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Problem 3.9-2. Let H be a Hilbert space and T : H 7→ H a bijective bounded linear operator
whose inverse is bounded. Show that (T ∗)−1 exists and (T ∗)−1 = (T−1)∗.

By definition of T−1, we have TT−1 = T−1T = I. Thus, we have (TT−1)∗ = (T−1T )∗ = I∗.
By definition, it is obvious that the adjoint operator of identity map is identity map itself. Also,
by fact in lecture, (TT−1)∗ = (T−1)∗T ∗ and (T−1T )∗ = T ∗(T−1)∗. Therefore, we have (T−1)∗T ∗ =

T ∗(T−1)∗ = I. Since T−1 is a bounded linear operator, its adjoint operator (T−1)∗ is also a bounded
linear operator. Therefore, we (T ∗)−1 exists and (T ∗)−1 = (T−1)∗.

Problem 3.9-3. If (Tn) is a sequence of bounded linear operators on a Hilbert space and Tn → T ,
show that T ∗

n → T ∗.

Consider for all x, y ∈ H,

⟨Tx, y⟩ =
⟨(

lim
n→∞

Tn

)
x, y

⟩
= lim

n→∞
⟨Tnx, y⟩ = lim

n→∞
⟨x, T ∗

ny⟩ =
⟨
x,

(
lim
n→∞

T ∗
n

)
y
⟩

Since Hilbert space is complete, bounded linear operators on a Hilbert space is complete, so T is
also bounded linear operator and thus T ∗ exists. Therefore, we can conclude that T ∗ = limn→∞ T ∗

n .

Problem 3.9-6. Let H1 and H2 be Hilbert spaces and T : H1 7→ H2 a bounded linear operator. If
M1 = N (T ) = {x |Tx = 0}, show that

(a) T ∗(H2) ⊂ M⊥
1 ,

For any y ∈ H2, if T ∗y = 0, then since M⊥
1 is a vector space, T ∗y ∈ M⊥

1 ; otherwise T ∗y ̸= 0.
Consider ⟨y, TT ∗y⟩ = ⟨T ∗y, T ∗y⟩ = ∥T ∗y∥2 > 0. This implie that T (T ∗y) ̸= 0, for all y ∈ H2

and T ∗y ̸= 0. This shows that T ∗y /∈ M1, but M1 is closed subspace of H1, so H1 = M1⊕M⊥
1 .

Therefore, T ∗y ∈ M⊥
1 . Therefore, T ∗(H2) ⊂ M⊥

1 .

(b) [T (H1)]
⊥ ⊂ N (T ∗),

For any y ∈ [T (H1)]
⊥, y satisfies ⟨y, Tx⟩ = 0 for all x ∈ H1. However, since ⟨y, Tx⟩ = ⟨T ∗y, x⟩,

we have ⟨T ∗y, x⟩ = 0 for all x ∈ H1. Notice that T ∗y ∈ H1, so take x = T ∗y, we have
∥T ∗y∥2 = 0, which means T ∗y = 0. This shows that y ∈ N (T ∗). Since y is arbitrarily chosen
in [T (H1)]

⊥, [T (H1)]
⊥ ⊂ N (T ∗).
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(c) M1 = [T ∗(H2)]
⊥.

From (a), we have T ∗(H2) ⊂ M⊥
1 , so [T ∗(H2)]

⊥ ⊃ M⊥⊥
1 . Since M1 is closed, M⊥⊥

1 = M1, so
[T ∗(H2)]

⊥ ⊃ M1.

For any x ∈ [T ∗(H2)]
⊥, x satisfies ⟨x, T ∗y⟩ = 0 for all y ∈ H2. However, since ⟨x, T ∗y⟩ =

⟨Tx, y⟩, we have ⟨Tx, y⟩ = 0 for all y ∈ H2. Notice that Tx ∈ H2, so take y = Tx, we have
∥Tx∥2 = 0, which means Tx = 0. This shows that x ∈ N (T ) = M1. Since x is arbitrarily
chosen in [T ∗(H2)]

⊥, [T ∗(H2)]
⊥ ⊂ M1. In conclusion, M1 = [T ∗(H2)]

⊥.

Problem 3.9-7. Let T1 and T2 be bounded linear operators on a complex Hilbert space H into
itself. If ⟨T1x, x⟩ = ⟨T2x, x⟩ for all x ∈ H, show that T1 = T2.

We first prove that for bounded linear operators from H to itself, if ⟨Tx, x⟩ = 0 for all x ∈ H,
then T = 0. For arbitrary u, v ∈ H, if ⟨Tx, x⟩ = 0 for all x ∈ H, then we have ⟨T (u+v), (u+v)⟩ = 0

and ⟨T (u+ iv), (u+ iv)⟩ = 0. Therefore,

0 = ⟨T (u+ v), (u+ v)⟩ = ⟨Tu, u⟩+ ⟨Tu, v⟩+ ⟨Tv, u⟩+ ⟨Tv, v⟩

Since ⟨Tu, u⟩ = 0 and ⟨Tv, v⟩ = 0, we have ⟨Tu, v⟩+ ⟨Tv, u⟩ = 0.
Similarly, we have

0 = ⟨T (u+ iv), (u+ iv)⟩ = ⟨Tu, iv⟩+ ⟨T (iv), u⟩

Since ⟨Tu, iv⟩ = −i⟨Tu, v⟩ and ⟨T (iv), u⟩ = i⟨Tv, u⟩, we have ⟨Tv, u⟩ = ⟨Tu, v⟩. In conclusion,
⟨Tu, v⟩ = 0 for all u, v ∈ H. Since Tu ∈ H, take v = Tu, we have ∥Tu∥2 = 0, which implies that
Tu = 0 for all u ∈ H. This is exactly the definition of T = 0.

If ⟨T1x, x⟩ = ⟨T2x, x⟩ for all x ∈ H, then ⟨(T1−T2)x, x⟩ for all x ∈ H. Since T1, T2 are bounded
linear operators from H to H, T1 − T2 is also bounded linear operators from H to H. Therefore,
T1 − T2 = 0 by our claim above, which implies that T1 = T2.

Problem 3.9-8. Let S = I + T ∗T : H 7→ H, where T is linear and bounded. Show that S−1 :

S(H) 7→ H exists.

We only need to show S is injective. Consider Sx = (I + T ∗T )x = 0, then T ∗Tx = −x.
Therefore, we have

0 ≤ ∥Tx∥2 = ⟨Tx, Tx⟩ = ⟨x, T ∗Tx⟩ = ⟨x,−x⟩ = −∥x∥2 ≤ 0

Therefore, ∥x∥2 = 0, which implies that x = 0. Thus, S is injective.

Problem 3.9-10. Let (en) be a total orthonormal sequence in a separable Hilbert space H and
define the right shift operator to be the linear operator T : H 7→ H such that Ten = en+1 for
n = 1, 2, . . .. Explain the name. Find the range, null space, norm and Hilbert-adjoint operator of
T .
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If we consider the coordinate of x with respect to basis (en), then x = (x1, x2, x3, . . .) and apply
T to x, we obtain Tx = (0, x1, x2, . . .). The coordinate of image of x is “shifted” to right by one
entry, so T is called right shift operator.

If x = x1e1 + x2e2 + . . ., then Tx = x1e2 + x2e3 + . . ., so Tx ∈ span(e2, e3, . . .). For any y ∈
span(e2, e3, . . .), y can be expressed as y = y1e2+y2e3+ . . ., whose preimage is x = y1e1+y2e2+ . . ..
Therefore, R(T ) = span(e2, e3, . . .).

Consider Tx = 0, if x = x1e1 + x2e2 + . . ., then 0 = Tx = x1e2 + x2e3 + . . .. This implies that
xi = 0 for all i = 1, 2, . . . and x = 0. Therefore, N (T ) = {0}.

Since (en) is total orthonormal, Parseval’s identity gives

∥x∥2 =
∞∑
i=1

|xi|2 = ∥Tx∥2

Therefore, ∥x∥ = ∥Tx∥ implies that

∥T∥ = sup
∥x∥=1

∥Tx∥ = sup
∥x∥=1

∥x∥ = 1

The adjoint operator T ∗ is defined by T ∗(en) = en−1 for all n ≥ 2, and T ∗(e1) = 0. This T ∗ is
bounded because

∥T ∗x∥2 =
∞∑
i=2

|xi|2 ≤ ∥x∥2

Also, it satisfies the definition of adjoint operator,

⟨Tx, y⟩ =
∞∑
i=1

xiyi+1 = ⟨x, T ∗y⟩

Therefore, such T ∗ is well-defined adjoint operator of T .

Problem 3.10-3. Show that if T : H 7→ H is a bounded self-adjoint linear operator, so is Tn, where
n is a positive integer.

We use induction to prove it. Since T is a bounded self-adjoint linear operator, we suppose
Tn−1 is a bounded self-adjoint linear operator, then for any x, y ∈ H, and any scalar a, b, we have

Tn(ax+by) = Tn−1[T (ax+by)] = Tn−1(aT (x)+bT (y)) = aTn−1(T (x))+bTn−1(T (y)) = aTn(x)+bTn(y)

which shows Tn is also linear. Also,

∥Tnx∥ = ∥Tn−1[T (x)]∥ ≤ ∥Tn−1∥∥T (x)∥ ≤ ∥Tn−1∥∥T∥∥x∥

Therefore, Tn is bounded because ∥Tn−1∥∥T∥ is finite. Finally,

(Tn)∗ = (Tn−1 ◦ T )∗ = T ∗ ◦ (Tn−1)∗ = T ◦ Tn−1 = Tn

Therefore, Tn is a bounded self-adjoint linear operator.

Problem 3.10-4. Show that for any bounded linear operator T on H, the operators

T1 =
1

2
(T + T ∗), T2 =

1

2i
(T − T ∗)
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are self-adjoint. Show that
T = T1 + iT2, T ∗ = T1 − iT2

Show uniqueness, that is, T1 + iT2 = S1 + iS2 implies S1 = T1 and S2 = T2; here, S1 and S2 are
self-adjoint by assumption.

It is easy to prove by definition that for all bounded linear operator T1, T2 and scalar a, we
have (T1 + T2)

∗ = T ∗
1 + T ∗

2 and (aT1)
∗ = āT ∗

1 . Therefore,

T ∗
1 =

(
1

2
(T + T ∗)

)∗

=
1

2
(T + T ∗)∗ =

1

2
(T ∗ + (T ∗)∗) =

1

2
(T ∗ + T ) = T1

T ∗
2 =

(
1

2i
(T − T ∗)

)∗

= − 1

2i
(T − T ∗)∗ = − 1

2i
(T ∗ − T ) =

1

2i
(T − T ∗) = T2

which implies T1, T2 are self-adjoint. It is easy to see

T1 + iT2 =
1

2
(T + T ∗) +

1

2
(T − T ∗) = T

T1 − iT2 =
1

2
(T + T ∗)− 1

2
(T − T ∗) = T ∗

To show the uniqueness, take the adjoint operator on both sides, we have (T1 + iT2)
∗ = (S1 + iS2)

∗,
which implies that T1− iT2 = S1− iS2. Add up these two equality, we have 2T1 = 2S1 which implies
that T1 = S1. Similarly, use T1 + iT2 = S1 + iS2 to minus T1 − iT2 = S1 − iS2, we have 2iT2 = 2iS2,
which implies that T2 = S2. Therefore, the uniquenss is proved.

Problem 3.10-9. Show that an isometric linear operator T : H 7→ H which is not unitary maps
the Hilbert space H onto a proper closed subspace of H.

First, the image of a linear operator is a vector space, so R(T ) is a subspace of H. If R(T ) = H,
then T is surjective. However, if Tx1 = Tx2, then T (x1 − x2) = 0. By the isometric property,
∥T (x1 − x2)∥ = ∥x1 − x2∥, thus ∥x1 − x2∥ = 0 implies that x1 = x2 and T is hence injective.
Then T is bijective and hence invertible. Notice that for all x, y ∈ H, if H is complex, then since
∥Tx∥2 = ∥x∥2 implies that ⟨x, x⟩ = ⟨T ∗Tx, x⟩, we can apply the result of Problem 3.9-7, T ∗T = I

immediately. However, if H is real, then

∥x∥2 + 2⟨x, y⟩+ ∥y∥2 = ∥x+ y∥2 = ∥T (x+ y)∥2 = ∥Tx∥2 + 2⟨Tx, Ty⟩+ ∥Ty∥2

Since ∥Tx∥2 = ∥x∥2 and ∥Ty∥2 = ∥y∥2, we have ⟨Tx, Ty⟩ = ⟨x, y⟩. This implies that ⟨(T ∗T −
I)x, y⟩ = 0 for all x, y ∈ H. Take y = (T ∗T − I)x, we have ∥(T ∗T − I)x∥2 = 0, then (T ∗T − I)x = 0

for all x, so T ∗T = I. Therefore, in any cases, T ∗T = I, and multiply T−1 on both sides, we have
T ∗ = T−1, therefore we will have T ∗T = TT ∗ = I, which means T is unitary. Therefore, this
contradiction shows T cannot be surjective, i.e., R(T ) is a proper subspace of H.

The last thing is to prove R(T ) is closed. Take a convergent sequence yn in R(T ), then since
T is injective in any case, there exists unique xn ∈ H such that Txn = yn. Since yn is Cauchy, and
for all ϵ > 0, there exists M such that for all n ≥ m ≥ M , we have

∥xn − xm∥ = ∥T (xn − xm)∥ = ∥Txn − Txm∥ = ∥yn − ym∥ < ϵ
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Therefore, xn is also Cauchy and hence convergent in H. Also, xn → x implies that Txn → Tx, so
Tx = y. This shows that y has a pre-image x ∈ H, thus y ∈ R(T ). We can conclude that R(T ) is
closed.

Problem 3.10-10. Let X be an inner product space and T : X 7→ X an isometric linear operator.If
dimX < ∞, show that T is unitary.

From Problem 3.10-9, we have derived that any isometric linear operator is injective. Since X is
finite dimensional, T is injective mapping from X to R(T ), so R(T ) must have the same dimension
as X, but R(T ) is also a subspace of X, so R(T ) = X. This implies that T is surjective, and if T
is bijective then T−1 exists. By exactly the same argument as Problem 3.10-9, we can also derive
that any isometric linear operator satisfies T ∗T = I, but if we multiply T−1 to the right on both
sides, we have T ∗ = T−1, this implies that T ∗T = TT ∗ = I. Therefore, T is unitary.

Problem 3.10-15. Show that a bounded linear operator T : H 7→ H on a complex Hilbert space
H is normal if and only if ∥T ∗x∥ = ∥Tx∥ for all x ∈ H. Using this, show that for a normal linear
operator, ∥T 2∥ = ∥T∥2.

Since ∥T ∗x∥ = ∥Tx∥ is equivalent to ⟨T ∗x, T ∗x⟩ = ⟨Tx, Tx⟩, we have ⟨x, TT ∗x⟩ = ⟨x, T ∗Tx⟩.
By Problem 3.9-7 again, ⟨x, TT ∗x⟩ = ⟨x, T ∗Tx⟩ if and only if TT ∗ = T ∗T given that H is complex.
Therefore, ∥T ∗x∥ = ∥Tx∥ is equivalent to TT ∗ = T ∗T given that H is complex. This shows T is
normal if and only if ∥T ∗x∥ = ∥Tx∥.

Since we have ∥T 2x∥ = ∥T ◦ Tx∥ ≤ ∥T∥∥Tx∥ ≤ ∥T∥2∥x∥, take the supremum over ∥x∥ = 1 on
both sides,

∥T 2∥ = sup
∥x∥=1

∥T 2x∥ ≤ ∥T∥2 =⇒ ∥T 2∥ ≤ ∥T∥2

For the reverse inequality, consider

∥Tx∥4 = ⟨Tx, Tx⟩2 = ⟨x, T ∗Tx⟩2

≤ ∥x∥2∥T ∗Tx∥2 = ∥x∥2⟨T ∗Tx, T ∗Tx⟩ = ∥x∥2⟨Tx, TT ∗Tx⟩

= ∥x∥2⟨Tx, T ∗TTx⟩ = ∥x∥2⟨Tx, T ∗T 2x⟩ = ∥x∥2⟨T 2x, T 2x⟩

= ∥x∥2∥T 2x∥2 ≤ ∥x∥4∥T 2∥2

Therefore, take the 4-th root on both sides, we have ∥Tx∥ ≤
√
∥T 2∥∥x∥. Take supremum over

∥x∥ = 1 on both sides, we have

∥T∥ = sup
∥x∥=1

∥Tx∥ ≤
√
∥T 2∥

which implies that ∥T∥2 ≤ ∥T 2∥. Therefore, combined with our previous conclusion, we have
∥T∥2 = ∥T 2∥.

5


