MAT4010：Functional Analysis Homework 8

李肖鹏（116010114）

Due date：Nov．5， 2019
Problem 4．7－10．Let $y=\left(\eta_{j}\right), \eta_{j} \in \mathbb{C}$ ，be such that $\sum \xi_{j} \eta_{j}$ converges for every $x=\left(\xi_{j}\right) \in c_{0}$ ， where $c_{0} \subset l^{\infty}$ is the subspace of all complex sequences converging to zero．Show that $\sum\left|\eta_{j}\right|<\infty$ ．

Since $\left(c_{0}\right)^{\prime}=l^{1}$ ，for any fixed x ，define $f_{n}(x)=\sum_{j=1}^{n} \xi_{j} \eta_{j}$ ，then $\left\|f_{n}\right\|=\sum_{j=1}^{n}\left|\eta_{j}\right|$ ．Since $\sum \xi_{j} \eta_{j}$ converges，we know $f_{n}(x) \rightarrow f(x)$ for each fixed $x \in c_{0}$ ，where $f(x)=\sum_{j=1}^{\infty} \xi_{j} \eta_{j}$ ．This implies that $f_{n}(x)$ are bounded for all n ，so $\sup _{n \in \mathbb{N}^{+}}\left|f_{n}(x)\right|<\infty$ ．By Uniform Boundedness Principle， $\sup _{n \in \mathbb{N}^{+}}\left\|f_{n}\right\|<\infty$ ．Since $\sup _{n \in \mathbb{N}^{+}}\left\|f_{n}\right\|=\|f\|$ ，we can conclude that $\sum_{j=1}^{\infty}\left|\eta_{j}\right|<\infty$ ．

Problem 4．7－14．If X and Y are Banach spaces and $T_{n} \in B(X, Y), n=1,2, \ldots$ ，show that equivalent statements are：
（a）$\left(\left\|T_{n}\right\|\right)$ is bounded，
（b）$\left(\left\|T_{n} x\right\|\right)$ is bounded for all $x \in X$ ，
（c）$\left(\left|g\left(T_{n} x\right)\right|\right)$ is bounded for all $x \in X$ and all $g \in Y^{\prime}$ ．
First，（a）implies（b）because $\left\|T_{n} x\right\|_{Y} \leq\left\|T_{n}\right\|\|x\|_{X}$ ．Since $\left\|T_{n}\right\|$ is bounded，for each fixed $x \in X,\|x\|_{X}$ is also bounded，it is obvious that $\left\|T_{n} x\right\|_{Y}$ is also bounded．

Then，（b）implies（c）is also trivial，because $\left|g\left(T_{n} x\right)\right| \leq\|g\|_{Y^{\prime}}\left\|T_{n} x\right\|_{Y}$ ．Since $\left\|T_{n} x\right\|_{Y}$ is supposed to be bounded，and each fixed $g \in Y^{\prime}$ is also bounded，it is obvious that $\left|g\left(T_{n} x\right)\right|$ is bounded．

Next，（c）implies（b）is a little subtle．Let $C: Y \mapsto Y^{\prime \prime}$ be Canonical map，then $g\left(T_{n} x\right)=$ $C\left(T_{n} x\right)(g)$ for all $g \in Y^{\prime}$ ．Since $\sup _{x \in X}\left|C\left(T_{n} x\right)(g)\right|<\infty$ ，by Uniform Boundedness Principle， $\sup _{x \in X}\left\|C\left(T_{n} x\right)\right\|_{Y^{\prime \prime}}<\infty$ ．However，C is isometric operator，so $\left\|C\left(T_{n} x\right)\right\|_{Y^{\prime \prime}}=\left\|T_{n} x\right\|_{Y}$ ．Therefore， $\left\|T_{n} x\right\|_{Y}$ is bounded．

Finally，（b）implies（a）is trivial because this is just the statement of Uniform Boundedness Principle．

Extra Problem 1．Let K be a convex subset of normed space X with $\stackrel{\circ}{K} \neq \varnothing$ ．Prove that $\bar{\circ}=\bar{K}$ ．
Since $\stackrel{\circ}{K} \subset K$ ，so \bar{K} is a closed set containing $\stackrel{\circ}{K}$ ，but $\bar{\circ}$ is the smallest closed set containing $\stackrel{\circ}{K}$ by definition of closure，so $\overline{\stackrel{\circ}{K}} \subset \bar{K}$ ．

To prove $\bar{K} \subset \bar{\circ}$ we only need to prove $\partial K \subset \bar{\circ}$ ，i．e．，any neighborhood of a boundary point of K must have non－empty intersecton with $\stackrel{\circ}{K}$ ．Take arbitrary boundary point $x_{0} \in \partial K$ ，and pick any interior point y_{0} of K ．Consider the open ball satisfying $N_{r}\left(y_{0}\right) \subset \stackrel{\circ}{K}$ ．For each $t \in(0,1)$ ，we claim that $z=t x_{0}+(1-t) y_{0}$ is an interior point of K ．This is because for each t ，the open ball
centered at z with radius $(1-t) r$ is contained in K. To see this, consider each point u in open ball $N_{(1-t) r}(z)$,

$$
\left\|u-t x_{0}-(1-t) y_{0}\right\|<(1-t) r \Longrightarrow\left\|\frac{1}{1-t} u-\frac{t}{1-t} x_{0}-y_{0}\right\|<r
$$

Let $v=\frac{1}{1-t} u-\frac{t}{1-t} x_{0}$, then v is in $N_{r}\left(y_{0}\right)$, hence in K. Notice that $(1-t) v+t x_{0}=u$, thus u is also in K by the convexity of K. This implies that $t x_{0}+(1-t) y_{0}$ is a interior point for $t \in(0,1)$. Therefore, any neighborhood of x_{0} has non-empty intersecton with \dot{K}, which shows $\partial K \subset \overline{\dot{K}}$.

Extra Problem 2. Let K be given as in the last problem. Suppose $x_{0} \in \stackrel{\circ}{K}$ and $x_{1} \in \partial K$. Define $x_{2}=m\left(x_{1}-x_{0}\right)+x_{0}$, where $m>1$. Prove that $x_{2} \notin K$.

Suppose $x_{2} \in K$, by the claim in last problem, for $t \in(0,1)$, let $z=t x_{0}+(1-t) x_{2}$, then z must be an interior point of K. Consider $t=1-\frac{1}{m} \in(0,1)$, then $(1-t)=\frac{1}{m} \in(0,1)$, and

$$
z=\left(1-\frac{1}{m}\right) x_{0}+\frac{1}{m} x_{2}=\left(1-\frac{1}{m}\right) x_{0}+\frac{1}{m}\left[m\left(x_{1}-x_{0}\right)+x_{0}\right]=x_{1}
$$

Thus, x_{1} should be an interior point of K, but by assumption it is in ∂K, contradiction. Therefore, $x_{2} \notin K$.

Extra Problem 3. Let K be a closed convex subset of normed space X. Prove that $\forall x \in X \backslash K$, $\exists f \in X^{*}$ such that $\|f\|=1$ and

$$
\sup _{y \in K} f(y) \leq f(x)-\operatorname{dist}(x, K)
$$

For each x, take $E=B(x ; r)$ where $r=\operatorname{dist}(x, K)>0$. Recall K is closed and $X \backslash K$ is open, so x is an interior point, and there exists an open neighbood $N_{\delta}(x)$ of x such that $N_{\delta}(x)$ does not intersect with K, then we will have $\operatorname{dist}(x, K)>0$. Since K is closed convex and E has nonempty interior, by Geometric Hahn-Banach II, there exists $f \in X^{\prime}$ such that $\|f\|=1$ and $f(y) \leq f(x)$ for all $y \in K$ and $x \in E$. Therefore, it is obvious that $\sup _{y \in K} f(y) \leq f(x)$ for all $x \in E$. For any small $\epsilon>0$, since $\|f\|=1$, there exists x_{0}, such that $\left|x_{0}\right|=1$ and $\left|f\left(x_{0}\right)\right|>1-\epsilon$. Take $c=\frac{\overline{f\left(x_{0}\right)}}{\left|f\left(x_{0}\right)\right|}(r-\epsilon)$, then we have $\left|c x_{0}\right|=r-\epsilon<r$. This implies that $x-c x_{0} \in E$, so we have

$$
\sup _{y \in K} f(y) \leq f\left(x-c x_{0}\right)=f(x)-c f\left(x_{0}\right) \leq f(x)-(r-\epsilon)(1-\epsilon)
$$

Take $\epsilon \rightarrow 0$, we have

$$
\sup _{y \in K} f(y) \leq f(x)-r=f(x)-\operatorname{dist}(x, K)
$$

Extra Problem 4. Let K be given as in last problem. Prove that for normed space $X, \forall x \in X \backslash K$,

$$
\operatorname{dist}(x, K)=\sup _{f \in X^{*},\|f\|=1}\left\{f(x)-\sup _{z \in K} f(z)\right\}
$$

while for $x \in K$, only \geq sign holds.

From the last problem, it is obvious that for all $x \in X \backslash K$,

$$
\operatorname{dist}(x, K) \leq \sup _{\|f\|=1, f \in X^{*}}\left\{f(x)-\sup _{z \in K} f(z)\right\}
$$

For $x \in K$, this inequality does not hold. The counter-example is that for $X=\mathbb{R}, x=0$ and $K=[-1,1]$, consder any $f \in X^{*}$, it must be in the form of $f(x)=a x$. Since $\|f\|=1$, we know $a= \pm 1$. Therefore, $\sup _{z \in[-1,1]} f(x)=1$. This shows that $f(x)-\sup _{z \in K} f(z) \equiv-1$ for all $f \in X^{*}$. Therefore, RHS is -1 but LHS is 0 , which shows \leq does not hold.

Then we show for all $x \in X$ (not necessarily in $X \backslash K$), we have

$$
\operatorname{dist}(x, K) \geq \sup _{\|f\|=1, f \in X^{*}}\left\{f(x)-\sup _{z \in K} f(z)\right\}
$$

Consider any $f \in X^{*}$ such that $\|f\|=1$, we have

$$
\begin{aligned}
f(x)-\sup _{z \in K} f(z) & =f(x)+\inf _{z \in K}[-f(z)]=\inf _{z \in K}(f(x)-f(z))=\inf _{z \in K}(f(x-z)) \\
& \leq \inf _{z \in K}\|f\|\|x-z\|=\inf _{z \in K}\|x-z\|=\operatorname{dist}(x, K)
\end{aligned}
$$

Since this is true for all f, take supremum over f on both sides, we have

$$
\sup _{\|f\|=1, f \in X^{*}}\left\{f(x)-\sup _{z \in K} f(z)\right\} \leq \operatorname{dist}(x, K)
$$

Extra Problem 5. Let $p \in[1, \infty]$. Suppose $f(x)$ is measurable on $(0,1)$, satisfying that for all $g \in L^{p^{\prime}}(0,1)$, we have $f g \in L^{1}(0,1)$. Prove that $f \in L^{p}(0,1)$.
 $\left|\int_{0}^{1} f_{n}(x) g(x) d x\right| \leq \int_{0}^{1}|f g| d x<\infty$.

For $1 \leq p<\infty$, if we consider T_{n} defined on $L^{p^{\prime}}(0,1)$, we can defined $T_{n}(g)=\int_{0}^{1} f_{n}(x) g(x) d x$, where f_{n} is defined in hint. Since

$$
\left|\int_{0}^{1} f_{n}(x) g(x) d x\right| \leq \int_{0}^{1}|f g| d x<\infty
$$

we can conclude $\sup _{n \in \mathbb{N}^{+}}\left|T_{n}(g)\right|<\infty$ for all $g \in L^{p^{\prime}}(0,1)$. By Uniform Boundedness Principle, $\sup _{n \in \mathbb{N}^{+}}\left\|T_{n}\right\|<\infty$. Since $\left(L^{p^{\prime}}(0,1)\right)^{*}=L^{p}(0,1),\left\|T_{n}\right\|=\left\|f_{n}\right\|_{L^{p}(0,1)}$. We have

$$
\int_{0}^{1}|f(x)|^{p} d x=\lim _{n \rightarrow \infty} \int_{E_{n}}|f(x)|^{p} d x=\sup _{n \in \mathbb{N}^{+}}\left\|f_{n}\right\|^{p}<\infty
$$

This is true because f cannot take infinity at positive measure set because if so, take $g=1 \in$ $L^{p^{\prime}}(0,1)$, then $f g=f$ cannot be in $L^{1}(0,1)$.

If $p=\infty$, we still have $\left\|T_{n}\right\|=\left\|f_{n}\right\|_{L^{p}(0,1)}$. Suppose f is unbounded under essential supremum sense, then $m\{x||f(x)| \geq c\}>0$ for all c. Then

$$
m\left(\{x||f(x)| \geq c\})=m\left(\cup_{n \in \mathbb{N}^{+}}\left\{x| | f_{n}(x) \mid \geq c\right\}\right)>0\right.
$$

This implies that there exists n, such that $f_{n}(x) \geq c$ for all c, but this is a contradiction to $\sup _{n \in \mathbb{N}^{+}}\left\|f_{n}\right\|_{L^{p}(0,1)}<\infty$. Therefore, f is essentially bounded on $(0,1)$, so $f \in L^{\infty}(0,1)$.

