MAT4010: Functional Analysis Homework 4

李肖鹏 (116010114)

Due date: Oct. 8, 2019

Problem 3.3-3(a). Show that the vector space X of all real-valued continuous functions on [-1, 1] is the direct sum of the set of all even continuous functions and the set of all odd continuous functions on [-1, 1].

For all $f \in \mathcal{C}[-1, 1]$, for all $x \in [-1, 1]$, we have

$$f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2} = g(x) + h(x)$$

where since $-x \in [-1, 1]$, f(-x) is also in $\mathcal{C}[-1, 1]$, and h(x), g(x) are both continuous function in $\mathcal{C}[-1, 1]$. Notice that

$$g(-x) = \frac{f(-x) + f(x)}{2} = g(x), \qquad h(-x) = \frac{f(-x) - f(x)}{2} = -h(x)$$

Therefore, g is even continuous function on [-1, 1] and h is odd continuous function on [-1, 1]. This implies that $X = X_1 + X_2$, where X_1 is the set of all odd continuous functions and X_2 is the set of all even continuous functions.

Now we need to prove for each f, such g and h are unique. Suppose $f(x) = g_1(x) + h_1(x) = g_2(x) + h_2(x)$, where $g_1, g_2 \in X_2$ and $h_1, h_2 \in X_1$. Then we have

$$\phi(x) = g_1(x) - g_2(x) = h_2(x) - h_1(x) = \psi(x)$$

Since $\phi(-x) = g_1(-x) - g_2(-x) = g_1(x) - g_2(x) = \phi(x)$, we know $\phi(x)$ is even continuous function on [-1,1]. Similarly, $\psi(-x) = h_2(-x) - h_1(-x) = h_1(x) - h_2(x) = -\psi(x)$. Therefore, $\psi(x)$ is odd continuous function on [-1,1]. This implies that $\phi(x)$ and $\psi(x)$ are both odd and even functions on [-1,1]. Then we have $\phi(-x) = \phi(x)$ and $\phi(-x) = -\phi(x)$, which yields $\phi(x) = 0$ for all $x \in [-1,1]$. Similarly $\psi(x) = 0$ for all $x \in [-1,1]$. Therefore, $g_1(x) = g_2(x)$ on [-1,1] and $h_1(x) = h_2(x)$ on [-1,1]. In conclusion, for all $f \in \mathcal{C}[-1,1]$, there exists a unique even function g(x) in [-1,1] and a unique odd function h(x) in [-1,1] such that f(x) = g(x) + h(x). This gives $X = X_1 \oplus X_2$.

Problem 3.3-6. Show that $Y = \{x \mid x = (\xi_j) \in l^2, \xi_{2n} = 0, n \in \mathbb{N}\}$ is a closed subspace of l^2 and find Y^{\perp} . What is Y^{\perp} if $Y = \text{span}\{e_1, \ldots, e_n\} \in l^2$, where $e_j = (\delta_{jk})$?

For any $x^{(1)}, x^{(2)} \in Y$, and any scalar a, b, where $x^{(1)} = (\xi_1^{(1)}, 0, \xi_3^{(1)}, 0, \ldots)$ and $x^{(2)} = (\xi_1^{(2)}, 0, \xi_3^{(2)}, 0, \ldots)$, we have

$$ax^{(1)} + bx^{(2)} = (a\xi_1^{(1)} + b\xi_1^{(2)}, 0, a\xi_3^{(1)} + b\xi_3^{(2)}, 0, \ldots)$$

Since $ax^{(1)} + bx^{(2)} \in l^2$ and $a\xi_{2n}^{(1)} + b\xi_{2n}^{(2)} = 0$ for all n, we can conclude that $ax^{(1)} + bx^{(2)} \in Y$. Thus Y is a subspace of l^2 .

To prove it is closed, we take a convergent sequence $x^{(k)}$ in Y, and $x^{(k)} \to x^* \in X$. Suppose $x^* \notin Y$, then there exists j_0 such that $x^*_{2j_0} \neq 0$, and

$$||x^{(k)} - x^*||_2 \ge \sum_{j=1}^{\infty} |\xi_{2j-1}^{(k)} - \xi_{2j-1}^*|^2 + |x_{2j_0}^*|^2 \ge |x_{2j_0}^*|^2$$

Take $k \to \infty$ on both sides, we have $0 \ge |x_{2j_0}^*|^2 > 0$, which is a contradiction. Therefore, $x^* \in Y$, and Y is closed.

To find Y^{\perp} , we first consider a necessary condition for any element in Y^{\perp} . If $u \in Y^{\perp}$, where $u = (u_j)$, then $u \perp x$ for all $x \in Y$. Since e_1, e_2, \ldots are in Y, so at least $u \perp e_i$ for all odd i. Thus, $\langle u, e_i \rangle = u_i = 0$ implies that all odd entries of u must be zero. However, for all u such that $u_{2j-1} = 0$, $\langle u, x \rangle = 0$ because $\xi_{2j} = 0$ for all x. This shows the sufficiency of $u_{2j-1} = 0$ for any u to be in Y^{\perp} . Therefore, $Y^{\perp} = \{u \mid u = (u_j) \in l^2, u_{2j-1} = 0, j \in \mathbb{N}^+\}$.

Similarly, if $Y = \operatorname{span}\{e_1, \ldots, e_n\} \in l^2$, then $u \in Y^{\perp}$ if and only if $u \perp e_1, \ldots, e_n$. Thus, $Y^{\perp} = \{u \mid u = (u_j) \in l^2, u_1 = \cdots = u_n = 0\}.$

Problem 3.3-7. Let A and $B \supset A$ be nonempty subsets of an inner product space X. Show that $A \subset A^{\perp \perp}, B^{\perp} \subset A^{\perp}$, and $A^{\perp \perp \perp} = A^{\perp}$.

We first prove $A \subset A^{\perp \perp}$. Take arbitrary $x_0 \in A$. Consider any $u \in A^{\perp}$, by definition, $u \perp x$ for all $x \in A$. Thus, we have $u \perp x_0$, and since $x_0 \perp u$ for all u, we have $x_0 \in (A^{\perp})^{\perp}$. Notice that the choice of x_0 is arbitrary in A, we conclude that $A \subset A^{\perp \perp}$.

Then we prove $B^{\perp} \subset A^{\perp}$. Take arbitrary $y_0 \in B^{\perp}$, for all $v \in B$, we have $y_0 \perp v$. Since $A \subset B$, for all $x \in A$, x is also in B, and $y_0 \perp x$. Since $y_0 \perp x$ for all $x \in A$, $y_0 \in A^{\perp}$. Notice that y_0 is arbitrary in B^{\perp} , so $B^{\perp} \subset A^{\perp}$.

From $A \subset A^{\perp\perp}$, we can say that for all nonempty subset $S \subset X$, we have $S \subset S^{\perp\perp}$. If S is empty, since empty set is the subset of any set (including empty set), so S still satisfies $S \subset S^{\perp\perp}$, because $\emptyset^{\perp} = X$ and $X^{\perp} = \emptyset$. Therefore, we can take $S = A^{\perp}$, then we have $A^{\perp} \subset (A^{\perp})^{\perp\perp}$.

Similarly, from $B^{\perp} \subset A^{\perp}$, we can say for all nonempty subset $S_1 \subset S_2 \subset X$, we have $S_2^{\perp} \subset S_1^{\perp}$. If S_2 is empty, then S_1 is also empty and $S_2^{\perp} \subset S_1^{\perp}$ trivially holds. If S_2 is nonempty but S_1 is empty, then since $S_1^{\perp} = X$, S_2^{\perp} must be a subset of the whole space X. Therefore, we can take $S_1 = A$ and $S_2 = A^{\perp \perp}$, then the conclusion is $(A^{\perp \perp})^{\perp} \subset A^{\perp}$. Therefore, combined with $A^{\perp} \subset (A^{\perp})^{\perp \perp}$ proved just now, we can say $A^{\perp} = A^{\perp \perp \perp}$.

Problem 3.3-9. Show that a subspace Y of a Hilbert space H is closed in H if and only if $Y = Y^{\perp \perp}$.

First we prove the "only if" part. If Y is a closed subspace of Hilbert space, then by Corollary in lecture, $H = Y \oplus Y^{\perp}$. By Problem 3.3-7, we know $Y \subset Y^{\perp \perp}$, so we only need to prove $Y^{\perp \perp} \subset Y$. For all $u \in Y^{\perp \perp}$, $u \perp v$ for all $v \in Y^{\perp}$. Also, there exists unique $x \in Y$ and $y \in Y^{\perp}$ such that u = x + y. Therefore, for all $v \in Y^{\perp}$, $\langle x + y, v \rangle = 0$, which means $\langle x, v \rangle + \langle y, v \rangle = 0$. Since $x \in Y$ and $v \in Y^{\perp}$, we have $\langle x, v \rangle = 0$, thus $\langle y, v \rangle = 0$. Since v is arbitrary in Y^{\perp} , we can take v = y. then $\langle y, y \rangle = 0$ implies y = 0. This shows that $u = x \in Y$. Notice that u is arbitrary in $Y^{\perp \perp}$, we conclude that $Y^{\perp \perp} \subset Y$. Combined with the previous result, $Y = Y^{\perp \perp}$.

Then we prove the "if" part. If $Y = Y^{\perp \perp}$ and $Y \subset H$, then we take a convergent sequence $u_n \in Y$ such that $u_n \to u \in H$. Since $u_n \in Y$, so for any $v \in Y^{\perp}$, $\langle u_n, v \rangle = 0$ for all n. By the continuity of inner product, we can take $n \to \infty$ on both sides, i.e., $\lim_{n\to\infty} \langle u_n, v \rangle = 0$, which implies $\langle u, v \rangle = 0$. This shows $u \in Y^{\perp \perp} = Y$, so any limit point of Y is in Y, and Y is closed.

Problem 3.3-10. If $M \neq \emptyset$ is any subset of a Hilbert space H, show that $M^{\perp \perp}$ is the smallest closed subspace of H which contains M, that is, $M^{\perp \perp}$ is contained in any closed subspace $Y \in H$ such that $Y \supset M$.

First the fact that $M^{\perp\perp}$ is a subspace of H is trivial. Also, from Problem 3.3-9, subspace $M^{\perp\perp}$ is closed in H if and only if $M^{\perp\perp} = (M^{\perp\perp})^{\perp\perp}$. Since we proved for any nonempty subset $M \in H$, $M^{\perp\perp\perp} = M^{\perp}$, so $(M^{\perp\perp})^{\perp\perp} = (M^{\perp})^{\perp}$. This shows $M^{\perp\perp}$ is closed.

To show $M^{\perp\perp}$ is the smallest closed subspace contains M, we only need to show $M^{\perp\perp} = \overline{\operatorname{span}(M)}$. This is because $\operatorname{span}(M)$ is the smallest subspace contains M, and the smallest closed subspace must contained $\operatorname{span}(M)$, but the smallest closed set containing $\operatorname{span}(M)$ is its closure. Since the closure of a subspace is again a subspace, $\overline{\operatorname{span}(M)}$ is the smallest closed subspace contains M.

Consider $M \subset M^{\perp\perp}$, since $M^{\perp\perp}$ is a subspace, span $(M) \subset M^{\perp\perp}$. Due to the closedness of $M^{\perp\perp}$, $\overline{\text{span}(M)} \subset M^{\perp\perp}$.

Since $M \subset \overline{\operatorname{span}(M)}$, we have $M^{\perp} \supset \overline{\operatorname{span}(M)}^{\perp}$. This further shows $M^{\perp \perp} \subset \overline{\operatorname{span}(M)}^{\perp \perp}$. However, since $\overline{\operatorname{span}(M)}$ is a closed subspace, by Problem 3.3-9, $\overline{\operatorname{span}(M)}^{\perp \perp} = \overline{\operatorname{span}(M)}$. Therefore, $M^{\perp \perp} \subset \overline{\operatorname{span}(M)}$. Therefore, we proved that $M^{\perp \perp} = \overline{\operatorname{span}(M)}$, and this implies $M^{\perp \perp}$ is the smallest closed subspace containing M.

Problem 3.4-6. Let $\{e_1, \ldots, e_n\}$ be an orthonormal set in an inner product space X, where n is fixed. Let $x \in X$ be any fixed element and $y = \beta_1 e_1 + \ldots + \beta_n e_n$. Then ||x - y|| depends on β_1, \ldots, β_n . Show by direct calculation that ||x - y|| is minimum if and only if $\beta_j = \langle x, e_j \rangle$, where $j = 1, \ldots, n$.

Denote $x = (x_1, x_2, ..., x_n, ...)$, we have $x - y = (x_1 - \beta_1, x_2 - \beta_2, ..., x_n - \beta_n, x_{n+1}, ...)$, and compute

$$\langle x-y, x-y\rangle = \sum_{k=1}^n (x_k - \beta_k)\overline{(x_k - \beta_k)} + \sum_{k=n+1}^\infty x_k \overline{x_k} = \sum_{k=1}^n |x_k - \beta_k|^2 + \sum_{k=n+1}^\infty |x_k|^2$$

Since all x_k are constant, it is easy to see that the value of $\langle x - y, x - y \rangle$ is at least $\sum_{k=n+1}^{\infty} |x_k|^2$. Therefore, the minimum of $\langle x - y, x - y \rangle$ is attained if and only if $\sum_{k=1}^{n} |x_k - \beta_k|^2 = 0$, which is true if and only if $x_k = \beta_k$ for all k = 1, ..., n. This implies that the minimum of $\langle x - y, x - y \rangle$ is attained if and only if $\beta_k = \langle x, e_k \rangle$ for all k = 1, ..., n. Also ||x - y|| is minimum if and only if $\langle x - y, x - y \rangle$ is minimum, so we finish the proof.

Problem 3.4-7. Let (e_k) be any orthonormal sequence in an inner product space X. Show that

for any $x, y \in X$,

$$\sum_{k=1}^{\infty} |\langle x, e_k \rangle \langle y, e_k \rangle| \le ||x|| ||y||$$

From Cauchy-Schwarz inequality, we have

$$\sum_{k=1}^{\infty} |\langle x, e_k \rangle \langle y, e_k \rangle| \le \left(\sum_{k=1}^{\infty} |\langle x, e_k \rangle|^2 \right)^{1/2} \left(\sum_{k=1}^{\infty} |\langle y, e_k \rangle|^2 \right)^{1/2}$$

By Bessel's inequality, we have

$$\sum_{k=1}^{\infty} |\langle x, e_k \rangle|^2 \le ||x||^2, \qquad \sum_{k=1}^{\infty} |\langle y, e_k \rangle|^2 \le ||y||^2$$

Therefore, we have

$$\sum_{k=1}^{\infty} |\langle x, e_k \rangle \langle y, e_k \rangle| \le ||x|| ||y||$$

Problem 3.4-8. Show that an element x of an inner product space X cannot have "too many" Fourier coefficients $\langle x, e_k \rangle$ which are "big"; here, (e_k) is a given orthonormal sequence; more precisely, show that the number n_m of $\langle x, e_k \rangle$ such that $|\langle x, e_k \rangle| > 1/m$ must satisfy $n_m < m^2 ||x||^2$.

Suppose the number n_m of $\langle x, e_k \rangle$ such that $|\langle x, e_k \rangle| > 1/m$ satisfy $n_m \ge m^2 ||x||^2$. Then denote the index set of such k as A, $|A| = n_m$, and we have

$$\sum_{k=1}^{\infty} |\langle x, e_k \rangle|^2 \ge \sum_{k \in A} |\langle x, e_k \rangle|^2 > \sum_{k \in A} \frac{1}{m^2} \ge \|x\|^2$$

This shows that $\sum_{k=1}^{\infty} |\langle x, e_k \rangle|^2 > ||x||$, which contradicts the Bessel's inequality. Therefore, $n_m < m^2 ||x||^2$.

Problem 3.4-9. Orthonormalize the first three terms of the sequence $(x_0, x_1, x_2, ...)$, where $x_j(t) = t^j$, on the interval [-1, 1], where

$$\langle x, y \rangle = \int_{-1}^{1} x(t)y(t) dt$$

Apply Gram-Schmidt process to $x_0 = 1$, we have $u'_0 = x_0$, and

$$||u_0'|| = \sqrt{\int_{-1}^{1} {u_0'}^2(t) dt} = \sqrt{2} \Longrightarrow u_0 = \frac{u_0'}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

Continue the same process to $x_1 = t$, we have

$$u'_{1} = x_{1} - \langle x_{1}, u_{0} \rangle u_{0} = t - \frac{\sqrt{2}}{2} \int_{-1}^{1} \frac{\sqrt{2}}{2} t \, dt = t$$

Compute the corresponding norm,

$$\|u_1'\| = \sqrt{\int_{-1}^1 {u_1'}^2(t) \, dt} = \sqrt{\int_{-1}^1 t^2 \, dt} = \frac{\sqrt{6}}{3} \Longrightarrow u_1 = \frac{u_1'}{\|u_1'\|} = \frac{\sqrt{6}}{2}t$$

Finally, for $x_2 = t^2$, we have

$$u_{2}' = x_{2} - \langle x_{2}, u_{0} \rangle u_{0} - \langle x_{2}, u_{1} \rangle u_{1} = t^{2} - \frac{1}{2} \int_{-1}^{1} t^{2} dt - \frac{3}{2} t \int_{-1}^{1} t^{3} dt = t^{2} - \frac{1}{3}$$

Compute the corresponding norm,

$$\|u_2'\| = \sqrt{\int_{-1}^1 {u_2'}^2(t) \, dt} = \sqrt{\int_{-1}^1 \left(t^2 - \frac{1}{3}\right)^2 \, dt} = \frac{2\sqrt{10}}{15} \Longrightarrow u_2 = \frac{u_2'}{\|u_2'\|} = \frac{\sqrt{10}}{4}(3t^2 - 1)$$

Therefore, $u_0(t) = \frac{\sqrt{2}}{2}$, $u_1(t) = \frac{\sqrt{6}}{2}t$, and $u_2(t) = \frac{\sqrt{10}}{4}(3t^2 - 1)$ is an orthonormal set.

Problem 3.5-3. Illustrate with an example that a convergent series $\sum \langle x, e_k \rangle e_k$ need not have the sum x.

Suppose (e_k) is orthonormal sequence in l^2 space, and $e_1 = (0, 1, 0, 0, 0, ...), e_2 = (0, 0, 0, 1, 0, ...)$ and so on. Use the usual inner product in l^2 , then for any $x = (x_1, x_2, ...) \in l^2$, we have

$$\sum_{k=1}^{n} \langle x, e_k \rangle e_k = \sum_{k=1}^{n} x_{2k} e_{2k} = (0, x_2, 0, x_4, \dots, x_{2n}, 0, 0, \dots)$$

Define $x^* = (0, x_2, \dots, 0, x_{2n+2}, \dots)$, consider

$$\left\|\sum_{k=1}^{n} \langle x, e_k \rangle e_k - x^*\right\|^2 = \sum_{k=n+1}^{\infty} |x_{2k}|^2 \to 0$$

as $n \to \infty$ because $\sum_{k=1}^{\infty} |x_k|^2$ is convergent to $||x||^2$. Therefore, $\sum_{k=1}^{\infty} \langle x, e_k \rangle e_k$ converges to x^* . However, it is clearly $x^* \neq x$ as long as $x_1 \neq 0$. Therefore, convergent series $\sum_{k=1}^{\infty} \langle x, e_k \rangle e_k$ need not have the sum x.

Problem 3.5-4. If (x_j) is a sequence in an inner product space X such that the series $||x_1|| + ||x_2|| + \cdots$ converges, show that (s_n) is a Cauchy sequence, where $s_n = x_1 + \ldots + x_n$.

For arbitrary $\epsilon > 0$, consider any n > m, we have

$$\|s_n - s_m\| = \left\|\sum_{i=m+1}^n x_i\right\| \le \sum_{i=m+1}^n \|x_i\| \le \sum_{i=m+1}^\infty \|x_i\|$$

Since $\sum_{i=1}^{\infty} ||x_i||$ converges, there exists N, such that $\sum_{i=N}^{\infty} ||x_i|| < \epsilon$. Therefore, for all $n > m \ge N$, we have $||s_n - s_m|| < \epsilon$, so s_n is a Cauchy sequence.

Problem 3.5-6. Let (e_j) be an orthonormal sequence in a Hilbert space H. Show that if

$$x = \sum_{j=1}^{\infty} \alpha_j e_j, \quad y = \sum_{j=1}^{\infty} \beta_j e_j$$

then $\langle x, y \rangle = \sum_{j=1}^{\infty} \alpha_j \bar{\beta}_j$, given that the series representing x, y are absolutely convergent.

Let $s_n = \sum_{j=1}^n \alpha_j e_j$ and $t_n = \sum_{j=1}^n \beta_j e_j$, then since the series representing x, y are absolutely convergent, we have $s_n \to x$ and $t_n \to y$ as $n \to \infty$. Consider

$$\langle s_n, t_n \rangle = \left\langle \sum_{j=1}^n \alpha_j e_j, \sum_{j=1}^n \beta_j e_j \right\rangle = \sum_{j=1}^n \alpha_j \bar{\beta}_j$$

Since inner product is continuous, we have

$$\langle x, y \rangle = \lim_{n \to \infty} \langle s_n, t_n \rangle = \lim_{n \to \infty} \sum_{j=1}^n \alpha_j \bar{\beta}_j$$

Also, we have

$$\sum_{j=1}^{\infty} |\alpha_j \bar{\beta}_j| \le \left(\sum_{j=1}^n |\alpha_j|^2\right)^{1/2} \left(\sum_{j=1}^n |\beta_j|^2\right)^{1/2}$$

Since the right hand side is convergent by the absolute convergence of series representing x, y, $\sum_{j=1}^{\infty} |\alpha_j \bar{\beta}_j|$ is also convergent.

Problem 3.5-7. Let (e_j) be an orthonormal sequence in a Hilbert space H. Show that for every $x \in H$, the vector

$$y = \sum_{k=1}^{\infty} \langle x, e_k \rangle e_k$$

exists in H and x - y is orthogonal to every e_k .

Let $u_k = \langle x, e_k \rangle e_k$, then $||u_k|| = |\langle x, e_k \rangle|$. Since by Bessel's inequality,

$$\sum_{k=1}^{\infty} |\langle x, e_k \rangle|^2 \le ||x||^2$$

for all $n \ge m$, $\sum_{k=m}^{n} |\langle x, e_k \rangle|^2 \to 0$ as $m, n \to \infty$. Consider

$$\left\|\sum_{k=m}^{n} \langle x, e_k \rangle e_k\right\|^2 = \sum_{k=m}^{n} |\langle x, e_k \rangle|^2 \to 0$$

we know that the partial sum $\sum_{k=1}^{n} \langle x, e_k \rangle e_k$ is a Cauchy sequence, and by completeness of H, it must be convergent to some point in H. Thus $y = \sum_{k=1}^{\infty} \langle x, e_k \rangle e_k$ exists in H.

To prove $(x - y) \perp e_j$ for all $j = 1, 2, \ldots$, consider

$$\langle x - y, e_j \rangle = \langle x, e_k \rangle - \sum_{k=1}^{\infty} \langle x, e_k \rangle \langle e_k, e_j \rangle = \langle x, e_k \rangle - \langle x, e_k \rangle = 0$$

because $\langle e_k, e_j \rangle \neq 0$ if and only if k = j and $\langle e_k, e_k \rangle = 1$. Therefore, $(x - y) \perp e_j$ for all $j = 1, 2, \ldots$

Problem 3.5-8. Let (e_k) be an orthonormal sequence in a Hilbert space H, and let $M = \text{span}(e_k)$. Show that for any $x \in H$ we have $x \in \overline{M}$ if and only if x can be represented by $\sum_{k=1}^{\infty} \alpha_k e_k$ with coefficients $\alpha_k = \langle x, e_k \rangle$.

First we show the "if" part. If for all $x \in H$, $x = \sum_{k=1}^{\infty} \alpha_k e_k$, then we can let $x_n = \sum_{k=1}^n \alpha_k e_k$, and $x_n \to x$. Notice that $x_n \in M$, so x is a limit point of M, hence in \overline{M} .

Then we show the "only if" part. If for any $x \in H$ we have $x \in \overline{M}$, then there exists a sequence $x_n \to x$, where $x_n = \sum_{k=1}^{m_n} a_{nk} e_k$. Then by Problem 3.4-6, we have for each fixed n,

$$\left\|x - \sum_{k=1}^{m_n} \langle x, e_k \rangle e_k\right\| \le \|x - x_n\|$$

Also notice that for all $l \ge m_n$, we should have

$$\left\|x - \sum_{k=1}^{l} \langle x, e_k \rangle e_k\right\| \le \left\|x - \sum_{k=1}^{m_n} \langle x, e_k \rangle e_k\right\|$$

Therefore, we can take $c_n = \max\{n, m_n\}$, then as $n \to \infty$, $c_n \to \infty$, and

$$\left\|x - \sum_{k=1}^{c_n} \langle x, e_k \rangle e_k\right\| \le \|x - x_n\| \to 0 \Longrightarrow \left\|x - \sum_{k=1}^{\infty} \langle x, e_k \rangle e_k\right\| = 0$$

which means $x = \sum_{k=1}^{\infty} \langle x, e_k \rangle e_k$.

Problem 3.5-9. Let (e_n) and (\tilde{e}_n) be orthonormal sequences in a Hilbert space H, and let $M_1 = \operatorname{span}(e_n)$ and $M_2 = \operatorname{span}(\tilde{e}_n)$. Show that $\overline{M}_1 = \overline{M}_2$ if and only if $e_n = \sum_{m=1}^{\infty} \alpha_{nm} \tilde{e}_m$ and $\tilde{e}_n = \sum_{m=1}^{\infty} \overline{\alpha}_{mn} e_m$ hold simultaneously, where $\alpha_{nm} = \langle e_n, \tilde{e}_m \rangle$.

First we prove the "if" part. If $e_n = \sum_{m=1}^{\infty} \alpha_{nm} \tilde{e}_m$, then by "if" part in Problem 3.5-8, we know $e_n \in \bar{M}_2$. Since this is true for all n, we know $M_1 \subset \bar{M}_2$. Since \bar{M}_2 is closed and \bar{M}_1 is the closure hence the smallest closed set that contained M_1 , we conclude that $\bar{M}_1 \subset \bar{M}_2$. Similarly, if $\tilde{e}_n = \sum_{m=1}^{\infty} \bar{\alpha}_{mn} e_m$ then $\tilde{e}_n \in \bar{M}_1$, and by the same argument it finally yields $\bar{M}_2 \subset \bar{M}_1$. Therefore, we proved that $\bar{M}_1 = \bar{M}_2$.

Then we prove the "only if" part. If $\bar{M}_1 = \bar{M}_2$, then $e_n \in \bar{M}_2$. Since $\bar{M}_1 = \bar{M}_2$ are closed subspace of H, so they are both Hilbert space. Use \bar{M}_2 as the Hilbert space in Problem 3.5-8, by "only if" part, we know that $e_n = \sum_{k=1}^{\infty} \langle e_n, \tilde{e}_k \rangle \tilde{e}_k$. Similarly, use \bar{M}_1 as the Hilbert space in Problem 3.5-8, since $\tilde{e}_n \in \bar{M}_1$, we have $\tilde{e}_n = \sum_{k=1}^{\infty} \langle \tilde{e}_n, e_k \rangle e_k$.

Problem 3.6-4. Derive from Parseval's identity, i.e., $\sum_k |\langle x, e_k \rangle|^2 = ||x||^2$, the following formula

$$\langle x, y \rangle = \sum_{k} \langle x, e_k \rangle \overline{\langle y, e_k \rangle}$$

Since $\operatorname{Re}\langle x,y\rangle = \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2)$, we have

$$|x+y||^{2} = \sum_{k} |\langle x+y, e_{k} \rangle|^{2} = \sum_{k} \langle x+y, e_{k} \rangle \overline{\langle x+y, e_{k} \rangle}$$
$$= |\langle x, e_{k} \rangle|^{2} + |\langle y, e_{k} \rangle|^{2} + 2\operatorname{Re}\langle x, e_{k} \rangle \overline{\langle y, e_{k} \rangle}$$

$$\begin{split} \|x - y\|^2 &= \sum_k |\langle x + y, e_k \rangle|^2 = \sum_k \langle x + y, e_k \rangle \overline{\langle x + y, e_k \rangle} \\ &= |\langle x, e_k \rangle|^2 + |\langle y, e_k \rangle|^2 - 2 \mathrm{Re} \langle x, e_k \rangle \overline{\langle y, e_k \rangle} \end{split}$$

Therefore, $\operatorname{Re}\langle x, y \rangle = \operatorname{Re}\langle x, e_k \rangle \overline{\langle y, e_k \rangle}$. Similarly, we have $\operatorname{Im}\langle x, y \rangle = \frac{1}{4}(\|x + iy\|^2 - \|x - iy\|^2)$, so

$$\|x + iy\|^{2} = \sum_{k} |\langle x + iy, e_{k} \rangle|^{2} = \sum_{k} \langle x + iy, e_{k} \rangle \overline{\langle x + iy, e_{k} \rangle}$$
$$= |\langle x, e_{k} \rangle|^{2} + |\langle y, e_{k} \rangle|^{2} + 2\mathrm{Im}\langle x, e_{k} \rangle \overline{\langle y, e_{k} \rangle}$$

$$||x - iy||^{2} = \sum_{k} |\langle x - iy, e_{k} \rangle|^{2} = \sum_{k} \langle x - iy, e_{k} \rangle \overline{\langle x - iy, e_{k} \rangle}$$
$$= |\langle x, e_{k} \rangle|^{2} + |\langle y, e_{k} \rangle|^{2} - 2 \mathrm{Im} \langle x, e_{k} \rangle \overline{\langle y, e_{k} \rangle}$$

Therefore, $\operatorname{Im}\langle x, y \rangle = \operatorname{Im}\langle x, e_k \rangle \overline{\langle y, e_k \rangle}$. This shows that $\langle x, y \rangle = \sum_k \langle x, e_k \rangle \overline{\langle y, e_k \rangle}$.

Problem 3.8-6. Show that Riesz's Theorem defines an isometric bijection $T: H \mapsto H', z \mapsto f_z = \langle \cdot, z \rangle$ which is not linear but *conjugate linear*, that is, $\alpha z + \beta v \mapsto \overline{\alpha} f_z + \overline{\beta} f_v$.

Riesz's Theorem says that if H is Hilbert, then for all $f \in H'$, there exists a unique $y \in H$, such that $f_y(x) = \langle x, y \rangle$. Moreover, $||f||_{H'} = ||y||_H$. This directly implies that T is bijective and isometric. Therefore, we only need to prove T is conjugate linear.

Consider any $z, v \in H$ and scalar α, β , we have

$$\langle \cdot, \alpha z + \beta v \rangle = \overline{\langle \alpha z + \beta v, \cdot \rangle} = \overline{\alpha \langle z, \cdot \rangle + \beta \langle v, \cdot \rangle} = \overline{\alpha} \overline{\langle z, \cdot \rangle} + \overline{\beta} \overline{\langle v, \cdot \rangle} = \overline{\alpha} \langle \cdot, z \rangle + \overline{\beta} \langle \cdot, v \rangle$$

Therefore, $T(\alpha z + \beta v) = \bar{\alpha}Tz + \bar{\beta}Tv$, and T is conjugate linear. It is easy to see at least when $\beta = 0$ and $\alpha = i$, $T(iz) = -iTz \neq iTz$, so T cannt be linear as long as T is not the zero map.

Problem 3.8-7. Show that the dual space H' of a Hilbert space H is a Hilbert space with inner product $\langle \cdot, \cdot \rangle$ defined by

$$\langle f_z, f_v \rangle = \overline{\langle z, v \rangle} = \langle v, z \rangle$$

where $f_z(x) = \langle x, z \rangle$.

Notice that the dual space of any normed space is complete, but H is Hilbert thus normed space, so H' is complete. Therefore, we only need to prove H' is equipped with an inner product defined in the question. By Riesz' Theorem, each element f in H' can be represented by $f_z(x) = \langle x, z \rangle$, where f_z is obviously a linear bounded (Riesz's Theorem) functional. Therefore, we only need to show $\langle f_z, f_v \rangle = \langle v, z \rangle$ is an inner product in H'.

First, $\langle f_z, f_z \rangle = \langle z, z \rangle \ge 0$ and since $\langle z, z \rangle = 0 \iff z = 0$, we have $\langle f_z, f_z \rangle = 0 \iff f_z = \langle x, 0 \rangle \equiv 0$.

Then, $\langle f_z, f_v \rangle = \langle v, z \rangle = \overline{\langle z, v \rangle} = \overline{\langle f_v, f_z \rangle}.$

Consider any scalar a, b and any $f_y \in H'$, we have

$$\langle af_z + bf_y, f_v \rangle = \langle f_{\bar{a}z + \bar{b}y}, f_v \rangle = \langle v, \bar{a}z + \bar{b}y \rangle = a \langle v, z \rangle + b \langle v, y \rangle = a \langle f_z, f_v \rangle + b \langle f_y, f_v \rangle$$

Therefore, $\langle f_z, f_v \rangle = \langle v, z \rangle$ is an inner product in H'. This implies that H' is a Hilbert space.

Problem 3.8-8. Show that any Hilbert space H is isomorphic with its second dual space H'' = (H')'.

Since H' is Hilbert (as we proved in Problem 3.8-7), by Riesz's Theorem, any element F in H'' can be expressed as $F_f = \langle g, f \rangle$ with unique $f \in H'$ for all $g \in H'$. By Problem 3.8-7, H'' is also Hilbert with inner product $\langle F_f, F_g \rangle = \langle g, f \rangle$. Therefore, we can define a map $\phi : H \mapsto H''$ by $z \mapsto F_{f_z}(h) = \langle h, f_z \rangle$ for all $h \in H'$. Then we need to prove ϕ is bijective linear mapping that preserves inner product.

Firstly, we need to show ϕ is well-defined function, i.e., for z = v, we must have $\phi(z) = \phi(v)$. We only need to show that for all $h \in H'$, $F_{f_z}(h) = F_{f_v}(h)$. Therefore, we need to show $\langle h, f_z \rangle = \langle h, f_v \rangle$ for all $h \in H'$. Since by Riesz's Theorem, we have unique $y \in H$ for each h such that $h = h_y(x) = \langle x, y \rangle$ for all x, we only need to show $\langle h_y, f_z \rangle = \langle h_y, f_v \rangle$. Since $\langle h_y, f_z \rangle = \langle z, y \rangle$ and $\langle h_y, f_v \rangle = \langle v, y \rangle$, and z = v, so $\langle z, y \rangle = \langle v, y \rangle$. This implies that $F_{f_z}(h) = F_{f_v}(h)$ and ϕ is well-defined.

Then we show ϕ is linear. Consider any scalar a, b and and $z, v \in H$, we need to show $\phi(az + bv) = a\phi(z) + b\phi(v)$, which means $\langle h, f_{az+bv} \rangle = a\langle h, f_z \rangle + b\langle h, f_v \rangle$. Notice that

$$\langle h, f_{az+bv} \rangle = \langle h_y, f_{az+bv} \rangle = \langle az+bv, y \rangle = a \langle z, y \rangle + b \langle v, y \rangle = a \langle f_y, f_z \rangle + b \langle f_y, f_v \rangle = a \langle h, f_z \rangle + b \langle h, f_v \rangle$$

Therefore, ϕ is linear.

Then we show ϕ is bijective. Surjectivity is trivial because of Riesz's Theorem. For injectivity, if $\phi(z) = 0$, we have $\langle h, f_z \rangle = 0$ for all $h \in H'$. This further implies that $\langle z, y \rangle = 0$ for all $y \in H$. Then take y = z, we immediately have $||z||^2 = 0$ and hence z = 0. This shows the kernel of ϕ is trivial and ϕ is injective.

Finally we show ϕ preserves the inner product. We can see that $\langle \phi(z), \phi(v) \rangle = \langle F_{f_z}, F_{f_v} \rangle = \langle f_v, f_z \rangle = \langle z, v \rangle$. Thus, we conclude that H and H'' are isomorphic.

Extra Problem 1. Let X and Y be two normed spaces. We say X is continuously embedded into Y if $X \subset Y$ and if the identity map $i: X \mapsto Y$, i(x) = x is injective and bounded, i.e., there exists constant C > 0, such that $||x||_Y \leq C ||x||_X$, for all $x \in X$. Denote it as $X \hookrightarrow Y$. Let H and V be real Hilbert spaces (with their own inner products $(\cdot, \cdot)_H$ and $(\cdot, \cdot)_V$). Suppose V is continuously embedded into H and V is dense in H. Prove that $H' \hookrightarrow V'$ and that H' is dense in V'.

First we prove $H' \subset V'$. For each $f \in H'$, f is a linear functional defined on H. Since $V \subset H$, so f is also a linear functional defined on V, thus $f \in V'$. Therefore, $H' \subset V'$.

Then we prove that the map $i : H' \mapsto V'$ given by $i(f) = f\Big|_V$ is injective and bounded. Consider $f\Big|_V(v) \equiv 0$ for all $v \in V$, by Riesz's Theorem, we can identify $f\Big|_V(v)$ as $\langle v, y \rangle$ for unique $y \in V$. Since V is dense in H, for all $u \in H$, we have $v_n \in V$ such that $v_n \to u$ (If $u \in V$, then v_n is constant sequence u). For all $u \in H$, $\langle u, y \rangle = \lim_{n \to \infty} \langle v_n, y \rangle = 0$, thus $f(u) \equiv 0$ and the pre-image of $f\Big|_V(v) \equiv 0$ is $f(u) = \langle u, y \rangle \equiv 0$. Therefore, i(f) is injective.

Consider

$$\left\|f\right|_{V}\right\|_{V'} = \sup_{\|v\|_{V}=1} \left|f\right|_{V}(v)\right| = \sup_{\|v\|_{V}=1} |f(v)| \le \|f\|_{H'} \sup_{\|v\|_{V}=1} \|v\|_{H}$$

Since $V \hookrightarrow H$, we have $||v||_H \leq C ||v||_V$, thus,

$$\left\|f\right|_{V}\right\|_{V'} \le \|f\|_{H'} \sup_{\|v\|_{V}=1} C\|v\|_{V} = C\|f\|_{H'}$$

Therefore, $H' \hookrightarrow V'$.

To prove H' is dense in V', we need to prove ${H'}^{\perp} = \{0_{V'}\}$. This is because if so, ${H'}^{\perp \perp} = \overline{H'} = V'$ immediately implies that H' is dense in V'. Consider any $f \in H'$, then there exists unique $y \in H$, such that $f_y(x) = \langle x, y \rangle$ for all $x \in H$. If a $g \in V'$ satisfies $\langle f, g \rangle = 0$, then we can find $v \in V$ such that $g_v(z) = \langle z, v \rangle$ for all $z \in V$. From Problem 3.8-7, we have $\langle f, g \rangle = \langle v, y \rangle = 0$ for all

 $y \in H$ and fixed $v \in V$. Since V is dense in H, $V^{\perp} = \{0_H\}$, and now $v \in V$ and $v \in V^{\perp}$, so v = 0. This implies that $g = 0_{V'}$, therefore $H'^{\perp} = \{0_{V'}\}$.

Extra Problem 2. Given that any $f \in L^2(-l, l)$ can be expanded as

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos \frac{k\pi x}{l} + b_k \sin \frac{k\pi x}{l} \right)$$

(i) Use Euler's formula $e^{i\theta} = \cos \theta + i \sin \theta$, prove that $f(x) = \sum_{k=-\infty}^{\infty} c_k e^{\frac{ik\pi x}{l}}$, where $\sum_{k=-\infty}^{\infty} c_k e^{\frac{ik\pi x}{l}}$ is understood as the limit of $\sum_{k=-n}^{n} c_k e^{\frac{ik\pi x}{l}}$ in $L^2(-l, l)$; give the formula for Fourier coefficient c_k .

Since $\cos \theta = \frac{1}{2}(e^{i\theta} + e^{-i\theta})$ and $\sin \theta = \frac{1}{2i}(e^{i\theta} - e^{-i\theta})$, we have

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos \frac{k\pi x}{l} + b_k \sin \frac{k\pi x}{l} \right)$$

= $\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \frac{1}{2} \left(e^{\frac{ik\pi x}{l}} + e^{-\frac{ik\pi x}{l}} \right) + b_k \frac{1}{2i} \left(e^{\frac{ik\pi x}{l}} - e^{-\frac{ik\pi x}{l}} \right) \right)$
= $\frac{a_0}{2} + \sum_{k=1}^{\infty} \frac{1}{2} \left(a_k - ib_k \right) e^{\frac{ik\pi x}{l}} + \sum_{k=-\infty}^{-1} \frac{1}{2} \left(a_{-k} + ib_{-k} \right) e^{\frac{ik\pi x}{l}}$
= $\sum_{k=-\infty}^{\infty} c_k e^{\frac{ik\pi x}{l}}$

where c_k is defined by

$$\begin{cases} c_0 = \frac{a_0}{2} = \frac{1}{2l} \int_{-l}^{l} f(t) \, dt \\ c_k = \frac{1}{2} (a_k - ib_k) = \frac{1}{2l} \int_{-l}^{l} f(t) e^{\frac{-ik\pi t}{l}} \, dt \qquad k \ge 1 \\ c_k = \frac{1}{2} (a_{-k} + ib_{-k}) = \frac{1}{2l} \int_{-l}^{l} f(t) e^{\frac{-ik\pi t}{l}} \, dt \qquad k \le -1 \end{cases}$$

or more compactly, for all $k \in \mathbb{Z}$, c_k is defined by

$$c_k = \frac{1}{2l} \int_{-l}^{l} f(t) e^{\frac{-ik\pi t}{l}} dt$$

(ii) Denote c_k as $\hat{f}(k)$. Prove that if $l = \pi$ and if $f \in \mathcal{C}^1[-\pi,\pi]$ and is 2π -periodic, then $\widehat{f'}(k) = ik\widehat{f}(k)$.

Since $f \in C^1[-\pi,\pi]$, f' is in $L^2(-\pi,\pi)$. Also, since f is 2π -periodic differentiable function, f'(x) is also 2π -periodic. Therefore, f'(x) has a convergent Fourier series expansion, the only thing we need to do is to determine the coefficient. By the formula derived in part (i), for $k \ge 0$, apply integration by part, and we have,

$$\widehat{f'}(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f'(t) e^{-ikt} dt = \frac{1}{2\pi} e^{-ikt} f(t) \Big|_{-\pi}^{\pi} + \frac{1}{2\pi} \int_{-\pi}^{\pi} ik f(t) e^{-ikt} dt = ik \widehat{f}(k)$$

because the first term vanishes.

(iii) For all $f, g \in L^2(-\pi, \pi)$, prove $\langle f, g \rangle_{L^2(-\pi, \pi)} = 2\pi \sum_{k=-\infty}^{\infty} \hat{f}(k) \overline{\hat{g}(k)}$.

We have known that e^{inx} forms a basis of $L^2(-\pi,\pi)$, so next we need to prove e^{inx} is orthogonal basis. This is trivial because

$$\int_{-\pi}^{\pi} e^{imx} e^{inx} \, dx = \int_{-\pi}^{\pi} \cos mx \cos nx \, dx + i \int_{-\pi}^{\pi} \sin mx \cos nx \, dx \\ + i \int_{-\pi}^{\pi} \cos mx \sin nx \, dx - \int_{-\pi}^{\pi} \sin mx \sin nx \, dx$$

Since $\cos mx$, $\sin mx$ are all orthogonal to each other, $\int_{-\pi}^{\pi} e^{imx} e^{inx} dx = 0$. However, notice that e^{inx} is not orthonormal basis, because

$$\|e^{inx}\|_{L^2(-\pi,\pi)}^2 = \int_{-\pi}^{\pi} |e^{inx}|^2 \, dx = 2\pi$$

Therefore, we can take $u_k = \frac{1}{\sqrt{2\pi}} e^{ikx}$, then u_k forms an orthonormal basis. By Problem 3.6-4, we have

$$\langle f,g \rangle_{L^2(-\pi,\pi)} = \sum_k \langle f,u_k \rangle \overline{\langle g,u_k \rangle}$$

Notice that

$$\langle f, u_k \rangle = \int_{-\pi}^{\pi} f(x) \frac{1}{\sqrt{2\pi}} e^{ikx} = \sqrt{2\pi} \hat{f}(k)$$

Similarly, we have $\langle g, u_k \rangle = \hat{g}(k)$, and this implies that

$$\langle f,g \rangle_{L^2(-\pi,\pi)} = 2\pi \sum_{k=-\infty}^{\infty} \hat{f}(k) \overline{\hat{g}(k)}$$

Extra Problem 3. Let P be a simple closed curve in the x - y plane. Suppose P is C^1 -smooth, i.e., P can be parameterized by x = x(s) and y = y(s), where $s \in [0, 2\pi]$ is the arclength variable, 2π is the arclength of P, and x(s), y(s) in $C^1([0, 2\pi])$. Prove the isoperimetric inequality, $A \leq \pi$, where A is the area of the region enclosed by P. Hint: By Green's formula, if P is oriented counter-clockwise, then

$$A = \frac{1}{2} \int_{P} x dy - y dx = \frac{1}{2} \int_{0}^{2\pi} (x(s)y'(s) - y(s)x'(s)) \, ds = \frac{1}{2} [\langle x, y' \rangle_{L^{2}(0,2\pi)} - \langle y, x' \rangle_{L^{2}(0,2\pi)}]$$

Since $x(s), y(s) \in C^1$ and 2π -periodic, we can express them in $x(s) = \sum_{k=-\infty}^{\infty} a_k e^{iks}$ and $y(s) = \sum_{k=-\infty}^{\infty} b_k e^{iks}$. By the last problem, we have $x'(s) = \sum_{k=-\infty}^{\infty} a_k(ik)e^{iks}$ and $y'(s) = \sum_{k=-\infty}^{\infty} b_k(ik)e^{iks}$. Therefore,

$$\langle x, y' \rangle_{L^2(-\pi,\pi)} = 2\pi \sum_{k=-\infty}^{\infty} a_k \overline{(ik)b_k}, \qquad \langle y, x' \rangle_{L^2(-\pi,\pi)} = 2\pi \sum_{k=-\infty}^{\infty} b_k \overline{(ik)a_k}$$

The hint implies that

$$A = \pi \left| (-i) \sum_{k=-\infty}^{\infty} k(a_k \overline{b_k} - \overline{a_k} b_k) \right| \le \pi \sum_{k=-\infty}^{\infty} 2k |a_k| |b_k| \le \pi \sum_{k=-\infty}^{\infty} k(|a_k|^2 + |b_k|^2)$$

Also, since the curve ${\cal P}$ is parametrized by arc length, we have

$$\int_0^{2\pi} \sqrt{(x'(s))^2 + (y'(s))^2} \, ds = \int_0^{2\pi} (x'(s))^2 + (y'(s))^2 \, ds = 2\pi$$

Since $||x'||^2 = \int_0^{2\pi} (x'(s))^2 ds = 2\pi \sum_{k=-\infty}^{\infty} k^2 |a_k|^2$, and $||y'||^2 = \int_0^{2\pi} (y'(s))^2 ds = 2\pi \sum_{k=-\infty}^{\infty} k^2 |b_k|^2$, we have $\sum_{k=-\infty}^{\infty} k^2 |a_k|^2 + \sum_{k=-\infty}^{\infty} k^2 |b_k|^2 = 1$. Therefore, we have

$$A \le \pi \sum_{k=-\infty}^{\infty} k(|a_k|^2 + |b_k|^2) \le \pi \sum_{k=-\infty}^{\infty} k^2(|a_k|^2 + |b_k|^2) = \pi$$

This implies that the isoperimetric inequality $A \leq \pi$ holds.