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Problem 4.7-10. Let y = (ηj), ηj ∈ C, be such that
∑

ξjηj converges for every x = (ξj) ∈ c0,
where c0 ⊂ l∞ is the subspace of all complex sequences converging to zero. Show that

∑
|ηj | < ∞.

Since (c0)
′ = l1, for any fixed x, define fn(x) =

∑n
j=1 ξjηj , then ∥fn∥ =

∑n
j=1 |ηj |. Since

∑
ξjηj

converges, we know fn(x) → f(x) for each fixed x ∈ c0, where f(x) =
∑∞

j=1 ξjηj . This implies
that fn(x) are bounded for all n, so supn∈N+ |fn(x)| < ∞. By Uniform Boundedness Principle,
supn∈N+∥fn∥ < ∞. Since supn∈N+∥fn∥ = ∥f∥, we can conclude that

∑∞
j=1 |ηj | < ∞.

Problem 4.7-14. If X and Y are Banach spaces and Tn ∈ B(X,Y ), n = 1, 2, . . ., show that
equivalent statements are:

(a) (∥Tn∥) is bounded,

(b) (∥Tnx∥) is bounded for all x ∈ X,

(c) (|g(Tnx)|) is bounded for all x ∈ X and all g ∈ Y ′.

First, (a) implies (b) because ∥Tnx∥Y ≤ ∥Tn∥∥x∥X . Since ∥Tn∥ is bounded, for each fixed
x ∈ X, ∥x∥X is also bounded, it is obvious that ∥Tnx∥Y is also bounded.

Then, (b) implies (c) is also trivial, because |g(Tnx)| ≤ ∥g∥Y ′∥Tnx∥Y . Since ∥Tnx∥Y is supposed
to be bounded, and each fixed g ∈ Y ′ is also bounded, it is obvious that |g(Tnx)| is bounded.

Next, (c) implies (b) is a little subtle. Let C : Y 7→ Y ′′ be Canonical map, then g(Tnx) =

C(Tnx)(g) for all g ∈ Y ′. Since supx∈X |C(Tnx)(g)| < ∞, by Uniform Boundedness Principle,
supx∈X∥C(Tnx)∥Y ′′ < ∞. However, C is isometric operator, so ∥C(Tnx)∥Y ′′ = ∥Tnx∥Y . Therefore,
∥Tnx∥Y is bounded.

Finally, (b) implies (a) is trivial because this is just the statement of Uniform Boundedness
Principle.

Extra Problem 1. Let K be a convex subset of normed space X with K̊ ̸= ∅. Prove that K̊ = K.

Since K̊ ⊂ K, so K is a closed set containing K̊, but K̊ is the smallest closed set containing K̊

by definition of closure, so K̊ ⊂ K.

To prove K ⊂ K̊ we only need to prove ∂K ⊂ K̊, i.e., any neighborhood of a boundary point
of K must have non-empty intersecton with K̊. Take arbitrary boundary point x0 ∈ ∂K, and pick
any interior point y0 of K. Consider the open ball satisfying Nr(y0) ⊂ K̊. For each t ∈ (0, 1), we
claim that z = tx0 + (1 − t)y0 is an interior point of K. This is because for each t, the open ball
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centered at z with radius (1− t)r is contained in K. To see this, consider each point u in open ball
N(1−t)r(z),

∥u− tx0 − (1− t)y0∥ < (1− t)r =⇒
∥∥∥∥ 1

1− t
u− t

1− t
x0 − y0

∥∥∥∥ < r

Let v = 1
1−t

u − t
1−t

x0, then v is in Nr(y0), hence in K. Notice that (1 − t)v + tx0 = u, thus u is
also in K by the convexity of K. This implies that tx0 + (1− t)y0 is a interior point for t ∈ (0, 1).
Therefore, any neighborhood of x0 has non-empty intersecton with K̊, which shows ∂K ⊂ K̊.

Extra Problem 2. Let K be given as in the last problem. Suppose x0 ∈ K̊ and x1 ∈ ∂K. Define
x2 = m(x1 − x0) + x0, where m > 1. Prove that x2 /∈ K.

Suppose x2 ∈ K, by the claim in last problem, for t ∈ (0, 1), let z = tx0 + (1 − t)x2, then z

must be an interior point of K. Consider t = 1− 1
m

∈ (0, 1), then (1− t) = 1
m

∈ (0, 1), and

z =

(
1− 1

m

)
x0 +

1

m
x2 =

(
1− 1

m

)
x0 +

1

m
[m(x1 − x0) + x0] = x1

Thus, x1 should be an interior point of K, but by assumption it is in ∂K, contradiction. Therefore,
x2 /∈ K.

Extra Problem 3. Let K be a closed convex subset of normed space X. Prove that ∀x ∈ X \K,
∃ f ∈ X∗ such that ∥f∥ = 1 and

sup
y∈K

f(y) ≤ f(x)− dist(x,K)

For each x, take E = B(x; r) where r = dist(x,K) > 0. Recall K is closed and X \K is open,
so x is an interior point, and there exists an open neighbood Nδ(x) of x such that Nδ(x) does not
intersect with K, then we will have dist(x,K) > 0. Since K is closed convex and E has nonempty
interior, by Geometric Hahn-Banach II, there exists f ∈ X ′ such that ∥f∥ = 1 and f(y) ≤ f(x) for
all y ∈ K and x ∈ E. Therefore, it is obvious that supy∈K f(y) ≤ f(x) for all x ∈ E. For any small
ϵ > 0, since ∥f∥ = 1, there exists x0, such that |x0| = 1 and |f(x0)| > 1− ϵ. Take c = f(x0)

|f(x0)|(r − ϵ),
then we have |cx0| = r − ϵ < r. This implies that x− cx0 ∈ E, so we have

sup
y∈K

f(y) ≤ f(x− cx0) = f(x)− cf(x0) ≤ f(x)− (r − ϵ)(1− ϵ)

Take ϵ → 0, we have
sup
y∈K

f(y) ≤ f(x)− r = f(x)− dist(x,K)

Extra Problem 4. Let K be given as in last problem. Prove that for normed space X, ∀x ∈ X \K,

dist(x,K) = sup
f∈X∗,∥f∥=1

{
f(x)− sup

z∈K
f(z)

}
while for x ∈ K, only ≥ sign holds.
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From the last problem, it is obvious that for all x ∈ X \K,

dist(x,K) ≤ sup
∥f∥=1,f∈X∗

{
f(x)− sup

z∈K
f(z)

}
For x ∈ K, this inequality does not hold. The counter-example is that for X = R, x = 0 and
K = [−1, 1], consder any f ∈ X∗, it must be in the form of f(x) = ax. Since ∥f∥ = 1, we know
a = ±1. Therefore, supz∈[−1,1] f(x) = 1. This shows that f(x)− supz∈K f(z) ≡ −1 for all f ∈ X∗.
Therefore, RHS is −1 but LHS is 0, which shows ≤ does not hold.

Then we show for all x ∈ X (not necessarily in X \K), we have

dist(x,K) ≥ sup
∥f∥=1,f∈X∗

{
f(x)− sup

z∈K
f(z)

}
Consider any f ∈ X∗ such that ∥f∥ = 1, we have

f(x)− sup
z∈K

f(z) = f(x) + inf
z∈K

[−f(z)] = inf
z∈K

(f(x)− f(z)) = inf
z∈K

(f(x− z))

≤ inf
z∈K

∥f∥∥x− z∥ = inf
z∈K

∥x− z∥ = dist(x,K)

Since this is true for all f , take supremum over f on both sides, we have

sup
∥f∥=1,f∈X∗

{
f(x)− sup

z∈K
f(z)

}
≤ dist(x,K)

Extra Problem 5. Let p ∈ [1,∞]. Suppose f(x) is measurable on (0, 1), satisfying that for all
g ∈ Lp′

(0, 1), we have fg ∈ L1(0, 1). Prove that f ∈ Lp(0, 1).
Hint: For all n ≥ 1, let En = {x ∈ (0, 1) | |f(x)| ≤ n}. Define fn(x) = f(x)χEn

(x). Observe∣∣∣´ 1

0
fn(x)g(x) dx

∣∣∣ ≤ ´ 1

0
|fg| dx < ∞.

For 1 ≤ p < ∞, if we consider Tn defined on Lp′
(0, 1), we can defined Tn(g) =

´ 1

0
fn(x)g(x) dx,

where fn is defined in hint. Since∣∣∣∣ˆ 1

0

fn(x)g(x) dx

∣∣∣∣ ≤ ˆ 1

0

|fg| dx < ∞

we can conclude supn∈N+ |Tn(g)| < ∞ for all g ∈ Lp′
(0, 1). By Uniform Boundedness Principle,

supn∈N+∥Tn∥ < ∞. Since (Lp′
(0, 1))∗ = Lp(0, 1), ∥Tn∥ = ∥fn∥Lp(0,1). We have

ˆ 1

0

|f(x)|p dx = lim
n→∞

ˆ
En

|f(x)|p dx = sup
n∈N+

∥fn∥p < ∞

This is true because f cannot take infinity at positive measure set because if so, take g = 1 ∈
Lp′

(0, 1), then fg = f cannot be in L1(0, 1).

If p = ∞, we still have ∥Tn∥ = ∥fn∥Lp(0,1). Suppose f is unbounded under essential supremum
sense, then m{x | |f(x)| ≥ c} > 0 for all c. Then

m({x | |f(x)| ≥ c}) = m(∪n∈N+{x | |fn(x)| ≥ c}) > 0

This implies that there exists n, such that fn(x) ≥ c for all c, but this is a contradiction to
supn∈N+∥fn∥Lp(0,1) < ∞. Therefore, f is essentially bounded on (0, 1), so f ∈ L∞(0, 1).
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