MAT4010：Functional Analysis Homework 6

李肖鹏（116010114）

Due date：Oct．22， 2019

Problem 4．1－5．Prove that a finite partially ordered set A has at least one maximal element．
We prove by induction on the cardinality of A ．Suppose $|A|=1$ ，then the only element in A is maximal element．Assume for all $|A| \leq n, A$ has at least one maximal elememt．Consider $|A|=n+1$ ，pick arbitrary fixed $a \in A$ ，if a is maximal，then there is nothing to prove．If not， then there exists $b \in A$ such that $b \geq a$ but $b \neq a$ ．Denote it as $b>a$ ，and consider the set $B=\{x \mid x>a\}$ ，then B is nonempty，and $a \notin B$ ，so $|B| \leq n$ ．By induction hypothesis，B has at least one maximal element b^{*} ．We need to show b^{*} is also maximal in A ．If there exists $c \in A$ and $c>b^{*}$ ，then since $b^{*} \in B, b^{*}>a$ ，so $c>a$ ，then $c \in B$ ．This contradicts to the fact that b^{*} is maximal in B ，hence such c doesn＇t exist，which means b^{*} is maximal in A ．Therefore，we can conclude that for all partially ordered set A with finite cardinality，A has at least one maximal element．

Problem 4．1－6．Show that a partially ordered set M can have at most one element a such that $a \leq x$ for all $x \in M$ and at most one element b such that $x \leq b$ for all $x \in M$ ．［If such an a（or b ） exists，it is called the least element（greatest element，respectively）of M. ．］

Suppose there are two least elements a, b in M ，then since a satisfies that for all $x \in M, a \leq x$ ， we have $a \leq b$ because $b \in M$ ．Similarly，since b satisfies that for all $x \in M, b \leq x$ ，we have $b \leq a$ ． In a partially ordered set，if $a \leq b$ and $b \leq a$ ，then $a=b$ ．Therefore，there can exist at most one least element in M ．

Similarly，if there are two greatest elements a, b in M ，then since a satisfies that for all $x \in M$ ， $x \leq a$ ，we have $b \leq a$ ，because $b \in M$ ．Similarly，since b satisfies that for all $x \in M, x \leq b$ ，we have $a \leq b$ ．In a partially ordered set，if $b \leq a$ and $a \leq b$ ，then $a=b$ ．Therefore，there can exist at most one greatest element in M ．

Problem 4．1－8．A greatest lower bound of a subset $A \neq \varnothing$ of a partially ordered set M is a lower bound x of A such that $l \leq x$ for any lower bound l of A ；we write $x=$ g．l．b．$A=\inf A$ ．Similarly， a least upper bound y of A ，written $y=$ l．u．b．$A=\sup A$ ，is an upper bound y of A such that $y \leq u$ for any upper bound u of A ．
（a）If A has a g．l．b．，show that it is unique．

Suppose A has two g．l．b．，denoted as $x_{1}, x_{2} \in M$ ．Since x_{1} is g．l．b．，it must be a lower bound，
but x_{2} is g.l.b., so $x_{1} \leq x_{2}$. Similarly, x_{2} is g.l.b., so it is a lower bound, but x_{1} is g.l.b., so $x_{2} \leq x_{1}$. In a partially ordered set, if $x_{1} \leq x_{2}$ and $x_{2} \leq x_{1}$, then $x_{1}=x_{2}$. Therefore, there can exist at most one g.l.b. of A in M.
(b) What are g.l.b. $\{A, B\}$ and l.u.b. $\{A, B\}$ if $A, B \in \mathcal{P}(X)$ where $\mathcal{P}(X)$ is the power set of X and $A \leq B(A \subset B \subset X)$?

The g.l.b. of $\{A, B\}$ is A and the l.u.b. of $\{A, B\}$ is B. In Problem 4.1-9, we will prove a more general case, that is, the g.l.b. of $\{A, B\}$ is $A \cap B$ and l.u.b. of $\{A, B\}$ is $A \cup B$. Here is a special case, because we have $A \subset B$, so $A \cap B=A$ and $A \cup B=B$.

Problem 4.1-9. A lattice is a partially ordered set M such that any two elements x, y of M have a g.l.b. (written $x \wedge y$) and a l.u.b. (written $x \vee y$). Show that the power set $\mathcal{P}(X)$ of a given set X is a lattice, where $A \wedge B=A \cap B$ and $A \vee B=A \cup B$, and $A, B \in \mathcal{P}(X)$.

We have proved that $M=\mathcal{P}(X)$ is partially ordered with respect to \subset. We also know that for any two elements A, B in $\mathcal{P}(X)$, the union and intersection of them, i.e., $A \cup B$ and $A \cap B$ are both well-defined. Now we only need to show that $A \cup B$ is the supremum of $\{A, B\}$ and $A \cap B$ is the infimum of $\{A, B\}$.

First, it is easy to show that $A \cup B$ is an upper bound, because $A \leq A \cup B$ and $B \leq A \cup B$. For any upper bound C of $\{A, B\}$, we must have $A \subset C$ and $B \subset C$, then for all $a \in A, a \in C$ and for all $b \in B, b \in C$. For all $x \in A \cup B, x$ is either in A or B, so $x \in C$. Thus, $A \cup B \subset C$, which implies that $A \cup B \leq C$. This implies that $A \cup B$ is the least upper bound.

Similarly, it is easy to show that $A \cap B$ is an lower bound, because $A \cap B \subset A$ and $A \cap B \subset B$. For any lower bound D of $\{A, B\}$, we must have $D \leq A$ and $D \leq B$, which implies that $D \subset A$ and $D \subset B$. Therefore, for all $d \in D, d \in A$ and $d \in B$, so $d \in A \cap B$. This shows that $D \subset A \cap B$, so $D \leq A \cap B$. By definition, $A \cap B$ is the greatest lower bound of $\{A, B\}$.

Now for any two elements A, B of $\mathcal{P}(X), A \cap B$ and $A \cup B$ are both subset of X, so $A \cap B \in \mathcal{P}(X)$ and $A \cup B \in \mathcal{P}(X)$. This implies that any two elements of $\mathcal{P}(X)$ has a g.l.b. and a l.u.b., which means $\mathcal{P}(X)$ is a lattice.

Problem 4.2-3. Show that $p(x)=\varlimsup_{n \rightarrow \infty} \xi_{n}$, where $x=\left(\xi_{n}\right) \in l^{\infty}$, ξ_{n} real, defines a sublinear functional on l^{∞}.

Notice that since $x \in l^{\infty}$, each x represents a bounded real sequence. To prove $p(x)$ is sublinear, we need to prove for all positive real number $a, p(a x)=a x$ and $p(x+y) \leq p(x)+p(y)$ for all $x, y \in \mathbb{R}$. Consider for bounded real sequence $\xi_{n}, a>0, \sup _{n \geq m}\left(a \xi_{n}\right)=a \sup _{n \geq m} \xi_{n}$. To prove this, recall that for all $n \geq m$,

$$
\xi_{n} \leq \sup _{n \geq m} \xi_{n} \Longrightarrow a \xi_{n} \leq a \sup _{n \geq m} \xi_{n} \Longrightarrow \sup _{n \geq m}\left(a \xi_{n}\right) \leq a \sup _{n \geq m} \xi_{n}
$$

For all $\epsilon>0$, there exists ξ_{p} such that $p \geq m$ and

$$
\xi_{p}>\sup _{n \geq m} \xi_{n}-\epsilon \Longrightarrow a \xi_{p}>a \sup _{n \geq m} \xi_{n}-a \epsilon \Longrightarrow \sup _{n \geq m}\left(a \xi_{n}\right) \geq a \xi_{p}>a \sup _{n \geq m} \xi_{n}-a \epsilon
$$

Take $\epsilon \rightarrow 0$, we obtain $\sup _{n \geq m}\left(a \xi_{n}\right) \geq a \sup _{n \geq m} \xi_{n}$. Therefore, we proved our claim.

Since $\sup _{n \geq m}\left(a \xi_{n}\right)$ and $\sup _{n \geq m} \xi_{n}$ are always decreasing and bounded, they must be convergent, so by taking $m \rightarrow \infty$ on both sides, we obtain $\varlimsup_{n \rightarrow \infty}\left(a \xi_{n}\right)=a \varlimsup_{n \rightarrow \infty} \xi_{n}$, which is equivalent to $p(a x)=a p(x)$ for $a>0$.

To prove $p(x+y) \leq p(x)+p(y)$, where $x=\left(\xi_{n}\right)$ and $y=\left(\eta_{n}\right)$, we only need to prove

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(\xi_{n}+\eta_{n}\right) \leq \limsup _{n \rightarrow \infty} \xi_{n}+\limsup _{n \rightarrow \infty} \eta_{n} \tag{4.2}
\end{equation*}
$$

To achieve this, we consider for all $n \geq m$,

$$
\xi_{n} \leq \sup _{n \geq m} \xi_{n}, \eta_{n} \leq \sup _{n \geq m} \eta_{n} \Longrightarrow \xi_{n}+\eta_{n} \leq \sup _{n \geq m} \xi_{n}+\sup _{n \geq m} \eta_{n} \Longrightarrow \sup _{n \geq m}\left(\xi_{n}+\eta_{n}\right) \leq \sup _{n \geq m} \xi_{n}+\sup _{n \geq m} \eta_{n}
$$

Since on both sides, all terms are decreasing and bounded with respect to m, they must be convergent. Take $m \rightarrow \infty$, we obtain (4.2), which yields $p(x+y) \leq p(x)+p(y)$. Therefore, $p(x)$ is a sublinear functional.

Problem 4.2-5. If p is a sublinear functional on a vector space X, show that $M=\{x \mid p(x) \leq$ $\gamma, \gamma>0$ fixed $\}$, is a convex set.

Suppose $a \in[0,1]$, then we need to prove for all $x, y \in M$,

$$
p(a x+(1-a) y) \leq \gamma, \quad \text { given } p(x) \leq \gamma \text { and } p(y) \leq \gamma
$$

Consider the definition of sublinearity, we have

$$
p(a x+(1-a) y) \leq p(a x)+p((1-a) y)=a p(x)+(1-a) p(y) \leq a \gamma+(1-a) \gamma=\gamma
$$

where the first equality and the second inequality are due to $a \geq 0$ and $1-a \geq 0$. Therefore, if $x, y \in M$ then $a x+(1-a) y \in M$ for all $a \in[0,1]$, which impiles that M is convex.

Problem 4.2-8. If a subadditive functional defined on a normed space X is nonnegative outside a sphere $\{x \mid\|x\|=r\}$, show that it is nonnegative for all $x \in X$.

Consider all points $x \in X$ satisfies $\|x\| \leq r$, if $x=0$, then since $p(0)=p(0 \cdot x)=0 p(x)=0$, it is nonnegative. If $\|x\|=d \in(0, r)$, and $p(x)=k<0$, then let $c=\frac{2 r}{d}>0$, and we will have $p(c x)=c p(x)=\frac{2 r k}{d}<0$. However, $\|c x\|=c\|x\|=2 r>r$, so $c x$ is outside the sphere $\{x \mid\|x\|=r\}$, by assumption $p(c x) \geq 0$, contradiction! Thus, $p(x) \geq 0$. If $\|x\|=d$, and $p(x)=k<0$, then since $\|2 x\|=2 d>d$, so similarly, $p(2 x)$ should be nonnegative by assumption. However, $p(2 x)=2 p(x)=$ $2 k<0$, contradiction again, so $p(x) \geq 0$ for all $\|x\|=d$. In conclusion, for all $\|x\| \leq r, p(x) \geq 0$; together with our assumption, $p(x) \geq 0$ for all $x \in X$.

Problem 4.2-9. Let p be a sublinear functional on a real vector space X. Let f be defined on $Z=\left\{x \in X \mid x=\alpha x_{0}, \alpha \in \mathbb{R}\right\}$ by $f(x)=\alpha p\left(x_{0}\right)$ with fixed $x_{0} \in X$. Show that f is a linear functional on Z satisfying $f(x) \leq p(x)$.

First, we need to prove for all $b \in \mathbb{R}, f(b x)=b f(x)$ for all $x \in Z$. Since $x \in Z$, we have $x=\alpha x_{0}$, and $f(b x)=f\left(b \alpha x_{0}\right)=b \alpha p\left(x_{0}\right)=b f\left(\alpha x_{0}\right)=b f(x)$, because $b \alpha \in \mathbb{R}$.

Then we need to show for all $x, y \in Z, f(x+y)=f(x)+f(y)$. Since $x=\alpha x_{0}$ and $y=\beta x_{0}$, we have

$$
f(x+y)=f\left(\alpha x_{0}+\beta x_{0}\right)=f\left((\alpha+\beta) x_{0}\right)=(\alpha+\beta) p\left(x_{0}\right)=\alpha p\left(x_{0}\right)+\beta p\left(x_{0}\right)=f(x)+f(y)
$$ because $\alpha+\beta \in \mathbb{R}$.

Now we prove that $f(x)$ is linear on Z, the last thing is to prove $f(x) \leq p(x)$ for all $x \in Z$. For any $x \in Z$, we always have $x=\alpha x_{0}$, so if $\alpha \geq 0$, then $f(x)=\alpha p\left(x_{0}\right)=p\left(\alpha x_{0}\right)=p(x)$. However, if $\alpha<0$, we have

$$
0=p(0) \leq p\left(\alpha x_{0}\right)+p\left(-\alpha x_{0}\right) \Longrightarrow-p\left(-\alpha x_{0}\right) \leq p\left(\alpha x_{0}\right)
$$

Since $f(x)=\alpha p(x)=-p\left(-\alpha x_{0}\right) \leq p\left(\alpha x_{0}\right)=p(x)$, we can still obtain $f(x) \leq p(x)$. Therefore, we can conclude that for all $x \in Z, f(x) \leq p(x)$.

Problem 4.3-4. Let $p(x)$ be a real value functional defined on a vector space X and satisfy that for all $x, y \in X$ and scalar α,

$$
p(x+y) \leq p(x)+p(y), \quad p(\alpha x)=|\alpha| p(x)
$$

Show that for any given $x_{0} \in X$ there is a linear functional \tilde{f} on X such that $\tilde{f}\left(x_{0}\right)=p\left(x_{0}\right)$ and $|\tilde{f}(x)| \leq p(x)$ for all $x \in X$.

Take $M=\operatorname{span}\left(x_{0}\right)$, then M is a subspace of X. Define f on M by $f\left(\alpha x_{0}\right)=\alpha p\left(x_{0}\right)$. Then we claim that $f(x)$ is a linear functional defined on M and $|f(x)| \leq p(x)$ for all $x \in M$. If this is true, then by Hahn-Banach Theorem (complex case), there exists a linear functional \tilde{f} on X such that $\tilde{f}(x)=f(x)$ for all $x \in M$ and $|\tilde{f}(x)| \leq p(x)$ for all $x \in X$.

Now we prove that f defined above is a linear functional on M and $|f(x)| \leq p(x)$ by similar argument as Problem 4.2-9. For any scalar a, b and vector $x, y \in X$, we have

$$
f(a x+b y)=f\left(a \alpha x_{0}+b \beta x_{0}\right)=(a \alpha+b \beta) p\left(x_{0}\right)=a \alpha p\left(x_{0}\right)+b \beta p\left(x_{0}\right)=a f(x)+b f(y)
$$

Therefore, f is linear on M. Consider the following,

$$
0=p(0)=p(x+(-x)) \leq p(x)+p(-x)=p(x)+p(x) \Longrightarrow p(x) \geq 0, \quad \forall x \in X
$$

Therefore, for all $x \in M, x=\alpha x_{0}$, and $|f(x)|=\left|\alpha p\left(x_{0}\right)\right|=|\alpha|\left|p\left(x_{0}\right)\right|=|\alpha| p\left(x_{0}\right)|=|p(x)|=p(x)$.

Problem 4.3-13. Show that if X is a normed space and $x_{0} \neq 0$ is any element in X, then there is a bounded linear functional \hat{f} on X such that $\|\hat{f}\|=\left\|x_{0}\right\|^{-1}$ and $\hat{f}\left(x_{0}\right)=1$.

Take $M=\operatorname{span}\left(x_{0}\right)$ and let $f\left(x_{0}\right)=1$. Define $f(x)$ on M by $f(x)=f\left(\alpha x_{0}\right)=\alpha f\left(x_{0}\right)=\alpha$. Then $f(x)$ is linear on M. Consider

$$
\|f\|=\sup _{\|x\|=1, x \in M}|f(x)|=\sup _{|\alpha|=\left\|x_{0}\right\|^{-1}}|\alpha|=\left\|x_{0}\right\|^{-1}
$$

Therefore, f is a linear and bounded functional on a subspace M of X, then by Application 1 in lecture, there exists a linear and bounded functional \hat{f} defined on X such that $\left.\hat{f}\right|_{M}=f$ and $\|\hat{f}\|=\|f\|=\left\|x_{0}\right\|^{-1}$. However, since $\left.\hat{f}\right|_{M}=f$ and $x_{0} \in M$, so $\hat{f}\left(x_{0}\right)=f\left(x_{0}\right)=1$. Therefore, \hat{f} is the target functional we want to find.

