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Problem 3.3-3(a). Show that the vector space X of all real-valued continuous functions on [−1, 1]

is the direct sum of the set of all even continuous functions and the set of all odd continuous functions
on [−1, 1].

For all f ∈ C[−1, 1], for all x ∈ [−1, 1], we have

f(x) =
f(x) + f(−x)

2
+
f(x)− f(−x)

2
= g(x) + h(x)

where since −x ∈ [−1, 1], f(−x) is also in C[−1, 1], and h(x), g(x) are both continuous function in
C[−1, 1]. Notice that

g(−x) = f(−x) + f(x)

2
= g(x), h(−x) = f(−x)− f(x)

2
= −h(x)

Therefore, g is even continuous function on [−1, 1] and h is odd continuous function on [−1, 1]. This
implies that X = X1 +X2, where X1 is the set of all odd continuous functions and X2 is the set of
all even continuous functions.

Now we need to prove for each f , such g and h are unique. Suppose f(x) = g1(x) + h1(x) =

g2(x) + h2(x), where g1, g2 ∈ X2 and h1, h2 ∈ X1. Then we have

ϕ(x) = g1(x)− g2(x) = h2(x)− h1(x) = ψ(x)

Since ϕ(−x) = g1(−x)− g2(−x) = g1(x)− g2(x) = ϕ(x), we know ϕ(x) is even continuous function
on [−1, 1]. Similarly, ψ(−x) = h2(−x)− h1(−x) = h1(x)− h2(x) = −ψ(x). Therefore, ψ(x) is odd
continuous function on [−1, 1]. This implies that ϕ(x) and ψ(x) are both odd and even functions on
[−1, 1]. Then we have ϕ(−x) = ϕ(x) and ϕ(−x) = −ϕ(x), which yields ϕ(x) = 0 for all x ∈ [−1, 1].
Similarly ψ(x) = 0 for all x ∈ [−1, 1]. Therefore, g1(x) = g2(x) on [−1, 1] and h1(x) = h2(x) on
[−1, 1]. In conclusion, for all f ∈ C[−1, 1], there exists a unique even function g(x) in [−1, 1] and a
unique odd function h(x) in [−1, 1] such that f(x) = g(x) + h(x). This gives X = X1 ⊕X2.

Problem 3.3-6. Show that Y = {x |x = (ξj) ∈ l2, ξ2n = 0, n ∈ N} is a closed subspace of l2 and
find Y ⊥. What is Y ⊥ if Y = span{e1, . . . , en} ∈ l2, where ej = (δjk)?

For any x(1), x(2) ∈ Y , and any scalar a, b, where x(1) = (ξ
(1)
1 , 0, ξ

(1)
3 , 0, . . .) and x(2) = (ξ

(2)
1 , 0, ξ

(2)
3 , 0, . . .),

we have
ax(1) + bx(2) = (aξ

(1)
1 + bξ

(2)
1 , 0, aξ

(1)
3 + bξ

(2)
3 , 0, . . .)
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Since ax(1) + bx(2) ∈ l2 and aξ(1)2n + bξ
(2)
2n = 0 for all n, we can conclude that ax(1) + bx(2) ∈ Y . Thus

Y is a subspace of l2.
To prove it is closed, we take a convergent sequence x(k) in Y , and x(k) → x∗ ∈ X. Suppose

x∗ /∈ Y , then there exists j0 such that x∗2j0 ̸= 0, and

∥x(k) − x∗∥2 ≥
∞∑
j=1

|ξ(k)2j−1 − ξ∗2j−1|2 + |x∗2j0 |
2 ≥ |x∗2j0 |

2

Take k → ∞ on both sides, we have 0 ≥ |x∗2j0 |
2 > 0, which is a contradiction. Therefore, x∗ ∈ Y ,

and Y is closed.
To find Y ⊥, we first consider a necessary condition for any element in Y ⊥. If u ∈ Y ⊥, where

u = (uj), then u ⊥ x for all x ∈ Y . Since e1, e2, . . . are in Y , so at least u ⊥ ei for all odd i.
Thus, ⟨u, ei⟩ = ui = 0 implies that all odd entries of u must be zero. However, for all u such that
u2j−1 = 0, ⟨u, x⟩ = 0 because ξ2j = 0 for all x. This shows the sufficiency of u2j−1 = 0 for any u to
be in Y ⊥. Therefore, Y ⊥ = {u |u = (uj) ∈ l2, u2j−1 = 0, j ∈ N+}.

Similarly, if Y = span{e1, . . . , en} ∈ l2, then u ∈ Y ⊥ if and only if u ⊥ e1, . . . , en. Thus,
Y ⊥ = {u |u = (uj) ∈ l2, u1 = · · · = un = 0}.

Problem 3.3-7. Let A and B ⊃ A be nonempty subsets of an inner product space X. Show that
A ⊂ A⊥⊥, B⊥ ⊂ A⊥, and A⊥⊥⊥ = A⊥.

We first prove A ⊂ A⊥⊥. Take arbitrary x0 ∈ A. Consider any u ∈ A⊥, by definition, u ⊥ x

for all x ∈ A. Thus, we have u ⊥ x0, and since x0 ⊥ u for all u, we have x0 ∈ (A⊥)⊥. Notice that
the choice of x0 is arbitrary in A, we conclude that A ⊂ A⊥⊥.

Then we prove B⊥ ⊂ A⊥. Take arbitrary y0 ∈ B⊥, for all v ∈ B, we have y0 ⊥ v. Since A ⊂ B,
for all x ∈ A, x is also in B, and y0 ⊥ x. Since y0 ⊥ x for all x ∈ A, y0 ∈ A⊥. Notice that y0 is
arbitrary in B⊥, so B⊥ ⊂ A⊥.

From A ⊂ A⊥⊥, we can say that for all nonempty subset S ⊂ X, we have S ⊂ S⊥⊥. If S is
empty, since empty set is the subset of any set (including empty set), so S still satisfies S ⊂ S⊥⊥,
because ∅⊥ = X and X⊥ = ∅. Therefore, we can take S = A⊥, then we have A⊥ ⊂ (A⊥)⊥⊥.

Similarly, from B⊥ ⊂ A⊥, we can say for all nonempty subset S1 ⊂ S2 ⊂ X, we have S⊥
2 ⊂ S⊥

1 .
If S2 is empty, then S1 is also empty and S⊥

2 ⊂ S⊥
1 trivially holds. If S2 is nonempty but S1 is empty,

then since S⊥
1 = X, S⊥

2 must be a subset of the whole spacee X. Therefore, we can take S1 = A and
S2 = A⊥⊥, then the conclusion is (A⊥⊥)⊥ ⊂ A⊥. Therefore, combined with A⊥ ⊂ (A⊥)⊥⊥ proved
just now, we can say A⊥ = A⊥⊥⊥.

Problem 3.3-9. Show that a subspace Y of a Hilbert space H is closed in H if and only if Y = Y ⊥⊥.

First we prove the “only if” part. If Y is a closed subspace of Hilbert space, then by Corollary
in lecture, H = Y ⊕Y ⊥. By Problem 3.3-7, we know Y ⊂ Y ⊥⊥, so we only need to prove Y ⊥⊥ ⊂ Y .
For all u ∈ Y ⊥⊥, u ⊥ v for all v ∈ Y ⊥. Also, there exists unique x ∈ Y and y ∈ Y ⊥ such that
u = x + y. Therefore, for all v ∈ Y ⊥, ⟨x + y, v⟩ = 0, which means ⟨x, v⟩ + ⟨y, v⟩ = 0. Since x ∈ Y

and v ∈ Y ⊥, we have ⟨x, v⟩ = 0, thus ⟨y, v⟩ = 0. Since v is arbitrary in Y ⊥, we can take v = y.
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then ⟨y, y⟩ = 0 implies y = 0. This shows that u = x ∈ Y . Notice that u is arbitrary in Y ⊥⊥, we
conclude that Y ⊥⊥ ⊂ Y . Combined with the previous result, Y = Y ⊥⊥.

Then we prove the “if” part. If Y = Y ⊥⊥ and Y ⊂ H, then we take a convergent sequence
un ∈ Y such that un → u ∈ H. Since un ∈ Y , so for any v ∈ Y ⊥, ⟨un, v⟩ = 0 for all n. By
the continuity of inner product, we can take n → ∞ on both sides, i.e., limn→∞⟨un, v⟩ = 0, which
implies ⟨u, v⟩ = 0. This shows u ∈ Y ⊥⊥ = Y , so any limit point of Y is in Y , and Y is closed.

Problem 3.3-10. If M ̸= ∅ is any subset of a Hilbert space H, show that M⊥⊥ is the smallest
closed subspace of H which contains M , that is, M⊥⊥ is contained in any closed subspace Y ∈ H

such that Y ⊃M .

First the fact that M⊥⊥ is a subspace of H is trivial. Also, from Problem 3.3-9, subspace M⊥⊥

is closed in H if and only if M⊥⊥ = (M⊥⊥)⊥⊥. Since we proved for any nonempty subset M ∈ H,
M⊥⊥⊥ =M⊥, so (M⊥⊥)⊥⊥ = (M⊥)⊥. This shows M⊥⊥ is closed.

To show M⊥⊥ is the smallest closed subspace contains M , we only need to show M⊥⊥ =

span(M). This is because span(M) is the smallest subspace contains M , and the smallest closed
subspace must contained span(M), but the smallest closed set containing span(M) is its closure.
Since the closure of a subspace is again a subspace, span(M) is the smallest closed subspace contains
M .

Consider M ⊂ M⊥⊥, since M⊥⊥ is a subspace, span(M) ⊂ M⊥⊥. Due to the closedness of
M⊥⊥, span(M) ⊂M⊥⊥.

Since M ⊂ span(M), we have M⊥ ⊃ span(M)
⊥

. This further shows M⊥⊥ ⊂ span(M)
⊥⊥

.
However, since span(M) is a closed subspace, by Problem 3.3-9, span(M)

⊥⊥
= span(M). Therefore,

M⊥⊥ ⊂ span(M). Therefore, we proved that M⊥⊥ = span(M), and this implies M⊥⊥ is the smallest
closed subspace containing M .

Problem 3.4-6. Let {e1, . . . , en} be an orthonormal set in an inner product space X, where n

is fixed. Let x ∈ X be any fixed element and y = β1e1 + . . . + βnen. Then ∥x − y∥ depends on
β1, . . . , βn. Show by direct calculation that ∥x − y∥ is minimum if and only if βj = ⟨x, ej⟩, where
j = 1, . . . , n.

Denote x = (x1, x2, . . . , xn, . . .), we have x− y = (x1 − β1, x2 − β2, . . . , xn − βn, xn+1, . . .), and
compute

⟨x− y, x− y⟩ =
n∑

k=1

(xk − βk)(xk − βk) +
∞∑

k=n+1

xkxk =
n∑

k=1

|xk − βk|2 +
∞∑

k=n+1

|xk|2

Since all xk are constant, it is easy to see that the value of ⟨x − y, x − y⟩ is at least
∑∞

k=n+1 |xk|2.
Therefore, the minimum of ⟨x − y, x − y⟩ is attained if and only if

∑n
k=1 |xk − βk|2 = 0, which is

true if and only if xk = βk for all k = 1, . . . , n. This implies that the minimum of ⟨x − y, x − y⟩
is attained if and only if βk = ⟨x, ek⟩ for all k = 1, . . . , n. Also ∥x − y∥ is minimum if and only if
⟨x− y, x− y⟩ is minimum, so we finish the proof.

Problem 3.4-7. Let (ek) be any orthonormal sequence in an inner product space X. Show that
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for any x, y ∈ X,
∞∑
k=1

|⟨x, ek⟩⟨y, ek⟩| ≤ ∥x∥∥y∥

From Cauchy-Schwarz inequality, we have

∞∑
k=1

|⟨x, ek⟩⟨y, ek⟩| ≤

(
∞∑
k=1

|⟨x, ek⟩|2
)1/2( ∞∑

k=1

|⟨y, ek⟩|2
)1/2

By Bessel’s inequality, we have
∞∑
k=1

|⟨x, ek⟩|2 ≤ ∥x∥2,
∞∑
k=1

|⟨y, ek⟩|2 ≤ ∥y∥2

Therefore, we have
∞∑
k=1

|⟨x, ek⟩⟨y, ek⟩| ≤ ∥x∥∥y∥

Problem 3.4-8. Show that an element x of an inner product space X cannot have ”too many”
Fourier coefficients ⟨x, ek⟩ which are ”big”; here, (ek) is a given orthonormal sequence; more precisely,
show that the number nm of ⟨x, ek⟩ such that |⟨x, ek⟩| > 1/m must satisfy nm < m2∥x∥2.

Suppose the number nm of ⟨x, ek⟩ such that |⟨x, ek⟩| > 1/m satisfy nm ≥ m2∥x∥2. Then denote
the index set of such k as A, |A| = nm, and we have

∞∑
k=1

|⟨x, ek⟩|2 ≥
∑
k∈A

|⟨x, ek⟩|2 >
∑
k∈A

1

m2
≥ ∥x∥2

This shows that
∑∞

k=1 |⟨x, ek⟩|2 > ∥x∥, which contradicts the Bessel’s inequality. Therefore, nm <

m2∥x∥2.

Problem 3.4-9. Orthonormalize the first three terms of the sequence (x0, x1, x2, . . .), where xj(t) =
tj , on the interval [−1, 1], where

⟨x, y⟩ =
ˆ 1

−1

x(t)y(t) dt

Apply Gram-Schmidt process to x0 = 1, we have u′0 = x0, and

∥u′0∥ =

√ˆ 1

−1

u′0
2(t) dt =

√
2 =⇒ u0 =

u′0√
2
=

√
2

2

Continue the same process to x1 = t, we have

u′1 = x1 − ⟨x1, u0⟩u0 = t−
√
2

2

ˆ 1

−1

√
2

2
t dt = t

Compute the corresponding norm,

∥u′1∥ =

√ˆ 1

−1

u′1
2(t) dt =

√ˆ 1

−1

t2 dt =

√
6

3
=⇒ u1 =

u′1
∥u′1∥

=

√
6

2
t
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Finally, for x2 = t2, we have

u′2 = x2 − ⟨x2, u0⟩u0 − ⟨x2, u1⟩u1 = t2 − 1

2

ˆ 1

−1

t2 dt− 3

2
t

ˆ 1

−1

t3 dt = t2 − 1

3

Compute the corresponding norm,

∥u′2∥ =

√ˆ 1

−1

u′2
2(t) dt =

√ˆ 1

−1

(
t2 − 1

3

)2

dt =
2
√
10

15
=⇒ u2 =

u′2
∥u′2∥

=

√
10

4
(3t2 − 1)

Therefore, u0(t) =
√
2
2

, u1(t) =
√
6
2
t, and u2(t) =

√
10
4
(3t2 − 1) is an orthonormal set.

Problem 3.5-3. Illustrate with an example that a convergent series
∑

⟨x, ek⟩ek need not have the
sum x.

Suppose (ek) is orthonormal sequence in l2 space, and e1 = (0, 1, 0, 0, 0, . . .), e2 = (0, 0, 0, 1, 0, . . .)

and so on. Use the usual inner product in l2, then for any x = (x1, x2, . . .) ∈ l2, we have
n∑

k=1

⟨x, ek⟩ek =
n∑

k=1

x2ke2k = (0, x2, 0, x4, . . . , x2n, 0, 0, . . .)

Define x∗ = (0, x2, . . . , 0, x2n+2, . . .), consider∥∥∥∥∥
n∑

k=1

⟨x, ek⟩ek − x∗

∥∥∥∥∥
2

=
∞∑

k=n+1

|x2k|2 → 0

as n → ∞ because
∑∞

k=1 |xk|2 is convergent to ∥x∥2. Therefore,
∑∞

k=1⟨x, ek⟩ek converges to x∗.
However, it is clearly x∗ ̸= x as long as x1 ̸= 0. Therefore, convergent series

∑∞
k=1⟨x, ek⟩ek need not

have the sum x.

Problem 3.5-4. If (xj) is a sequence in an inner product space X such that the series ∥x1∥+∥x2∥+
· · · converges, show that (sn) is a Cauchy sequence, where sn = x1 + . . .+ xn.

For arbitrary ϵ > 0, consider any n > m, we have

∥sn − sm∥ =

∥∥∥∥∥
n∑

i=m+1

xi

∥∥∥∥∥ ≤
n∑

i=m+1

∥xi∥ ≤
∞∑

i=m+1

∥xi∥

Since
∑∞

i=1∥xi∥ converges, there exists N , such that
∑∞

i=N∥xi∥ < ϵ. Therefore, for all n > m ≥ N ,
we have ∥sn − sm∥ < ϵ, so sn is a Cauchy sequence.

Problem 3.5-6. Let (ej) be an orthonormal sequence in a Hilbert space H. Show that if

x =
∞∑
j=1

αjej , y =
∞∑
j=1

βjej

then ⟨x, y⟩ =
∑∞

j=1 αj β̄j , given that the series representing x, y are absolutely convergent.

Let sn =
∑n

j=1 αjej and tn =
∑n

j=1 βjej , then since the series representing x, y are absolutely
convergent, we have sn → x and tn → y as n→ ∞. Consider

⟨sn, tn⟩ =

⟨
n∑

j=1

αjej ,
n∑

j=1

βjej

⟩
=

n∑
j=1

αj β̄j
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Since inner product is continuous, we have

⟨x, y⟩ = lim
n→∞

⟨sn, tn⟩ = lim
n→∞

n∑
j=1

αj β̄j

Also, we have
∞∑
j=1

|αj β̄j | ≤

(
n∑

j=1

|αj |2
)1/2( n∑

j=1

|βj |2
)1/2

Since the right hand side is convergent by the absolute convergence of series representing x, y,∑∞
j=1 |αj β̄j | is also convergent.

Problem 3.5-7. Let (ej) be an orthonormal sequence in a Hilbert space H. Show that for every
x ∈ H, the vector

y =
∞∑
k=1

⟨x, ek⟩ek

exists in H and x− y is orthogonal to every ek.

Let uk = ⟨x, ek⟩ek, then ∥uk∥ = |⟨x, ek⟩|. Since by Bessel’s inequality,
∞∑
k=1

|⟨x, ek⟩|2 ≤ ∥x∥2

for all n ≥ m,
∑n

k=m |⟨x, ek⟩|2 → 0 as m,n→ ∞. Consider∥∥∥∥∥
n∑

k=m

⟨x, ek⟩ek

∥∥∥∥∥
2

=
n∑

k=m

|⟨x, ek⟩|2 → 0

we know that the partial sum
∑n

k=1⟨x, ek⟩ek is a Cauchy sequence, and by completeness of H, it
must be convergent to some point in H. Thus y =

∑∞
k=1⟨x, ek⟩ek exists in H.

To prove (x− y) ⊥ ej for all j = 1, 2, . . ., consider

⟨x− y, ej⟩ = ⟨x, ek⟩ −
∞∑
k=1

⟨x, ek⟩⟨ek, ej⟩ = ⟨x, ek⟩ − ⟨x, ek⟩ = 0

because ⟨ek, ej⟩ ̸= 0 if and only if k = j and ⟨ek, ek⟩ = 1. Therefore, (x− y) ⊥ ej for all j = 1, 2, . . ..

Problem 3.5-8. Let (ek) be an orthonormal sequence in a Hilbert space H, and let M = span(ek).
Show that for any x ∈ H we have x ∈ M̄ if and only if x can be represented by

∑∞
k=1 αkek with

coefficients αk = ⟨x, ek⟩.

First we show the “if” part. If for all x ∈ H, x =
∑∞

k=1 αkek, then we can let xn =
∑n

k=1 αkek,
and xn → x. Notice that xn ∈M , so x is a limit point of M , hence in M̄ .

Then we show the “only if” part. If for any x ∈ H we have x ∈ M̄ , then there exists a sequence
xn → x, where xn =

∑mn

k=1 ankek. Then by Problem 3.4-6, we have for each fixed n,∥∥∥∥∥x−
mn∑
k=1

⟨x, ek⟩ek

∥∥∥∥∥ ≤ ∥x− xn∥
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Also notice that for all l ≥ mn, we should have∥∥∥∥∥x−
l∑

k=1

⟨x, ek⟩ek

∥∥∥∥∥ ≤

∥∥∥∥∥x−
mn∑
k=1

⟨x, ek⟩ek

∥∥∥∥∥
Therefore, we can take cn = max{n,mn}, then as n→ ∞, cn → ∞, and∥∥∥∥∥x−

cn∑
k=1

⟨x, ek⟩ek

∥∥∥∥∥ ≤ ∥x− xn∥ → 0 =⇒

∥∥∥∥∥x−
∞∑
k=1

⟨x, ek⟩ek

∥∥∥∥∥ = 0

which means x =
∑∞

k=1⟨x, ek⟩ek.

Problem 3.5-9. Let (en) and (ẽn) be orthonormal sequences in a Hilbert space H, and let M1 =

span(en) and M2 = span(ẽn). Show that M̄1 = M̄2 if and only if en =
∑∞

m=1 αnmẽm and ẽn =∑∞
m=1 ᾱmnem hold simultaneously, where αnm = ⟨en, ẽm⟩.

First we prove the “if” part. If en =
∑∞

m=1 αnmẽm, then by “if” part in Problem 3.5-8, we
know en ∈ M̄2. Since this is true for all n, we know M1 ⊂ M̄2. Since M̄2 is closed and M̄1 is the
closure hence the smallest closed set that contained M1, we conclude that M̄1 ⊂ M̄2. Similarly, if
ẽn =

∑∞
m=1 ᾱmnem then ẽn ∈ M̄1, and by the same argument it finally yields M̄2 ⊂ M̄1. Therefore,

we proved that M̄1 = M̄2.

Then we prove the “only if” part. If M̄1 = M̄2, then en ∈ M̄2. Since M̄1 = M̄2 are closed
subspace of H, so they are both Hilbert space. Use M̄2 as the Hilbert space in Problem 3.5-8, by
“only if” part, we know that en =

∑∞
k=1⟨en, ẽk⟩ẽk. Similarly, use M̄1 as the Hilbert space in Problem

3.5-8, since ẽn ∈ M̄1, we have ẽn =
∑∞

k=1⟨ẽn, ek⟩ek.

Problem 3.6-4. Derive from Parseval’s identity, i.e.,
∑

k |⟨x, ek⟩|2 = ∥x∥2, the following formula

⟨x, y⟩ =
∑
k

⟨x, ek⟩⟨y, ek⟩

Since Re⟨x, y⟩ = 1
4
(∥x+ y∥2 − ∥x− y∥2), we have

∥x+ y∥2 =
∑
k

|⟨x+ y, ek⟩|2 =
∑
k

⟨x+ y, ek⟩⟨x+ y, ek⟩

= |⟨x, ek⟩|2 + |⟨y, ek⟩|2 + 2Re⟨x, ek⟩⟨y, ek⟩

∥x− y∥2 =
∑
k

|⟨x+ y, ek⟩|2 =
∑
k

⟨x+ y, ek⟩⟨x+ y, ek⟩

= |⟨x, ek⟩|2 + |⟨y, ek⟩|2 − 2Re⟨x, ek⟩⟨y, ek⟩

Therefore, Re⟨x, y⟩ = Re⟨x, ek⟩⟨y, ek⟩. Similarly, we have Im⟨x, y⟩ = 1
4
(∥x+ iy∥2 − ∥x− iy∥2), so

∥x+ iy∥2 =
∑
k

|⟨x+ iy, ek⟩|2 =
∑
k

⟨x+ iy, ek⟩⟨x+ iy, ek⟩

= |⟨x, ek⟩|2 + |⟨y, ek⟩|2 + 2Im⟨x, ek⟩⟨y, ek⟩
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∥x− iy∥2 =
∑
k

|⟨x− iy, ek⟩|2 =
∑
k

⟨x− iy, ek⟩⟨x− iy, ek⟩

= |⟨x, ek⟩|2 + |⟨y, ek⟩|2 − 2Im⟨x, ek⟩⟨y, ek⟩

Therefore, Im⟨x, y⟩ = Im⟨x, ek⟩⟨y, ek⟩. This shows that ⟨x, y⟩ =
∑

k⟨x, ek⟩⟨y, ek⟩.

Problem 3.8-6. Show that Riesz’s Theorem defines an isometric bijection T : H 7→ H ′, z 7→ fz =

⟨·, z⟩ which is not linear but conjugate linear, that is, αz + βv 7→ ᾱfz + β̄fv.

Riesz’s Theorem says that if H is Hilbert, then for all f ∈ H ′, there exists a unique y ∈ H,
such that fy(x) = ⟨x, y⟩. Moreover, ∥f∥H′ = ∥y∥H . This directly implies that T is bijective and
isometric. Therefore, we only need to prove T is conjugate linear.

Consider any z, v ∈ H and scalar α, β, we have

⟨·, αz + βv⟩ = ⟨αz + βv, ·⟩ = α⟨z, ·⟩+ β⟨v, ·⟩ = ᾱ⟨z, ·⟩+ β̄⟨v, ·⟩ = ᾱ⟨·, z⟩+ β̄⟨·, v⟩

Therefore, T (αz+βv) = ᾱT z+ β̄T v, and T is conjugate linear. It is easy to see at least when β = 0

and α = i, T (iz) = −iTz ̸= iTz, so T cannt be linear as long as T is not the zero map.

Problem 3.8-7. Show that the dual space H ′ of a Hilbert space H is a Hilbert space with inner
product ⟨·, ·⟩ defined by

⟨fz, fv⟩ = ⟨z, v⟩ = ⟨v, z⟩

where fz(x) = ⟨x, z⟩.

Notice that the dual space of any normed space is complete, but H is Hilbert thus normed space,
so H ′ is complete. Therefore, we only need to prove H ′ is equipped with an inner product defined
in the question. By Riesz’ Theorem, each element f in H ′ can be represented by fz(x) = ⟨x, z⟩,
where fz is obviously a linear bounded (Riesz’s Therorem) functional. Therefore, we only need to
show ⟨fz, fv⟩ = ⟨v, z⟩ is an inner product in H ′.

First, ⟨fz, fz⟩ = ⟨z, z⟩ ≥ 0 and since ⟨z, z⟩ = 0 ⇐⇒ z = 0, we have ⟨fz, fz⟩ = 0 ⇐⇒ fz =

⟨x, 0⟩ ≡ 0.
Then, ⟨fz, fv⟩ = ⟨v, z⟩ = ⟨z, v⟩ = ⟨fv, fz⟩.
Consider any scalar a, b and any fy ∈ H ′, we have

⟨afz + bfy, fv⟩ = ⟨fāz+b̄y, fv⟩ = ⟨v, āz + b̄y⟩ = a⟨v, z⟩+ b⟨v, y⟩ = a⟨fz, fv⟩+ b⟨fy, fv⟩

Therefore, ⟨fz, fv⟩ = ⟨v, z⟩ is an inner product in H ′. This implies that H ′ is a Hilbert space.

Problem 3.8-8. Show that any Hilbert space H is isomorphic with its second dual space H ′′ =

(H ′)′.

Since H ′ is Hilbert (as we proved in Problem 3.8-7), by Riesz’s Theorem, any element F in
H ′′ can be expressed as Ff = ⟨g, f⟩ with unique f ∈ H ′ for all g ∈ H ′. By Problem 3.8-7, H ′′ is
also Hilbert with inner product ⟨Ff , Fg⟩ = ⟨g, f⟩. Therefore, we can define a map ϕ : H 7→ H ′′

by z 7→ Ffz(h) = ⟨h, fz⟩ for all h ∈ H ′. Then we need to prove ϕ is bijective linear mapping that
preserves inner product.
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Firstly, we need to show ϕ is well-defined function, i.e., for z = v, we must have ϕ(z) = ϕ(v). We
only need to show that for all h ∈ H ′, Ffz(h) = Ffv(h). Therefore, we need to show ⟨h, fz⟩ = ⟨h, fv⟩
for all h ∈ H ′. Since by Riesz’s Theorem, we have unique y ∈ H for each h such that h = hy(x) =

⟨x, y⟩ for all x, we only need to show ⟨hy, fz⟩ = ⟨hy, fv⟩. Since ⟨hy, fz⟩ = ⟨z, y⟩ and ⟨hy, fv⟩ = ⟨v, y⟩,
and z = v, so ⟨z, y⟩ = ⟨v, y⟩. This implies that Ffz(h) = Ffv(h) and ϕ is well-defined.

Then we show ϕ is linear. Consider any scalar a, b and and z, v ∈ H, we need to show ϕ(az +

bv) = aϕ(z) + bϕ(v), which means ⟨h, faz+bv⟩ = a⟨h, fz⟩+ b⟨h, fv⟩. Notice that

⟨h, faz+bv⟩ = ⟨hy, faz+bv⟩ = ⟨az+ bv, y⟩ = a⟨z, y⟩+ b⟨v, y⟩ = a⟨fy, fz⟩+ b⟨fy, fv⟩ = a⟨h, fz⟩+ b⟨h, fv⟩

Therefore, ϕ is linear.
Then we show ϕ is bijective. Surjectivity is trivial because of Riesz’s Theorem. For injectivity,

if ϕ(z) = 0, we have ⟨h, fz⟩ = 0 for all h ∈ H ′. This further implies that ⟨z, y⟩ = 0 for all y ∈ H.
Then take y = z, we immediately have ∥z∥2 = 0 and hence z = 0. This shows the kernel of ϕ is
trivial and ϕ is injective.

Finally we show ϕ preserves the inner product. We can see that ⟨ϕ(z), ϕ(v)⟩ = ⟨Ffz , Ffv⟩ =

⟨fv, fz⟩ = ⟨z, v⟩. Thus, we conclude that H and H ′′ are isomorphic.

Extra Problem 1. Let X and Y be two normed spaces. We say X is continuously embedded into
Y if X ⊂ Y and if the identity map i : X 7→ Y , i(x) = x is injective and bounded, i.e., there exists
constant C > 0, such that ∥x∥Y ≤ C∥x∥X , for all x ∈ X. Denote it as X ↪→ Y . Let H and V be
real Hilbert spaces (with their own inner products (·, ·)H and (·, ·)V ). Suppose V is continuously
embedded into H and V is dense in H. Prove that H ′ ↪→ V ′ and that H ′ is dense in V ′.

First we prove H ′ ⊂ V ′. For each f ∈ H ′, f is a linear functional defined on H. Since V ⊂ H,
so f is also a linear funcitonal defined on V , thus f ∈ V ′. Therefore, H ′ ⊂ V ′.

Then we prove that the map i : H ′ 7→ V ′ given by i(f) = f
∣∣∣
V

is injective and bounded.

Consider f
∣∣∣
V
(v) ≡ 0 for all v ∈ V , by Riesz’s Theorem, we can identify f

∣∣∣
V
(v) as ⟨v, y⟩ for unique

y ∈ V . Since V is dense in H, for all u ∈ H, we have vn ∈ V such that vn → u (If u ∈ V , then vn is
constant sequence u). For all u ∈ H, ⟨u, y⟩ = limn→∞⟨vn, y⟩ = 0, thus f(u) ≡ 0 and the pre-image
of f

∣∣∣
V
(v) ≡ 0 is f(u) = ⟨u, y⟩ ≡ 0. Therefore, i(f) is injective.

Consider ∥∥∥f ∣∣∣
V

∥∥∥
V ′

= sup
∥v∥V =1

∣∣∣f ∣∣∣
V
(v)
∣∣∣ = sup

∥v∥V =1

|f(v)| ≤ ∥f∥H′ sup
∥v∥V =1

∥v∥H

Since V ↪→ H, we have ∥v∥H ≤ C∥v∥V , thus,∥∥∥f ∣∣∣
V

∥∥∥
V ′

≤ ∥f∥H′ sup
∥v∥V =1

C∥v∥V = C∥f∥H′

Therefore, H ′ ↪→ V ′.

To prove H ′ is dense in V ′, we need to prove H ′⊥ = {0V ′}. This is because if so, H ′⊥⊥ =

H ′ = V ′ immediately implies that H ′ is dense in V ′. Consider any f ∈ H ′, then there exists unique
y ∈ H, such that fy(x) = ⟨x, y⟩ for all x ∈ H. If a g ∈ V ′ satisfies ⟨f, g⟩ = 0, then we can find
v ∈ V such that gv(z) = ⟨z, v⟩ for all z ∈ V . From Problem 3.8-7, we have ⟨f, g⟩ = ⟨v, y⟩ = 0 for all
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y ∈ H and fixed v ∈ V . Since V is dense in H, V ⊥ = {0H}, and now v ∈ V and v ∈ V ⊥, so v = 0.
This implies that g = 0V ′ , therefore H ′⊥ = {0V ′}.

Extra Problem 2. Given that any f ∈ L2(−l, l) can be expanded as

f(x) =
a0
2

+

∞∑
k=1

(
ak cos kπx

l
+ bk sin kπx

l

)

(i) Use Euler’s formula eiθ = cos θ+i sin θ, prove that f(x) =
∑∞

k=−∞ cke
ikπx

l , where
∑∞

k=−∞ cke
ikπx

l

is understood as the limit of
∑n

k=−n cke
ikπx

l in L2(−l, l); give the formula for Fourier coefficient
ck.

Since cos θ = 1
2
(eiθ + e−iθ) and sin θ = 1

2i
(eiθ − e−iθ), we have

f(x) =
a0
2

+
∞∑
k=1

(
ak cos kπx

l
+ bk sin kπx

l

)

=
a0
2

+

∞∑
k=1

(
ak

1

2
(e

ikπx
l + e−

ikπx
l ) + bk

1

2i
(e

ikπx
l − e−

ikπx
l )

)

=
a0
2

+
∞∑
k=1

1

2
(ak − ibk)e

ikπx
l +

−1∑
k=−∞

1

2
(a−k + ib−k)e

ikπx
l

=
∞∑

k=−∞

cke
ikπx

l

where ck is defined by
c0 =

a0

2
= 1

2l

´ l

−l
f(t) dt

ck = 1
2
(ak − ibk) =

1
2l

´ l

−l
f(t)e

−ikπt
l dt k ≥ 1

ck = 1
2
(a−k + ib−k) =

1
2l

´ l

−l
f(t)e

−ikπt
l dt k ≤ −1

or more compactly, for all k ∈ Z, ck is defined by

ck =
1

2l

ˆ l

−l

f(t)e
−ikπt

l dt

(ii) Denote ck as f̂(k). Prove that if l = π and if f ∈ C1[−π, π] and is 2π-periodic, then
f̂ ′ (k) = ikf̂(k).

Since f ∈ C1[−π, π], f ′ is in L2(−π, π). Also, since f is 2π-periodic differentiable function,
f ′(x) is also 2π-periodic. Therefore, f ′(x) has a convergent Fourier series expansion, the only
thing we need to do is to determine the coefficient. By the formula derived in part (i), for
k ≥ 0, apply integration by part, and we have,

f̂ ′ (k) =
1

2π

ˆ π

−π

f ′(t)e−ikt dt =
1

2π
e−iktf(t)

∣∣∣∣π
−π

+
1

2π

ˆ π

−π

ikf(t)e−ikt dt = ikf̂(k)

because the first term vanishes.
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(iii) For all f, g ∈ L2(−π, π), prove ⟨f, g⟩L2(−π,π) = 2π
∑∞

k=−∞ f̂(k)ĝ(k).

We have known that einx forms a basis of L2(−π, π), so next we need to prove einx is orthogonal
basis. This is trivial because

ˆ π

−π

eimxeinx dx =

ˆ π

−π

cosmx cosnx dx+ i

ˆ π

−π

sinmx cosnx dx

+ i

ˆ π

−π

cosmx sinnx dx−
ˆ π

−π

sinmx sinnx dx

Since cosmx, sinmx are all orthognal to each other,
´ π

−π
eimxeinx dx = 0. However, notice

that einx is not orthonormal basis, because

∥einx∥2L2(−π,π) =

ˆ π

−π

|einx|2 dx = 2π

Therefore, we can take uk = 1√
2π
eikx, then uk forms an orthonormal basis. By Problem 3.6-4,

we have
⟨f, g⟩L2(−π,π) =

∑
k

⟨f, uk⟩⟨g, uk⟩

Notice that
⟨f, uk⟩ =

ˆ π

−π

f(x)
1√
2π
eikx =

√
2πf̂(k)

Similarly, we have ⟨g, uk⟩ = ĝ(k), and this implies that

⟨f, g⟩L2(−π,π) = 2π
∞∑

k=−∞

f̂(k)ĝ(k)

Extra Problem 3. Let P be a simple closed curve in the x−y plane. Suppose P is C1-smooth, i.e.,
P can be parameterized by x = x(s) and y = y(s), where s ∈ [0, 2π] is the arclength variable, 2π is
the arclength of P , and x(s), y(s) in C1([0, 2π]). Prove the isoperimetric inequality, A ≤ π, where A
is the area of the region enclosed by P . Hint: By Green’s formula, if P is oriented counter-clockwise,
then

A =
1

2

ˆ
P

xdy − ydx =
1

2

ˆ 2π

0

(x(s)y′(s)− y(s)x′(s)) ds =
1

2
[⟨x, y′⟩L2(0,2π) − ⟨y, x′⟩L2(0,2π)]

Since x(s), y(s) ∈ C1 and 2π-periodic, we can express them in x(s) =
∑∞

k=−∞ ake
iks and

y(s) =
∑∞

k=−∞ bke
iks. By the last problem, we have x′(s) =

∑∞
k=−∞ ak(ik)e

iks and y′(s) =∑∞
k=−∞ bk(ik)e

iks. Therefore,

⟨x, y′⟩L2(−π,π) = 2π
∞∑

k=−∞

ak(ik)bk, ⟨y, x′⟩L2(−π,π) = 2π
∞∑

k=−∞

bk(ik)ak

The hint implies that

A = π

∣∣∣∣∣(−i)
∞∑

k=−∞

k(akbk − akbk)

∣∣∣∣∣ ≤ π
∞∑

k=−∞

2k|ak||bk| ≤ π
∞∑

k=−∞

k(|ak|2 + |bk|2)

11



Also, since the curve P is parametrized by arc length, we have
ˆ 2π

0

√
(x′(s))2 + (y′(s))2 ds =

ˆ 2π

0

(x′(s))2 + (y′(s))2 ds = 2π

Since ∥x′∥2 =
´ 2π

0
(x′(s))2 ds = 2π

∑∞
k=−∞ k2|ak|2, and ∥y′∥2 =

´ 2π

0
(y′(s))2 ds = 2π

∑∞
k=−∞ k2|bk|2,

we have
∑∞

k=−∞ k2|ak|2 +
∑∞

k=−∞ k2|bk|2 = 1. Therefore, we have

A ≤ π
∞∑

k=−∞

k(|ak|2 + |bk|2) ≤ π
∞∑

k=−∞

k2(|ak|2 + |bk|2) = π

This implies that the isoperimetric inequality A ≤ π holds.
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