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Problem 4.7-10. Let y = (n;), n; € C, be such that &;n; converges for every z = (§;) € co,

where ¢y C [ is the subspace of all complex sequences converging to zero. Show that ) [n;| < oc.

Since (cp)’ = ', for any fixed x, define f,,(x) = > 7_, &y, then || fo| = D20, [n;]. Since 3= &;n;
converges, we know f,(z) — f(x) for each fixed 2 € ¢y, where f(x) = 377, §n;. This implies
that f,(z) are bounded for all n, so sup,cy+ |fn(x)] < co. By Uniform Boundedness Principle,

sup,en+ || fnll < 00. Since sup,, ey || frll = || I, we can conclude that Zj’;l In;| < oo.

Problem 4.7-14. If X and Y are Banach spaces and T,, € B(X,Y), n = 1,2,..., show that

equivalent statements are:

(a) (|7 is bounded,
(b) (||[Tz]|) is bounded for all z € X,
(¢) (lg(T,x)|) is bounded for all x € X and all g € Y.

First, (a) implies (b) because ||T,z|y < ||T,.||||z]lx. Since ||T,| is bounded, for each fixed

xz € X, ||z| x is also bounded, it is obvious that ||T,z||y is also bounded.

Then, (b) implies (c) is also trivial, because |g(T,,z)| < ||g|lyv/||Tnz|ly. Since || T,y is supposed
to be bounded, and each fixed g € Y is also bounded, it is obvious that |g(7,,x)| is bounded.
Next, (c) implies (b) is a little subtle. Let C' : Y +— Y” be Canonical map, then g(T,x) =
C(T,x)(g) for all g € Y'. Since sup,cy |C(T,z)(g)| < oo, by Uniform Boundedness Principle,
sup,e x| C(Tn)]

| Tz ||y is bounded.

yr» < oo. However, C' is isometric operator, so ||C(T,x)|

yr = ||Tn$||y Therefore,

Finally, (b) implies (a) is trivial because this is just the statement of Uniform Boundedness

Principle.

Extra Problem 1. Let K be a convex subset of normed space X with K # . Prove that K =K.

Since K ¢ K , so K is a closed set containing K , but } is the smallest closed set containing K

by definition of closure, so K C K.

To prove K C K we only need to prove 0K C E, i.e., any neighborhood of a boundary point
of K must have non-empty intersecton with K. Take arbitrary boundary point xy € 0K, and pick
any interior point yo of K. Consider the open ball satisfying N, (yo) C K. For each t € (0,1), we

claim that z = txo + (1 — t)yo is an interior point of K. This is because for each ¢, the open ball



centered at z with radius (1 — ¢)r is contained in K. To see this, consider each point u in open ball

N(l—t)r(z)a

1 t
lu—txo— (1 —t)yol| < (1 —t)r = Hl—tu_ 7% ~ Yol <7

Let v = 7 u — 7520, then v is in N,(yo), hence in K. Notice that (1 — t)v + tzg = u, thus u is
also in K by the convexity of K. This implies that tzg + (1 — t)y, is a interior point for ¢ € (0,1).

Therefore, any neighborhood of xy has non-empty intersecton with K, which shows 0K C K.

Extra Problem 2. Let K be given as in the last problem. Suppose zy € K and x1 € OK. Define

xo = m(x1 — zo) + To, where m > 1. Prove that 25 ¢ K.

Suppose x2 € K, by the claim in last problem, for ¢ € (0,1), let z = txg + (1 — t)xo, then z
must be an interior point of K. Consider ¢ =1 — - € (0,1), then (1 —t) = = € (0,1), and

1 1 1 1
z=(1——)azo+ —a2=(1—— )z + —[m(z1 — x0) + 0] = 21
m m m m

Thus, x; should be an interior point of K, but by assumption it is in 0K, contradiction. Therefore,
T2 ¢ K.

Extra Problem 3. Let K be a closed convex subset of normed space X. Prove that Vo € X \ K,
3 f € X* such that || f|| =1 and

sup fy) < f(z) — dist(z, K)

For each x, take £ = B(x;r) where r = dist(z, K') > 0. Recall K is closed and X \ K is open,
so x is an interior point, and there exists an open neighbood Ns(z) of x such that Ns(x) does not
intersect with K, then we will have dist(x, K') > 0. Since K is closed convex and E has nonempty
interior, by Geometric Hahn-Banach II, there exists f € X’ such that || f|| =1 and f(y) < f(zx) for
ally € K and = € E. Therefore, it is obvious that sup,cx f(y) < f(z) for all z € E. For any small

e > 0, since || f|| = 1, there exists x, such that |xo| = 1 and |f(x¢)| > 1 — €. Take ¢ = ‘;giﬁgl(r —€),

then we have |cxg| = r — € < r. This implies that x — cxg € E, so we have

sup f(y) < f(x —cxo) = f(2) = cf(wo) < f2) = (r—€)(1 —¢)

yeK

Take € — 0, we have
sup f(y) < f(z) —r = f(z) — dist(z, K)

yeK

Extra Problem 4. Let K be given as in last problem. Prove that for normed space X, Vo € X\ K,

it ) = s L) - 2}

fex=|fl=1 z€K

while for z € K, only > sign holds.



From the last problem, it is obvious that for all z € X \ K,
dist(z, K) < sup {f(m) — sup f(z)}
Ifll=1,fex* zeK
For z € K, this inequality does not hold. The counter-example is that for X = R, z = 0 and
K = [—1,1], consder any f € X*, it must be in the form of f(z) = ax. Since || f|| = 1, we know
a = 1. Therefore, sup,(_; ;) f(z) = 1. This shows that f(x) —sup.c f(2) = —1 for all f € X
Therefore, RHS is —1 but LHS is 0, which shows < does not hold.

Then we show for all z € X (not necessarily in X \ K), we have
dist(z, K) >  sup {f(x) — sup f(z)}
Ifl=1,fex~ ZEK

Consider any f € X* such that || f|| = 1, we have

f(a) —sup f(2) = f(x) + inf[~f(2)] = inf (f(z) — f(2)) = nf(f(z — 2))

zeK zeK zeK

_ T
inf |7z~ 2 = inf o — =] = dist(z, K)

Since this is true for all f, take supremum over f on both sides, we have

sup L) - sup 7o) | < (o 1)

Ifl=1rex> zeK

Extra Problem 5. Let p € [1,00]. Suppose f(x) is measurable on (0, 1), satisfying that for all
g € LP(0,1), we have fg € L'(0,1). Prove that f € L?(0,1).

Hint: For all n > 1, let E,, = {x € (0,1)]|f(z)| < n}. Define f,(z) = f(x)xg,(z). Observe
o fu(@)g(a) da| < [ |fg] do < oo.

For 1 < p < oo, if we consider T}, defined on L* (0,1), we can defined T),(g) = fol fn(2)g(x) de,

where f, is defined in hint. Since

/ ful@)g(a) de| < / Fol di <
0 0

we can conclude sup,,cy+ |Tn(g)| < oo for all g € L (0,1). By Uniform Boundedness Principle,
sup,en+ || 7| < oo. Since (LP'(0,1))* = L*(0,1), | T.|| = | fallLr 0,1 We have
1
[ 1r@p de= im [ 5@l de = sup £ < o0
0 n—oo En neN+

This is true because f cannot take infinity at positive measure set because if so, take ¢ = 1 €
L¥'(0,1), then fg = f cannot be in L*(0,1).

If p = oo, we still have ||T,,|| = || fullzr(0,1)- Suppose f is unbounded under essential supremum
sense, then m{x | |f(z)| > ¢} > 0 for all ¢. Then

m{{z|[f(x)] = c}) = m(Upens{z [ [fu(2)] = ¢}) >0

This implies that there exists m, such that f,(z) > ¢ for all ¢, but this is a contradiction to

sup,en+ || fullLr0,1) < 00. Therefore, f is essentially bounded on (0,1), so f € L>(0,1).




