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Problem 4.1-5. Prove that a finite partially ordered set A has at least one maximal element.

We prove by induction on the cardinality of A. Suppose |A| = 1, then the only element in
A is maximal element. Assume for all [A] < n, A has at least one maximal elememt. Consider
|A] = n + 1, pick arbitrary fixed a € A, if a is maximal, then there is nothing to prove. If not,
then there exists b € A such that b > a but b # a. Denote it as b > a, and consider the set
B = {z|x > a}, then B is nonempty, and a ¢ B, so |B| < n. By induction hypothesis, B has
at least one maximal element b*. We need to show b* is also maximal in A. If there exists ¢ € A
and ¢ > b*, then since b* € B, b* > a, so ¢ > a, then ¢ € B. This contradicts to the fact that
b* is maximal in B, hence such ¢ doesn’t exist, which means b* is maximal in A. Therefore, we
can conclude that for all partially ordered set A with finite cardinality, A has at least one maximal

element.

Problem 4.1-6. Show that a partially ordered set M can have at most one element a such that
a < z for all x € M and at most one element b such that = < b for all x € M. [If such an a (or b)

exists, it is called the least element (greatest element, respectively) of M.]

Suppose there are two least elements a,b in M, then since a satisfies that for all x € M, a < x,
we have a < b because b € M. Similarly, since b satisfies that for all z € M, b < x, we have b < a.
In a partially ordered set, if a < b and b < a, then a = b. Therefore, there can exist at most one
least element in M.

Similarly, if there are two greatest elements a,b in M, then since a satisfies that for all x € M,
x < a, we have b < a, because b € M. Similarly, since b satisfies that for all z € M, x < b, we have
a < b. In a partially ordered set, if b < a and a < b, then a = b. Therefore, there can exist at most

one greatest element in M.

Problem 4.1-8. A greatest lower bound of a subset A # @ of a partially ordered set M is a lower
bound z of A such that [ < z for any lower bound [ of A; we write x = g.1.b. A = inf A. Similarly,
a least upper bound y of A, written y = l.u.b. A = sup A, is an upper bound y of A such that y < u
for any upper bound u of A.

(a) If A has a g.lb., show that it is unique.

Suppose A has two g.l.b., denoted as x1, x5 € M. Since x; is g.1.b., it must be a lower bound,



but x5 is g.l.b., so x; < x5. Similarly, x5 is g.1.b., so it is a lower bound, but z; is g.1.b., so
r9 < x1. In a partially ordered set, if 1 < x5 and x5 < x, then 1y = x5. Therefore, there

can exist at most one g.l.b. of A in M.

(b) What are g.1.b. {A, B} and l.u.b. {4, B} if A, B € P(X) where P(X) is the power set of
Xand A<B(ACBCX)?

The g.l.b. of {4, B} is A and the Lu.b. of {4, B} is B. In Problem 4.1-9, we will prove a
more general case, that is, the g.1.b. of {A, B} is AN B and Lu.b. of {4, B} is AU B. Here is
a special case, because we have A C B,so ANB=Aand AUB = B.

Problem 4.1-9. A lattice is a partially ordered set M such that any two elements x,y of M have
a g.l.b. (written 2 A y) and a Lu.b. (written x V y). Show that the power set P(X) of a given set
X is a lattice, where AANB=ANBand AV B =AUB, and A, B € P(X).

We have proved that M = P(X) is partially ordered with respect to C. We also know that for
any two elements A, B in P(X), the union and intersection of them, i.e., AU B and AN B are both
well-defined. Now we only need to show that AU B is the supremum of {A, B} and AN B is the
infimum of {A, B}.

First, it is easy to show that AU B is an upper bound, because A < AU B and B < AU B.
For any upper bound C of {A, B}, we must have A C C and B C C, then for all a € A, a € C and
forallbe B, be C. Forall z € AU B, x is either in A or B, so z € C. Thus, AU B C C, which
implies that AU B < C. This implies that A U B is the least upper bound.

Similarly, it is easy to show that AN B is an lower bound, because ANB C Aand ANB C B.
For any lower bound D of {A, B}, we must have D < A and D < B, which implies that D C A and
D C B. Therefore, for all d € D, d € A and d € B, so d € AN B. This shows that D C AN B, so
D < AN B. By definition, A N B is the greatest lower bound of {4, B}.

Now for any two elements A, B of P(X), ANB and AUB are both subset of X, so ANB € P(X)
and AU B € P(X). This implies that any two elements of P(X) has a g.l.b. and a l.u.b., which

means P(X) is a lattice.

Problem 4.2-3. Show that p(z) = lim &,, where z = (§,) € [, &, real, defines a sublinear
n—oo

functional on [*°.

Notice that since x € [°°, each x represents a bounded real sequence. To prove p(z) is sublinear,
we need to prove for all positive real number a, p(az) = ax and p(x+y) < p(x)+p(y) for all z,y € R.
Consider for bounded real sequence &,, a > 0, sup,,>,,(a&,) = asup,,s,, . To prove this, recall
that for all n > m,

gn < sup fn = agn < asup gn = sup (afn) < asup gn
n>m n>m n>m n>m
For all € > 0, there exists &, such that p > m and
& > sup &, — e = a&, > asup §, — ae = sup(a&,) > a&, > asup &, — ae
n>m n>m n>m n>m

Take € — 0, we obtain sup,,,,(a€,) > asup,s,, &. Therefore, we proved our claim.



Since sup,,,,, (a§,) and sup,, >, &, are always decreasing and bounded, they must be convergent,
so by taking m — oo on both sides, we obtain lim (af,) = a lim &,, which is equivalent to
n—oo n— oo

p(ax) = ap(z) for a > 0.
To prove p(x +y) < p(x) + p(y), where z = (§,,) and y = (1,,), we only need to prove

limsup(&, + n,) < limsup &, + limsup 7, (4.2)

n—roo n—roo n—r oo

To achieve this, we consider for all n > m,

gn < sup fnv Nn < SUp 7, = én + 1 < sup §n -+ sup 1, == sup (gn + nn) < sup gn =+ sup n,
n>m n>m n>m n>m n>m

n>m n>m

Since on both sides, all terms are decreasing and bounded with respect to m, they must be con-
vergent. Take m — oo, we obtain (4.2), which yields p(z + y) < p(z) + p(y). Therefore, p(z) is a

sublinear functional.

Problem 4.2-5. If p is a sublinear functional on a vector space X, show that M = {z|p(z) <

v,7v > 0 fixed }, is a convex set.

Suppose a € [0, 1], then we need to prove for all z,y € M,

plax+ (1 —a)y) < v, given p(z) < and p(y) < v

Consider the definition of sublinearity, we have

plax + (1 —a)y) < plax) +p((1 — a)y) = ap(z) + (1 —a)p(y) < ay+ (1 —a)y =7

where the first equality and the second inequality are due to @ > 0 and 1 — a > 0. Therefore, if
x,y € M then azx + (1 —a)y € M for all a € [0, 1], which impiles that M is convex.

Problem 4.2-8. If a subadditive functional defined on a normed space X is nonnegative outside a

sphere {z | ||z|| = r}, show that it is nonnegative for all z € X.

Consider all points z € X satisfies ||z| < r, if = 0, then since p(0) = p(0 - z) = Op(z) = 0,

it is nonnegative. If ||z|| = d € (0,7), and p(x) = k < 0, then let ¢ = 2% > 0, and we will have

d
plex) = ep(z) = 228 < 0. However, ||cz|| = c||z| = 2r > r, so cz is outside the sphere {z | ||z|| = r},
by assumption p(cx) > 0, contradiction! Thus, p(x) > 0. If ||z|| = d, and p(x) = k < 0, then since
|2z|| = 2d > d, so similarly, p(2x) should be nonnegative by assumption. However, p(2z) = 2p(z) =
2k < 0, contradiction again, so p(z) > 0 for all ||z|| = d. In conclusion, for all ||z| < r, p(x) > 0;

together with our assumption, p(z) > 0 for all z € X.

Problem 4.2-9. Let p be a sublinear functional on a real vector space X. Let f be defined on
Z ={x € X|x = axg,a € R} by f(x) = ap(xy) with fixed oy € X. Show that f is a linear
functional on Z satisfying f(z) < p(z).

First, we need to prove for all b € R, f(bx) = bf(x) for all z € Z. Since z € Z, we have
xr = axg, and f(bx) = f(baxy) = bap(xy) = bf(axg) = bf(x), because ba € R.



Then we need to show for all z,y € Z, f(x +y) = f(x) + f(y). Since x = axg and y = Bxg, we

have

[z +y) = flazo + Pxo) = f(( + B)wo) = (o + B)p(wo) = ap(xo) + Bp(xo) = f(x) + f(y)

because o + 3 € R.

Now we prove that f(z) is linear on Z, the last thing is to prove f(z) < p(z) for all x € Z. For
any x € Z, we always have x = axy, so if a > 0, then f(z) = ap(zo) = p(axy) = p(x). However, if
a < 0, we have

0 =p(0) < p(axo) + p(—axo) = —p(—axo) < p(az)
Since f(z) = ap(z) = —p(—axg) < p(azy) = p(z), we can still obtain f(x) < p(z). Therefore, we
can conclude that for all x € Z, f(x) < p(x).

Problem 4.3-4. Let p(z) be a real value functional defined on a vector space X and satisfy that

for all x,y € X and scalar «,

px+y) <px)+ply),  plax)=lalp(z)

Show that for any given 2y € X there is a linear functional f on X such that f(zo) = p(z,) and
|f(33)| < p(z) for all z € X.

Take M = span(zy), then M is a subspace of X. Define f on M by f(azg) = ap(z). Then
we claim that f(z) is a linear functional defined on M and |f(x)| < p(x) for all z € M. If this is
true, then by Hahn-Banach Theorem (complex case), there exists a linear functional f on X such
that f(x) = f(z) for all z € M and |f(z)| < p(z) for all z € X.

Now we prove that f defined above is a linear functional on M and |f(z)| < p(x) by similar

argument as Problem 4.2-9. For any scalar a,b and vector x,y € X, we have
flax +by) = flaawg + bBxo) = (ac + bB)p(xo) = aap(wo) + bBp(we) = af(x) + bf(y)
Therefore, f is linear on M. Consider the following,
0=p(0) = p(z + (—x)) <p(z) + p(—2) = p(z) + p(r) = p(r) 20, VreX

Therefore, for all x € M, x = axg, and |f(z)| = |ap(zo)| = |a||p(zo)| = ||a|p(x0)| = |p(x)] = p(x).

Problem 4.3-13. Show that if X is a normed space and xg # 0 is any element in X, then there is
a bounded linear functional f on X such that ||f|| = ||lzo| ! and f(z0) = 1.

Take M = span(zo) and let f(xg) = 1. Define f(z) on M by f(z) = f(azg) = af(z) = a.
Then f(x) is linear on M. Consider
Ifll= " sup [f(x)]= sup o =]z] ™"
lzll=1,zeM le]=llzo 1
Therefore, f is a linear and bounded functional on a subspace M of X, then by Application 1

in lecture, there exists a linear and bounded functional f defined on X such that f = f and
M

I£l = Il = llzo]|}. However, since f| = f and xy € M, so f(z¢) = f(xo) = 1. Therefore, f is
M
the target functional we want to find.



