MAT4010：Functional Analysis
 Homework 4

李肖鹏（116010114）

Due date：Oct．8， 2019
Problem 3．3－3（a）．Show that the vector space X of all real－valued continuous functions on $[-1,1]$ is the direct sum of the set of all even continuous functions and the set of all odd continuous functions on $[-1,1]$ ．

For all $f \in \mathcal{C}[-1,1]$ ，for all $x \in[-1,1]$ ，we have

$$
f(x)=\frac{f(x)+f(-x)}{2}+\frac{f(x)-f(-x)}{2}=g(x)+h(x)
$$

where since $-x \in[-1,1], f(-x)$ is also in $\mathcal{C}[-1,1]$ ，and $h(x), g(x)$ are both continuous function in $\mathcal{C}[-1,1]$ ．Notice that

$$
g(-x)=\frac{f(-x)+f(x)}{2}=g(x), \quad h(-x)=\frac{f(-x)-f(x)}{2}=-h(x)
$$

Therefore，g is even continuous function on $[-1,1]$ and h is odd continuous function on $[-1,1]$ ．This implies that $X=X_{1}+X_{2}$ ，where X_{1} is the set of all odd continuous functions and X_{2} is the set of all even continuous functions．

Now we need to prove for each f ，such g and h are unique．Suppose $f(x)=g_{1}(x)+h_{1}(x)=$ $g_{2}(x)+h_{2}(x)$ ，where $g_{1}, g_{2} \in X_{2}$ and $h_{1}, h_{2} \in X_{1}$ ．Then we have

$$
\phi(x)=g_{1}(x)-g_{2}(x)=h_{2}(x)-h_{1}(x)=\psi(x)
$$

Since $\phi(-x)=g_{1}(-x)-g_{2}(-x)=g_{1}(x)-g_{2}(x)=\phi(x)$ ，we know $\phi(x)$ is even continuous function on $[-1,1]$ ．Similarly，$\psi(-x)=h_{2}(-x)-h_{1}(-x)=h_{1}(x)-h_{2}(x)=-\psi(x)$ ．Therefore，$\psi(x)$ is odd continuous function on $[-1,1]$ ．This implies that $\phi(x)$ and $\psi(x)$ are both odd and even functions on $[-1,1]$ ．Then we have $\phi(-x)=\phi(x)$ and $\phi(-x)=-\phi(x)$ ，which yields $\phi(x)=0$ for all $x \in[-1,1]$ ． Similarly $\psi(x)=0$ for all $x \in[-1,1]$ ．Therefore，$g_{1}(x)=g_{2}(x)$ on $[-1,1]$ and $h_{1}(x)=h_{2}(x)$ on $[-1,1]$ ．In conclusion，for all $f \in \mathcal{C}[-1,1]$ ，there exists a unique even function $g(x)$ in $[-1,1]$ and a unique odd function $h(x)$ in $[-1,1]$ such that $f(x)=g(x)+h(x)$ ．This gives $X=X_{1} \oplus X_{2}$ ．

Problem 3．3－6．Show that $Y=\left\{x \mid x=\left(\xi_{j}\right) \in l^{2}, \xi_{2 n}=0, n \in \mathbb{N}\right\}$ is a closed subspace of l^{2} and find Y^{\perp} ．What is Y^{\perp} if $Y=\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\} \in l^{2}$ ，where $e_{j}=\left(\delta_{j k}\right)$ ？

For any $x^{(1)}, x^{(2)} \in Y$ ，and any scalar a, b ，where $x^{(1)}=\left(\xi_{1}^{(1)}, 0, \xi_{3}^{(1)}, 0, \ldots\right)$ and $x^{(2)}=\left(\xi_{1}^{(2)}, 0, \xi_{3}^{(2)}, 0, \ldots\right)$, we have

$$
a x^{(1)}+b x^{(2)}=\left(a \xi_{1}^{(1)}+b \xi_{1}^{(2)}, 0, a \xi_{3}^{(1)}+b \xi_{3}^{(2)}, 0, \ldots\right)
$$

Since $a x^{(1)}+b x^{(2)} \in l^{2}$ and $a \xi_{2 n}^{(1)}+b \xi_{2 n}^{(2)}=0$ for all n, we can conclude that $a x^{(1)}+b x^{(2)} \in Y$. Thus Y is a subspace of l^{2}.

To prove it is closed, we take a convergent sequence $x^{(k)}$ in Y, and $x^{(k)} \rightarrow x^{*} \in X$. Suppose $x^{*} \notin Y$, then there exists j_{0} such that $x_{2 j_{0}}^{*} \neq 0$, and

$$
\left\|x^{(k)}-x^{*}\right\|_{2} \geq \sum_{j=1}^{\infty}\left|\xi_{2 j-1}^{(k)}-\xi_{2 j-1}^{*}\right|^{2}+\left|x_{2 j_{0}}^{*}\right|^{2} \geq\left|x_{2 j_{0}}^{*}\right|^{2}
$$

Take $k \rightarrow \infty$ on both sides, we have $0 \geq\left|x_{2 j_{0}}^{*}\right|^{2}>0$, which is a contradiction. Therefore, $x^{*} \in Y$, and Y is closed.

To find Y^{\perp}, we first consider a necessary condition for any element in Y^{\perp}. If $u \in Y^{\perp}$, where $u=\left(u_{j}\right)$, then $u \perp x$ for all $x \in Y$. Since e_{1}, e_{2}, \ldots are in Y, so at least $u \perp e_{i}$ for all odd i. Thus, $\left\langle u, e_{i}\right\rangle=u_{i}=0$ implies that all odd entries of u must be zero. However, for all u such that $u_{2 j-1}=0,\langle u, x\rangle=0$ because $\xi_{2 j}=0$ for all x. This shows the sufficiency of $u_{2 j-1}=0$ for any u to be in Y^{\perp}. Therefore, $Y^{\perp}=\left\{u \mid u=\left(u_{j}\right) \in l^{2}, u_{2 j-1}=0, j \in \mathbb{N}^{+}\right\}$.

Similarly, if $Y=\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\} \in l^{2}$, then $u \in Y^{\perp}$ if and only if $u \perp e_{1}, \ldots, e_{n}$. Thus, $Y^{\perp}=\left\{u \mid u=\left(u_{j}\right) \in l^{2}, u_{1}=\cdots=u_{n}=0\right\}$.

Problem 3.3-7. Let A and $B \supset A$ be nonempty subsets of an inner product space X. Show that $A \subset A^{\perp \perp}, B^{\perp} \subset A^{\perp}$, and $A^{\perp \perp \perp}=A^{\perp}$.

We first prove $A \subset A^{\perp \perp}$. Take arbitrary $x_{0} \in A$. Consider any $u \in A^{\perp}$, by definition, $u \perp x$ for all $x \in A$. Thus, we have $u \perp x_{0}$, and since $x_{0} \perp u$ for all u, we have $x_{0} \in\left(A^{\perp}\right)^{\perp}$. Notice that the choice of x_{0} is arbitrary in A, we conclude that $A \subset A^{\perp \perp}$.

Then we prove $B^{\perp} \subset A^{\perp}$. Take arbitrary $y_{0} \in B^{\perp}$, for all $v \in B$, we have $y_{0} \perp v$. Since $A \subset B$, for all $x \in A, x$ is also in B, and $y_{0} \perp x$. Since $y_{0} \perp x$ for all $x \in A, y_{0} \in A^{\perp}$. Notice that y_{0} is arbitrary in B^{\perp}, so $B^{\perp} \subset A^{\perp}$.

From $A \subset A^{\perp \perp}$, we can say that for all nonempty subset $S \subset X$, we have $S \subset S^{\perp \perp}$. If S is empty, since empty set is the subset of any set (including empty set), so S still satisfies $S \subset S^{\perp \perp}$, because $\varnothing^{\perp}=X$ and $X^{\perp}=\varnothing$. Therefore, we can take $S=A^{\perp}$, then we have $A^{\perp} \subset\left(A^{\perp}\right)^{\perp \perp}$.

Similarly, from $B^{\perp} \subset A^{\perp}$, we can say for all nonempty subset $S_{1} \subset S_{2} \subset X$, we have $S_{2}^{\perp} \subset S_{1}^{\perp}$. If S_{2} is empty, then S_{1} is also empty and $S_{2}^{\perp} \subset S_{1}^{\perp}$ trivially holds. If S_{2} is nonempty but S_{1} is empty, then since $S_{1}^{\perp}=X, S_{2}^{\perp}$ must be a subset of the whole spacee X. Therefore, we can take $S_{1}=A$ and $S_{2}=A^{\perp \perp}$, then the conclusion is $\left(A^{\perp \perp}\right)^{\perp} \subset A^{\perp}$. Therefore, combined with $A^{\perp} \subset\left(A^{\perp}\right)^{\perp \perp}$ proved just now, we can say $A^{\perp}=A^{\perp \perp \perp}$.

Problem 3.3-9. Show that a subspace Y of a Hilbert space H is closed in H if and only if $Y=Y^{\perp \perp}$.
First we prove the "only if" part. If Y is a closed subspace of Hilbert space, then by Corollary in lecture, $H=Y \oplus Y^{\perp}$. By Problem 3.3-7, we know $Y \subset Y^{\perp \perp}$, so we only need to prove $Y^{\perp \perp} \subset Y$. For all $u \in Y^{\perp \perp}, u \perp v$ for all $v \in Y^{\perp}$. Also, there exists unique $x \in Y$ and $y \in Y^{\perp}$ such that $u=x+y$. Therefore, for all $v \in Y^{\perp},\langle x+y, v\rangle=0$, which means $\langle x, v\rangle+\langle y, v\rangle=0$. Since $x \in Y$ and $v \in Y^{\perp}$, we have $\langle x, v\rangle=0$, thus $\langle y, v\rangle=0$. Since v is arbitrary in Y^{\perp}, we can take $v=y$.
then $\langle y, y\rangle=0$ implies $y=0$. This shows that $u=x \in Y$. Notice that u is arbitrary in $Y^{\perp \perp}$, we conclude that $Y^{\perp \perp} \subset Y$. Combined with the previous result, $Y=Y^{\perp \perp}$.

Then we prove the "if" part. If $Y=Y^{\perp \perp}$ and $Y \subset H$, then we take a convergent sequence $u_{n} \in Y$ such that $u_{n} \rightarrow u \in H$. Since $u_{n} \in Y$, so for any $v \in Y^{\perp},\left\langle u_{n}, v\right\rangle=0$ for all n. By the continuity of inner product, we can take $n \rightarrow \infty$ on both sides, i.e., $\lim _{n \rightarrow \infty}\left\langle u_{n}, v\right\rangle=0$, which implies $\langle u, v\rangle=0$. This shows $u \in Y^{\perp \perp}=Y$, so any limit point of Y is in Y, and Y is closed.

Problem 3.3-10. If $M \neq \varnothing$ is any subset of a Hilbert space H, show that $M^{\perp \perp}$ is the smallest closed subspace of H which contains M, that is, $M^{\perp \perp}$ is contained in any closed subspace $Y \in H$ such that $Y \supset M$.

First the fact that $M^{\perp \perp}$ is a subspace of H is trivial. Also, from Problem 3.3-9, subspace $M^{\perp \perp}$ is closed in H if and only if $M^{\perp \perp}=\left(M^{\perp \perp}\right)^{\perp \perp}$. Since we proved for any nonempty subset $M \in H$, $M^{\perp \perp \perp}=M^{\perp}$, so $\left(M^{\perp \perp}\right)^{\perp \perp}=\left(M^{\perp}\right)^{\perp}$. This shows $M^{\perp \perp}$ is closed.

To show $M^{\perp \perp}$ is the smallest closed subspace contains M, we only need to show $M^{\perp \perp}=$ $\overline{\operatorname{span}(M)}$. This is because $\operatorname{span}(M)$ is the smallest subspace contains M, and the smallest closed subspace must contained $\operatorname{span}(M)$, but the smallest closed set containing $\operatorname{span}(M)$ is its closure. Since the closure of a subspace is again a subspace, $\overline{\operatorname{span}(M)}$ is the smallest closed subspace contains M.

Consider $M \subset M^{\perp \perp}$, since $M^{\perp \perp}$ is a subspace, $\operatorname{span}(M) \subset M^{\perp \perp}$. Due to the closedness of $M^{\perp \perp}, \overline{\operatorname{span}(M)} \subset M^{\perp \perp}$.

Since $M \subset \overline{\operatorname{span}(M)}$, we have $M^{\perp} \supset \overline{\operatorname{span}(M)}{ }^{\perp}$. This further shows $M^{\perp \perp} \subset \overline{\operatorname{span}(M)}{ }^{\perp \perp}$. However, since $\overline{\operatorname{span}(M)}$ is a closed subspace, by Problem 3.3-9, $\overline{\operatorname{span}(M)}{ }^{\perp \perp}=\overline{\operatorname{span}(M)}$. Therefore, $M^{\perp \perp} \subset \overline{\operatorname{span}(M)}$. Therefore, we proved that $M^{\perp \perp}=\overline{\operatorname{span}(M)}$, and this implies $M^{\perp \perp}$ is the smallest closed subspace containing M.

Problem 3.4-6. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal set in an inner product space X, where n is fixed. Let $x \in X$ be any fixed element and $y=\beta_{1} e_{1}+\ldots+\beta_{n} e_{n}$. Then $\|x-y\|$ depends on $\beta_{1}, \ldots, \beta_{n}$. Show by direct calculation that $\|x-y\|$ is minimum if and only if $\beta_{j}=\left\langle x, e_{j}\right\rangle$, where $j=1, \ldots, n$.

Denote $x=\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right)$, we have $x-y=\left(x_{1}-\beta_{1}, x_{2}-\beta_{2}, \ldots, x_{n}-\beta_{n}, x_{n+1}, \ldots\right)$, and compute

$$
\langle x-y, x-y\rangle=\sum_{k=1}^{n}\left(x_{k}-\beta_{k}\right) \overline{\left(x_{k}-\beta_{k}\right)}+\sum_{k=n+1}^{\infty} x_{k} \overline{x_{k}}=\sum_{k=1}^{n}\left|x_{k}-\beta_{k}\right|^{2}+\sum_{k=n+1}^{\infty}\left|x_{k}\right|^{2}
$$

Since all x_{k} are constant, it is easy to see that the value of $\langle x-y, x-y\rangle$ is at least $\sum_{k=n+1}^{\infty}\left|x_{k}\right|^{2}$. Therefore, the minimum of $\langle x-y, x-y\rangle$ is attained if and only if $\sum_{k=1}^{n}\left|x_{k}-\beta_{k}\right|^{2}=0$, which is true if and only if $x_{k}=\beta_{k}$ for all $k=1, \ldots, n$. This implies that the minimum of $\langle x-y, x-y\rangle$ is attained if and only if $\beta_{k}=\left\langle x, e_{k}\right\rangle$ for all $k=1, \ldots, n$. Also $\|x-y\|$ is minimum if and only if $\langle x-y, x-y\rangle$ is minimum, so we finish the proof.

Problem 3.4-7. Let $\left(e_{k}\right)$ be any orthonormal sequence in an inner product space X. Show that
for any $x, y \in X$,

$$
\sum_{k=1}^{\infty}\left|\left\langle x, e_{k}\right\rangle\left\langle y, e_{k}\right\rangle\right| \leq\|x\|\|y\|
$$

From Cauchy-Schwarz inequality, we have

$$
\sum_{k=1}^{\infty}\left|\left\langle x, e_{k}\right\rangle\left\langle y, e_{k}\right\rangle\right| \leq\left(\sum_{k=1}^{\infty}\left|\left\langle x, e_{k}\right\rangle\right|^{2}\right)^{1 / 2}\left(\sum_{k=1}^{\infty}\left|\left\langle y, e_{k}\right\rangle\right|^{2}\right)^{1 / 2}
$$

By Bessel's inequality, we have

$$
\sum_{k=1}^{\infty}\left|\left\langle x, e_{k}\right\rangle\right|^{2} \leq\|x\|^{2}, \quad \sum_{k=1}^{\infty}\left|\left\langle y, e_{k}\right\rangle\right|^{2} \leq\|y\|^{2}
$$

Therefore, we have

$$
\sum_{k=1}^{\infty}\left|\left\langle x, e_{k}\right\rangle\left\langle y, e_{k}\right\rangle\right| \leq\|x\|\|y\|
$$

Problem 3.4-8. Show that an element x of an inner product space X cannot have "too many" Fourier coefficients $\left\langle x, e_{k}\right\rangle$ which are "big"; here, $\left(e_{k}\right)$ is a given orthonormal sequence; more precisely, show that the number n_{m} of $\left\langle x, e_{k}\right\rangle$ such that $\left|\left\langle x, e_{k}\right\rangle\right|>1 / m$ must satisfy $n_{m}<m^{2}\|x\|^{2}$.

Suppose the number n_{m} of $\left\langle x, e_{k}\right\rangle$ such that $\left|\left\langle x, e_{k}\right\rangle\right|>1 / m$ satisfy $n_{m} \geq m^{2}\|x\|^{2}$. Then denote the index set of such k as $A,|A|=n_{m}$, and we have

$$
\sum_{k=1}^{\infty}\left|\left\langle x, e_{k}\right\rangle\right|^{2} \geq \sum_{k \in A}\left|\left\langle x, e_{k}\right\rangle\right|^{2}>\sum_{k \in A} \frac{1}{m^{2}} \geq\|x\|^{2}
$$

This shows that $\sum_{k=1}^{\infty}\left|\left\langle x, e_{k}\right\rangle\right|^{2}>\|x\|$, which contradicts the Bessel's inequality. Therefore, $n_{m}<$ $m^{2}\|x\|^{2}$.

Problem 3.4-9. Orthonormalize the first three terms of the sequence $\left(x_{0}, x_{1}, x_{2}, \ldots\right)$, where $x_{j}(t)=$ t^{j}, on the interval $[-1,1]$, where

$$
\langle x, y\rangle=\int_{-1}^{1} x(t) y(t) d t
$$

Apply Gram-Schmidt process to $x_{0}=1$, we have $u_{0}^{\prime}=x_{0}$, and

$$
\left\|u_{0}^{\prime}\right\|=\sqrt{\int_{-1}^{1} u_{0}^{\prime 2}(t) d t}=\sqrt{2} \Longrightarrow u_{0}=\frac{u_{0}^{\prime}}{\sqrt{2}}=\frac{\sqrt{2}}{2}
$$

Continue the same process to $x_{1}=t$, we have

$$
u_{1}^{\prime}=x_{1}-\left\langle x_{1}, u_{0}\right\rangle u_{0}=t-\frac{\sqrt{2}}{2} \int_{-1}^{1} \frac{\sqrt{2}}{2} t d t=t
$$

Compute the corresponding norm,

$$
\left\|u_{1}^{\prime}\right\|=\sqrt{\int_{-1}^{1} u_{1}^{2}(t) d t}=\sqrt{\int_{-1}^{1} t^{2} d t}=\frac{\sqrt{6}}{3} \Longrightarrow u_{1}=\frac{u_{1}^{\prime}}{\left\|u_{1}^{\prime}\right\|}=\frac{\sqrt{6}}{2} t
$$

Finally, for $x_{2}=t^{2}$, we have

$$
u_{2}^{\prime}=x_{2}-\left\langle x_{2}, u_{0}\right\rangle u_{0}-\left\langle x_{2}, u_{1}\right\rangle u_{1}=t^{2}-\frac{1}{2} \int_{-1}^{1} t^{2} d t-\frac{3}{2} t \int_{-1}^{1} t^{3} d t=t^{2}-\frac{1}{3}
$$

Compute the corresponding norm,

$$
\left\|u_{2}^{\prime}\right\|=\sqrt{\int_{-1}^{1} u_{2}^{\prime 2}(t) d t}=\sqrt{\int_{-1}^{1}\left(t^{2}-\frac{1}{3}\right)^{2} d t}=\frac{2 \sqrt{10}}{15} \Longrightarrow u_{2}=\frac{u_{2}^{\prime}}{\left\|u_{2}^{\prime}\right\|}=\frac{\sqrt{10}}{4}\left(3 t^{2}-1\right)
$$

Therefore, $u_{0}(t)=\frac{\sqrt{2}}{2}, u_{1}(t)=\frac{\sqrt{6}}{2} t$, and $u_{2}(t)=\frac{\sqrt{10}}{4}\left(3 t^{2}-1\right)$ is an orthonormal set.

Problem 3.5-3. Illustrate with an example that a convergent series $\sum\left\langle x, e_{k}\right\rangle e_{k}$ need not have the sum x.

Suppose $\left(e_{k}\right)$ is orthonormal sequence in l^{2} space, and $e_{1}=(0,1,0,0,0, \ldots), e_{2}=(0,0,0,1,0, \ldots)$ and so on. Use the usual inner product in l^{2}, then for any $x=\left(x_{1}, x_{2}, \ldots\right) \in l^{2}$, we have

$$
\sum_{k=1}^{n}\left\langle x, e_{k}\right\rangle e_{k}=\sum_{k=1}^{n} x_{2 k} e_{2 k}=\left(0, x_{2}, 0, x_{4}, \ldots, x_{2 n}, 0,0, \ldots\right)
$$

Define $x^{*}=\left(0, x_{2}, \ldots, 0, x_{2 n+2}, \ldots\right)$, consider

$$
\left\|\sum_{k=1}^{n}\left\langle x, e_{k}\right\rangle e_{k}-x^{*}\right\|^{2}=\sum_{k=n+1}^{\infty}\left|x_{2 k}\right|^{2} \rightarrow 0
$$

as $n \rightarrow \infty$ because $\sum_{k=1}^{\infty}\left|x_{k}\right|^{2}$ is convergent to $\|x\|^{2}$. Therefore, $\sum_{k=1}^{\infty}\left\langle x, e_{k}\right\rangle e_{k}$ converges to x^{*}. However, it is clearly $x^{*} \neq x$ as long as $x_{1} \neq 0$. Therefore, convergent series $\sum_{k=1}^{\infty}\left\langle x, e_{k}\right\rangle e_{k}$ need not have the sum x.

Problem 3.5-4. If $\left(x_{j}\right)$ is a sequence in an inner product space X such that the series $\left\|x_{1}\right\|+\left\|x_{2}\right\|+$ \cdots converges, show that $\left(s_{n}\right)$ is a Cauchy sequence, where $s_{n}=x_{1}+\ldots+x_{n}$.

For arbitrary $\epsilon>0$, consider any $n>m$, we have

$$
\left\|s_{n}-s_{m}\right\|=\left\|\sum_{i=m+1}^{n} x_{i}\right\| \leq \sum_{i=m+1}^{n}\left\|x_{i}\right\| \leq \sum_{i=m+1}^{\infty}\left\|x_{i}\right\|
$$

Since $\sum_{i=1}^{\infty}\left\|x_{i}\right\|$ converges, there exists N, such that $\sum_{i=N}^{\infty}\left\|x_{i}\right\|<\epsilon$. Therefore, for all $n>m \geq N$, we have $\left\|s_{n}-s_{m}\right\|<\epsilon$, so s_{n} is a Cauchy sequence.

Problem 3.5-6. Let $\left(e_{j}\right)$ be an orthonormal sequence in a Hilbert space H. Show that if

$$
x=\sum_{j=1}^{\infty} \alpha_{j} e_{j}, \quad y=\sum_{j=1}^{\infty} \beta_{j} e_{j}
$$

then $\langle x, y\rangle=\sum_{j=1}^{\infty} \alpha_{j} \bar{\beta}_{j}$, given that the series representing x, y are absolutely convergent.
Let $s_{n}=\sum_{j=1}^{n} \alpha_{j} e_{j}$ and $t_{n}=\sum_{j=1}^{n} \beta_{j} e_{j}$, then since the series representing x, y are absolutely convergent, we have $s_{n} \rightarrow x$ and $t_{n} \rightarrow y$ as $n \rightarrow \infty$. Consider

$$
\left\langle s_{n}, t_{n}\right\rangle=\left\langle\sum_{j=1}^{n} \alpha_{j} e_{j}, \sum_{j=1}^{n} \beta_{j} e_{j}\right\rangle=\sum_{j=1}^{n} \alpha_{j} \bar{\beta}_{j}
$$

Since inner product is continuous, we have

$$
\langle x, y\rangle=\lim _{n \rightarrow \infty}\left\langle s_{n}, t_{n}\right\rangle=\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \alpha_{j} \bar{\beta}_{j}
$$

Also, we have

$$
\sum_{j=1}^{\infty}\left|\alpha_{j} \bar{\beta}_{j}\right| \leq\left(\sum_{j=1}^{n}\left|\alpha_{j}\right|^{2}\right)^{1 / 2}\left(\sum_{j=1}^{n}\left|\beta_{j}\right|^{2}\right)^{1 / 2}
$$

Since the right hand side is convergent by the absolute convergence of series representing x, y, $\sum_{j=1}^{\infty}\left|\alpha_{j} \bar{\beta}_{j}\right|$ is also convergent.

Problem 3.5-7. Let $\left(e_{j}\right)$ be an orthonormal sequence in a Hilbert space H. Show that for every $x \in H$, the vector

$$
y=\sum_{k=1}^{\infty}\left\langle x, e_{k}\right\rangle e_{k}
$$

exists in H and $x-y$ is orthogonal to every e_{k}.
Let $u_{k}=\left\langle x, e_{k}\right\rangle e_{k}$, then $\left\|u_{k}\right\|=\left|\left\langle x, e_{k}\right\rangle\right|$. Since by Bessel's inequality,

$$
\sum_{k=1}^{\infty}\left|\left\langle x, e_{k}\right\rangle\right|^{2} \leq\|x\|^{2}
$$

for all $n \geq m, \sum_{k=m}^{n}\left|\left\langle x, e_{k}\right\rangle\right|^{2} \rightarrow 0$ as $m, n \rightarrow \infty$. Consider

$$
\left\|\sum_{k=m}^{n}\left\langle x, e_{k}\right\rangle e_{k}\right\|^{2}=\sum_{k=m}^{n}\left|\left\langle x, e_{k}\right\rangle\right|^{2} \rightarrow 0
$$

we know that the partial sum $\sum_{k=1}^{n}\left\langle x, e_{k}\right\rangle e_{k}$ is a Cauchy sequence, and by completeness of H, it must be convergent to some point in H. Thus $y=\sum_{k=1}^{\infty}\left\langle x, e_{k}\right\rangle e_{k}$ exists in H.

To prove $(x-y) \perp e_{j}$ for all $j=1,2, \ldots$, consider

$$
\left\langle x-y, e_{j}\right\rangle=\left\langle x, e_{k}\right\rangle-\sum_{k=1}^{\infty}\left\langle x, e_{k}\right\rangle\left\langle e_{k}, e_{j}\right\rangle=\left\langle x, e_{k}\right\rangle-\left\langle x, e_{k}\right\rangle=0
$$

because $\left\langle e_{k}, e_{j}\right\rangle \neq 0$ if and only if $k=j$ and $\left\langle e_{k}, e_{k}\right\rangle=1$. Therefore, $(x-y) \perp e_{j}$ for all $j=1,2, \ldots$.

Problem 3.5-8. Let $\left(e_{k}\right)$ be an orthonormal sequence in a Hilbert space H, and let $M=\operatorname{span}\left(e_{k}\right)$. Show that for any $x \in H$ we have $x \in \bar{M}$ if and only if x can be represented by $\sum_{k=1}^{\infty} \alpha_{k} e_{k}$ with coefficients $\alpha_{k}=\left\langle x, e_{k}\right\rangle$.

First we show the "if" part. If for all $x \in H, x=\sum_{k=1}^{\infty} \alpha_{k} e_{k}$, then we can let $x_{n}=\sum_{k=1}^{n} \alpha_{k} e_{k}$, and $x_{n} \rightarrow x$. Notice that $x_{n} \in M$, so x is a limit point of M, hence in \bar{M}.

Then we show the "only if" part. If for any $x \in H$ we have $x \in \bar{M}$, then there exists a sequence $x_{n} \rightarrow x$, where $x_{n}=\sum_{k=1}^{m_{n}} a_{n k} e_{k}$. Then by Problem 3.4-6, we have for each fixed n,

$$
\left\|x-\sum_{k=1}^{m_{n}}\left\langle x, e_{k}\right\rangle e_{k}\right\| \leq\left\|x-x_{n}\right\|
$$

Also notice that for all $l \geq m_{n}$, we should have

$$
\left\|x-\sum_{k=1}^{l}\left\langle x, e_{k}\right\rangle e_{k}\right\| \leq\left\|x-\sum_{k=1}^{m_{n}}\left\langle x, e_{k}\right\rangle e_{k}\right\|
$$

Therefore, we can take $c_{n}=\max \left\{n, m_{n}\right\}$, then as $n \rightarrow \infty, c_{n} \rightarrow \infty$, and

$$
\left\|x-\sum_{k=1}^{c_{n}}\left\langle x, e_{k}\right\rangle e_{k}\right\| \leq\left\|x-x_{n}\right\| \rightarrow 0 \Longrightarrow\left\|x-\sum_{k=1}^{\infty}\left\langle x, e_{k}\right\rangle e_{k}\right\|=0
$$

which means $x=\sum_{k=1}^{\infty}\left\langle x, e_{k}\right\rangle e_{k}$.

Problem 3.5-9. Let $\left(e_{n}\right)$ and $\left(\tilde{e}_{n}\right)$ be orthonormal sequences in a Hilbert space H, and let $M_{1}=$ $\operatorname{span}\left(e_{n}\right)$ and $M_{2}=\operatorname{span}\left(\tilde{e}_{n}\right)$. Show that $\bar{M}_{1}=\bar{M}_{2}$ if and only if $e_{n}=\sum_{m=1}^{\infty} \alpha_{n m} \tilde{e}_{m}$ and $\tilde{e}_{n}=$ $\sum_{m=1}^{\infty} \bar{\alpha}_{m n} e_{m}$ hold simultaneously, where $\alpha_{n m}=\left\langle e_{n}, \tilde{e}_{m}\right\rangle$.

First we prove the "if" part. If $e_{n}=\sum_{m=1}^{\infty} \alpha_{n m} \tilde{e}_{m}$, then by "if" part in Problem 3.5-8, we know $e_{n} \in \bar{M}_{2}$. Since this is true for all n, we know $M_{1} \subset \bar{M}_{2}$. Since \bar{M}_{2} is closed and \bar{M}_{1} is the closure hence the smallest closed set that contained M_{1}, we conclude that $\bar{M}_{1} \subset \bar{M}_{2}$. Similarly, if $\tilde{e}_{n}=\sum_{m=1}^{\infty} \bar{\alpha}_{m n} e_{m}$ then $\tilde{e}_{n} \in \bar{M}_{1}$, and by the same argument it finally yields $\bar{M}_{2} \subset \bar{M}_{1}$. Therefore, we proved that $\bar{M}_{1}=\bar{M}_{2}$.

Then we prove the "only if" part. If $\bar{M}_{1}=\bar{M}_{2}$, then $e_{n} \in \bar{M}_{2}$. Since $\bar{M}_{1}=\bar{M}_{2}$ are closed subspace of H, so they are both Hilbert space. Use \bar{M}_{2} as the Hilbert space in Problem 3.5-8, by "only if" part, we know that $e_{n}=\sum_{k=1}^{\infty}\left\langle e_{n}, \tilde{e}_{k}\right\rangle \tilde{e}_{k}$. Similarly, use \bar{M}_{1} as the Hilbert space in Problem $3.5-8$, since $\tilde{e}_{n} \in \bar{M}_{1}$, we have $\tilde{e}_{n}=\sum_{k=1}^{\infty}\left\langle\tilde{e}_{n}, e_{k}\right\rangle e_{k}$.

Problem 3.6-4. Derive from Parseval's identity, i.e., $\sum_{k}\left|\left\langle x, e_{k}\right\rangle\right|^{2}=\|x\|^{2}$, the following formula

$$
\langle x, y\rangle=\sum_{k}\left\langle x, e_{k}\right\rangle \overline{\left\langle y, e_{k}\right\rangle}
$$

Since $\operatorname{Re}\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)$, we have

$$
\begin{aligned}
\|x+y\|^{2} & =\sum_{k}\left|\left\langle x+y, e_{k}\right\rangle\right|^{2}=\sum_{k}\left\langle x+y, e_{k}\right\rangle \overline{\left\langle x+y, e_{k}\right\rangle} \\
& =\left|\left\langle x, e_{k}\right\rangle\right|^{2}+\left|\left\langle y, e_{k}\right\rangle\right|^{2}+2 \operatorname{Re}\left\langle x, e_{k}\right\rangle \overline{\left\langle y, e_{k}\right\rangle} \\
\|x-y\|^{2} & =\sum_{k}\left|\left\langle x+y, e_{k}\right\rangle\right|^{2}=\sum_{k}\left\langle x+y, e_{k}\right\rangle \overline{\left\langle x+y, e_{k}\right\rangle} \\
& =\left|\left\langle x, e_{k}\right\rangle\right|^{2}+\left|\left\langle y, e_{k}\right\rangle\right|^{2}-2 \operatorname{Re}\left\langle x, e_{k}\right\rangle \overline{\left\langle y, e_{k}\right\rangle}
\end{aligned}
$$

Therefore, $\operatorname{Re}\langle x, y\rangle=\operatorname{Re}\left\langle x, e_{k}\right\rangle \overline{\left\langle y, e_{k}\right\rangle}$. Similarly, we have $\operatorname{Im}\langle x, y\rangle=\frac{1}{4}\left(\|x+i y\|^{2}-\|x-i y\|^{2}\right)$, so

$$
\begin{aligned}
\|x+i y\|^{2} & =\sum_{k}\left|\left\langle x+i y, e_{k}\right\rangle\right|^{2}=\sum_{k}\left\langle x+i y, e_{k}\right\rangle \overline{\left\langle x+i y, e_{k}\right\rangle} \\
& =\left|\left\langle x, e_{k}\right\rangle\right|^{2}+\left|\left\langle y, e_{k}\right\rangle\right|^{2}+2 \operatorname{Im}\left\langle x, e_{k}\right\rangle \overline{\left\langle y, e_{k}\right\rangle}
\end{aligned}
$$

$$
\begin{aligned}
\|x-i y\|^{2} & =\sum_{k}\left|\left\langle x-i y, e_{k}\right\rangle\right|^{2}=\sum_{k}\left\langle x-i y, e_{k}\right\rangle \overline{\left\langle x-i y, e_{k}\right\rangle} \\
& =\left|\left\langle x, e_{k}\right\rangle\right|^{2}+\left|\left\langle y, e_{k}\right\rangle\right|^{2}-2 \operatorname{Im}\left\langle x, e_{k}\right\rangle \overline{\left\langle y, e_{k}\right\rangle}
\end{aligned}
$$

Therefore, $\operatorname{Im}\langle x, y\rangle=\operatorname{Im}\left\langle x, e_{k}\right\rangle \overline{\left\langle y, e_{k}\right\rangle}$. This shows that $\langle x, y\rangle=\sum_{k}\left\langle x, e_{k}\right\rangle \overline{\left\langle y, e_{k}\right\rangle}$.

Problem 3.8-6. Show that Riesz's Theorem defines an isometric bijection $T: H \mapsto H^{\prime}, z \mapsto f_{z}=$ $\langle\cdot, z\rangle$ which is not linear but conjugate linear, that is, $\alpha z+\beta v \mapsto \bar{\alpha} f_{z}+\bar{\beta} f_{v}$.

Riesz's Theorem says that if H is Hilbert, then for all $f \in H^{\prime}$, there exists a unique $y \in H$, such that $f_{y}(x)=\langle x, y\rangle$. Moreover, $\|f\|_{H^{\prime}}=\|y\|_{H}$. This directly implies that T is bijective and isometric. Therefore, we only need to prove T is conjugate linear.

Consider any $z, v \in H$ and scalar α, β, we have

$$
\langle\cdot, \alpha z+\beta v\rangle=\overline{\langle\alpha z+\beta v, \cdot\rangle}=\overline{\alpha\langle z, \cdot\rangle+\beta\langle v, \cdot\rangle}=\bar{\alpha} \overline{\langle z, \cdot\rangle}+\bar{\beta} \overline{\langle v, \cdot\rangle}=\bar{\alpha}\langle\cdot, z\rangle+\bar{\beta}\langle\cdot, v\rangle
$$

Therefore, $T(\alpha z+\beta v)=\bar{\alpha} T z+\bar{\beta} T v$, and T is conjugate linear. It is easy to see at least when $\beta=0$ and $\alpha=i, T(i z)=-i T z \neq i T z$, so T cannt be linear as long as T is not the zero map.

Problem 3.8-7. Show that the dual space H^{\prime} of a Hilbert space H is a Hilbert space with inner product $\langle\cdot, \cdot\rangle$ defined by

$$
\left\langle f_{z}, f_{v}\right\rangle=\overline{\langle z, v\rangle}=\langle v, z\rangle
$$

where $f_{z}(x)=\langle x, z\rangle$.
Notice that the dual space of any normed space is complete, but H is Hilbert thus normed space, so H^{\prime} is complete. Therefore, we only need to prove H^{\prime} is equipped with an inner product defined in the question. By Riesz' Theorem, each element f in H^{\prime} can be represented by $f_{z}(x)=\langle x, z\rangle$, where f_{z} is obviously a linear bounded (Riesz's Therorem) functional. Therefore, we only need to show $\left\langle f_{z}, f_{v}\right\rangle=\langle v, z\rangle$ is an inner product in H^{\prime}.

First, $\left\langle f_{z}, f_{z}\right\rangle=\langle z, z\rangle \geq 0$ and since $\langle z, z\rangle=0 \Longleftrightarrow z=0$, we have $\left\langle f_{z}, f_{z}\right\rangle=0 \Longleftrightarrow f_{z}=$ $\langle x, 0\rangle \equiv 0$.

Then, $\left\langle f_{z}, f_{v}\right\rangle=\langle v, z\rangle=\overline{\langle z, v\rangle}=\overline{\left\langle f_{v}, f_{z}\right\rangle}$.
Consider any scalar a, b and any $f_{y} \in H^{\prime}$, we have

$$
\left\langle a f_{z}+b f_{y}, f_{v}\right\rangle=\left\langle f_{\bar{a} z+\bar{b} y}, f_{v}\right\rangle=\langle v, \bar{a} z+\bar{b} y\rangle=a\langle v, z\rangle+b\langle v, y\rangle=a\left\langle f_{z}, f_{v}\right\rangle+b\left\langle f_{y}, f_{v}\right\rangle
$$

Therefore, $\left\langle f_{z}, f_{v}\right\rangle=\langle v, z\rangle$ is an inner product in H^{\prime}. This implies that H^{\prime} is a Hilbert space.

Problem 3.8-8. Show that any Hilbert space H is isomorphic with its second dual space $H^{\prime \prime}=$ $\left(H^{\prime}\right)^{\prime}$.

Since H^{\prime} is Hilbert (as we proved in Problem 3.8-7), by Riesz's Theorem, any element F in $H^{\prime \prime}$ can be expressed as $F_{f}=\langle g, f\rangle$ with unique $f \in H^{\prime}$ for all $g \in H^{\prime}$. By Problem 3.8-7, $H^{\prime \prime}$ is also Hilbert with inner product $\left\langle F_{f}, F_{g}\right\rangle=\langle g, f\rangle$. Therefore, we can define a map $\phi: H \mapsto H^{\prime \prime}$ by $z \mapsto F_{f_{z}}(h)=\left\langle h, f_{z}\right\rangle$ for all $h \in H^{\prime}$. Then we need to prove ϕ is bijective linear mapping that preserves inner product.

Firstly, we need to show ϕ is well-defined function, i.e., for $z=v$, we must have $\phi(z)=\phi(v)$. We only need to show that for all $h \in H^{\prime}, F_{f_{z}}(h)=F_{f_{v}}(h)$. Therefore, we need to show $\left\langle h, f_{z}\right\rangle=\left\langle h, f_{v}\right\rangle$ for all $h \in H^{\prime}$. Since by Riesz's Theorem, we have unique $y \in H$ for each h such that $h=h_{y}(x)=$ $\langle x, y\rangle$ for all x, we only need to show $\left\langle h_{y}, f_{z}\right\rangle=\left\langle h_{y}, f_{v}\right\rangle$. Since $\left\langle h_{y}, f_{z}\right\rangle=\langle z, y\rangle$ and $\left\langle h_{y}, f_{v}\right\rangle=\langle v, y\rangle$, and $z=v$, so $\langle z, y\rangle=\langle v, y\rangle$. This implies that $F_{f_{z}}(h)=F_{f_{v}}(h)$ and ϕ is well-defined.

Then we show ϕ is linear. Consider any scalar a, b and and $z, v \in H$, we need to show $\phi(a z+$ $b v)=a \phi(z)+b \phi(v)$, which means $\left\langle h, f_{a z+b v}\right\rangle=a\left\langle h, f_{z}\right\rangle+b\left\langle h, f_{v}\right\rangle$. Notice that

$$
\left\langle h, f_{a z+b v}\right\rangle=\left\langle h_{y}, f_{a z+b v}\right\rangle=\langle a z+b v, y\rangle=a\langle z, y\rangle+b\langle v, y\rangle=a\left\langle f_{y}, f_{z}\right\rangle+b\left\langle f_{y}, f_{v}\right\rangle=a\left\langle h, f_{z}\right\rangle+b\left\langle h, f_{v}\right\rangle
$$

Therefore, ϕ is linear.
Then we show ϕ is bijective. Surjectivity is trivial because of Riesz's Theorem. For injectivity, if $\phi(z)=0$, we have $\left\langle h, f_{z}\right\rangle=0$ for all $h \in H^{\prime}$. This further implies that $\langle z, y\rangle=0$ for all $y \in H$. Then take $y=z$, we immediately have $\|z\|^{2}=0$ and hence $z=0$. This shows the kernel of ϕ is trivial and ϕ is injective.

Finally we show ϕ preserves the inner product. We can see that $\langle\phi(z), \phi(v)\rangle=\left\langle F_{f_{z}}, F_{f_{v}}\right\rangle=$ $\left\langle f_{v}, f_{z}\right\rangle=\langle z, v\rangle$. Thus, we conclude that H and $H^{\prime \prime}$ are isomorphic.

Extra Problem 1. Let X and Y be two normed spaces. We say X is continuously embedded into Y if $X \subset Y$ and if the identity map $i: X \mapsto Y, i(x)=x$ is injective and bounded, i.e., there exists constant $C>0$, such that $\|x\|_{Y} \leq C\|x\|_{X}$, for all $x \in X$. Denote it as $X \hookrightarrow Y$. Let H and V be real Hilbert spaces (with their own inner products $(\cdot, \cdot)_{H}$ and $\left.(\cdot, \cdot)_{V}\right)$. Suppose V is continuously embedded into H and V is dense in H. Prove that $H^{\prime} \hookrightarrow V^{\prime}$ and that H^{\prime} is dense in V^{\prime}.

First we prove $H^{\prime} \subset V^{\prime}$. For each $f \in H^{\prime}, f$ is a linear functional defined on H. Since $V \subset H$, so f is also a linear funcitonal defined on V, thus $f \in V^{\prime}$. Therefore, $H^{\prime} \subset V^{\prime}$.

Then we prove that the map $i: H^{\prime} \mapsto V^{\prime}$ given by $i(f)=\left.f\right|_{V}$ is injective and bounded. Consider $\left.f\right|_{V}(v) \equiv 0$ for all $v \in V$, by Riesz's Theorem, we can identify $\left.f\right|_{V}(v)$ as $\langle v, y\rangle$ for unique $y \in V$. Since V is dense in H, for all $u \in H$, we have $v_{n} \in V$ such that $v_{n} \rightarrow u$ (If $u \in V$, then v_{n} is constant sequence u). For all $u \in H,\langle u, y\rangle=\lim _{n \rightarrow \infty}\left\langle v_{n}, y\right\rangle=0$, thus $f(u) \equiv 0$ and the pre-image of $\left.f\right|_{V}(v) \equiv 0$ is $f(u)=\langle u, y\rangle \equiv 0$. Therefore, $i(f)$ is injective.

Consider

$$
\left\|\left.f\right|_{V}\right\|_{V^{\prime}}=\sup _{\|v\|_{V}=1}|f|_{V}(v)\left|=\sup _{\|v\|_{V}=1}\right| f(v) \mid \leq\|f\|_{H^{\prime}} \sup _{\|v\|_{V}=1}\|v\|_{H}
$$

Since $V \hookrightarrow H$, we have $\|v\|_{H} \leq C\|v\|_{V}$, thus,

$$
\left\|\left.f\right|_{V}\right\|_{V^{\prime}} \leq\|f\|_{H^{\prime}} \sup _{\|v\|_{V}=1} C\|v\|_{V}=C\|f\|_{H^{\prime}}
$$

Therefore, $H^{\prime} \hookrightarrow V^{\prime}$.
To prove H^{\prime} is dense in V^{\prime}, we need to prove $H^{\prime \perp}=\left\{0_{V^{\prime}}\right\}$. This is because if so, $H^{\prime \perp \perp}=$ $\overline{H^{\prime}}=V^{\prime}$ immediately implies that H^{\prime} is dense in V^{\prime}. Consider any $f \in H^{\prime}$, then there exists unique $y \in H$, such that $f_{y}(x)=\langle x, y\rangle$ for all $x \in H$. If a $g \in V^{\prime}$ satisfies $\langle f, g\rangle=0$, then we can find $v \in V$ such that $g_{v}(z)=\langle z, v\rangle$ for all $z \in V$. From Problem 3.8-7, we have $\langle f, g\rangle=\langle v, y\rangle=0$ for all
$y \in H$ and fixed $v \in V$. Since V is dense in $H, V^{\perp}=\left\{0_{H}\right\}$, and now $v \in V$ and $v \in V^{\perp}$, so $v=0$. This implies that $g=0_{V^{\prime}}$, therefore $H^{\perp}=\left\{0_{V^{\prime}}\right\}$.

Extra Problem 2. Given that any $f \in L^{2}(-l, l)$ can be expanded as

$$
f(x)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos \frac{k \pi x}{l}+b_{k} \sin \frac{k \pi x}{l}\right)
$$

(i) Use Euler's formula $e^{i \theta}=\cos \theta+i \sin \theta$, prove that $f(x)=\sum_{k=-\infty}^{\infty} c_{k} e^{\frac{i k \pi x}{L}}$, where $\sum_{k=-\infty}^{\infty} c_{k} e^{\frac{i k \pi x}{l}}$ is understood as the limit of $\sum_{k=-n}^{n} c_{k} e^{\frac{i k \pi x}{l}}$ in $L^{2}(-l, l)$; give the formula for Fourier coefficient c_{k}.

Since $\cos \theta=\frac{1}{2}\left(e^{i \theta}+e^{-i \theta}\right)$ and $\sin \theta=\frac{1}{2 i}\left(e^{i \theta}-e^{-i \theta}\right)$, we have

$$
\begin{aligned}
f(x) & =\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos \frac{k \pi x}{l}+b_{k} \sin \frac{k \pi x}{l}\right) \\
& =\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \frac{1}{2}\left(e^{\frac{i k \pi x}{l}}+e^{-\frac{i k \pi x}{l}}\right)+b_{k} \frac{1}{2 i}\left(e^{\frac{i k \pi x}{l}}-e^{-\frac{i k \pi x}{l}}\right)\right) \\
& =\frac{a_{0}}{2}+\sum_{k=1}^{\infty} \frac{1}{2}\left(a_{k}-i b_{k}\right) e^{\frac{i k \pi x}{l}}+\sum_{k=-\infty}^{-1} \frac{1}{2}\left(a_{-k}+i b_{-k}\right) e^{\frac{i k \pi x}{l}} \\
& =\sum_{k=-\infty}^{\infty} c_{k} e^{\frac{i k \pi x}{l}}
\end{aligned}
$$

where c_{k} is defined by

$$
\begin{cases}c_{0}=\frac{a_{0}}{2}=\frac{1}{2 l} \int_{-l}^{l} f(t) d t \\ c_{k}=\frac{1}{2}\left(a_{k}-i b_{k}\right)=\frac{1}{2 l} \int_{-l}^{l} f(t) e^{\frac{-i k \pi t}{l}} d t & k \geq 1 \\ c_{k}=\frac{1}{2}\left(a_{-k}+i b_{-k}\right)=\frac{1}{2 l} \int_{-l}^{l} f(t) e^{\frac{-i k \pi t}{l}} d t & k \leq-1\end{cases}
$$

or more compactly, for all $k \in \mathbb{Z}, c_{k}$ is defined by

$$
c_{k}=\frac{1}{2 l} \int_{-l}^{l} f(t) e^{\frac{-i k \pi t}{l}} d t
$$

(ii) Denote c_{k} as $\hat{f}(k)$. Prove that if $l=\pi$ and if $f \in \mathcal{C}^{1}[-\pi, \pi]$ and is 2π-periodic, then $\widehat{f^{\prime}}(k)=i k \hat{f}(k)$.

Since $f \in \mathcal{C}^{1}[-\pi, \pi], f^{\prime}$ is in $L^{2}(-\pi, \pi)$. Also, since f is 2π-periodic differentiable function, $f^{\prime}(x)$ is also 2π-periodic. Therefore, $f^{\prime}(x)$ has a convergent Fourier series expansion, the only thing we need to do is to determine the coefficient. By the formula derived in part (i), for $k \geq 0$, apply integration by part, and we have,

$$
\widehat{f^{\prime}}(k)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f^{\prime}(t) e^{-i k t} d t=\left.\frac{1}{2 \pi} e^{-i k t} f(t)\right|_{-\pi} ^{\pi}+\frac{1}{2 \pi} \int_{-\pi}^{\pi} i k f(t) e^{-i k t} d t=i k \hat{f}(k)
$$

because the first term vanishes.
(iii) For all $f, g \in L^{2}(-\pi, \pi)$, prove $\langle f, g\rangle_{L^{2}(-\pi, \pi)}=2 \pi \sum_{k=-\infty}^{\infty} \hat{f}(k) \overline{\hat{g}(k)}$.

We have known that $e^{i n x}$ forms a basis of $L^{2}(-\pi, \pi)$, so next we need to prove $e^{i n x}$ is orthogonal basis. This is trivial because

$$
\begin{aligned}
\int_{-\pi}^{\pi} e^{i m x} e^{i n x} d x= & \int_{-\pi}^{\pi} \cos m x \cos n x d x+i \int_{-\pi}^{\pi} \sin m x \cos n x d x \\
& +i \int_{-\pi}^{\pi} \cos m x \sin n x d x-\int_{-\pi}^{\pi} \sin m x \sin n x d x
\end{aligned}
$$

Since $\cos m x, \sin m x$ are all orthognal to each other, $\int_{-\pi}^{\pi} e^{i m x} e^{i n x} d x=0$. However, notice that $e^{i n x}$ is not orthonormal basis, because

$$
\left\|e^{i n x}\right\|_{L^{2}(-\pi, \pi)}^{2}=\int_{-\pi}^{\pi}\left|e^{i n x}\right|^{2} d x=2 \pi
$$

Therefore, we can take $u_{k}=\frac{1}{\sqrt{2 \pi}} e^{i k x}$, then u_{k} forms an orthonormal basis. By Problem 3.6-4, we have

$$
\langle f, g\rangle_{L^{2}(-\pi, \pi)}=\sum_{k}\left\langle f, u_{k}\right\rangle \overline{\left\langle g, u_{k}\right\rangle}
$$

Notice that

$$
\left\langle f, u_{k}\right\rangle=\int_{-\pi}^{\pi} f(x) \frac{1}{\sqrt{2 \pi}} e^{i k x}=\sqrt{2 \pi} \hat{f}(k)
$$

Similarly, we have $\left\langle g, u_{k}\right\rangle=\hat{g}(k)$, and this implies that

$$
\langle f, g\rangle_{L^{2}(-\pi, \pi)}=2 \pi \sum_{k=-\infty}^{\infty} \hat{f}(k) \overline{\hat{g}(k)}
$$

Extra Problem 3. Let P be a simple closed curve in the $x-y$ plane. Suppose P is \mathcal{C}^{1}-smooth, i.e., P can be parameterized by $x=x(s)$ and $y=y(s)$, where $s \in[0,2 \pi]$ is the arclength variable, 2π is the arclength of P, and $x(s), y(s)$ in $\mathcal{C}^{1}([0,2 \pi])$. Prove the isoperimetric inequality, $A \leq \pi$, where A is the area of the region enclosed by P. Hint: By Green's formula, if P is oriented counter-clockwise, then

$$
A=\frac{1}{2} \int_{P} x d y-y d x=\frac{1}{2} \int_{0}^{2 \pi}\left(x(s) y^{\prime}(s)-y(s) x^{\prime}(s)\right) d s=\frac{1}{2}\left[\left\langle x, y^{\prime}\right\rangle_{L^{2}(0,2 \pi)}-\left\langle y, x^{\prime}\right\rangle_{L^{2}(0,2 \pi)}\right]
$$

Since $x(s), y(s) \in \mathcal{C}^{1}$ and 2π-periodic, we can express them in $x(s)=\sum_{k=-\infty}^{\infty} a_{k} e^{i k s}$ and $y(s)=\sum_{k=-\infty}^{\infty} b_{k} e^{i k s}$. By the last problem, we have $x^{\prime}(s)=\sum_{k=-\infty}^{\infty} a_{k}(i k) e^{i k s}$ and $y^{\prime}(s)=$ $\sum_{k=-\infty}^{\infty} b_{k}(i k) e^{i k s}$. Therefore,

$$
\left\langle x, y^{\prime}\right\rangle_{L^{2}(-\pi, \pi)}=2 \pi \sum_{k=-\infty}^{\infty} a_{k} \overline{(i k) b_{k}}, \quad\left\langle y, x^{\prime}\right\rangle_{L^{2}(-\pi, \pi)}=2 \pi \sum_{k=-\infty}^{\infty} b_{k} \overline{(i k) a_{k}}
$$

The hint implies that

$$
A=\pi\left|(-i) \sum_{k=-\infty}^{\infty} k\left(a_{k} \overline{b_{k}}-\overline{a_{k}} b_{k}\right)\right| \leq \pi \sum_{k=-\infty}^{\infty} 2 k\left|a_{k}\right|\left|b_{k}\right| \leq \pi \sum_{k=-\infty}^{\infty} k\left(\left|a_{k}\right|^{2}+\left|b_{k}\right|^{2}\right)
$$

Also, since the curve P is parametrized by arc length, we have

$$
\int_{0}^{2 \pi} \sqrt{\left(x^{\prime}(s)\right)^{2}+\left(y^{\prime}(s)\right)^{2}} d s=\int_{0}^{2 \pi}\left(x^{\prime}(s)\right)^{2}+\left(y^{\prime}(s)\right)^{2} d s=2 \pi
$$

Since $\left\|x^{\prime}\right\|^{2}=\int_{0}^{2 \pi}\left(x^{\prime}(s)\right)^{2} d s=2 \pi \sum_{k=-\infty}^{\infty} k^{2}\left|a_{k}\right|^{2}$, and $\left\|y^{\prime}\right\|^{2}=\int_{0}^{2 \pi}\left(y^{\prime}(s)\right)^{2} d s=2 \pi \sum_{k=-\infty}^{\infty} k^{2}\left|b_{k}\right|^{2}$, we have $\sum_{k=-\infty}^{\infty} k^{2}\left|a_{k}\right|^{2}+\sum_{k=-\infty}^{\infty} k^{2}\left|b_{k}\right|^{2}=1$. Therefore, we have

$$
A \leq \pi \sum_{k=-\infty}^{\infty} k\left(\left|a_{k}\right|^{2}+\left|b_{k}\right|^{2}\right) \leq \pi \sum_{k=-\infty}^{\infty} k^{2}\left(\left|a_{k}\right|^{2}+\left|b_{k}\right|^{2}\right)=\pi
$$

This implies that the isoperimetric inequality $A \leq \pi$ holds.

