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Problem 3.3-3(a). Show that the vector space X of all real-valued continuous functions on [—1, 1]
is the direct sum of the set of all even continuous functions and the set of all odd continuous functions
on [—1,1].

For all f € C[—1,1], for all z € [-1, 1], we have

oy = LI SD D) _ gy

where since —x € [—1,1], f(—=x) is also in C[—1, 1], and h(z), g(z) are both continuous function in
C[—1,1]. Notice that

f(=z) + f(x)

g(=z) = 5 =g(z),  h(-zr) = —=—F——— = —h(z)

Therefore, g is even continuous function on [—1, 1] and h is odd continuous function on [—1, 1]. This
implies that X = X; + X5, where X is the set of all odd continuous functions and X5 is the set of

all even continuous functions.

Now we need to prove for each f, such g and h are unique. Suppose f(z) = g1(z) + hi(z) =
g2(x) + ha(x), where g1, g2 € X5 and hy, hy € X;. Then we have

d(z) = g1(z) — g2(z) = ha(z) — ha(z) = Y(z)

Since ¢p(—x) = g1(—x) — go(—x) = g1(x) — g2(x) = &(x), we know ¢(z) is even continuous function
n [—1,1]. Similarly, ¢)(—z) = ho(—2x) — h1(—2x) = hi(x) — ha(x) = —¢(x). Therefore, () is odd
continuous function on [—1,1]. This implies that ¢(z) and ¢(z) are both odd and even functions on
[—1,1]. Then we have ¢(—x) = ¢(x) and ¢p(—z) = —¢(x), which yields ¢(x) = 0 for all x € [-1,1].
Similarly ¢(x) = 0 for all x € [—1,1]. Therefore, g;(x) = g2(x) on [—1,1] and hy(x) = ha(z) on
[—1,1]. In conclusion, for all f € C[—1, 1], there exists a unique even function g(z) in [—1,1] and a
unique odd function h(x) in [—1,1] such that f(z) = g(x) + h(z). This gives X = X; & Xo.

Problem 3.3-6. Show that Y = {z|z = (§;) € I?,&, = 0,n € N} is a closed subspace of [* and
find Y+. What is Y+ if Y = span{ey, ..., e,} € [?, where e; = (6;)?

For any 21, 2 € Y, and any scalar a, b, where z1) = (¢V), 0, {él), 0,...)and z2® = (@0, £§2), 0,...

we have

az® + bz = (ac® + e, 0,06V +562,0,...)



Since az™® + bz € 12 and a&ll) + b¢?) = 0 for all n, we can conclude that az® + bz® € Y. Thus
Y is a subspace of 2.
To prove it is closed, we take a convergent sequence z*) in Y, and z*) — 2* € X. Suppose

x* ¢ Y, then there exists jo such that x3; # 0, and

oo
Hm(k) P Z |§£’;)_1 - £;j71|2 + |x§j0|2 2 |x;j0|2
j=1

Take k — oo on both sides, we have 0 > |:E§j0|2 > 0, which is a contradiction. Therefore, z* € Y,
and Y is closed.

To find Y+, we first consider a necessary condition for any element in Y. If u € Y+, where
u = (u;), then u L x for all z € Y. Since ey,ey,... are in Y, so at least u L e; for all odd i.
Thus, (u,e;) = u; = 0 implies that all odd entries of u must be zero. However, for all « such that
Ugj—1 =0, (u,x) = 0 because &; = 0 for all . This shows the sufficiency of us;_1 = 0 for any u to
be in Y. Therefore, Y+ = {u|u = (u;) € [*,ug;—1 = 0,5 € NT}.

Similarly, if Y = span{ey,...,e,} € [?, then u € Y* if and only if u L e;,...,e,. Thus,
Y+ ={u|u=(u;) € >u; = =u, =0}

Problem 3.3-7. Let A and B D A be nonempty subsets of an inner product space X. Show that
AC At Bt c At and AHHE = AL

We first prove A C A+L. Take arbitrary zq € A. Consider any u € A*, by definition, u L x
for all z € A. Thus, we have u L xy, and since xy L u for all u, we have zy € (AL)L. Notice that

the choice of x is arbitrary in A, we conclude that A ¢ A++.

Then we prove B+ C A*. Take arbitrary yy € B, for all v € B, we have yy L v. Since A C B,
for all x € A, x is also in B, and 3y L x. Since yo L x for all z € A, yo € AL. Notice that v, is
arbitrary in B+, so B+ C A*.

From A C A**, we can say that for all nonempty subset S C X, we have S C S*++. If S is
empty, since empty set is the subset of any set (including empty set), so S still satisfies S C S+,
because g+ = X and X+ = @. Therefore, we can take S = AL, then we have A+ C (A+)+L.

Similarly, from B+ C A+, we can say for all nonempty subset S; C Sy C X, we have S5~ C Si.
If Sy is empty, then S is also empty and Sy C Si- trivially holds. If Sy is nonempty but S; is empty,
then since Si- = X, S5 must be a subset of the whole spacee X. Therefore, we can take S; = A and
Sy = AtL | then the conclusion is (A1+)t C A+. Therefore, combined with A+ C (A+)1+ proved

just now, we can say A+ = A++L,

Problem 3.3-9. Show that a subspace Y of a Hilbert space H is closed in H if and only if Y = Y-+,

First we prove the “only if” part. If Y is a closed subspace of Hilbert space, then by Corollary
in lecture, H = Y @Y. By Problem 3.3-7, we know Y C Y+, so we only need to prove Y+ C Y.
For all w € Y+, w L v for all v € Y*. Also, there exists unique z € Y and y € Y+ such that
u = z +y. Therefore, for all v € Y, (x 4+ y,v) = 0, which means (x,v) + (y,v) = 0. Since z € Y

and v € Y+, we have (z,v) = 0, thus (y,v) = 0. Since v is arbitrary in Y, we can take v = y.



then (y,y) = 0 implies y = 0. This shows that u = # € Y. Notice that u is arbitrary in Y1+ we
conclude that Y+ C Y. Combined with the previous result, Y = Y+,

Then we prove the “if” part. If Y = Y+ and Y C H, then we take a convergent sequence
u, € Y such that u, — u € H. Since u,, € Y, so for any v € Y+, (u,,v) = 0 for all n. By
the continuity of inner product, we can take n — oo on both sides, i.e., lim, o (u,,v) = 0, which

implies (u,v) = 0. This shows u € Y+ =Y, so any limit point of Y is in Y, and Y is closed.

Problem 3.3-10. If M # @ is any subset of a Hilbert space H, show that M++ is the smallest
closed subspace of H which contains M, that is, M+~ is contained in any closed subspace Y € H
such that Y D M.

First the fact that M+ is a subspace of H is trivial. Also, from Problem 3.3-9, subspace M+
is closed in H if and only if M++ = (M*+)+L. Since we proved for any nonempty subset M € H,
M+ = Mt so (M)A = (M+)+. This shows M+ is closed.

To show M+t is the smallest closed subspace contains M, we only need to show M++ =
span(M). This is because span(M) is the smallest subspace contains M, and the smallest closed
subspace must contained span(M), but the smallest closed set containing span(M) is its closure.
Since the closure of a subspace is again a subspace, m is the smallest closed subspace contains
M.

Consider M C M*+, since M+ is a subspace, span(M) C M+, Due to the closedness of
ML span(M) C M.

Since M C span(M), we have M+ O W% This further shows M+ C span(M)
However, since span(M) is a closed subspace, by Problem 3.3-9, span (M )Ll = span(M). Therefore,
M+ < span(M). Therefore, we proved that M-+ = span(M), and this implies M+ is the smallest

closed subspace containing M.
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Problem 3.4-6. Let {e1,...,e,} be an orthonormal set in an inner product space X, where n

is fixed. Let z € X be any fixed element and y = fie; + ... + Bye,. Then [z — y|| depends on

B1s ..., Bn. Show by direct calculation that ||z — y|| is minimum if and only if 8; = (z,e€;), where
j=1...,n
Denote z = (z1,%2,...,Zn,...), we have v —y = (x1 — B1,22 — Ba, ..., Ty, — B, Tna1,---), and
compute
<$*y7$*y>22($k*5k) (zr — Br) + z T, Z\xk*5k|2+ Z ||
k=1 k=n+1 k=1 k=n-+1

Since all z;, are constant, it is easy to see that the value of (z —y,z —y) is at least Y~ | |z/*.
Therefore, the minimum of (x — y,x — y) is attained if and only if Y;_, |zx — Bx|*> = 0, which is
true if and only if z;, = Sy for all K = 1,...,n. This implies that the minimum of (z — y,x — y)
is attained if and only if 8y = (x,e;) for all k = 1,...,n. Also ||z — y|| is minimum if and only if

(r — y,z — y) is minimum, so we finish the proof.

Problem 3.4-7. Let (e;) be any orthonormal sequence in an inner product space X. Show that



for any z,y € X,

o0
>l en)(y,en)| < llzllllyll
k=1

From Cauchy-Schwarz inequality, we have

o 1/2 00 1/2
S o) y,ek|<(z|xek ) (zm,ek )
k=1

k=1 k=1

By Bessel’s inequality, we have

(e < llzl® Y Ky e < llyll?

[M]8

>
Il

1

Therefore, we have

oo
>l ey e < llzllllyll
k=1

Problem 3.4-8. Show that an element x of an inner product space X cannot have "too many”
Fourier coefficients (z, e;) which are "big”; here, (e;) is a given orthonormal sequence; more precisely,

show that the number n,, of (z,e;) such that |(z,ex)| > 1/m must satisfy n,, < m?||z|?.

Suppose the number n,, of (z,e;) such that |(x, ex)| > 1/m satisfy n,, > m?||z||?. Then denote

the index set of such k as A, |A| = n,,, and we have

o0
Z|a:ek >Z|xek\2>2—>\|$\|2
k=1 keA keA

This shows that >, [(z,ex)|*> > ||z||, which contradicts the Bessel’s inequality. Therefore, n,, <

2|l .

Problem 3.4-9. Orthonormalize the first three terms of the sequence (x¢, z1, 2, . ..), where x;(t) =

7, on the interval [—1, 1], where

(2, ) = / £(t)y(t) dt

1

Apply Gram-Schmidt process to xy = 1, we have uj, = z¢, and

: , V2
U
ug|| = /u’Qtdt:\/i:>u: 0 —
gl =/ | e’ o= TE="
Continue the same process to z; = t, we have

, V2 [t yV2
Uy = T — <x1,u0>u0 =1t — 7 72& dt =t

Compute the corresponding norm,

) V6
uh || = ) dt = 12 dt = :>u =2
= \// \// Yl T2

4




Finally, for x5 = t2, we have

/ s L[, 3 13 o 1
Uy = Ty — (To, Ug)Ug — (To, up)uy =1 ~3 t dt_it t>dt =t ~3

-1 1

Compute the corresponding norm,

2v/1 ! V1
luy || = / ) dt = \// 2 — dt S0, - S = v (3t° —1)
-1 -1 15 [|us | 4

Therefore, ug(t) = 2 s uy(t) = ft and uy(t) = @(3152 — 1) is an orthonormal set.

Problem 3.5-3. Illustrate with an example that a convergent series » (z, e;)ex need not have the

sum T.

Suppose (ey) is orthonormal sequence in [ space, and e; = (0,1,0,0,0,...), es = (0,0,0,1,0,...)

and so on. Use the usual inner product in %, then for any x = (21, z3,...) € [?, we have

n n
E (r,ex)er = E Torear = (0,22,0,24,...,72,,0,0,...)
k=1 k=1
Define z* = (0,29, ...,0,Z9,49,...), consider
n 2 (oo}
* 2
E (x,ep)ep —a*|| = g |zok|* — 0
k=1 k=n+1

oo 2 . 2 0o *
as n — oo because ), |ri|® is convergent to ||x||?. Therefore, >, (x,ex)e, converges to x*.
However, it is clearly z* # z as long as ; # 0. Therefore, convergent series Y .- | (z, ex)ex need not

have the sum =z.

Problem 3.5-4. If () is a sequence in an inner product space X such that the series ||z + ||z2||+

- converges, show that (s,) is a Cauchy sequence, where s,, = 1 + ... + x,.

For arbitrary € > 0, consider any n > m, we have

n n o0
Z r Z [l < Z [EA|

1=m-+1 i=m-+1 1=m-+1

50 — smll =

Since Y 7, ||lz;]| converges, there exists N, such that > .° . |lz;|| < e. Therefore, for all n > m > N,

we have ||s,, — sp|| < €, so s, is a Cauchy sequence.

Problem 3.5-6. Let (e;) be an orthonormal sequence in a Hilbert space H. Show that if

oo oo
T = g aje;, Y= g Bje;
Jj=1 Jj=1

then (z,y) = Z;’il o Bj, given that the series representing x,y are absolutely convergent.

Let s, = Z?Zl aje; and t, = Z?Zl Bje;, then since the series representing x,y are absolutely

convergent, we have s, — x and t,, = y as n — oco. Consider

Sna n <ZO‘J€]725J€]> :Zajﬁj
j=1



Since inner product is continuous, we have

Also, we have
- " 2 . 1/2
D ol < <Z|%’2> (ZWJ'Q)
j=1 j=1 j=1

Since the right hand side is convergent by the absolute convergence of series representing z,v,

>y leyB;l s also convergent.

Problem 3.5-7. Let (e;) be an orthonormal sequence in a Hilbert space H. Show that for every

x € H, the vector

o0
y= (z,ex)er
k=1
exists in H and x — y is orthogonal to every e.
Let uyp = (x, eg)ex, then ||ug|| = [(x, ex)|. Since by Bessel’s inequality,

(@, )| < [l

[M]¢

>
Il

1

for all n >m, 7 |(x,ex)|*> = 0 as m,n — co. Consider

n

Z(m,ek>ek

k=m

2 n
= [z.ex)* =0

k=m

we know that the partial sum ZZ=1<37, er)er is a Cauchy sequence, and by completeness of H, it
must be convergent to some point in H. Thus y = >, (z, ex)ey exists in H.

To prove (x —y) Le; forall j =1,2,..., consider

WK

(—y,e5) = (z,ex) — ) (z,ex)(en,ej) = (z,ex) — (z,ex) =0

ES
Il

1

because (e, e;) # 0 if and only if k = j and (e, ex) = 1. Therefore, (x —y) Le; forall j =1,2,....

Problem 3.5-8. Let (e;) be an orthonormal sequence in a Hilbert space H, and let M = span(ey).
Show that for any z € H we have € M if and only if # can be represented by >, | aje; with

coefficients ay, = (z, ey).

First we show the “if” part. If for allz € H, z = Y~ | ey, then we can let z, = Y ;_, aey,
and z,, — x. Notice that =, € M, so z is a limit point of M, hence in M.
Then we show the “only if” part. If for any @ € H we have € M, then there exists a sequence

x, — x, where x,, = kaz"l anrer- Then by Problem 3.4-6, we have for each fixed n,

Mn

T — Z(m,ek>ek

k=1

< lz = 2.




Also notice that for all [ > m,,, we should have

l M
- Z@?ek)ek | Z@C, €r) ek
k=1 k=1

Therefore, we can take ¢,, = max{n,m,}, then as n — oo, ¢, — oo, and

oo

JJ—E xekek

k=1

Cn

T — Z(:L‘, ex)ex

k=1

<|lzr—z,]| 0=

which means z = >",° | (z, ex)ey.

Problem 3.5-9. Let (e,,) and (é,) be orthonormal sequences in a Hilbert space H, and let M; =
span(e,) and M, = span(é,). Show that M; = M, if and only if e, = anozl Opm€m and €, =

> Gmnem hold simultaneously, where o, = (€, €m).

First we prove the “if” part. If e, = Z;f:l Qpm€m, then by “if” part in Problem 3.5-8, we
know e,, € M,. Since this is true for all n, we know M; C M. Since M, is closed and M; is the
closure hence the smallest closed set that contained M;, we conclude that M; C M,. Similarly, if
€, = ano:l Qmn€m then €, € M, and by the same argument it finally yields M, C M;. Therefore,
we proved that M; = M.

Then we prove the “only if” part. If My = M,, then e, € M,. Since M; = M, are closed
subspace of H, so they are both Hilbert space. Use M, as the Hilbert space in Problem 3.5-8, by
“only if” part, we know that e,, = Z;i1<€m €x)éx. Similarly, use M; as the Hilbert space in Problem

3.5-8, since €, € My, we have é, = >~ (€., €x)ep.

Problem 3.6-4. Derive from Parseval’s identity, i.e., Y, [(z, e;)|* = ||z||?, the following formula

(@,y) =D (z,en)(y,en)

k

Since Re(z,y) = (|lz + y||* — ||z — y[|*), we have

lz+yl” =D ety e =D (@ +y, ez +y ex)
k k

= [z, ex) > + [(y, ex)|” + 2Re(z, ) (y, ex)

|$_yH2 Z| +y7ek :Z<$+y7€k><x+yvek>

k

= (z, ex)[* + [{y, ex) [ — 2Re(x, ex)(y, ex)

Therefore, Re(z,y) = Re(z, ex) (y, ex). Similarly, we have Im(z,y) = (|| + iy||* — ||z — iy||?), so

lz+iyl* => o +iyen)]” =Y (@ + iy, ex) (@ + iy, ex)
k k

= [z, ex) > + [y, ex)|” + 2Im(z, ex) (y, ex)



lz —iyl® = [z —iy,en)l* =Y (x — iy, en)(z — iy, ex)
k

k

= [z, ex)|* + [{y, ex)]* — 2Im(z, ex) (y, ex)

Therefore, Im(xz,y) = Im(x, e)(y, ex). This shows that (z,y) = >, (x,ex)(y, ex)-

Problem 3.8-6. Show that Riesz’s Theorem defines an isometric bijection T : H — H', z +— f, =

(-, z) which is not linear but conjugate linear, that is, az + Bv + af, + Bf,.

Riesz’s Theorem says that if H is Hilbert, then for all f € H’, there exists a unique y € H,
such that f,(z) = (z,y). Moreover, | f|lmr = ||y|lmz. This directly implies that T" is bijective and
isometric. Therefore, we only need to prove T is conjugate linear.

Consider any z,v € H and scalar «, 3, we have

(az+ Bv) = (az + Bu,-) = alz, ") + Blv, ) = alz, ) + B(v,-) = a(-, 2) + B{-,v)

Therefore, T'(az + Bv) = aTz+ 3T, and T is conjugate linear. It is easy to see at least when 3 = 0

and o =i, T'(iz) = —iTz # iTz, so T cannt be linear as long as T is not the zero map.

Problem 3.8-7. Show that the dual space H' of a Hilbert space H is a Hilbert space with inner
product (-,-) defined by

(for fo) = (2,0) = (v,2)
where f,(z) = (z, 2).

Notice that the dual space of any normed space is complete, but H is Hilbert thus normed space,
so H' is complete. Therefore, we only need to prove H' is equipped with an inner product defined
in the question. By Riesz’ Theorem, each element f in H' can be represented by f,(z) = (x, z),
where f, is obviously a linear bounded (Riesz’s Therorem) functional. Therefore, we only need to
show (f., f,) = (v, 2z) is an inner product in H'.

First, (f., f.) = (z,2) > 0 and since (z,2) = 0 <= z = 0, we have (f., f.) = 0 < f, =
(x,0) =0.

Then, (f., fo) = (v, 2) = {z,0) = (fu, ).

Consider any scalar a,b and any f, € H', we have

(@fe +bfys fo) = (fazipy: o) = (v,a2 + by) = a{v, 2) + b(v,y) = a(f=, fu) + b{fy, fo)

Therefore, (f., f,) = (v, z) is an inner product in H’. This implies that H' is a Hilbert space.

Problem 3.8-8. Show that any Hilbert space H is isomorphic with its second dual space H" =
(H')".

Since H' is Hilbert (as we proved in Problem 3.8-7), by Riesz’s Theorem, any element F' in
H" can be expressed as Fy = (g, f) with unique f € H’ for all ¢ € H'. By Problem 3.8-7, H" is
also Hilbert with inner product (Fy, Fy) = (g, f). Therefore, we can define a map ¢ : H — H”
by z +— F¢ (h) = (h, f,) for all h € H'. Then we need to prove ¢ is bijective linear mapping that

preserves inner product.



Firstly, we need to show ¢ is well-defined function, i.e., for z = v, we must have ¢(z) = ¢(v). We
only need to show that for all h € H', Fy (h) = Fy, (h). Therefore, we need to show (h, f.) = (h, f.,)
for all h € H'. Since by Riesz’s Theorem, we have unique y € H for each h such that h = hy(z) =
(x,y) for all z, we only need to show (h,, f.) = (hy, f,). Since (h,, f.) = (z,y) and (h,, f,) = (v,y),
and z = v, so (z,y) = (v,y). This implies that Fy (h) = Fy,(h) and ¢ is well-defined.

Then we show ¢ is linear. Consider any scalar a,b and and z,v € H, we need to show ¢(az +
bv) = ad(z) + bp(v), which means (h, fo.1p,) = alh, f.) + b(h, f,). Notice that

<h, faz+bv> = <hy>faz+bv> = <a2+bv,y> = a(z,y) +b<v,y> = a<fy7fz> +b<fyafv> = a<h>fz> +b<h, fv)

Therefore, ¢ is linear.

Then we show ¢ is bijective. Surjectivity is trivial because of Riesz’s Theorem. For injectivity,
if ¢(z) = 0, we have (h, f.) = 0 for all h € H'. This further implies that (z,y) = 0 for all y € H.
Then take y = z, we immediately have ||z]|*> = 0 and hence z = 0. This shows the kernel of ¢ is
trivial and ¢ is injective.

Finally we show ¢ preserves the inner product. We can see that (¢(2), ¢p(v)) = (Fy., Fy,) =
(fv, f2) = (z,v). Thus, we conclude that H and H" are isomorphic.

Extra Problem 1. Let X and Y be two normed spaces. We say X is continuously embedded into
Y if X C Y and if the identity map i : X — Y, i(z) = x is injective and bounded, i.e., there exists
constant C' > 0, such that ||z|y < C||z|/x, for all z € X. Denote it as X — Y. Let H and V be
real Hilbert spaces (with their own inner products (-,-)g and (-,-)y). Suppose V is continuously
embedded into H and V is dense in H. Prove that H' < V' and that H' is dense in V.

First we prove H' C V'. For each f € H', f is a linear functional defined on H. Since V C H,
so f is also a linear funcitonal defined on V, thus f € V'. Therefore, H C V".
Then we prove that the map ¢ : H' +— V' given by i(f) = f‘ is injective and bounded.
v

Consider f‘v(v) = 0 for all v € V, by Riesz’s Theorem, we can identify f’v(v) as (v,y) for unique
y € V. Since V is dense in H, for all u € H, we have v,, € V such that v, — u (If w € V, then v, is
constant sequence u). For all u € H, (u,y) = lim, o (v,,y) = 0, thus f(u) = 0 and the pre-image
of f‘v(v) =0is f(u) = (u,y) = 0. Therefore, i(f) is injective.

41,

Since V — H, we have ||v||g < C||v|v, thus,

41,

Consider

(@) = sup |F@) < |l sup [olla

llvllv=1 llvflv=1

= sup

Vi lllv=1 ’V

< fllz sup Clloflv = C[| fllar

v llvllv=1

Therefore, H — V.

To prove H' is dense in V', we need to prove H'" = {0y}. This is because if so, H'* =
H’ = V' immediately implies that H’ is dense in V’. Consider any f € H’, then there exists unique
y € H, such that f,(z) = (z,y) for all z € H. If a g € V' satisfies (f,g) = 0, then we can find
v € V such that g,(z) = (z,v) for all z € V. From Problem 3.8-7, we have (f, g) = (v,y) = 0 for all



y € H and fixed v € V. Since V is dense in H, V* = {0y}, and now v € V and v € V+, so v = 0.
This implies that g = Oy, therefore H'* = {Oy/}.

Extra Problem 2. Given that any f € L*(—[,l) can be expanded as
= k k
f(z) = % + kz:; <akcos7lm +bksin7lm>

(i) Use Euler’s formula e = cos 6+isin 0, prove that f(z) = S50 cpe™ T, where Y00 cpe™

ikmax

is understood as the limit of > cxe™ 1 in L*(—1,1); give the formula for Fourier coefficient

Ci.

Since cosf = (e + e ) and sin = 5 (e’ — ™), we have

= kmx krx
flx) = ?O Z <ak cos —— + kaIIll)

1, ikna ik 1 ikra ik
<ak2(e e )—l—bk%(e e ))
k=1
ap =1 — 1
ik ikma
= ?O +Z §(ak —ibg)e T+ Z 2(a_k +ib_j)e t
k=1 k=—o0
> ikmx
Y e
k=—oc0
where ¢y, is defined by
=% =5 f f(t)
ck:%(ak—zbk = 2lf f ”Mt dt ]4321
e = 3(ay +ib_y) = ?lf—lf (t eii?m dt k<-1

or more compactly, for all k € Z, ¢;, is defined by

ST

(ii) Denote ¢; as f(k). Prove that if | = 7 and if f € C![—m, 7] and is 27-periodic, then
I (k) = ik f (k).

Since f € C'[—m, 7], f is in L?*(—m,m). Also, since f is 2m-periodic differentiable function,
f'(z) is also 2m-periodic. Therefore, f’(x) has a convergent Fourier series expansion, the only
thing we need to do is to determine the coefficient. By the formula derived in part (i), for

k > 0, apply integration by part, and we have,

— o [ FOe = g

] + % /_: ikf(t)e™ ™ dt = ik f(k)

because the first term vanishes.
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(iii) For all f,g € L*(—m, ), prove (f,g)r2(—rm) = 2T D pe_ oo ]E(k)m

inx

We have known that e™* forms a basis of L?(—, ), so next we need to prove e is orthogonal

basis. This is trivial because

™ ™ g
/ eimz gine go. / cosmz cosnx dr + z/ sin max cosnz dz

—Tr —T —T

T T
+1 / cosmx sinnx dx — / sin ma sin nx dx
—Tr —T

. . s ; LY .
Since cosmz,sinmax are all orthognal to each other, ffﬂ emre* dr = 0. However, notice

that e™* is not orthonormal basis, because

™
e sy = [l dz =2

—T

Therefore, we can take u;, = \/%e””’, then wu,;, forms an orthonormal basis. By Problem 3.6-4,

we have
<fug>L2(—Tf,ﬂ') = Z<f7 uk><ga uk>
k

Notice that )

V271

Similarly, we have (g, ux) = g(k), and this implies that

= [ 50 —=e = VR (i

(f,9) L2 (cmmy =21 > f(K)g(k)

k=—o0

Extra Problem 3. Let P be a simple closed curve in the  —y plane. Suppose P is C!-smooth, i.e.,
P can be parameterized by x = x(s) and y = y(s), where s € [0, 27] is the arclength variable, 27 is
the arclength of P, and z(s), y(s) in C*([0, 27]). Prove the isoperimetric inequality, A < 7, where A
is the area of the region enclosed by P. Hint: By Green’s formula, if P is oriented counter-clockwise,
then

A= [ty = yio =5 [ (e (s) = y(6)o'(6)) ds = 31001 hr0ze) — () 12020

iks and

Since z(s),y(s) € C' and 2m-periodic, we can express them in z(s) = >.;° _ axe
y(s) = > bre™*s. By the last problem, we have 2/(s) = > .o _ ax(ik)e™ and y'(s) =

> e be(ik)e™ . Therefore,

<.Z',y/>L2(,ﬂ.’ﬂ.) =27 Z ak(ik)bk, <y7$/>L2(77r,7r) =27 Z bk(zk)ak

k=—00 k=—o0
The hint implies that
A=m|(=i) Y klarby —apbp)| <7 Y 2kfap|be] <7 Y k(larl® + |bx]?)
k=—oc0 k=—oc0 k=—oc0
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Also, since the curve P is parametrized by arc length, we have

@R T R ds = / (@ () + () ds = 27

0

Since ]2 = [ (o () ds = 2 55 K2lant, and /| = [/ (s))? ds = 20 0 K¥ b
we have Y70 k?|ag|® + >~ k*|bk|* = 1. Therefore, we have
A<n S k(al ) <7 S R (el 4 bef?) = 7
k=—o k=—o00

This implies that the isoperimetric inequality A < 7 holds.
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