \frac{a+b}{2}\right)}(x), \quad g(x)=I_{\left(\frac{a+b}{2}, b\right)}(x)
$$

where $I_{A}(x)$ is the indicator function on A, i.e., if $x \in A, I_{A}(x)=1$; elsewhere $I_{A}(x)=0$. We only need to show that the parallelogram rule is violated for $p \neq 2$.

If $p=\infty$, then we have $\|f\|_{\infty}=\|g\|_{\infty}=1$. Also, $\|f-g\|_{\infty}=\|f+g\|_{\infty}=1$. Therefore,

$$
2\left(\|f\|^{2}+\|g\|^{2}\right)=4 \neq 2=\|f-g\|^{2}+\|f+g\|^{2}
$$

If $p<\infty$, then we have $\|f\|_{p}=\|g\|_{p}=\left(\frac{b-a}{2}\right)^{1 / p}$. Also, $\|f-g\|_{p}=\|f+g\|_{p}=(b-a)^{1 / p}$. Therefore, as long as $a \neq b$, and $2 \neq 2^{2 / p}$, then

$$
2\left(\|f\|_{p}^{2}+\|g\|_{p}^{2}\right)=4\left(\frac{b-a}{2}\right)^{2 / p} \neq 2(b-a)^{2 / p}=\|f-g\|_{p}^{2}+\|f+g\|_{p}^{2}
$$

However, $2 \neq 2^{2 / p}$ if and only if $p \neq 2$, thus we finish the proof. This also implies that if $p \neq 2$, $L^{p}(a, b)$ is not a inner product space under the usual norm, and it is not pre-Hilbert.

