
MAT4010: Functional Analysis
Homework 3

李肖鹏 (116010114)

Due date: Sept. 24, 2019

Problem 2.10-8. Show that the dual space of the space c0 = {(x1, x2, . . . , xn, . . .) |xn → 0, as n →
∞} is l1. Also prove that c0 is Banach under the norm of l∞, i.e., ∥(x1, . . . , xn, . . .)∥ = supn≥1 |xn|.

We first prove that for all x = (x1, . . . , xn, . . .) ∈ c0, if ei ∈ c0 are standard basis, then∑n
i=1 xiei → x as n → ∞ under l∞ norm. This is trivial because

lim
n→∞

|xn| = 0 =⇒ lim
n→∞

sup
m≥n

|xm| = 0 =⇒

∥∥∥∥∥x−
n∑

i=1

xiei

∥∥∥∥∥
∞

= sup
m≥n

|xm| → 0

This implies that for all f ∈ (c0)
′, we have

f(x) = f

(
lim
n→∞

n∑
i=1

xiei

)
= lim

n→∞
f

(
n∑

i=1

xiei

)
=

∞∑
i=1

xif(ei)

Then we need to prove (f(e1), . . . , f(en), . . .) ∈ l1. Let z(n) = (y1, . . . , yn, 0, 0, . . .), where yn = |f(en)|
f(en)

if f(en) ̸= 0; yn = 0 if f(en) = 0. Clearly all z(n) ∈ c0, so we consider

|f(z(n))| =

∣∣∣∣∣
n∑

i=1

yif(ei)

∣∣∣∣∣ =
n∑

i=1

|f(ei)| ≤ ∥f∥ max
i=1,...,n

|yn| ≤ ∥f∥

because the maximum of |yn| can only be 0 or 1. Consider
∑n

i=1 |f(ei)| ≤ ∥f∥, since it is satisifed
for all n, so take n → ∞, we have

∞∑
i=1

|f(ei)| ≤ ∥f∥ =⇒ (f(e1), . . . , f(en), . . .) ∈ l1

Now we can define T : (c0)
′ 7→ l1 as Tf = (f(e1), . . . , f(en), . . .). First, we prove T is linear. For all

scalar a, b and f, g ∈ (c0)
′, we have

T (af + bg) = ((af + bg)(e1), . . . , (af + bg)(en), . . .)

= (af(e1) + bg(e1), . . . , af(en) + bg(en), . . .)

= a(f(e1), . . . , f(en), . . .) + b(g(e1), . . . , g(en), . . .)

= aTf + bTg

So T is linear.
Then we prove T is bijective. For injectivity, we only need to prove the kernel of T is the zero

map. If Tf = (0, . . . , 0, . . .), then f(ei) = 0 for all i. This indeed means f is zero maps on c0. For
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surjectivity, we take any y = (y1, . . . , yn, . . .) ∈ l1, then define linear mapping f so that f(ei) = yi,
then such f is in (c0)

′, because for all x = (x1, . . . , xn, . . .) ∈ c0, (boundedness)

|f(x)| =

∣∣∣∣∣
∞∑
i=1

xiyi

∣∣∣∣∣ ≤ sup
i

|xi|
∞∑
i=1

|yi| = ∥x∥∞∥y∥l1

Finally, we need to prove the isometry of (c0)′ and l1. Since we have already had for all f ∈ (c0)
′,

∞∑
i=1

|f(ei)| ≤ ∥f∥

However, consider the function f defined above, since |f(x)| ≤ ∥x∥∞∥y∥l1 , take the supremum over
∥x∥∞ = 1 yields

∥f∥ ≤ ∥y∥l1

This means that ∥f∥ = ∥y∥l1 . Therefore, the dual space of c0 is indeed l1.

To prove c0 is Banach under l∞ norm, we only need to prove it is a closed subspace of l∞-space.
This is because we have known l∞-space is Banach, and any closed subspace of Banach space is also
Bananch. According to the question, c0 is a vector space, and it is obviously a subset of l∞ because
for any element x in c0, xn → 0, thus |xn| must be bounded above, and thus in l∞. Therefore, the
only thing we need to show is that c0 is closed in l∞.

Suppose there exists sequence y(n) =
(
y
(n)
1 , . . . , y

(n)
k , . . .

)
∈ c0 such that y(n) → x where x =

(x1, . . . , xk, . . .) /∈ c0. Then there exists some ϵ0 > 0 such that for all N ∈ R and k ≥ N , we have
|xk| ≥ ϵ0. Since y(n) → x, there exists N2, such that for n ≥ N2,

∣∣∣y(n)k − xk

∣∣∣ ≤ ϵ0/2 for all k. This
implies that for k ≥ N and n ≥ N2, we have∣∣∣y(n)k

∣∣∣ ≥ |xk| −
∣∣∣y(n)k − xk

∣∣∣ ≥ ϵ0
2

This impiles that y
(n)
k will not converge to zero as k → ∞, i.e., y(n) /∈ c0 for n ≥ N2. Contradiction

shows that such y(n) and x doesn’t exist, which means no limit point of c0 can exist outside c0, so
it is closed.

Problem 3.1-4. If an inner product space X is real, show that the condition ∥x∥ = ∥y∥ implies
⟨x+ y, x− y⟩ = 0. What does this mean geometrically if X = R2? What does the condition imply
if X is complex?

If X is real, then ⟨x, y⟩ = ⟨y, x⟩. Also, ∥x∥ = ∥y∥ implies that ⟨x, x⟩ = ⟨y, y⟩. Consider

⟨x+ y, x− y⟩ = ⟨x, x− y⟩+ ⟨y, x− y⟩

= ⟨x, x⟩ − ⟨x, y⟩+ ⟨y, x⟩ − ⟨y, y⟩

= ⟨x, x⟩ − ⟨y, y⟩ = 0

Therefore, ∥x∥ = ∥y∥ implies ⟨x+ y, x− y⟩ = 0.
If X = R2, then this just implies that the two diagonals of any diamond are perpendicular. If

X is complex, then we don’t have ⟨x, y⟩ = ⟨y, x⟩. Instead, ∥x∥ = ∥y∥ implies that

⟨x+ y, x− y⟩ = −2iIm{⟨x, y⟩}, Re{⟨x+ y, x− y⟩} = 0
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Furthermore, we can say
⟨x+ y, x− y⟩+ ⟨x− y, x+ y⟩ = 0

Problem 3.1-8. Prove that for a real inner product space we have

⟨x, y⟩ = 1

4
(∥x+ y∥2 − ∥x− y∥2)

Note that for real inner product space, ⟨x, y⟩ = ⟨y, x⟩. Therefore, by linearity, we have

∥x+ y∥2 = ⟨x+ y, x+ y⟩ = ⟨x, x+ y⟩+ ⟨y, x+ y⟩

= ⟨x, x⟩+ ⟨x, y⟩+ ⟨y, x⟩+ ⟨y, y⟩

= ⟨x, x⟩+ 2⟨x, y⟩+ ⟨y, y⟩

Similarly,

∥x− y∥2 = ⟨x− y, x− y⟩ = ⟨x, x− y⟩ − ⟨y, x− y⟩

= ⟨x, x⟩ − ⟨x, y⟩ − ⟨y, x⟩+ ⟨y, y⟩

= ⟨x, x⟩ − 2⟨x, y⟩+ ⟨y, y⟩

Therefore,
1

4
(∥x+ y∥2 − ∥x− y∥2) = 4⟨x, y⟩

4
= ⟨x, y⟩

Problem 3.1-9. Prove that for a complex inner product space we have

Re⟨x, y⟩ = 1

4
(∥x+ y∥2 − ∥x− y∥2)

Im⟨x, y⟩ = 1

4
(∥x+ iy∥2 − ∥x− iy∥2)

For complex inner product space, ⟨x, y⟩ = ⟨y, x⟩, ⟨x, y⟩+⟨y, x⟩ = 2Re⟨y, x⟩, and ⟨x, y⟩−⟨y, x⟩ =
2iIm⟨y, x⟩. Therefore, by linearity, we have

∥x+ y∥2 = ⟨x+ y, x+ y⟩ = ⟨x, x+ y⟩+ ⟨y, x+ y⟩

= ⟨x, x⟩+ ⟨x, y⟩+ ⟨y, x⟩+ ⟨y, y⟩

= ⟨x, x⟩+ 2Re⟨x, y⟩+ ⟨y, y⟩

Similarly,

∥x− y∥2 = ⟨x− y, x− y⟩ = ⟨x, x− y⟩ − ⟨y, x− y⟩

= ⟨x, x⟩ − ⟨x, y⟩ − ⟨y, x⟩+ ⟨y, y⟩

= ⟨x, x⟩ − 2Re⟨x, y⟩+ ⟨y, y⟩

Therefore,
1

4
(∥x+ y∥2 − ∥x− y∥2) = 4Re⟨x, y⟩

4
= Re⟨x, y⟩
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Also consider

∥x+ iy∥2 = ⟨x+ iy, x+ iy⟩ = ⟨x, x+ iy⟩+ i⟨y, x+ iy⟩

= ⟨x, x⟩ − i⟨x, y⟩+ i⟨y, x⟩+ i · (−i)⟨y, y⟩

= ⟨x, x⟩ − i · 2iIm⟨x, y⟩+ ⟨y, y⟩

= ⟨x, x⟩+ 2Im⟨x, y⟩+ ⟨y, y⟩

Similarly,

∥x− iy∥2 = ⟨x− iy, x− iy⟩ = ⟨x, x− iy⟩ − i⟨y, x− iy⟩

= ⟨x, x⟩+ i⟨x, y⟩ − i⟨y, x⟩+ (−i) · i⟨y, y⟩

= ⟨x, x⟩+ i · 2iIm⟨x, y⟩+ ⟨y, y⟩

= ⟨x, x⟩ − 2Im⟨x, y⟩+ ⟨y, y⟩

Therefore,
1

4
(∥x+ iy∥2 − ∥x− iy∥2) = 4Im⟨x, y⟩

4
= Im⟨x, y⟩

Problem 3.2-3. Let X be the inner product space consisting of the polynomial x = 0 and all
real polynomials in t, of degree not exceeding 2, considered for real t ∈ [a, b], with inner product
⟨x, y⟩ =

´ b

a
x(t)y(t) dt. Show that X is complete. Let Y consist of all x ∈ X such that x(a) = 0. Is

Y a subspace of X? Do all x ∈ X of degree 2 form a subspace of X?

First, it is easy to see that {1, t, t2} forms a basis of X. Also, 1, t, t2 ∈ L2(a, b) and X is a
vector space, so X is a subspace of L2(a, b) with dimension 3. Since L2(a, b) is a normed space with
usual norm, and any finite dimensional subspace of a normed space with the same norm must be
closed, X is closed under norm ∥x∥ =

√
⟨x, x⟩ in L2(a, b). Now consider L2(a, b) equipped with the

same inner product ⟨x, y⟩ in the question, since it is a Hilbert space, and thus complete, its closed
subspace X must be also complete.

Y is a subspace of X, because for all scalar b, c and y1(t), y2(t) ∈ Y , we have y1(a) = y2(a) = 0.
Consider

(by1 + cy2)(a) = by1(a) + cy2(a) = b · 0 + c · 0 = 0

we can conclude that by1(t)+ cy2(t) is in Y , thus Y is a subspace of X. Finally, all x ∈ X of degree
2 cannot form a subspace of X, because the zero vector of X, i.e., zero polynomial is not of degree
two, so all x ∈ X of degree 2 does not contain zero vector and cannot form a vector space.

Problem 3.2-5. Show that for a sequence (xn) in an inner product space the conditions ∥xn∥ → ∥x∥
and ⟨xn, x⟩ → ⟨x, x⟩ imply convergence xn → x.
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Notice that

|⟨xn − x, xn − x⟩| = |⟨xn, xn − x⟩ − ⟨x, xn − x⟩|

= |⟨xn, xn⟩ − ⟨xn, x⟩ − ⟨x, xn⟩+ ⟨x, x⟩|

= |(⟨xn, xn⟩ − ⟨x, x⟩)− (⟨xn, x⟩ − ⟨x, x⟩)− (⟨x, xn⟩ − ⟨x, x⟩)|

≤ |⟨xn, xn⟩ − ⟨x, x⟩|+ |⟨xn, x⟩ − ⟨x, x⟩|+ |⟨x, xn⟩ − ⟨x, x⟩|

Since ∥xn∥ → ∥x∥, we have ⟨xn, xn⟩ → ⟨x, x⟩. Also, ⟨xn, x⟩ − ⟨x, x⟩ → 0. Furthermore,

⟨xn, x⟩ − ⟨x, x⟩ = ⟨x, xn⟩ − ⟨x, x⟩ =⇒ |⟨xn, x⟩ − ⟨x, x⟩| = |⟨x, xn⟩ − ⟨x, x⟩|

Therefore,

|⟨xn − x, xn − x⟩| ≤ |⟨xn, xn⟩ − ⟨x, x⟩|+ 2|⟨xn, x⟩ − ⟨x, x⟩| → 0 + 2 · 0 = 0

We can conclude that ∥xn − x∥ → 0, thus xn → x.

Problem 3.2-7. Show that in an inner product space, x ⊥ y if and only if we have ∥x + αy∥ =

∥x− αy∥ for all scalars α.

Consider the quantity

∥x+ αy∥2 − ∥x− αy∥2 = ⟨x+ αy, x+ αy⟩ − ⟨x− αy, x− αy⟩

= ⟨x, x+ αy⟩+ α⟨y, x+ αy⟩ − [⟨x, x− αy⟩ − α⟨y, x− αy⟩]

= 2ᾱ⟨x, y⟩+ 2α⟨y, x⟩

= 4Re{ᾱ⟨x, y⟩}

If x ⊥ y, then ⟨x, y⟩ = 0, thus 4Re{ᾱ⟨x, y⟩} = 0. This implies that ∥x + αy∥2 = ∥x − αy∥2, so
∥x+ αy∥ = ∥x− αy∥ for all α.

Conversely, if Re{ᾱ⟨x, y⟩} = 0 for all α, then take α = 1, then Re{⟨x, y⟩} = 0 implies that
⟨x, y⟩ = bi. However, if we take α = i, then Re{ᾱ⟨x, y⟩} = b = 0. Thus, ⟨x, y⟩ = 0, and x ⊥ y.

Problem 3.2-8. Show that in an inner product space, x ⊥ y if and only if ∥x+ αy∥ ≥ ∥x∥ for all
scalars α.

Compute the quantity

∥x+ αy∥2 − ∥x∥2 = ⟨x+ αy, x+ αy⟩ − ⟨x, x⟩

= ⟨x, x+ αy⟩+ α⟨y, x+ αy⟩ − ⟨x, x⟩

= ᾱ⟨x, y⟩+ α⟨y, x⟩+ |α|2⟨y, y⟩

If x ⊥ y, ⟨x, y⟩ = ⟨y, x⟩ = 0. This implies that for all α,

∥x+ αy∥ − ∥x∥ = |α|2⟨y, y⟩ ≥ 0

Conversely, since for all α,

ᾱ⟨x, y⟩+ α⟨y, x⟩+ |α|2⟨y, y⟩ = 2Re{ᾱ⟨x, y⟩}+ |α|2⟨y, y⟩ ≥ 0
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Take α = ± 1
k

for all k ∈ N+, we have

Re{⟨x, y⟩} ≥ − 1

2k
⟨y, y⟩, Re{⟨x, y⟩} ≤ 1

2k
⟨y, y⟩

This implies that |Re{⟨x, y⟩}| ≤ 1
2k
⟨y, y⟩ for all k. Take k → ∞, we conclude that Re{⟨x, y⟩} = 0.

Therefore, ⟨x, y⟩ = bi for some real number b.
Similarly, take α = ± i

k
for all k ∈ N+, we have

b ≥ − 1

2k
⟨y, y⟩, b ≤ 1

2k
⟨y, y⟩

This implies that |b| ≤ 1
2k
⟨y, y⟩ for all k. Take k → ∞, we conclude that b = 0. Therefore, ⟨x, y⟩ = 0,

and x ⊥ y.

Extra Problem 1. Let X be a normed space over C, with its norm satisfying the parallelogram
rule, i.e., for all x, y ∈ X,

2(∥x∥2 + ∥y∥2) = ∥x− y∥2 + ∥x+ y∥2

Prove that you can introduce an inner product (x, y) such that ⟨x, x⟩ = ∥x∥2, for all x ∈ X.

We can define for all x, y ∈ X,

Re⟨x, y⟩ = 1

4
(∥x+ y∥2 − ∥x− y∥2), Im⟨x, y⟩ = 1

4
(∥x+ iy∥2 − ∥x− iy∥2)

Then by homogeneity of norm, we can easily check Re⟨x, x⟩ = ∥x∥2. For the imaginary part,

Im⟨x, x⟩ = 1

4
(∥x+ ix∥2 − ∥x− ix∥2) = 1

4
(∥(1 + i)x∥2 − ∥(1− i)x∥2)

=
1

4
(|1 + i|2∥x∥2 − |1− i|2∥x∥2) = 1

4
(4∥x∥2 − 4∥x∥2) = 0

This implies that ⟨x, x⟩ = ∥x∥2, for all x ∈ X.
Then we only need to check the inner product we defined above satisfies all of the defining

properties of any inner product. Since ⟨x, x⟩ = ∥x∥2, we have ⟨x, x⟩ ≥ 0. For all x ̸= 0, ∥x∥ ̸= 0, so
⟨x, x⟩ > 0.

To prove ⟨x, y⟩ = ⟨y, x⟩, we only need to prove Re⟨x, y⟩ = Re⟨y, x⟩ and Im⟨x, y⟩ = −Im⟨y, x⟩.
Consider the real part, since x+ y = y+ x, ∥x+ y∥ = ∥y+ x∥; also since x− y = −(y− x), we have

∥x− y∥ = ∥−(y − x)∥ = | − 1|∥y − x∥ = ∥y − x∥

This implies that

Re⟨x, y⟩ = 1

4
(∥x+ y∥2 − ∥x− y∥2) = 1

4
(∥y + x∥2 − ∥y − x∥2) = Re⟨y, x⟩

For the imaginary part,

Im⟨x, y⟩ = 1

4
(∥x+ iy∥2 − ∥x− iy∥2) = 1

4
(∥i(y − ix)∥2 − ∥(−i)(y + ix)∥2)

=
1

4
(|i|∥y − ix∥2 − | − i|∥y + ix∥2) = 1

4
(∥y − ix∥2 − ∥y + ix∥2)

= −1

4
(∥y + ix∥2 − ∥y − ix∥2) = −Im⟨y, x⟩
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Thus, we conclude that ⟨x, y⟩ = ⟨y, x⟩.
To prove the linearity, firstly, by definition we can observe that as long as x = 0 or y = 0,

Re⟨0, y⟩ = Re⟨x, 0⟩ = Im⟨0, y⟩ = Im⟨x, 0⟩ = 0

Consider arbitrary x, y, z ∈ X, and apply parallelogram rule, we have

8(Re⟨x, z⟩+ Re⟨y, z⟩) = 2∥x+ z∥2 − 2∥x− z∥2 + 2∥y + z∥2 − 2∥y − z∥2

= ∥x+ y + 2z∥2 − ∥x+ y − 2z∥2 = 4Re⟨x+ y, 2z⟩

Let y = 0, then we have 2Re⟨x, z⟩ = Re⟨x, 2z⟩ for all x, z ∈ X. This implies that

2(Re⟨x, z⟩+ Re⟨y, z⟩) = Re⟨x, 2z⟩+ Re⟨y, 2z⟩ = Re⟨x+ y, 2z⟩

This simply means for all x, y, z ∈ X, we have Re⟨x, z⟩+ Re⟨y, z⟩ = Re⟨x+ y, z⟩. Similarly, we can
prove Im⟨x, z⟩+ Im⟨y, z⟩ = Im⟨x+ y, z⟩. This implies that ⟨x, z⟩+ ⟨y, z⟩ = ⟨x+ y, z⟩.

Finally we need to prove ⟨ax, y⟩ = a⟨x, y⟩ for any a ∈ C. Since we have additive property now,
we have

2⟨x, y⟩ = ⟨x, y⟩+ ⟨x, y⟩ = ⟨2x, y⟩

Hence by induction, we can derive that for all n ∈ N, we have n⟨x, y⟩ = ⟨nx, y⟩. Furthermore, for
all m ∈ N+, regard x/m as x above, we have

n

m
⟨x, y⟩ = n

m
m
⟨ x

m
, y
⟩
= n

⟨ x

m
, y
⟩
=
⟨ n

m
x, y
⟩

This implies that for q ∈ Q+, we have q⟨x, y⟩ = ⟨qx, y⟩. Since every positive real number r ∈ R+

is a limit point of positive rational number set, for each r, we have qn ∈ Q+ such that qn → r. By
continuity of norm, we have the continuity of inner product defined above, i.e., ⟨qnx, y⟩ → ⟨rx, y⟩
as qn → r. Therefore,

r⟨x, y⟩ = lim
n→∞

qn⟨x, y⟩ = lim
n→∞

⟨qnx, y⟩ =
⟨

lim
n→∞

qnx, y
⟩
= ⟨rx, y⟩

Now we have for r ∈ R+, r⟨x, y⟩ = ⟨rx, y⟩. For r = 0, this is trivially correct. Recall the definition
again, it is trivial that Re⟨−x, y⟩ = −Re⟨x, y⟩ by taking out a factor −1. Similarly, for imaginary
part, take out a factor −1, and we have Im⟨−x, y⟩ = −Im⟨x, y⟩. Thus for all x, y, we have ⟨−x, y⟩ =
−⟨x, y⟩. For all r < 0, −r > 0, thus (−r)⟨x, y⟩ = ⟨(−r)x, y⟩ = −⟨rx, y⟩ implies that r⟨x, y⟩ = ⟨rx, y⟩.
Therefore, for all real number r ∈ R, r⟨x, y⟩ = ⟨rx, y⟩.

For a ∈ C, we only need to prove i⟨x, y⟩ = ⟨ix, y⟩, then the same conclusion will hold for
arbitrary complex number a. Consider

4Re⟨ix, y⟩ = ∥ix+ y∥2 − ∥ix− y∥2 = ∥x− iy∥2 − ∥x+ iy∥2 = −4Im⟨x, y⟩

Similary, we will obtain Im⟨ix, y⟩ = Re⟨x, y⟩. Therefore,

i⟨x, y⟩ = −Im⟨x, y⟩+ iRe⟨x, y⟩ = Re⟨ix, y⟩+ iIm⟨ix, y⟩ = ⟨ix, y⟩

Lastly, suppose a = r1 + ir2, we have

a⟨x, y⟩ = r1⟨x, y⟩+ r2i⟨x, y⟩ = ⟨r1x, y⟩+ r2⟨ix, y⟩

= ⟨r1x, y⟩+ ⟨r2ix, y⟩ = ⟨(r1 + ir2)x, y⟩ = ⟨ax, y⟩
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Therefore, for all a ∈ C, we have a⟨x, y⟩ = ⟨ax, y⟩.

Extra Problem 2. Let X be a pre-Hilbert space over C. Prove that for all x ∈ X,

∥x∥ = sup
y∈X,y ̸=0

|⟨x, y⟩|
∥y∥

= sup
y∈X,y ̸=0

Re⟨x, y⟩
∥y∥

= sup
y∈X,y ̸=0

Im⟨x, y⟩
∥y∥

First we consider if x = 0, then all of the above are zero, so the equalities hold trivially. Thus,
we only consider x ̸= 0. By Cauchy Schwarz inequality, we have |⟨x, y⟩| ≤ ∥x∥∥y∥. Since this is true
for all y ̸= 0, thus, ∥x∥ ≥ |⟨x,y⟩|

∥y∥ . Since ∥x∥ is an upper bound, so it is larger than or equal to the
least upper bound, i.e.,

∥x∥ ≥ sup
y∈X,y ̸=0

|⟨x, y⟩|
∥y∥

However, if we take y = x, since x ̸= 0, so is y, thus,

sup
y∈X,y ̸=0

|⟨x, y⟩|
∥y∥

≥ |⟨x, x⟩|
∥x∥

= ∥x∥

Therefore, we conclude that
∥x∥ = sup

y∈X,y ̸=0

|⟨x, y⟩|
∥y∥

Similarly, since Re{⟨x, y⟩} ≤ |⟨x, y⟩| ≤ ∥x∥∥y∥, we have ∥x∥ ≥ Re{⟨x,y⟩}
∥y∥ if y ̸= 0. Therefore, by the

same argument, we obtain
∥x∥ ≥ sup

y∈X,y ̸=0

Re⟨x, y⟩
∥y∥

Take y = x ̸= 0 again, we have

sup
y∈X,y ̸=0

Re⟨x, y⟩
∥y∥

≥ Re⟨x, x⟩
∥x∥

= ∥x∥

Therefore, we have
∥x∥ = sup

y∈X,y ̸=0

Re⟨x, y⟩
∥y∥

Again, since Im{⟨x, y⟩} ≤ |⟨x, y⟩| ≤ ∥x∥∥y∥, we have ∥x∥ ≥ Im{⟨x,y⟩}
∥y∥ if y ̸= 0. Therefore, by the

same argument, we obtain
∥x∥ ≥ sup

y∈X,y ̸=0

Im⟨x, y⟩
∥y∥

This time take y = −ix ̸= 0, we have

sup
y∈X,y ̸=0

Im⟨x, y⟩
∥y∥

≥ Im⟨x,−ix⟩
∥−ix∥

=
Im{i∥x∥2}

∥x∥
= ∥x∥

Therefore, we have
∥x∥ = sup

y∈X,y ̸=0

Im⟨x, y⟩
∥y∥

In conclusion, we proved that for all x ∈ X,

∥x∥ = sup
y∈X,y ̸=0

|⟨x, y⟩|
∥y∥

= sup
y∈X,y ̸=0

Re⟨x, y⟩
∥y∥

= sup
y∈X,y ̸=0

Im⟨x, y⟩
∥y∥
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Extra Problem 3. Let Lp(a, b) be equipped with the usual norm, where p ̸= 2 and 1 ≤ p ≤ ∞.
Prove that Lp(a, b) is not pre-Hilbert. Hint: construct examples of f, g ∈ Lp(a, b) such that the
parallelogram rule is violated.

Consider the function defined on (a, b),

f(x) = I(a, a+b
2 )(x), g(x) = I( a+b

2 ,b)(x)

where IA(x) is the indicator function on A, i.e., if x ∈ A, IA(x) = 1; elsewhere IA(x) = 0. We only
need to show that the parallelogram rule is violated for p ̸= 2.

If p = ∞, then we have ∥f∥∞ = ∥g∥∞ = 1. Also, ∥f − g∥∞ = ∥f + g∥∞ = 1. Therefore,

2(∥f∥2 + ∥g∥2) = 4 ̸= 2 = ∥f − g∥2 + ∥f + g∥2

If p < ∞, then we have ∥f∥p = ∥g∥p = ( b−a
2
)1/p. Also, ∥f − g∥p = ∥f + g∥p = (b− a)1/p. Therefore,

as long as a ̸= b, and 2 ̸= 22/p, then

2(∥f∥2p + ∥g∥2p) = 4

(
b− a

2

)2/p

̸= 2(b− a)2/p = ∥f − g∥2p + ∥f + g∥2p

However, 2 ̸= 22/p if and only if p ̸= 2, thus we finish the proof. This also implies that if p ̸= 2,
Lp(a, b) is not a inner product space under the usual norm, and it is not pre-Hilbert.
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