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Problem 4.1-5. Prove that a finite partially ordered set A has at least one maximal element.

We prove by induction on the cardinality of A. Suppose |A| = 1, then the only element in
A is maximal element. Assume for all |A| ≤ n, A has at least one maximal elememt. Consider
|A| = n + 1, pick arbitrary fixed a ∈ A, if a is maximal, then there is nothing to prove. If not,
then there exists b ∈ A such that b ≥ a but b ̸= a. Denote it as b > a, and consider the set
B = {x |x > a}, then B is nonempty, and a /∈ B, so |B| ≤ n. By induction hypothesis, B has
at least one maximal element b∗. We need to show b∗ is also maximal in A. If there exists c ∈ A

and c > b∗, then since b∗ ∈ B, b∗ > a, so c > a, then c ∈ B. This contradicts to the fact that
b∗ is maximal in B, hence such c doesn’t exist, which means b∗ is maximal in A. Therefore, we
can conclude that for all partially ordered set A with finite cardinality, A has at least one maximal
element.

Problem 4.1-6. Show that a partially ordered set M can have at most one element a such that
a ≤ x for all x ∈ M and at most one element b such that x ≤ b for all x ∈ M . [If such an a (or b)
exists, it is called the least element (greatest element, respectively) of M .]

Suppose there are two least elements a, b in M , then since a satisfies that for all x ∈ M , a ≤ x,
we have a ≤ b because b ∈ M . Similarly, since b satisfies that for all x ∈ M , b ≤ x, we have b ≤ a.
In a partially ordered set, if a ≤ b and b ≤ a, then a = b. Therefore, there can exist at most one
least element in M .

Similarly, if there are two greatest elements a, b in M , then since a satisfies that for all x ∈ M ,
x ≤ a, we have b ≤ a, because b ∈ M . Similarly, since b satisfies that for all x ∈ M , x ≤ b, we have
a ≤ b. In a partially ordered set, if b ≤ a and a ≤ b, then a = b. Therefore, there can exist at most
one greatest element in M .

Problem 4.1-8. A greatest lower bound of a subset A ̸= ∅ of a partially ordered set M is a lower
bound x of A such that l ≤ x for any lower bound l of A; we write x = g.l.b. A = infA. Similarly,
a least upper bound y of A, written y = l.u.b. A = supA, is an upper bound y of A such that y ≤ u

for any upper bound u of A.

(a) If A has a g.l.b., show that it is unique.

Suppose A has two g.l.b., denoted as x1, x2 ∈ M . Since x1 is g.l.b., it must be a lower bound,
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but x2 is g.l.b., so x1 ≤ x2. Similarly, x2 is g.l.b., so it is a lower bound, but x1 is g.l.b., so
x2 ≤ x1. In a partially ordered set, if x1 ≤ x2 and x2 ≤ x1, then x1 = x2. Therefore, there
can exist at most one g.l.b. of A in M .

(b) What are g.l.b. {A,B} and l.u.b. {A,B} if A,B ∈ P(X) where P(X) is the power set of
X and A ≤ B (A ⊂ B ⊂ X)?

The g.l.b. of {A,B} is A and the l.u.b. of {A,B} is B. In Problem 4.1-9, we will prove a
more general case, that is, the g.l.b. of {A,B} is A∩B and l.u.b. of {A,B} is A∪B. Here is
a special case, because we have A ⊂ B, so A ∩B = A and A ∪B = B.

Problem 4.1-9. A lattice is a partially ordered set M such that any two elements x, y of M have
a g.l.b. (written x ∧ y) and a l.u.b. (written x ∨ y). Show that the power set P(X) of a given set
X is a lattice, where A ∧B = A ∩B and A ∨B = A ∪B, and A,B ∈ P(X).

We have proved that M = P(X) is partially ordered with respect to ⊂. We also know that for
any two elements A,B in P(X), the union and intersection of them, i.e., A∪B and A∩B are both
well-defined. Now we only need to show that A ∪ B is the supremum of {A,B} and A ∩ B is the
infimum of {A,B}.

First, it is easy to show that A ∪ B is an upper bound, because A ≤ A ∪ B and B ≤ A ∪ B.
For any upper bound C of {A,B}, we must have A ⊂ C and B ⊂ C, then for all a ∈ A, a ∈ C and
for all b ∈ B, b ∈ C. For all x ∈ A ∪ B, x is either in A or B, so x ∈ C. Thus, A ∪ B ⊂ C, which
implies that A ∪B ≤ C. This implies that A ∪B is the least upper bound.

Similarly, it is easy to show that A∩B is an lower bound, because A∩B ⊂ A and A∩B ⊂ B.
For any lower bound D of {A,B}, we must have D ≤ A and D ≤ B, which implies that D ⊂ A and
D ⊂ B. Therefore, for all d ∈ D, d ∈ A and d ∈ B, so d ∈ A ∩ B. This shows that D ⊂ A ∩ B, so
D ≤ A ∩B. By definition, A ∩B is the greatest lower bound of {A,B}.

Now for any two elements A,B of P(X), A∩B and A∪B are both subset of X, so A∩B ∈ P(X)

and A ∪ B ∈ P(X). This implies that any two elements of P(X) has a g.l.b. and a l.u.b., which
means P(X) is a lattice.

Problem 4.2-3. Show that p(x) = lim
n→∞

ξn, where x = (ξn) ∈ l∞, ξn real, defines a sublinear
functional on l∞.

Notice that since x ∈ l∞, each x represents a bounded real sequence. To prove p(x) is sublinear,
we need to prove for all positive real number a, p(ax) = ax and p(x+y) ≤ p(x)+p(y) for all x, y ∈ R.
Consider for bounded real sequence ξn, a > 0, supn≥m(aξn) = a supn≥m ξn. To prove this, recall
that for all n ≥ m,

ξn ≤ sup
n≥m

ξn =⇒ aξn ≤ a sup
n≥m

ξn =⇒ sup
n≥m

(aξn) ≤ a sup
n≥m

ξn

For all ϵ > 0, there exists ξp such that p ≥ m and

ξp > sup
n≥m

ξn − ϵ =⇒ aξp > a sup
n≥m

ξn − aϵ =⇒ sup
n≥m

(aξn) ≥ aξp > a sup
n≥m

ξn − aϵ

Take ϵ → 0, we obtain supn≥m(aξn) ≥ a supn≥m ξn. Therefore, we proved our claim.
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Since supn≥m(aξn) and supn≥m ξn are always decreasing and bounded, they must be convergent,
so by taking m → ∞ on both sides, we obtain lim

n→∞
(aξn) = a lim

n→∞
ξn, which is equivalent to

p(ax) = ap(x) for a > 0.

To prove p(x+ y) ≤ p(x) + p(y), where x = (ξn) and y = (ηn), we only need to prove

lim sup
n→∞

(ξn + ηn) ≤ lim sup
n→∞

ξn + lim sup
n→∞

ηn (4.2)

To achieve this, we consider for all n ≥ m,

ξn ≤ sup
n≥m

ξn, ηn ≤ sup
n≥m

ηn =⇒ ξn + ηn ≤ sup
n≥m

ξn + sup
n≥m

ηn =⇒ sup
n≥m

(ξn + ηn) ≤ sup
n≥m

ξn + sup
n≥m

ηn

Since on both sides, all terms are decreasing and bounded with respect to m, they must be con-
vergent. Take m → ∞, we obtain (4.2), which yields p(x + y) ≤ p(x) + p(y). Therefore, p(x) is a
sublinear functional.

Problem 4.2-5. If p is a sublinear functional on a vector space X, show that M = {x | p(x) ≤
γ, γ > 0 fixed }, is a convex set.

Suppose a ∈ [0, 1], then we need to prove for all x, y ∈ M ,

p(ax+ (1− a)y) ≤ γ, given p(x) ≤ γ and p(y) ≤ γ

Consider the definition of sublinearity, we have

p(ax+ (1− a)y) ≤ p(ax) + p((1− a)y) = ap(x) + (1− a)p(y) ≤ aγ + (1− a)γ = γ

where the first equality and the second inequality are due to a ≥ 0 and 1 − a ≥ 0. Therefore, if
x, y ∈ M then ax+ (1− a)y ∈ M for all a ∈ [0, 1], which impiles that M is convex.

Problem 4.2-8. If a subadditive functional defined on a normed space X is nonnegative outside a
sphere {x | ∥x∥ = r}, show that it is nonnegative for all x ∈ X.

Consider all points x ∈ X satisfies ∥x∥ ≤ r, if x = 0, then since p(0) = p(0 · x) = 0p(x) = 0,
it is nonnegative. If ∥x∥ = d ∈ (0, r), and p(x) = k < 0, then let c = 2r

d
> 0, and we will have

p(cx) = cp(x) = 2rk
d

< 0. However, ∥cx∥ = c∥x∥ = 2r > r, so cx is outside the sphere {x | ∥x∥ = r},
by assumption p(cx) ≥ 0, contradiction! Thus, p(x) ≥ 0. If ∥x∥ = d, and p(x) = k < 0, then since
∥2x∥ = 2d > d, so similarly, p(2x) should be nonnegative by assumption. However, p(2x) = 2p(x) =

2k < 0, contradiction again, so p(x) ≥ 0 for all ∥x∥ = d. In conclusion, for all ∥x∥ ≤ r, p(x) ≥ 0;
together with our assumption, p(x) ≥ 0 for all x ∈ X.

Problem 4.2-9. Let p be a sublinear functional on a real vector space X. Let f be defined on
Z = {x ∈ X |x = αx0, α ∈ R} by f(x) = αp(x0) with fixed x0 ∈ X. Show that f is a linear
functional on Z satisfying f(x) ≤ p(x).

First, we need to prove for all b ∈ R, f(bx) = bf(x) for all x ∈ Z. Since x ∈ Z, we have
x = αx0, and f(bx) = f(bαx0) = bαp(x0) = bf(αx0) = bf(x), because bα ∈ R.
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Then we need to show for all x, y ∈ Z, f(x+ y) = f(x) + f(y). Since x = αx0 and y = βx0, we
have

f(x+ y) = f(αx0 + βx0) = f((α+ β)x0) = (α+ β)p(x0) = αp(x0) + βp(x0) = f(x) + f(y)

because α+ β ∈ R.
Now we prove that f(x) is linear on Z, the last thing is to prove f(x) ≤ p(x) for all x ∈ Z. For

any x ∈ Z, we always have x = αx0, so if α ≥ 0, then f(x) = αp(x0) = p(αx0) = p(x). However, if
α < 0, we have

0 = p(0) ≤ p(αx0) + p(−αx0) =⇒ −p(−αx0) ≤ p(αx0)

Since f(x) = αp(x) = −p(−αx0) ≤ p(αx0) = p(x), we can still obtain f(x) ≤ p(x). Therefore, we
can conclude that for all x ∈ Z, f(x) ≤ p(x).

Problem 4.3-4. Let p(x) be a real value functional defined on a vector space X and satisfy that
for all x, y ∈ X and scalar α,

p(x+ y) ≤ p(x) + p(y), p(αx) = |α|p(x)

Show that for any given x0 ∈ X there is a linear functional f̃ on X such that f̃(x0) = p(x0) and
|f̃(x)| ≤ p(x) for all x ∈ X.

Take M = span(x0), then M is a subspace of X. Define f on M by f(αx0) = αp(x0). Then
we claim that f(x) is a linear functional defined on M and |f(x)| ≤ p(x) for all x ∈ M . If this is
true, then by Hahn-Banach Theorem (complex case), there exists a linear functional f̃ on X such
that f̃(x) = f(x) for all x ∈ M and |f̃(x)| ≤ p(x) for all x ∈ X.

Now we prove that f defined above is a linear functional on M and |f(x)| ≤ p(x) by similar
argument as Problem 4.2-9. For any scalar a, b and vector x, y ∈ X, we have

f(ax+ by) = f(aαx0 + bβx0) = (aα+ bβ)p(x0) = aαp(x0) + bβp(x0) = af(x) + bf(y)

Therefore, f is linear on M . Consider the following,

0 = p(0) = p(x+ (−x)) ≤ p(x) + p(−x) = p(x) + p(x) =⇒ p(x) ≥ 0, ∀x ∈ X

Therefore, for all x ∈ M , x = αx0, and |f(x)| = |αp(x0)| = |α||p(x0)| = ||α|p(x0)| = |p(x)| = p(x).

Problem 4.3-13. Show that if X is a normed space and x0 ̸= 0 is any element in X, then there is
a bounded linear functional f̂ on X such that ∥f̂∥ = ∥x0∥−1 and f̂(x0) = 1.

Take M = span(x0) and let f(x0) = 1. Define f(x) on M by f(x) = f(αx0) = αf(x0) = α.
Then f(x) is linear on M . Consider

∥f∥ = sup
∥x∥=1,x∈M

|f(x)| = sup
|α|=∥x0∥−1

|α| = ∥x0∥−1

Therefore, f is a linear and bounded functional on a subspace M of X, then by Application 1
in lecture, there exists a linear and bounded functional f̂ defined on X such that f̂

∣∣∣
M

= f and

∥f̂∥ = ∥f∥ = ∥x0∥−1. However, since f̂
∣∣∣
M

= f and x0 ∈ M , so f̂(x0) = f(x0) = 1. Therefore, f̂ is
the target functional we want to find.
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