
MAT4010: Functional Analysis
Homework 7

李肖鹏 (116010114)

Due date: Oct. 29, 2019

Problem 4.6-3. If a normed space X is reflexive, show that X ′ is reflexive.

To show X ′ is reflexive, we only need to show that for Canonical mapping C ′ : X ′′′ 7→ X ′ is
surjective, i.e., for any fixed x′′′

0 ∈ X ′′′, there exists x′
0 ∈ X ′ such that C ′x′

0 = x′′′
0 . We first construct

a x′
0 : X

′ 7→ X according to x′′′
0 by

⟨x′
0, x⟩X′,X = ⟨x′′′

0 , Cx⟩X′′′,X′′ , for all x ∈ X

where C : X ′′ 7→ X is the Canonical mapping defined in class. Then, we need to show such x′
0 is

really in X ′. It is linear in x, because C is linear in any elements in X and x′′′
0 is linear in any

elements in X ′′. It is bounded because

|⟨x′
0, x⟩X′,X | = |⟨x′′′

0 , Cx⟩X′′′,X′′ | ≤ ∥x′′′
0 ∥X′′′∥Cx∥X′′ ≤ ∥x′′′

0 ∥X′′′∥x∥X

Therefore, x′
0 ∈ X ′. Now we want to show such x′

0 is the preimage of x′′′
0 under C ′, where by

definition of C ′,
⟨C ′x′

0, f
′′⟩X′′′,X′′ = ⟨f ′′, x′

0⟩X′′,X′ , for all f ′′ ∈ X ′′

Since X is reflexive, Canonical mapping C is surjective, i.e., for all f ′′ ∈ X ′′, there exists f ∈ X,
such that Cf = f ′′, thus,

⟨f ′′, x′
0⟩X′′,X′ = ⟨Cf, x′

0⟩X′′,X′ ≜ ⟨x′
0, f⟩X′,X

However, by definition of x′
0, we have

⟨x′
0, f⟩X′,X = ⟨x′′′

0 , Cf⟩X′′′,X′′ = ⟨x′′′
0 , f

′′⟩X′′′,X′′

Therefore, we proved that for all f ′′ ∈ X ′′, ⟨C ′x′
0, f

′′⟩X′′′,X′′ = ⟨x′′′
0 , f

′′⟩X′′′,X′′ , which is equivalent
to C ′x′

0 = x′′′
0 . Therefore, X ′ is also reflexive.

Problem 4.6-4. Show that a Banach space X is reflexive if and only if its dual space X ′ is reflexive.

For “only if” part, since a Banach space X is a normed space, by Problem 4.6-3, X ′ must be
reflexive.

For “if” part, we assume X ′ is reflexive. If X is not reflexive, then the image of X under
Canonical mapping C(X) ⊂ X ′′ is a proper subset of X ′′. Since X is Banach, C is injective and
isometry, we can conclude that C(X) is closed in X ′′ (Problem 3.10-9). Therefore, we can apply
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Hahn-Banach (Fact 5) to a point x′′
0 ∈ X ′′\C(X), then there exists x′′′

0 ∈ X ′′′ such that x′′′
0

∣∣∣
C(X)

= 0,
⟨x′′′

0 , x
′′
0⟩X′′′,X′′ > 0. Since X ′ is reflexive, Canonical map C ′ : X ′ 7→ X ′′′ is surjective, i.e., there

exists x′
0 ∈ X ′ such that C ′x′

0 = x′′′
0 . So by definition of C ′, we have

⟨x′′′
0 , x

′′⟩X′′′,X′′ = ⟨C ′x′
0, x

′′⟩X′′′,X′′ = ⟨x′′, x′
0⟩X′′,X′ , for all x′′ ∈ X ′′

Therefore, we have ⟨x′′
0 , x

′
0⟩X′′,X′ > 0. However, since x′′′

0

∣∣∣
C(X)

= 0, for all x′′ ∈ C(X), there exists
x ∈ X such that Cx = x′′, i.e.,

0 = ⟨x′′′
0 , Cx⟩X′′′,X′′ = ⟨C ′x′

0, Cx⟩X′′′,X′′ = ⟨Cx, x′
0⟩X′′,X′ , for all x ∈ X

Therefore, ⟨Cx, x′
0⟩X′′,X′ = 0 for all x ∈ X, which by definition of C, means ⟨Cx, x′

0⟩X′′,X′ =

⟨x′
0, x⟩X′,X = 0. This implies that x′

0 is the zero element in X ′. Recall x′′
0 is a linear functional

defined on X ′, so ⟨x′′
0 , x

′
0⟩X′′,X′ = 0, but this is a contradiction to ⟨x′′

0 , x
′
0⟩X′′,X′ > 0, thus x′′

0 does
not exist and C(X) is equal to X ′′, which means X is reflexive.

Problem 4.6-8. Let M be any subset of a normed space X. Show that an x0 ∈ X is an element
of A = span(M) if and only if f(x0) = 0 for every f ∈ X ′ such that f

∣∣∣
M

= 0.

For “only if” part, if x0 ∈ X implies x0 ∈ A, then there exists a sequence x
(k)
0 ∈ span(M)

such that x
(k)
0 → x0. Since x

(k)
0 ∈ span(M), for all f ∈ X ′ satisfies f

∣∣∣
M

= 0, by linearity we

have f(x
(k)
0 ) = 0 for all k. Since f is linear bounded functional, it is continuous, and we have

f(x
(k)
0 ) → f(x0) as x

(k)
0 → x0. Therefore, f(x0) = 0.

For “if” part, if x0 /∈ A, then by Hahn-Banach (Fact 5), since x0 ∈ X \ A where A is closed
subspace of X, there exists f ∈ X ′ such that f

∣∣∣
A
= 0 but f(x0) > 0. However, f

∣∣∣
A
= 0 implies

that f
∣∣∣
M

= 0. This contradicts to our assumption that all f ∈ X ′ satisfies f
∣∣∣
M

= 0 should give
f(x0) = 0. Therefore, x0 ∈ A.

Problem 4.6-10. Show that if a normed space X has a linearly independent subset of n elements,
so does the dual space X ′.

Denote the linearly independent subset of n elements in X as S = {x1, x2, . . . , xn}. Construct
n subsets of S by Si = S \ {xi} for all i = 1, 2, . . . , n. Denote Yi = span(Si). Since Yi is of finite
dimensional, it is obvious that they are closed subspace of X. Since xi is not in Yi, Yi is proper closed
subspace of X, so we can apply Hahn-Banach (Fact 5) to each Yi, then there exists fi ∈ X ′ such
that fi

∣∣∣
Yi

= 0 and fi(xi) > 0 for all i. Then such T = {fi | i = 1, 2, . . . , n} is a linear independent
subset of X ′ with size n. To see this, consider applying a1f1 + . . .+ anfn = 0 on each xi, we have

(a1f1 + . . .+ anfn)(xi) = aifi(xi) = 0 =⇒ ai = 0

Therefore, T forms a linearly independent set in X ′ of size n.

Extra Problem 1. Consider Lp(E), 1 ≤ p < ∞, where E is Lebesgue measurable subset of R.

(i) Let −∞ < a < b < ∞. Prove that C([a, b]) is separable.
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We only need to show Q[x] is dense in C([a, b]) because Q[x] is countable. First, by Weierstrass
Approximation, for any f ∈ C([a, b]), there exists a sequence of polynomial with real coefficients
that uniformly converges to f . Denote this sequence as rn(x) ∈ R[x] and its real coefficients as
an,0, an,1, . . . , an,k, . . . , an,n. Since Q is dense in R, there exists bn,k,j ∈ Q such that bn,k,j → an,k

for all n, k as j → ∞. Let qn,j(x) ∈ Q[x] denote the polynomials with coefficients bn,k,j for
k = 0, 1, . . . , n. Then we claim that qn,j(x) → rn(x) uniformly as j → ∞. This is true
because for arbitrary ϵ > 0, there exists J ∈ N such that |bn,k,j − an,k| ≤ ϵ for all j ≥ J and
k = 0, 1, . . . n. There also exists x0 ∈ [a, b] such that

∥qn,j(x)− rn(x)∥∞ = |qn,j(x0)− rn(x0)| ≤ ϵ(1 + |x0|+ |x0|2 + · · ·+ |x0|n)

Thus, we can conclude that qn,j(x) is uniformly convergent to rn(x). Therefore, for all ϵ > 0,
there exists J,N such that for j ≥ J and n ≥ N ,

∥qn,j − f∥∞ ≤ ∥qn,j − rn∥∞ + ∥rn − f∥∞ < ϵ+ ϵ = 2ϵ

This implies that Q[x] is dense in C[a, b] and C[a, b] is separable.

(ii) Use (i) and the fact that C[a, b] is dense in Lp(a, b) to prove that Lp(a, b) is separable.

For any f ∈ Lp(a, b), by Lusin’s theorem, there exists a continuous function g on [a, b] such that
m({x ∈ [a, b] | g(x) ̸= f(x)}) < ϵ for arbitrary ϵ > 0. Denote A = {x ∈ [a, b] | g(x) ̸= f(x)},
and consider

ˆ
[a,b]

|f − g|p dm =

ˆ
[a,b]\A

|f − g|p dm+

ˆ
A

|f − g|p dm =

ˆ
A

|f − g|p dm

By Minkowski inequality,
ˆ
A

|f − g|p dm ≤ (∥f∥Lp + ∥g∥Lp)p < ϵ(∥f∥∞ + ∥f∥∞)p

where the infinity norm is defined by essential supremum of f and g, and hence they are all
finite and fixed. This further implies that for some positive constant C,

∥f − g∥Lp =

(ˆ
[a,b]

|f − g|p dm

)1/p

< Cϵ1/p → 0

as ϵ → 0. Thus, every f ∈ Lp(a, b) can be approximated by g ∈ C[a, b] arbitrarily close,
implying that C[a, b] is dense in Lp(a, b).

From (i), since Q[x] is dense in C[a, b], for any f ∈ C[a, b] there exists qn(x) such that ∥qn −
f∥∞ < ϵ. Now we also have for all ϵ > 0, there exists ∥fn − g∥Lp < ϵ where fn ∈ C[a, b] and
g ∈ Lp(a, b). This implies that

∥qn(x)− g(x)∥Lp ≤ ∥qn − fn∥Lp + ∥fn − g∥Lp < (1 + (b− a)1/p)ϵ

Therefore, Q[x] (defined on [a, b]) is dense in Lp(a, b), but since Q[x] is countable, Lp(a, b) is
separable.
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(iii) Prove Lp(R) is separable. Hint: Use PQχ(−r,r)(x), where r ∈ Q+, to approximate elements
in Lp(R).

By MAT3006, we know that for g ∈ Lp(R), we have
ˆ
R
|g|p dm = lim

n→∞

ˆ
(−rn,rn)

|g|p dm

where rn ∈ Q is sequence increasing to infinity. Therefore, for any g ∈ Lp(R), we can find a
sequence gχ(−rn,rn) → g. For each gχ(−rn,rn), we can regarded it as function on Lp[−rn, rn],
then apply result in (i) and (ii), we can find sequence of rational polynomial qkχ(−rn,rn) on
[−rn, rn] such that qkχ(−rn,rn) → gχ(−rn,rn) as k → ∞. Therefore, for all ϵ > 0, for sufficiently
large N and K, for all k ≥ K and n ≥ N , we have

∥qkχ(−rn,rn) − g∥Lp ≤ ∥qkχ(−rn,rn) − gχ(−rn,rn)∥Lp + ∥gχ(−rn,rn) − g∥Lp < 2ϵ

Therefore, B = {PQχ(−r,r)(x) | r ∈ Q+} is dense in Lp(R). Since B is countable, Lp(R) is
separable.

(iv) Prove Lp(E) is separable.

For f ∈ Lp(E), it assumes the same value as fχE ∈ Lp(R). Therefore, denote B′ =

{PQχ(−r,r)χE(x) | r ∈ Q+} , B′ is still countable. Since fχE can be approximated by ele-
ments in B, choose qkχ(−rn,rn) such that ∥qkχ(−rn,rn) − fχE∥Lp(R) < ϵ, then we have

∥qkχ(−rn,rn)χE − fχE∥Lp(E) = ∥qkχ(−rn,rn) − f∥Lp(E) = ∥qkχ(−rn,rn)χE − f∥Lp(E)

ϵ > ∥qkχ(−rn,rn) − fχE∥Lp(R) = ∥qkχ(−rn,rn) − f∥Lp(E) + ∥qkχ(−rn,rn)∥Lp(R\E)

Therefore, we can conclude that ∥qkχ(−rn,rn)χE −f∥Lp(E) < ϵ, thus B′ is dense in Lp(E). This
shows that Lp(E) is separable for any measurable set E.

Extra Problem 2. Consider L∞(E), where E is Lebesgue measurable subset with m(E) > 0.

(i) For all r > 0, let f(r) = m(E ∩ (−r, r)). Then f(0) = 0, f(r) is increasing in r with
limr→∞ f(r) = m(E) > 0, and f is continuous on [0,∞).

We can easily see f(0) = m(E ∩ ∅) = m(∅) = 0. If r1 > r2, (−r2, r2) ⊂ (−r1, r1), thus
E∩(−r2, r2) ⊂ E∩(−r1, r1). By monotonicity of Lebesgue measure, we have m(E∩(−r2, r2)) ≤
m(E ∩ (−r1, r1)), i.e., f(r2) ≤ f(r1). For all ϵ > 0, fix any r0 ∈ [0,∞), take δ = ϵ/2, for all
0 < r − r0 < δ, we have

f(r)− f(r0) = m(E ∩ (−r, r))−m(E ∩ (−r0, r0))

= m(E ∩ (−r0, r0)) +m(E ∩ (−r, r0)) +m(E ∩ (r0, r))−m(E ∩ (−r0, r0))

= m(E ∩ (−r, r0)) +m(E ∩ (r0, r)) ≤ 2(r − r0) < 2δ < ϵ

Combined with f(r) − f(r0) ≥ 0, we can conclude that f(r) is right continuous at any point
r0 ∈ [0,∞). Similarly, we can prove that f(r) is left continuous at any point r0 ∈ (0,∞).
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Therefore, we can conclude that f(r) is continuous on [0,∞). Then by “continuity” of Lebesgue
measure (c.f. MAT3006, HW3, Q9), we have

lim
r→∞

f(r) = lim
n→∞

m(E ∩ (−n, n)) = m
(
E ∩ lim

n→∞
(−n, n)

)
= m(E) > 0

This implies that f can take any value between 0 and m(E).

(ii) Let A be the collection of maximal closed subinterval I of [0,∞), such that I has nonempty
interior, f

∣∣∣
I

is constant on I. Prove that A is at most countable.

Since I has nonempty interior, there exists a rational number q in I. If I1 and I2 are two
elements in A, then if I1 ∩ I2 ̸= ∅, I1 = I2. This is because if I1 ∩ I2 ̸= ∅, take x ∈ I1 ∩ I2,
then f(x) = f

∣∣∣
I1

= f
∣∣∣
I2

. Then denote I3 = I1 ∪ I2, I3 is also a closed subinterval of [0,∞),

and f
∣∣∣
I3

is constant. If I1 ̸= I2, I3 will be strictly larger than I1 and I2, but this contradicts
the maximality of I1, I2. Thus, different elements in A must be disjoint. For each element
in A, we can pick a rational number in it as a representative of that closed interval. Since
each interval are disjoint, all rational number picked are distinct. However, there only exists
countably many of rational numbers in total, so the number of closed intervals in A is at most
countable. Therefore, A is at most countable.

(iii) Prove that [0,∞) \ ∪I∈AI is uncoutable.

Recall that a Lipschitz continuous function maps set with zero measure to set with zero
measure. We can see in part (i), f is not only continuous but also Lipschitz continuous with
Lipschitz constant 2. Therefore, suppose U = [0,∞)\∪I∈AI is coutable, then f(U) is measure
zero set. Notice that A is at most countable, and f on each I is constant, so f(∪I∈AI) is also
countable. This implies that f([0,∞)) is measure zero set. On the otherhand, since f(0) = 0

and f(∞) = m(E) > 0, then by intermediate value theorem, f([0,∞)) = [0,m(E)), while
[0,m(E)) cannot be measure zero. Therefore, contradiction shows that U is uncountable.

To prove a Lipschitz continuous function maps set with zero measure to set with zero measure,
simply take T to be Lipschitz continuous function with Lipschitz constant C. Then for any
measure zero set Z, for all ϵ > 0, by definition of Lebesgue measure, there exists a collection
of open interval {Jn}, such that E ⊂ ∪∞

n=1Jn, and
∑∞

n=1 m(Jn) < ϵ. Therefore,

m(T (E)) ≤ m(T (∪∞
n=1Jn)) = m(∪∞

n=1T (Jn)) ≤
∞∑

n=1

m(T (Jn)) ≤ C
∞∑

n=1

m(Jn) < Cϵ

Therefore, T (E) is also of measure zero.

(iv) For s ∈ [0,∞) \∪I∈AI, define χs(x) = χE∩[−s,s](x). Prove that for all s, t ∈ [0,∞) \∪I∈AI,
s ̸= t, we have ∥χs − χt∥L∞(E) = 1.

We need to first claim that there only exists one s ∈ [0,∞) \ ∪I∈AI such that E ∩ [−s, s] is
empty. Suppose there exists s > t ≥ 0 such that E ∩ [−s, s] = E ∩ [−t, t] = 0, then there
exists a function f(x) = m(E ∩ [−x, x]) defined on x ∈ [t, s] such that f

∣∣∣
[t,s]

is constant. Then
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[t, s] must be in A, which means s, t ̸∈ [0,∞) \ ∪I∈AI, contradiction! Therefore, by the same
argument we can show that for each s ̸= t, m(E ∩ [−s, s]) ̸= m(E ∩ [−t, t]). Recall that

∥χs − χt∥L∞(E) = ∥χ[−s,s]∩E − χ[−t,t]∩E∥L∞(E) = 1

because χs and χt can only take value 1 or 0 and they differs by 1 on a positive measure set
since m(E ∩ [−s, s]) ̸= m(E ∩ [−t, t]).

(v) Argue by contradiction to prove that L∞(E) cannot be separable. Hint: consider countable
orthogonal basis.

Since ∥χs − χt∥L∞(E) = 1 for any two elements s ̸= t, we can construct a collection of open
balls, i.e., G = {Os | s ∈ [0,∞) \ ∪I∈AI}, where Os is the open ball centered at χs with radius
1/2 in L∞(E) space. By this construction, Os∩Ot = ∅ if s ̸= t. By part (iii), G is uncountable.
Suppose L∞(E) is separable, then there exists a countable dense subset {ui}∞i=1 of L∞(E).
For each distinct Os ∈ G, since Os is open, Os ∩ {ui}∞i=1 ̸= ∅. Then, we can denote it as us.
Since each two Os are pairwise disjoint, us is also distinct. However, we have uncountably
many distinct s, meaning that we will obtain uncountably many distinct us ∈ {ui}∞i=1. This
is a contradiction since {ui}∞i=1 is only countable. Therefore, L∞(E) cannot be separable.

Extra Problem 3. Prove that L1(E) and L∞ are not reflexive.

Now we have obtain the fact that L1(E) is separable and L∞(E) is not separable. We also know
that under Lebesgue measure, the dual space of L1(E), (L1(E))′ can be identified with L∞(E). Now
suppose L1(E) is reflexive, since it is also separable, by Fact 4 in class, its dual must be separable,
which is contradiction. Thus, L1(E) is not reflexive.

Of course, we know L1(E) is Banach space , by Problem 4.6-4, if (L1(E))′ is reflexive, then
L1(E) must be reflexive. However, we just derived that L1(E) is not reflexive, so contradition shows
that (L1(E))′ is not reflexive, i.e., L∞(E) is not reflexive.

Extra Problem 4. Let X and Y be normed spaces and suppose that there exists a bijective linear
isometry between them. Prove that X is reflexive if and only if Y is reflexive.

Given a bijective linear isometry T : X 7→ Y , its adjoint map T ′ : Y ′ 7→ X ′ and second adjoint
map T ′′ : X ′′ 7→ Y ′′ are both bijective linear isometry.

Let C : X 7→ X ′′ be the Canonical map, since X is reflexive, C is surjective. For any y′′0 ∈ Y ′′,
there exists a unique x′′

0 ∈ X ′′ such that T ′′(x′′
0) = y′′0 . Also, there exists x0 ∈ X such that x′′

0 = Cx0,
and this further implies T ′′(Cx0) = y′′0 .

For arbitrary y′ ∈ Y ′, we have y′′0 (y
′) = T ′′(Cx0)(y

′). By definition of adjoint operator,

T ′′(Cx0)(y
′) = Cx0(T

′y′) = T ′y′(x0) = y′(T (x0)) = D(Tx0)(y
′)

where D : Y 7→ Y ′′ is the Canonical map. This implies that y′′0 (y
′) = D(Tx0)(y

′) for all y′ ∈ Y ′,
so y′′0 = D(Tx0). Therefore, for all y′′0 ∈ Y ′′, there exists y0 = Tx0 ∈ Y such that Dy0 = y′′0 . This
shows that D is surjective, so Y is reflexive. The converse can be proved in exactly the same way.
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