MAT4010: Functional Analysis Homework 3

李肖鹏 (116010114)

Due date: Sept. 24, 2019

Problem 2.10-8. Show that the dual space of the space $c_0 = \{(x_1, x_2, \ldots, x_n, \ldots) \mid x_n \to 0, \text{ as } n \to \infty\}$ is l^1 . Also prove that c_0 is Banach under the norm of l^{∞} , i.e., $\|(x_1, \ldots, x_n, \ldots)\| = \sup_{n \ge 1} |x_n|$.

We first prove that for all $x = (x_1, \ldots, x_n, \ldots) \in c_0$, if $e_i \in c_0$ are standard basis, then $\sum_{i=1}^n x_i e_i \to x$ as $n \to \infty$ under l^{∞} norm. This is trivial because

$$\lim_{n \to \infty} |x_n| = 0 \Longrightarrow \lim_{n \to \infty} \sup_{m \ge n} |x_m| = 0 \Longrightarrow \left\| x - \sum_{i=1}^n x_i e_i \right\|_{\infty} = \sup_{m \ge n} |x_m| \to 0$$

This implies that for all $f \in (c_0)'$, we have

$$f(x) = f\left(\lim_{n \to \infty} \sum_{i=1}^{n} x_i e_i\right) = \lim_{n \to \infty} f\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{\infty} x_i f(e_i)$$

Then we need to prove $(f(e_1), \ldots, f(e_n), \ldots) \in l^1$. Let $z^{(n)} = (y_1, \ldots, y_n, 0, 0, \ldots)$, where $y_n = \frac{|f(e_n)|}{f(e_n)}$ if $f(e_n) \neq 0$; $y_n = 0$ if $f(e_n) = 0$. Clearly all $z^{(n)} \in c_0$, so we consider

$$|f(z^{(n)})| = \left|\sum_{i=1}^{n} y_i f(e_i)\right| = \sum_{i=1}^{n} |f(e_i)| \le ||f|| \max_{i=1,\dots,n} |y_n| \le ||f|$$

because the maximum of $|y_n|$ can only be 0 or 1. Consider $\sum_{i=1}^n |f(e_i)| \le ||f||$, since it is satisifed for all n, so take $n \to \infty$, we have

$$\sum_{i=1}^{\infty} |f(e_i)| \le ||f|| \Longrightarrow (f(e_1), \dots, f(e_n), \dots) \in l^1$$

Now we can define $T: (c_0)' \mapsto l^1$ as $Tf = (f(e_1), \ldots, f(e_n), \ldots)$. First, we prove T is linear. For all scalar a, b and $f, g \in (c_0)'$, we have

$$T(af + bg) = ((af + bg)(e_1), \dots, (af + bg)(e_n), \dots)$$

= $(af(e_1) + bg(e_1), \dots, af(e_n) + bg(e_n), \dots)$
= $a(f(e_1), \dots, f(e_n), \dots) + b(g(e_1), \dots, g(e_n), \dots)$
= $aTf + bTg$

So T is linear.

Then we prove T is bijective. For injectivity, we only need to prove the kernel of T is the zero map. If Tf = (0, ..., 0, ...), then $f(e_i) = 0$ for all i. This indeed means f is zero maps on c_0 . For

surjectivity, we take any $y = (y_1, \ldots, y_n, \ldots) \in l^1$, then define linear mapping f so that $f(e_i) = y_i$, then such f is in $(c_0)'$, because for all $x = (x_1, \ldots, x_n, \ldots) \in c_0$, (boundedness)

$$|f(x)| = \left|\sum_{i=1}^{\infty} x_i y_i\right| \le \sup_i |x_i| \sum_{i=1}^{\infty} |y_i| = ||x||_{\infty} ||y||_{l^1}$$

Finally, we need to prove the isometry of $(c_0)'$ and l^1 . Since we have already had for all $f \in (c_0)'$,

$$\sum_{i=1}^{\infty} |f(e_i)| \le ||f||$$

However, consider the function f defined above, since $|f(x)| \le ||x||_{\infty} ||y||_{l^1}$, take the supremum over $||x||_{\infty} = 1$ yields

 $||f|| \le ||y||_{l^1}$

This means that $||f|| = ||y||_{l^1}$. Therefore, the dual space of c_0 is indeed l^1 .

To prove c_0 is Banach under l^{∞} norm, we only need to prove it is a closed subspace of l^{∞} -space. This is because we have known l^{∞} -space is Banach, and any closed subspace of Banach space is also Bananch. According to the question, c_0 is a vector space, and it is obviously a subset of l^{∞} because for any element x in c_0 , $x_n \to 0$, thus $|x_n|$ must be bounded above, and thus in l^{∞} . Therefore, the only thing we need to show is that c_0 is closed in l^{∞} .

Suppose there exists sequence $y^{(n)} = (y_1^{(n)}, \ldots, y_k^{(n)}, \ldots) \in c_0$ such that $y^{(n)} \to x$ where $x = (x_1, \ldots, x_k, \ldots) \notin c_0$. Then there exists some $\epsilon_0 > 0$ such that for all $N \in \mathbb{R}$ and $k \ge N$, we have $|x_k| \ge \epsilon_0$. Since $y^{(n)} \to x$, there exists N_2 , such that for $n \ge N_2$, $|y_k^{(n)} - x_k| \le \epsilon_0/2$ for all k. This implies that for $k \ge N$ and $n \ge N_2$, we have

$$\left|y_{k}^{(n)}\right| \ge \left|x_{k}\right| - \left|y_{k}^{(n)} - x_{k}\right| \ge \frac{\epsilon_{0}}{2}$$

This implies that $y_k^{(n)}$ will not converge to zero as $k \to \infty$, i.e., $y^{(n)} \notin c_0$ for $n \ge N_2$. Contradiction shows that such $y^{(n)}$ and x doesn't exist, which means no limit point of c_0 can exist outside c_0 , so it is closed.

Problem 3.1-4. If an inner product space X is real, show that the condition ||x|| = ||y|| implies $\langle x + y, x - y \rangle = 0$. What does this mean geometrically if $X = \mathbb{R}^2$? What does the condition imply if X is complex?

If X is real, then $\langle x, y \rangle = \langle y, x \rangle$. Also, ||x|| = ||y|| implies that $\langle x, x \rangle = \langle y, y \rangle$. Consider

$$egin{aligned} &\langle x+y,x-y
angle &=\langle x,x-y
angle +\langle y,x-y
angle \ &=\langle x,x
angle -\langle x,y
angle +\langle y,x
angle -\langle y,y
angle \ &=\langle x,x
angle -\langle y,y
angle &=0 \end{aligned}$$

Therefore, ||x|| = ||y|| implies $\langle x + y, x - y \rangle = 0$.

If $X = \mathbb{R}^2$, then this just implies that the two diagonals of any diamond are perpendicular. If X is complex, then we don't have $\langle x, y \rangle = \langle y, x \rangle$. Instead, ||x|| = ||y|| implies that

$$\langle x+y, x-y \rangle = -2i \operatorname{Im}\{\langle x, y \rangle\}, \quad \operatorname{Re}\{\langle x+y, x-y \rangle\} = 0$$

Furthermore, we can say

$$\langle x+y, x-y \rangle + \langle x-y, x+y \rangle = 0$$

Problem 3.1-8. Prove that for a real inner product space we have

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2)$$

Note that for real inner product space, $\langle x, y \rangle = \langle y, x \rangle$. Therefore, by linearity, we have

$$\begin{split} \|x+y\|^2 &= \langle x+y, x+y \rangle = \langle x, x+y \rangle + \langle y, x+y \rangle \\ &= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle \\ &= \langle x, x \rangle + 2 \langle x, y \rangle + \langle y, y \rangle \end{split}$$

Similarly,

$$\begin{split} \|x - y\|^2 &= \langle x - y, x - y \rangle = \langle x, x - y \rangle - \langle y, x - y \rangle \\ &= \langle x, x \rangle - \langle x, y \rangle - \langle y, x \rangle + \langle y, y \rangle \\ &= \langle x, x \rangle - 2 \langle x, y \rangle + \langle y, y \rangle \end{split}$$

Therefore,

$$\frac{1}{4}(\|x+y\|^2 - \|x-y\|^2) = \frac{4\langle x,y\rangle}{4} = \langle x,y\rangle$$

Problem 3.1-9. Prove that for a complex inner product space we have

$$\operatorname{Re}\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2)$$
$$\operatorname{Im}\langle x, y \rangle = \frac{1}{4} (\|x + iy\|^2 - \|x - iy\|^2)$$

For complex inner product space, $\langle x, y \rangle = \overline{\langle y, x \rangle}$, $\langle x, y \rangle + \overline{\langle y, x \rangle} = 2 \operatorname{Re} \langle y, x \rangle$, and $\langle x, y \rangle - \overline{\langle y, x \rangle} = 2i \operatorname{Im} \langle y, x \rangle$. Therefore, by linearity, we have

$$\begin{split} \|x+y\|^2 &= \langle x+y, x+y \rangle = \langle x, x+y \rangle + \langle y, x+y \rangle \\ &= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle \\ &= \langle x, x \rangle + 2 \text{Re} \langle x, y \rangle + \langle y, y \rangle \end{split}$$

Similarly,

$$\begin{split} \|x - y\|^2 &= \langle x - y, x - y \rangle = \langle x, x - y \rangle - \langle y, x - y \rangle \\ &= \langle x, x \rangle - \langle x, y \rangle - \langle y, x \rangle + \langle y, y \rangle \\ &= \langle x, x \rangle - 2 \operatorname{Re} \langle x, y \rangle + \langle y, y \rangle \end{split}$$

Therefore,

$$\frac{1}{4}(\|x+y\|^2 - \|x-y\|^2) = \frac{4\operatorname{Re}\langle x,y\rangle}{4} = \operatorname{Re}\langle x,y\rangle$$

Also consider

$$\begin{split} \|x + iy\|^2 &= \langle x + iy, x + iy \rangle = \langle x, x + iy \rangle + i \langle y, x + iy \rangle \\ &= \langle x, x \rangle - i \langle x, y \rangle + i \langle y, x \rangle + i \cdot (-i) \langle y, y \rangle \\ &= \langle x, x \rangle - i \cdot 2i \mathrm{Im} \langle x, y \rangle + \langle y, y \rangle \\ &= \langle x, x \rangle + 2 \mathrm{Im} \langle x, y \rangle + \langle y, y \rangle \end{split}$$

Similarly,

$$\begin{split} \|x - iy\|^2 &= \langle x - iy, x - iy \rangle = \langle x, x - iy \rangle - i \langle y, x - iy \rangle \\ &= \langle x, x \rangle + i \langle x, y \rangle - i \langle y, x \rangle + (-i) \cdot i \langle y, y \rangle \\ &= \langle x, x \rangle + i \cdot 2i \mathrm{Im} \langle x, y \rangle + \langle y, y \rangle \\ &= \langle x, x \rangle - 2\mathrm{Im} \langle x, y \rangle + \langle y, y \rangle \end{split}$$

Therefore,

$$\frac{1}{4}(\|x+iy\|^2 - \|x-iy\|^2) = \frac{4\mathrm{Im}\langle x,y\rangle}{4} = \mathrm{Im}\langle x,y\rangle$$

Problem 3.2-3. Let X be the inner product space consisting of the polynomial x = 0 and all real polynomials in t, of degree not exceeding 2, considered for real $t \in [a, b]$, with inner product $\langle x, y \rangle = \int_a^b x(t)y(t) dt$. Show that X is complete. Let Y consist of all $x \in X$ such that x(a) = 0. Is Y a subspace of X? Do all $x \in X$ of degree 2 form a subspace of X?

First, it is easy to see that $\{1, t, t^2\}$ forms a basis of X. Also, $1, t, t^2 \in L^2(a, b)$ and X is a vector space, so X is a subspace of $L^2(a, b)$ with dimension 3. Since $L^2(a, b)$ is a normed space with usual norm, and any finite dimensional subspace of a normed space with the same norm must be closed, X is closed under norm $||x|| = \sqrt{\langle x, x \rangle}$ in $L^2(a, b)$. Now consider $L^2(a, b)$ equipped with the same inner product $\langle x, y \rangle$ in the question, since it is a Hilbert space, and thus complete, its closed subspace X must be also complete.

Y is a subspace of X, because for all scalar b, c and $y_1(t), y_2(t) \in Y$, we have $y_1(a) = y_2(a) = 0$. Consider

$$(by_1 + cy_2)(a) = by_1(a) + cy_2(a) = b \cdot 0 + c \cdot 0 = 0$$

we can conclude that $by_1(t) + cy_2(t)$ is in Y, thus Y is a subspace of X. Finally, all $x \in X$ of degree 2 cannot form a subspace of X, because the zero vector of X, i.e., zero polynomial is not of degree two, so all $x \in X$ of degree 2 does not contain zero vector and cannot form a vector space.

Problem 3.2-5. Show that for a sequence (x_n) in an inner product space the conditions $||x_n|| \to ||x||$ and $\langle x_n, x \rangle \to \langle x, x \rangle$ imply convergence $x_n \to x$. Notice that

$$\begin{aligned} |\langle x_n - x, x_n - x \rangle| &= |\langle x_n, x_n - x \rangle - \langle x, x_n - x \rangle| \\ &= |\langle x_n, x_n \rangle - \langle x_n, x \rangle - \langle x, x_n \rangle + \langle x, x \rangle| \\ &= |(\langle x_n, x_n \rangle - \langle x, x \rangle) - (\langle x_n, x \rangle - \langle x, x \rangle) - (\langle x, x_n \rangle - \langle x, x \rangle)| \\ &\leq |\langle x_n, x_n \rangle - \langle x, x \rangle| + |\langle x_n, x \rangle - \langle x, x \rangle| + |\langle x, x_n \rangle - \langle x, x \rangle| \end{aligned}$$

Since $||x_n|| \to ||x||$, we have $\langle x_n, x_n \rangle \to \langle x, x \rangle$. Also, $\langle x_n, x \rangle - \langle x, x \rangle \to 0$. Furthermore,

$$\langle x_n, x \rangle - \langle x, x \rangle = \overline{\langle x, x_n \rangle - \langle x, x \rangle} \Longrightarrow |\langle x_n, x \rangle - \langle x, x \rangle| = |\langle x, x_n \rangle - \langle x, x \rangle|$$

Therefore,

$$|\langle x_n - x, x_n - x \rangle| \le |\langle x_n, x_n \rangle - \langle x, x \rangle| + 2|\langle x_n, x \rangle - \langle x, x \rangle| \to 0 + 2 \cdot 0 = 0$$

We can conclude that $||x_n - x|| \to 0$, thus $x_n \to x$.

Problem 3.2-7. Show that in an inner product space, $x \perp y$ if and only if we have $||x + \alpha y|| = ||x - \alpha y||$ for all scalars α .

Consider the quantity

$$\begin{split} \|x + \alpha y\|^2 - \|x - \alpha y\|^2 &= \langle x + \alpha y, x + \alpha y \rangle - \langle x - \alpha y, x - \alpha y \rangle \\ &= \langle x, x + \alpha y \rangle + \alpha \langle y, x + \alpha y \rangle - [\langle x, x - \alpha y \rangle - \alpha \langle y, x - \alpha y \rangle] \\ &= 2\bar{\alpha} \langle x, y \rangle + 2\alpha \langle y, x \rangle \\ &= 4 \operatorname{Re}\{\bar{\alpha} \langle x, y \rangle\} \end{split}$$

If $x \perp y$, then $\langle x, y \rangle = 0$, thus $4 \operatorname{Re}\{\bar{\alpha}\langle x, y \rangle\} = 0$. This implies that $||x + \alpha y||^2 = ||x - \alpha y||^2$, so $||x + \alpha y|| = ||x - \alpha y||$ for all α .

Conversely, if $\operatorname{Re}\{\bar{\alpha}\langle x, y\rangle\} = 0$ for all α , then take $\alpha = 1$, then $\operatorname{Re}\{\langle x, y\rangle\} = 0$ implies that $\langle x, y\rangle = bi$. However, if we take $\alpha = i$, then $\operatorname{Re}\{\bar{\alpha}\langle x, y\rangle\} = b = 0$. Thus, $\langle x, y\rangle = 0$, and $x \perp y$.

Problem 3.2-8. Show that in an inner product space, $x \perp y$ if and only if $||x + \alpha y|| \ge ||x||$ for all scalars α .

Compute the quantity

$$\begin{split} \|x + \alpha y\|^2 - \|x\|^2 &= \langle x + \alpha y, x + \alpha y \rangle - \langle x, x \rangle \\ &= \langle x, x + \alpha y \rangle + \alpha \langle y, x + \alpha y \rangle - \langle x, x \rangle \\ &= \bar{\alpha} \langle x, y \rangle + \alpha \langle y, x \rangle + |\alpha|^2 \langle y, y \rangle \end{split}$$

If $x \perp y$, $\langle x, y \rangle = \langle y, x \rangle = 0$. This implies that for all α ,

$$||x + \alpha y|| - ||x|| = |\alpha|^2 \langle y, y \rangle \ge 0$$

Conversely, since for all α ,

$$\bar{\alpha}\langle x,y\rangle + \alpha\langle y,x\rangle + |\alpha|^2\langle y,y\rangle = 2\mathrm{Re}\{\bar{\alpha}\langle x,y\rangle\} + |\alpha|^2\langle y,y\rangle \ge 0$$

Take $\alpha = \pm \frac{1}{k}$ for all $k \in \mathbb{N}^+$, we have

$$\operatorname{Re}\{\langle x,y
angle\} \ge -rac{1}{2k}\langle y,y
angle, \quad \operatorname{Re}\{\langle x,y
angle\} \le rac{1}{2k}\langle y,y
angle$$

This implies that $|\operatorname{Re}\{\langle x, y\rangle\}| \leq \frac{1}{2k}\langle y, y\rangle$ for all k. Take $k \to \infty$, we conclude that $\operatorname{Re}\{\langle x, y\rangle\} = 0$. Therefore, $\langle x, y\rangle = bi$ for some real number b.

Similarly, take $\alpha = \pm \frac{i}{k}$ for all $k \in \mathbb{N}^+$, we have

$$b \ge -\frac{1}{2k} \langle y, y \rangle, \quad b \le \frac{1}{2k} \langle y, y \rangle$$

This implies that $|b| \leq \frac{1}{2k} \langle y, y \rangle$ for all k. Take $k \to \infty$, we conclude that b = 0. Therefore, $\langle x, y \rangle = 0$, and $x \perp y$.

Extra Problem 1. Let X be a normed space over \mathbb{C} , with its norm satisfying the parallelogram rule, i.e., for all $x, y \in X$,

$$2(||x||^{2} + ||y||^{2}) = ||x - y||^{2} + ||x + y||^{2}$$

Prove that you can introduce an inner product (x, y) such that $\langle x, x \rangle = ||x||^2$, for all $x \in X$.

We can define for all $x, y \in X$,

$$\operatorname{Re}\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2), \quad \operatorname{Im}\langle x, y \rangle = \frac{1}{4} (\|x + iy\|^2 - \|x - iy\|^2)$$

Then by homogeneity of norm, we can easily check $\operatorname{Re}\langle x, x \rangle = \|x\|^2$. For the imaginary part,

$$\operatorname{Im}\langle x, x \rangle = \frac{1}{4} (\|x + ix\|^2 - \|x - ix\|^2) = \frac{1}{4} (\|(1 + i)x\|^2 - \|(1 - i)x\|^2)$$
$$= \frac{1}{4} (|1 + i|^2 \|x\|^2 - |1 - i|^2 \|x\|^2) = \frac{1}{4} (4\|x\|^2 - 4\|x\|^2) = 0$$

This implies that $\langle x, x \rangle = ||x||^2$, for all $x \in X$.

Then we only need to check the inner product we defined above satisfies all of the defining properties of any inner product. Since $\langle x, x \rangle = \|x\|^2$, we have $\langle x, x \rangle \ge 0$. For all $x \ne 0$, $\|x\| \ne 0$, so $\langle x, x \rangle > 0$.

To prove $\langle x, y \rangle = \overline{\langle y, x \rangle}$, we only need to prove $\operatorname{Re}\langle x, y \rangle = \operatorname{Re}\langle y, x \rangle$ and $\operatorname{Im}\langle x, y \rangle = -\operatorname{Im}\langle y, x \rangle$. Consider the real part, since x + y = y + x, ||x + y|| = ||y + x||; also since x - y = -(y - x), we have

$$||x - y|| = ||-(y - x)|| = |-1|||y - x|| = ||y - x||$$

This implies that

$$\operatorname{Re}\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2) = \frac{1}{4} (\|y + x\|^2 - \|y - x\|^2) = \operatorname{Re}\langle y, x \rangle$$

For the imaginary part,

$$\begin{split} \operatorname{Im}\langle x,y\rangle &= \frac{1}{4}(\|x+iy\|^2 - \|x-iy\|^2) = \frac{1}{4}(\|i(y-ix)\|^2 - \|(-i)(y+ix)\|^2) \\ &= \frac{1}{4}(|i|\|y-ix\|^2 - |-i|\|y+ix\|^2) = \frac{1}{4}(\|y-ix\|^2 - \|y+ix\|^2) \\ &= -\frac{1}{4}(\|y+ix\|^2 - \|y-ix\|^2) = -\operatorname{Im}\langle y,x\rangle \end{split}$$

Thus, we conclude that $\langle x, y \rangle = \overline{\langle y, x \rangle}$.

To prove the linearity, firstly, by definition we can observe that as long as x = 0 or y = 0,

$$\operatorname{Re}\langle 0, y \rangle = \operatorname{Re}\langle x, 0 \rangle = \operatorname{Im}\langle 0, y \rangle = \operatorname{Im}\langle x, 0 \rangle = 0$$

Consider arbitrary $x, y, z \in X$, and apply parallelogram rule, we have

$$\begin{aligned} 8(\operatorname{Re}\langle x,z\rangle + \operatorname{Re}\langle y,z\rangle) &= 2\|x+z\|^2 - 2\|x-z\|^2 + 2\|y+z\|^2 - 2\|y-z\|^2 \\ &= \|x+y+2z\|^2 - \|x+y-2z\|^2 = 4\operatorname{Re}\langle x+y,2z\rangle \end{aligned}$$

Let y = 0, then we have $2\operatorname{Re}\langle x, z \rangle = \operatorname{Re}\langle x, 2z \rangle$ for all $x, z \in X$. This implies that

$$2(\operatorname{Re}\langle x,z\rangle + \operatorname{Re}\langle y,z\rangle) = \operatorname{Re}\langle x,2z\rangle + \operatorname{Re}\langle y,2z\rangle = \operatorname{Re}\langle x+y,2z\rangle$$

This simply means for all $x, y, z \in X$, we have $\operatorname{Re}\langle x, z \rangle + \operatorname{Re}\langle y, z \rangle = \operatorname{Re}\langle x + y, z \rangle$. Similarly, we can prove $\operatorname{Im}\langle x, z \rangle + \operatorname{Im}\langle y, z \rangle = \operatorname{Im}\langle x + y, z \rangle$. This implies that $\langle x, z \rangle + \langle y, z \rangle = \langle x + y, z \rangle$.

Finally we need to prove $\langle ax, y \rangle = a \langle x, y \rangle$ for any $a \in \mathbb{C}$. Since we have additive property now, we have

$$2\langle x,y\rangle = \langle x,y\rangle + \langle x,y\rangle = \langle 2x,y\rangle$$

Hence by induction, we can derive that for all $n \in \mathbb{N}$, we have $n\langle x, y \rangle = \langle nx, y \rangle$. Furthermore, for all $m \in \mathbb{N}^+$, regard x/m as x above, we have

$$\frac{n}{m}\left\langle x,y\right\rangle =\frac{n}{m}m\left\langle \frac{x}{m},y\right\rangle =n\left\langle \frac{x}{m},y\right\rangle =\left\langle \frac{n}{m}x,y\right\rangle$$

This implies that for $q \in \mathbb{Q}^+$, we have $q\langle x, y \rangle = \langle qx, y \rangle$. Since every positive real number $r \in \mathbb{R}^+$ is a limit point of positive rational number set, for each r, we have $q_n \in \mathbb{Q}^+$ such that $q_n \to r$. By continuity of norm, we have the continuity of inner product defined above, i.e., $\langle q_n x, y \rangle \to \langle rx, y \rangle$ as $q_n \to r$. Therefore,

$$r\langle x, y \rangle = \lim_{n \to \infty} q_n \langle x, y \rangle = \lim_{n \to \infty} \langle q_n x, y \rangle = \left\langle \lim_{n \to \infty} q_n x, y \right\rangle = \langle rx, y \rangle$$

Now we have for $r \in \mathbb{R}^+$, $r\langle x, y \rangle = \langle rx, y \rangle$. For r = 0, this is trivially correct. Recall the definition again, it is trivial that $\operatorname{Re}\langle -x, y \rangle = -\operatorname{Re}\langle x, y \rangle$ by taking out a factor -1. Similarly, for imaginary part, take out a factor -1, and we have $\operatorname{Im}\langle -x, y \rangle = -\operatorname{Im}\langle x, y \rangle$. Thus for all x, y, we have $\langle -x, y \rangle = -\langle x, y \rangle$. For all r < 0, -r > 0, thus $(-r)\langle x, y \rangle = \langle (-r)x, y \rangle = -\langle rx, y \rangle$ implies that $r\langle x, y \rangle = \langle rx, y \rangle$. Therefore, for all real number $r \in \mathbb{R}$, $r\langle x, y \rangle = \langle rx, y \rangle$.

For $a \in \mathbb{C}$, we only need to prove $i\langle x, y \rangle = \langle ix, y \rangle$, then the same conclusion will hold for arbitrary complex number a. Consider

$$4\text{Re}\langle ix, y \rangle = \|ix + y\|^2 - \|ix - y\|^2 = \|x - iy\|^2 - \|x + iy\|^2 = -4\text{Im}\langle x, y \rangle$$

Similary, we will obtain $\operatorname{Im}\langle ix, y \rangle = \operatorname{Re}\langle x, y \rangle$. Therefore,

$$i\langle x,y\rangle = -\mathrm{Im}\langle x,y\rangle + i\mathrm{Re}\langle x,y\rangle = \mathrm{Re}\langle ix,y\rangle + i\mathrm{Im}\langle ix,y\rangle = \langle ix,y\rangle$$

Lastly, suppose $a = r_1 + ir_2$, we have

$$\begin{split} a\langle x,y\rangle &= r_1\langle x,y\rangle + r_2i\langle x,y\rangle = \langle r_1x,y\rangle + r_2\langle ix,y\rangle \\ &= \langle r_1x,y\rangle + \langle r_2ix,y\rangle = \langle (r_1+ir_2)x,y\rangle = \langle ax,y\rangle \end{split}$$

Therefore, for all $a \in \mathbb{C}$, we have $a\langle x, y \rangle = \langle ax, y \rangle$.

Extra Problem 2. Let X be a pre-Hilbert space over \mathbb{C} . Prove that for all $x \in X$,

$$||x|| = \sup_{y \in X, y \neq 0} \frac{|\langle x, y \rangle|}{||y||} = \sup_{y \in X, y \neq 0} \frac{\operatorname{Re}\langle x, y \rangle}{||y||} = \sup_{y \in X, y \neq 0} \frac{\operatorname{Im}\langle x, y \rangle}{||y||}$$

First we consider if x = 0, then all of the above are zero, so the equalities hold trivially. Thus, we only consider $x \neq 0$. By Cauchy Schwarz inequality, we have $|\langle x, y \rangle| \leq ||x|| ||y||$. Since this is true for all $y \neq 0$, thus, $||x|| \geq \frac{|\langle x, y \rangle|}{||y||}$. Since ||x|| is an upper bound, so it is larger than or equal to the least upper bound, i.e.,

$$\|x\| \ge \sup_{y \in X, y \neq 0} \frac{|\langle x, y \rangle|}{\|y\|}$$

However, if we take y = x, since $x \neq 0$, so is y, thus,

$$\sup_{y \in X, y \neq 0} \frac{|\langle x, y \rangle|}{\|y\|} \ge \frac{|\langle x, x \rangle|}{\|x\|} = \|x\|$$

Therefore, we conclude that

$$||x|| = \sup_{y \in X, y \neq 0} \frac{|\langle x, y \rangle|}{||y||}$$

Similarly, since $\operatorname{Re}\{\langle x, y \rangle\} \leq |\langle x, y \rangle| \leq ||x|| ||y||$, we have $||x|| \geq \frac{\operatorname{Re}\{\langle x, y \rangle\}}{||y||}$ if $y \neq 0$. Therefore, by the same argument, we obtain

$$||x|| \ge \sup_{y \in X, y \neq 0} \frac{\operatorname{Re}\langle x, y \rangle}{||y||}$$

Take $y = x \neq 0$ again, we have

$$\sup_{y \in X, y \neq 0} \frac{\operatorname{Re}\langle x, y \rangle}{\|y\|} \geq \frac{\operatorname{Re}\langle x, x \rangle}{\|x\|} = \|x\|$$

Therefore, we have

$$\|x\| = \sup_{y \in X, y \neq 0} \frac{\operatorname{Re}\langle x, y \rangle}{\|y\|}$$

Again, since $\operatorname{Im}\{\langle x, y \rangle\} \leq |\langle x, y \rangle| \leq ||x|| ||y||$, we have $||x|| \geq \frac{\operatorname{Im}\{\langle x, y \rangle\}}{||y||}$ if $y \neq 0$. Therefore, by the same argument, we obtain

$$\|x\| \ge \sup_{y \in X, y \neq 0} \frac{\operatorname{Im}\langle x, y \rangle}{\|y\|}$$

This time take $y = -ix \neq 0$, we have

$$\sup_{y \in X, y \neq 0} \frac{\operatorname{Im}\langle x, y \rangle}{\|y\|} \geq \frac{\operatorname{Im}\langle x, -ix \rangle}{\|-ix\|} = \frac{\operatorname{Im}\{i\|x\|^2\}}{\|x\|} = \|x\|$$

Therefore, we have

$$\|x\| = \sup_{y \in X, y \neq 0} \frac{\mathrm{Im}\langle x, y \rangle}{\|y\|}$$

In conclusion, we proved that for all $x \in X$,

$$\|x\| = \sup_{y \in X, y \neq 0} \frac{|\langle x, y \rangle|}{\|y\|} = \sup_{y \in X, y \neq 0} \frac{\operatorname{Re}\langle x, y \rangle}{\|y\|} = \sup_{y \in X, y \neq 0} \frac{\operatorname{Im}\langle x, y \rangle}{\|y\|}$$

Extra Problem 3. Let $L^p(a, b)$ be equipped with the usual norm, where $p \neq 2$ and $1 \leq p \leq \infty$. Prove that $L^p(a, b)$ is not pre-Hilbert. Hint: construct examples of $f, g \in L^p(a, b)$ such that the parallelogram rule is violated.

Consider the function defined on (a, b),

$$f(x) = I_{(a, \frac{a+b}{2})}(x), \quad g(x) = I_{(\frac{a+b}{2}, b)}(x)$$

where $I_A(x)$ is the indicator function on A, i.e., if $x \in A$, $I_A(x) = 1$; elsewhere $I_A(x) = 0$. We only need to show that the parallelogram rule is violated for $p \neq 2$.

If $p = \infty$, then we have $||f||_{\infty} = ||g||_{\infty} = 1$. Also, $||f - g||_{\infty} = ||f + g||_{\infty} = 1$. Therefore,

$$2(||f||^2 + ||g||^2) = 4 \neq 2 = ||f - g||^2 + ||f + g||^2$$

If $p < \infty$, then we have $||f||_p = ||g||_p = (\frac{b-a}{2})^{1/p}$. Also, $||f - g||_p = ||f + g||_p = (b-a)^{1/p}$. Therefore, as long as $a \neq b$, and $2 \neq 2^{2/p}$, then

$$2(\|f\|_p^2 + \|g\|_p^2) = 4\left(\frac{b-a}{2}\right)^{2/p} \neq 2(b-a)^{2/p} = \|f-g\|_p^2 + \|f+g\|_p^2$$

However, $2 \neq 2^{2/p}$ if and only if $p \neq 2$, thus we finish the proof. This also implies that if $p \neq 2$, $L^p(a, b)$ is not a inner product space under the usual norm, and it is not pre-Hilbert.