MAT4010：Functional Analysis Homework 5

李肖鹏（116010114）

Due date：Oct．15， 2019
Problem 3．9－2．Let H be a Hilbert space and $T: H \mapsto H$ a bijective bounded linear operator whose inverse is bounded．Show that $\left(T^{*}\right)^{-1}$ exists and $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$ ．

By definition of T^{-1} ，we have $T T^{-1}=T^{-1} T=I$ ．Thus，we have $\left(T T^{-1}\right)^{*}=\left(T^{-1} T\right)^{*}=I^{*}$ ． By definition，it is obvious that the adjoint operator of identity map is identity map itself．Also， by fact in lecture，$\left(T T^{-1}\right)^{*}=\left(T^{-1}\right)^{*} T^{*}$ and $\left(T^{-1} T\right)^{*}=T^{*}\left(T^{-1}\right)^{*}$ ．Therefore，we have $\left(T^{-1}\right)^{*} T^{*}=$ $T^{*}\left(T^{-1}\right)^{*}=I$ ．Since T^{-1} is a bounded linear operator，its adjoint operator $\left(T^{-1}\right)^{*}$ is also a bounded linear operator．Therefore，we $\left(T^{*}\right)^{-1}$ exists and $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$ ．

Problem 3．9－3．If $\left(T_{n}\right)$ is a sequence of bounded linear operators on a Hilbert space and $T_{n} \rightarrow T$ ， show that $T_{n}^{*} \rightarrow T^{*}$ ．

Consider for all $x, y \in H$ ，

$$
\langle T x, y\rangle=\left\langle\left(\lim _{n \rightarrow \infty} T_{n}\right) x, y\right\rangle=\lim _{n \rightarrow \infty}\left\langle T_{n} x, y\right\rangle=\lim _{n \rightarrow \infty}\left\langle x, T_{n}^{*} y\right\rangle=\left\langle x,\left(\lim _{n \rightarrow \infty} T_{n}^{*}\right) y\right\rangle
$$

Since Hilbert space is complete，bounded linear operators on a Hilbert space is complete，so T is also bounded linear operator and thus T^{*} exists．Therefore，we can conclude that $T^{*}=\lim _{n \rightarrow \infty} T_{n}^{*}$ ．

Problem 3．9－6．Let H_{1} and H_{2} be Hilbert spaces and $T: H_{1} \mapsto H_{2}$ a bounded linear operator．If $M_{1}=\mathcal{N}(T)=\{x \mid T x=0\}$ ，show that
（a）$T^{*}\left(H_{2}\right) \subset M_{1}^{\perp}$ ，
For any $y \in H_{2}$ ，if $T^{*} y=0$ ，then since M_{1}^{\perp} is a vector space，$T^{*} y \in M_{1}^{\perp}$ ；otherwise $T^{*} y \neq 0$ ． Consider $\left\langle y, T T^{*} y\right\rangle=\left\langle T^{*} y, T^{*} y\right\rangle=\left\|T^{*} y\right\|^{2}>0$ ．This implie that $T\left(T^{*} y\right) \neq 0$ ，for all $y \in H_{2}$ and $T^{*} y \neq 0$ ．This shows that $T^{*} y \notin M_{1}$ ，but M_{1} is closed subspace of H_{1} ，so $H_{1}=M_{1} \oplus M_{1}^{\perp}$ ． Therefore，$T^{*} y \in M_{1}^{\perp}$ ．Therefore，$T^{*}\left(H_{2}\right) \subset M_{1}^{\perp}$ ．
（b）$\left[T\left(H_{1}\right)\right]^{\perp} \subset \mathcal{N}\left(T^{*}\right)$ ，
For any $y \in\left[T\left(H_{1}\right)\right]^{\perp}, y$ satisfies $\langle y, T x\rangle=0$ for all $x \in H_{1}$ ．However，since $\langle y, T x\rangle=\left\langle T^{*} y, x\right\rangle$ ， we have $\left\langle T^{*} y, x\right\rangle=0$ for all $x \in H_{1}$ ．Notice that $T^{*} y \in H_{1}$ ，so take $x=T^{*} y$ ，we have $\left\|T^{*} y\right\|^{2}=0$ ，which means $T^{*} y=0$ ．This shows that $y \in \mathcal{N}\left(T^{*}\right)$ ．Since y is arbitrarily chosen in $\left[T\left(H_{1}\right)\right]^{\perp},\left[T\left(H_{1}\right)\right]^{\perp} \subset \mathcal{N}\left(T^{*}\right)$ ．
(c) $M_{1}=\left[T^{*}\left(H_{2}\right)\right]^{\perp}$.

From (a), we have $T^{*}\left(H_{2}\right) \subset M_{1}^{\perp}$, so $\left[T^{*}\left(H_{2}\right)\right]^{\perp} \supset M_{1}^{\perp \perp}$. Since M_{1} is closed, $M_{1}^{\perp \perp}=M_{1}$, so $\left[T^{*}\left(H_{2}\right)\right]^{\perp} \supset M_{1}$.

For any $x \in\left[T^{*}\left(H_{2}\right)\right]^{\perp}, x$ satisfies $\left\langle x, T^{*} y\right\rangle=0$ for all $y \in H_{2}$. However, since $\left\langle x, T^{*} y\right\rangle=$ $\langle T x, y\rangle$, we have $\langle T x, y\rangle=0$ for all $y \in H_{2}$. Notice that $T x \in H_{2}$, so take $y=T x$, we have $\|T x\|^{2}=0$, which means $T x=0$. This shows that $x \in \mathcal{N}(T)=M_{1}$. Since x is arbitrarily chosen in $\left[T^{*}\left(H_{2}\right)\right]^{\perp}$, $\left[T^{*}\left(H_{2}\right)\right]^{\perp} \subset M_{1}$. In conclusion, $M_{1}=\left[T^{*}\left(H_{2}\right)\right]^{\perp}$.

Problem 3.9-7. Let T_{1} and T_{2} be bounded linear operators on a complex Hilbert space H into itself. If $\left\langle T_{1} x, x\right\rangle=\left\langle T_{2} x, x\right\rangle$ for all $x \in H$, show that $T_{1}=T_{2}$.

We first prove that for bounded linear operators from H to itself, if $\langle T x, x\rangle=0$ for all $x \in H$, then $T=0$. For arbitrary $u, v \in H$, if $\langle T x, x\rangle=0$ for all $x \in H$, then we have $\langle T(u+v),(u+v)\rangle=0$ and $\langle T(u+i v),(u+i v)\rangle=0$. Therefore,

$$
0=\langle T(u+v),(u+v)\rangle=\langle T u, u\rangle+\langle T u, v\rangle+\langle T v, u\rangle+\langle T v, v\rangle
$$

Since $\langle T u, u\rangle=0$ and $\langle T v, v\rangle=0$, we have $\langle T u, v\rangle+\langle T v, u\rangle=0$.
Similarly, we have

$$
0=\langle T(u+i v),(u+i v)\rangle=\langle T u, i v\rangle+\langle T(i v), u\rangle
$$

Since $\langle T u, i v\rangle=-i\langle T u, v\rangle$ and $\langle T(i v), u\rangle=i\langle T v, u\rangle$, we have $\langle T v, u\rangle=\langle T u, v\rangle$. In conclusion, $\langle T u, v\rangle=0$ for all $u, v \in H$. Since $T u \in H$, take $v=T u$, we have $\|T u\|^{2}=0$, which implies that $T u=0$ for all $u \in H$. This is exactly the definition of $T=0$.

If $\left\langle T_{1} x, x\right\rangle=\left\langle T_{2} x, x\right\rangle$ for all $x \in H$, then $\left\langle\left(T_{1}-T_{2}\right) x, x\right\rangle$ for all $x \in H$. Since T_{1}, T_{2} are bounded linear operators from H to $H, T_{1}-T_{2}$ is also bounded linear operators from H to H. Therefore, $T_{1}-T_{2}=0$ by our claim above, which implies that $T_{1}=T_{2}$.

Problem 3.9-8. Let $S=I+T^{*} T: H \mapsto H$, where T is linear and bounded. Show that S^{-1} : $S(H) \mapsto H$ exists.

We only need to show S is injective. Consider $S x=\left(I+T^{*} T\right) x=0$, then $T^{*} T x=-x$. Therefore, we have

$$
0 \leq\|T x\|^{2}=\langle T x, T x\rangle=\left\langle x, T^{*} T x\right\rangle=\langle x,-x\rangle=-\|x\|^{2} \leq 0
$$

Therefore, $\|x\|^{2}=0$, which implies that $x=0$. Thus, S is injective.

Problem 3.9-10. Let $\left(e_{n}\right)$ be a total orthonormal sequence in a separable Hilbert space H and define the right shift operator to be the linear operator $T: H \mapsto H$ such that $T e_{n}=e_{n+1}$ for $n=1,2, \ldots$. Explain the name. Find the range, null space, norm and Hilbert-adjoint operator of T.

If we consider the coordinate of x with respect to basis $\left(e_{n}\right)$, then $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ and apply T to x, we obtain $T x=\left(0, x_{1}, x_{2}, \ldots\right)$. The coordinate of image of x is "shifted" to right by one entry, so T is called right shift operator.

If $x=x_{1} e_{1}+x_{2} e_{2}+\ldots$, then $T x=x_{1} e_{2}+x_{2} e_{3}+\ldots$, so $T x \in \overline{\operatorname{span}\left(e_{2}, e_{3}, \ldots\right)}$. For any $y \in$ $\overline{\operatorname{span}\left(e_{2}, e_{3}, \ldots\right)}, y$ can be expressed as $y=y_{1} e_{2}+y_{2} e_{3}+\ldots$, whose preimage is $x=y_{1} e_{1}+y_{2} e_{2}+\ldots$. Therefore, $\mathrm{R}(T)=\overline{\operatorname{span}\left(e_{2}, e_{3}, \ldots\right)}$.

Consider $T x=0$, if $x=x_{1} e_{1}+x_{2} e_{2}+\ldots$, then $0=T x=x_{1} e_{2}+x_{2} e_{3}+\ldots$ This implies that $x_{i}=0$ for all $i=1,2, \ldots$ and $x=0$. Therefore, $\mathcal{N}(T)=\{0\}$.

Since $\left(e_{n}\right)$ is total orthonormal, Parseval's identity gives

$$
\|x\|^{2}=\sum_{i=1}^{\infty}\left|x_{i}\right|^{2}=\|T x\|^{2}
$$

Therefore, $\|x\|=\|T x\|$ implies that

$$
\|T\|=\sup _{\|x\|=1}\|T x\|=\sup _{\|x\|=1}\|x\|=1
$$

The adjoint operator T^{*} is defined by $T^{*}\left(e_{n}\right)=e_{n-1}$ for all $n \geq 2$, and $T^{*}\left(e_{1}\right)=0$. This T^{*} is bounded because

$$
\left\|T^{*} x\right\|^{2}=\sum_{i=2}^{\infty}\left|x_{i}\right|^{2} \leq\|x\|^{2}
$$

Also, it satisfies the definition of adjoint operator,

$$
\langle T x, y\rangle=\sum_{i=1}^{\infty} x_{i} \overline{y_{i+1}}=\left\langle x, T^{*} y\right\rangle
$$

Therefore, such T^{*} is well-defined adjoint operator of T.

Problem 3.10-3. Show that if $T: H \mapsto H$ is a bounded self-adjoint linear operator, so is T^{n}, where n is a positive integer.

We use induction to prove it. Since T is a bounded self-adjoint linear operator, we suppose T^{n-1} is a bounded self-adjoint linear operator, then for any $x, y \in H$, and any scalar a, b, we have $T^{n}(a x+b y)=T^{n-1}[T(a x+b y)]=T^{n-1}(a T(x)+b T(y))=a T^{n-1}(T(x))+b T^{n-1}(T(y))=a T^{n}(x)+b T^{n}(y)$ which shows T^{n} is also linear. Also,

$$
\left\|T^{n} x\right\|=\left\|T^{n-1}[T(x)]\right\| \leq\left\|T^{n-1}\right\|\|T(x)\| \leq\left\|T^{n-1}\right\|\|T\|\|x\|
$$

Therefore, T^{n} is bounded because $\left\|T^{n-1}\right\|\|T\|$ is finite. Finally,

$$
\left(T^{n}\right)^{*}=\left(T^{n-1} \circ T\right)^{*}=T^{*} \circ\left(T^{n-1}\right)^{*}=T \circ T^{n-1}=T^{n}
$$

Therefore, T^{n} is a bounded self-adjoint linear operator.

Problem 3.10-4. Show that for any bounded linear operator T on H, the operators

$$
T_{1}=\frac{1}{2}\left(T+T^{*}\right), \quad T_{2}=\frac{1}{2 i}\left(T-T^{*}\right)
$$

are self-adjoint. Show that

$$
T=T_{1}+i T_{2}, \quad T^{*}=T_{1}-i T_{2}
$$

Show uniqueness, that is, $T_{1}+i T_{2}=S_{1}+i S_{2}$ implies $S_{1}=T_{1}$ and $S_{2}=T_{2}$; here, S_{1} and S_{2} are self-adjoint by assumption.

It is easy to prove by definition that for all bounded linear operator T_{1}, T_{2} and scalar a, we have $\left(T_{1}+T_{2}\right)^{*}=T_{1}^{*}+T_{2}^{*}$ and $\left(a T_{1}\right)^{*}=\bar{a} T_{1}^{*}$. Therefore,

$$
\begin{gathered}
T_{1}^{*}=\left(\frac{1}{2}\left(T+T^{*}\right)\right)^{*}=\frac{1}{2}\left(T+T^{*}\right)^{*}=\frac{1}{2}\left(T^{*}+\left(T^{*}\right)^{*}\right)=\frac{1}{2}\left(T^{*}+T\right)=T_{1} \\
T_{2}^{*}=\left(\frac{1}{2 i}\left(T-T^{*}\right)\right)^{*}=-\frac{1}{2 i}\left(T-T^{*}\right)^{*}=-\frac{1}{2 i}\left(T^{*}-T\right)=\frac{1}{2 i}\left(T-T^{*}\right)=T_{2}
\end{gathered}
$$

which implies T_{1}, T_{2} are self-adjoint. It is easy to see

$$
\begin{aligned}
& T_{1}+i T_{2}=\frac{1}{2}\left(T+T^{*}\right)+\frac{1}{2}\left(T-T^{*}\right)=T \\
& T_{1}-i T_{2}=\frac{1}{2}\left(T+T^{*}\right)-\frac{1}{2}\left(T-T^{*}\right)=T^{*}
\end{aligned}
$$

To show the uniqueness, take the adjoint operator on both sides, we have $\left(T_{1}+i T_{2}\right)^{*}=\left(S_{1}+i S_{2}\right)^{*}$, which implies that $T_{1}-i T_{2}=S_{1}-i S_{2}$. Add up these two equality, we have $2 T_{1}=2 S_{1}$ which implies that $T_{1}=S_{1}$. Similarly, use $T_{1}+i T_{2}=S_{1}+i S_{2}$ to minus $T_{1}-i T_{2}=S_{1}-i S_{2}$, we have $2 i T_{2}=2 i S_{2}$, which implies that $T_{2}=S_{2}$. Therefore, the uniquenss is proved.

Problem 3.10-9. Show that an isometric linear operator $T: H \mapsto H$ which is not unitary maps the Hilbert space H onto a proper closed subspace of H.

First, the image of a linear operator is a vector space, so $\mathcal{R}(T)$ is a subspace of H. If $\mathcal{R}(T)=H$, then T is surjective. However, if $T x_{1}=T x_{2}$, then $T\left(x_{1}-x_{2}\right)=0$. By the isometric property, $\left\|T\left(x_{1}-x_{2}\right)\right\|=\left\|x_{1}-x_{2}\right\|$, thus $\left\|x_{1}-x_{2}\right\|=0$ implies that $x_{1}=x_{2}$ and T is hence injective. Then T is bijective and hence invertible. Notice that for all $x, y \in H$, if H is complex, then since $\|T x\|^{2}=\|x\|^{2}$ implies that $\langle x, x\rangle=\left\langle T^{*} T x, x\right\rangle$, we can apply the result of Problem 3.9-7, $T^{*} T=I$ immediately. However, if H is real, then

$$
\|x\|^{2}+2\langle x, y\rangle+\|y\|^{2}=\|x+y\|^{2}=\|T(x+y)\|^{2}=\|T x\|^{2}+2\langle T x, T y\rangle+\|T y\|^{2}
$$

Since $\|T x\|^{2}=\|x\|^{2}$ and $\|T y\|^{2}=\|y\|^{2}$, we have $\langle T x, T y\rangle=\langle x, y\rangle$. This implies that $\left\langle\left(T^{*} T-\right.\right.$ $I) x, y\rangle=0$ for all $x, y \in H$. Take $y=\left(T^{*} T-I\right) x$, we have $\left\|\left(T^{*} T-I\right) x\right\|^{2}=0$, then $\left(T^{*} T-I\right) x=0$ for all x, so $T^{*} T=I$. Therefore, in any cases, $T^{*} T=I$, and multiply T^{-1} on both sides, we have $T^{*}=T^{-1}$, therefore we will have $T^{*} T=T T^{*}=I$, which means T is unitary. Therefore, this contradiction shows T cannot be surjective, i.e., $\mathcal{R}(T)$ is a proper subspace of H.

The last thing is to prove $\mathcal{R}(T)$ is closed. Take a convergent sequence y_{n} in $\mathcal{R}(T)$, then since T is injective in any case, there exists unique $x_{n} \in H$ such that $T x_{n}=y_{n}$. Since y_{n} is Cauchy, and for all $\epsilon>0$, there exists M such that for all $n \geq m \geq M$, we have

$$
\left\|x_{n}-x_{m}\right\|=\left\|T\left(x_{n}-x_{m}\right)\right\|=\left\|T x_{n}-T x_{m}\right\|=\left\|y_{n}-y_{m}\right\|<\epsilon
$$

Therefore, x_{n} is also Cauchy and hence convergent in H. Also, $x_{n} \rightarrow x$ implies that $T x_{n} \rightarrow T x$, so $T x=y$. This shows that y has a pre-image $x \in H$, thus $y \in \mathcal{R}(T)$. We can conclude that $\mathcal{R}(T)$ is closed.

Problem 3.10-10. Let X be an inner product space and $T: X \mapsto X$ an isometric linear operator.If $\operatorname{dim} X<\infty$, show that T is unitary.

From Problem 3.10-9, we have derived that any isometric linear operator is injective. Since X is finite dimensional, T is injective mapping from X to $\mathcal{R}(T)$, so $\mathcal{R}(T)$ must have the same dimension as X, but $\mathcal{R}(T)$ is also a subspace of X, so $\mathcal{R}(T)=X$. This implies that T is surjective, and if T is bijective then T^{-1} exists. By exactly the same argument as Problem 3.10-9, we can also derive that any isometric linear operator satisfies $T^{*} T=I$, but if we multiply T^{-1} to the right on both sides, we have $T^{*}=T^{-1}$, this implies that $T^{*} T=T T^{*}=I$. Therefore, T is unitary.

Problem 3.10-15. Show that a bounded linear operator $T: H \mapsto H$ on a complex Hilbert space H is normal if and only if $\left\|T^{*} x\right\|=\|T x\|$ for all $x \in H$. Using this, show that for a normal linear operator, $\left\|T^{2}\right\|=\|T\|^{2}$.

Since $\left\|T^{*} x\right\|=\|T x\|$ is equivalent to $\left\langle T^{*} x, T^{*} x\right\rangle=\langle T x, T x\rangle$, we have $\left\langle x, T T^{*} x\right\rangle=\left\langle x, T^{*} T x\right\rangle$. By Problem 3.9-7 again, $\left\langle x, T T^{*} x\right\rangle=\left\langle x, T^{*} T x\right\rangle$ if and only if $T T^{*}=T^{*} T$ given that H is complex. Therefore, $\left\|T^{*} x\right\|=\|T x\|$ is equivalent to $T T^{*}=T^{*} T$ given that H is complex. This shows T is normal if and only if $\left\|T^{*} x\right\|=\|T x\|$.

Since we have $\left\|T^{2} x\right\|=\|T \circ T x\| \leq\|T\|\|T x\| \leq\|T\|^{2}\|x\|$, take the supremum over $\|x\|=1$ on both sides,

$$
\left\|T^{2}\right\|=\sup _{\|x\|=1}\left\|T^{2} x\right\| \leq\|T\|^{2} \Longrightarrow\left\|T^{2}\right\| \leq\|T\|^{2}
$$

For the reverse inequality, consider

$$
\begin{aligned}
\|T x\|^{4} & =\langle T x, T x\rangle^{2}=\left\langle x, T^{*} T x\right\rangle^{2} \\
& \leq\|x\|^{2}\left\|T^{*} T x\right\|^{2}=\|x\|^{2}\left\langle T^{*} T x, T^{*} T x\right\rangle=\|x\|^{2}\left\langle T x, T T^{*} T x\right\rangle \\
& =\|x\|^{2}\left\langle T x, T^{*} T T x\right\rangle=\|x\|^{2}\left\langle T x, T^{*} T^{2} x\right\rangle=\|x\|^{2}\left\langle T^{2} x, T^{2} x\right\rangle \\
& =\|x\|^{2}\left\|T^{2} x\right\|^{2} \leq\|x\|^{4}\left\|T^{2}\right\|^{2}
\end{aligned}
$$

Therefore, take the 4 -th root on both sides, we have $\|T x\| \leq \sqrt{\left\|T^{2}\right\|}\|x\|$. Take supremum over $\|x\|=1$ on both sides, we have

$$
\|T\|=\sup _{\|x\|=1}\|T x\| \leq \sqrt{\left\|T^{2}\right\|}
$$

which implies that $\|T\|^{2} \leq\left\|T^{2}\right\|$. Therefore, combined with our previous conclusion, we have $\|T\|^{2}=\left\|T^{2}\right\|$.

