MAT4010：Functional Analysis Homework 9

李肖鹏（116010114）

Due date：Nov．12， 2019
Problem 4．8－1．If $x_{n} \in \mathcal{C}[a, b]$ and $x_{n} \xrightarrow{w} x \in \mathcal{C}[a, b]$ ，show that $\left(x_{n}\right)$ is pointwise convergent on $[a, b]$ ，that is，$\left(x_{n}(t)\right)$ converges for every $t \in[a, b]$ ．

For each fixed $t \in[a, b]$ ，define $f_{t}(x)=x(t)$ for all $x \in \mathcal{C}[a, b]$ ．Then，$f_{t}(x)$ is linear because for all scalar a, b and $y \in \mathcal{C}[a, b]$ ，we have

$$
f_{t}(a x+b y)=(a x+b y)(t)=a x(t)+b y(t)=a f_{t}(x)+b f_{t}(y)
$$

$f_{t}(x)$ is bounded because $\|x\|=\sup _{t \in[a, b]}|x(t)|$ ，and $\left\|f_{t}\right\|=\sup _{\|x\|=1}|x(t)|=1$ ．Since $x_{n} \xrightarrow{w} x$ ，we have $\lim _{n \rightarrow \infty} f_{t}\left(x_{n}\right) \rightarrow f_{t}(x)$ for each fixed t ，i．e．， $\lim _{n \rightarrow \infty} x_{n}(t) \rightarrow x(t)$ ．This implies that $\left(x_{n}(t)\right)$ converges for every $t \in[a, b]$ ．

Problem 4．8－8．A weak Cauchy sequence in a real or complex normed space X is a sequence $\left(x_{n}\right)$ in X such that for every $f \in X^{\prime}$ the sequence $\left(f\left(x_{n}\right)\right)$ is Cauchy in \mathbb{R} or \mathbb{C} ，respectively．Show that a weak Cauchy sequence is bounded．

Since $\left(f\left(x_{n}\right)\right)$ is Cauchy，$f\left(x_{n}\right)$ must be convergent，and hence bounded，i．e．， $\sup _{n}\left|f\left(x_{n}\right)\right|<\infty$ for all f ．Since $f\left(x_{n}\right)=C x_{n}(f)$ for all f ，where C is the Canonical map，we can see $\sup _{n}\left|C x_{n}(f)\right|<$ ∞ ．Since X^{*} is Banach space，by Banach－Steinhauss， $\sup _{n}\left\|C x_{n}\right\|<\infty$ ．Since C is isometric mapping， $\sup _{n}\left\|x_{n}\right\|<\infty$ ，i．e．，x_{n} is bounded．

Extra Problem 1．Let H be Hilbert．
（i）Suppose H is also separable，then $x_{n} \xrightarrow{w} x_{\infty}$ as $n \rightarrow \infty$ if and only if $\left\|x_{n}\right\|$ is bounded over $n \in \mathbb{N}^{+}$and $\left\langle x_{n}, e_{k}\right\rangle_{H} \rightarrow\left\langle x_{\infty}, e_{k}\right\rangle_{H}$ as $n \rightarrow \infty$ ，for all $k \geq 1$ ．

For＂only if＂part，that weak convergence implies bounded has been proved in lecture；by Riesz representation，there exists $f_{e_{k}} \in H^{*}$ such that $\left\langle x_{n}, e_{k}\right\rangle_{H}=\left\langle f_{e_{k}}, x_{n}\right\rangle_{H^{*}, H}$ and $\left\langle x_{\infty}, e_{k}\right\rangle_{H}=$ $\left\langle f_{e_{k}}, x_{\infty}\right\rangle_{H^{*}, H}$ ．By weak convergence，$\left\langle f_{e_{k}}, x_{n}\right\rangle_{H^{*}, H} \rightarrow\left\langle f_{e_{k}}, x_{\infty}\right\rangle_{H^{*}, H}$ ．Therefore，we can con－ clude that $\left\langle x_{n}, e_{k}\right\rangle_{H} \rightarrow\left\langle x_{\infty}, e_{k}\right\rangle_{H}$ for all $k \geq 1$ ．

For＂if＂part，since all $f \in H^{*}$ can be represented by $\langle\cdot, z\rangle_{H}$ for unique $z \in H$ ，we only need to prove for all $z \in H,\left\langle x_{n}, z\right\rangle_{H} \rightarrow\left\langle x_{\infty}, z\right\rangle_{H}$ ．Write $z=\sum_{i=1}^{\infty} b_{i} e_{i}$ ，where $b_{i}=\left\langle z, e_{i}\right\rangle_{H}$ ．This implies that

$$
\left\langle x_{\infty}, z\right\rangle_{H}=\sum_{i=1}^{\infty} \bar{b}_{i}\left\langle x_{\infty}, e_{i}\right\rangle_{H}=\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty}\left\langle x_{n}, \sum_{i=1}^{m} b_{i} e_{i}\right\rangle_{H}=\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} a_{m n}
$$

Since $\left\langle x_{n}, e_{k}\right\rangle_{H} \rightarrow\left\langle x_{\infty}, e_{k}\right\rangle_{H}$ for all $k, a_{m n} \rightarrow a_{m}$ pointwise for any fixed n, where $a_{m}=$ $\left\langle x_{\infty}, \sum_{i=1}^{m} b_{i} e_{i}\right\rangle_{H}$. Now consider

$$
\left\langle x_{n}, \sum_{i=1}^{m} b_{i} e_{i}\right\rangle_{H}-\left\langle x_{n}, \sum_{i=1}^{\infty} b_{i} e_{i}\right\rangle_{H}=\left\langle x_{n}, \sum_{i=m+1}^{\infty} b_{i} e_{i}\right\rangle_{H} \leq\left\|x_{n}\right\|\left\|\sum_{i=m+1}^{\infty} b_{i} e_{i}\right\|
$$

Since $\left\|x_{n}\right\|$ is bounded, and

$$
\left\|\sum_{i=m+1}^{\infty} b_{i} e_{i}\right\|^{2}=\sum_{i=m+1}^{\infty}\left|\left\langle z, e_{i}\right\rangle\right|^{2} \rightarrow 0
$$

We can conclude that $a_{m n} \rightarrow a_{n}$ uniformly on m. Thus, by Theorem 7.11 in Rudin's book, we can exchange the order of limit, i.e.,

$$
\left\langle x_{\infty}, z\right\rangle_{H}=\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} a_{m n}=\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} a_{m n}=\lim _{n \rightarrow \infty}\left\langle x_{n}, z\right\rangle_{H}
$$

Therefore, we proved that $\left\langle x_{n}, z\right\rangle_{H} \rightarrow\left\langle x_{\infty}, z\right\rangle_{H}$ for all z, and this implies that x_{n} is weakly convergent to x_{∞}.
(ii) $x_{n} \rightarrow x_{\infty}$ if and only if $x_{n} \xrightarrow{w} x_{\infty}$ and $\left\|x_{n}\right\| \rightarrow\left\|x_{\infty}\right\|$ as $n \rightarrow \infty$.

The "only if" part is trivial, because strong convergence implies weak convergence and norm convergence.

For the "if" part, since $x_{n} \xrightarrow{w} x_{\infty}$, by Riesz representation, $\left\langle x_{n}, z\right\rangle_{H} \rightarrow\left\langle x_{\infty}, z\right\rangle_{H}$ for all $z \in H$. Take $z=x_{\infty}$, then we have $\left\langle x_{n}, x_{\infty}\right\rangle_{H} \rightarrow\left\langle x_{\infty}, x_{\infty}\right\rangle_{H}$. Notice that

$$
\begin{aligned}
\left\|x_{n}-x_{\infty}\right\|^{2} & =\left|\left\langle x_{n}, x_{n}\right\rangle_{H}-\left\langle x_{n}, x_{\infty}\right\rangle_{H}-\left\langle x_{\infty}, x_{n}\right\rangle_{H}+\left\langle x_{\infty}, x_{\infty}\right\rangle_{H}\right| \\
& =\left|\left(\left\langle x_{n}, x_{n}\right\rangle_{H}-\left\langle x_{\infty}, x_{\infty}\right\rangle_{H}\right)-\left(\left\langle x_{n}, x_{\infty}\right\rangle_{H}-\left\langle x_{\infty}, x_{\infty}\right\rangle_{H}\right)-\left(\left\langle x_{\infty}, x_{n}\right\rangle_{H}-\left\langle x_{\infty}, x_{\infty}\right\rangle_{H}\right)\right| \\
& \leq\left|\left\langle x_{n}, x_{n}\right\rangle_{H}-\left\langle x_{\infty}, x_{\infty}\right\rangle_{H}\right|+\left|\left\langle x_{n}, x_{\infty}\right\rangle_{H}-\left\langle x_{\infty}, x_{\infty}\right\rangle_{H}\right|+\left|\left\langle x_{\infty}, x_{n}\right\rangle_{H}-\left\langle x_{\infty}, x_{\infty}\right\rangle_{H}\right|
\end{aligned}
$$

Since $\left\|x_{n}\right\| \rightarrow\left\|x_{\infty}\right\|$, we have $\left\langle x_{n}, x_{n}\right\rangle_{H} \rightarrow\left\langle x_{\infty}, x_{\infty}\right\rangle_{H}$. Furthermore,

$$
\left|\left\langle x_{n}, x_{\infty}\right\rangle_{H}-\left\langle x_{\infty}, x_{\infty}\right\rangle_{H}\right|=\left|\left\langle x_{\infty}, x_{n}\right\rangle_{H}-\left\langle x_{\infty}, x_{\infty}\right\rangle_{H}\right|
$$

Therefore, $\left\|x_{n}-x_{\infty}\right\|^{2} \leq\left|\left\langle x_{n}, x_{n}\right\rangle_{H}-\left\langle x_{\infty}, x_{\infty}\right\rangle_{H}\right|+2\left|\left\langle x_{n}, x_{\infty}\right\rangle_{H}-\left\langle x_{\infty}, x_{\infty}\right\rangle_{H}\right| \rightarrow 0$. We can conclude that $\left\|x_{n}-x_{\infty}\right\| \rightarrow 0$, thus $x_{n} \rightarrow x_{\infty}$.
(iii) If $x_{n} \xrightarrow{w} x_{\infty}, y \rightarrow y_{\infty}$ as $n \rightarrow \infty$, then $\left\langle x_{n}, y_{n}\right\rangle_{H} \rightarrow\left\langle x_{\infty}, y_{\infty}\right\rangle_{H}$ as $n \rightarrow \infty$.

Again, by Riesz representation, weak convergence of x_{n} to x_{∞} implies that $\left\langle x_{n}, y_{\infty}\right\rangle_{H} \rightarrow$ $\left\langle x_{\infty}, y_{\infty}\right\rangle_{H}$. Notice that

$$
\begin{aligned}
\left|\left\langle x_{n}, y_{n}\right\rangle_{H}-\left\langle x_{\infty}, y_{\infty}\right\rangle_{H}\right| & \leq\left|\left\langle x_{n}, y_{n}\right\rangle_{H}-\left\langle x_{n}, y_{\infty}\right\rangle_{H}\right|+\left|\left\langle x_{n}, y_{\infty}\right\rangle_{H}-\left\langle x_{\infty}, y_{\infty}\right\rangle_{H}\right| \\
& \leq\left\|x_{n}\right\|\left\|y_{n}-y_{\infty}\right\|+\left|\left\langle x_{n}, y_{\infty}\right\rangle_{H}-\left\langle x_{\infty}, y_{\infty}\right\rangle_{H}\right|
\end{aligned}
$$

Since $x_{n} \xrightarrow{w} x_{\infty},\left\|x_{n}\right\|$ is bounded, and $y_{n} \rightarrow y_{\infty}$ implies $\left\|y_{n}-y_{\infty}\right\| \rightarrow 0$, we conclude that $\left\langle x_{n}, y_{n}\right\rangle_{H} \rightarrow\left\langle x_{\infty}, y_{\infty}\right\rangle_{H}$.

Extra Problem 2. Let K be a closed convex subset of a real normed space X.
(i) Prove that K is weakly closed, i.e., if $\left\{x_{n}\right\}_{n=1}^{\infty} \subset K$ and $x_{n} \xrightarrow{w} x_{\infty}$ in X as $n \rightarrow \infty$, then $x_{\infty} \in K$.

Suppose $\left\{x_{n}\right\}_{n=1}^{\infty} \subset K$, but $x_{\infty} \notin K$, then since K is convex and closed, by Ascoli Theorem, there exists $f \in X^{*}$, such that $f\left(x_{n}\right)<c<f\left(x_{\infty}\right)$ for all n. By weak convergence, $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(x_{\infty}\right)$, so we obtain $f\left(x_{\infty}\right) \leq c<f\left(x_{\infty}\right)$ by taking limit on both sides, but it is impossible that $f\left(x_{\infty}\right)<f\left(x_{\infty}\right)$, so contradiction shows that $x_{\infty} \in K$. Hence, K is weakly closed.
(ii) Prove that if $x_{n} \xrightarrow{w} x_{0}$, then $x_{0} \in \overline{\operatorname{span}\left(x_{n}\right)}$. Also show that any closed subspace Y of a normed space X contains the limits of all weakly convergent sequences of its elements.

Since $\overline{\operatorname{span}\left(x_{n}\right)}$ is closed, and it is also a subspace of X (the closure of a subspace is also subspace), since any subspace of X is convex, it is closed and convex. Then by (i), if $x_{n} \xrightarrow{w} x_{0}$, $x_{0} \in \overline{\operatorname{span}\left(x_{n}\right)}$.
Again, since any subspace Y of X must be convex, and in addition, it is closed, so by (i), it is weakly closed, i.e., any weakly convergent sequence of Y must weakly converge to a point in Y.
(iii) If $\left(x_{n}\right)$ is a weakly convergent sequence in X, say, $x_{n} \xrightarrow{w} x_{0}$, show that there is a sequence $\left(y_{m}\right)$ of linear combinations of elements of $\left(x_{n}\right)$ which converges strongly to x_{0}.

By (ii), $x_{n} \xrightarrow{w} x_{0}$ implies $x_{0} \in \overline{\operatorname{span}\left(x_{n}\right)}$, this implies that there exists a sequence $y_{n} \in \operatorname{span}\left(x_{n}\right)$, and $y_{n} \rightarrow x_{0}$ strongly. However, $y_{n} \in \operatorname{span}\left(x_{n}\right)$ just means y_{n} is a linear combinations of elements of $\left(x_{n}\right)$, so the proof is finished.

Extra Problem 3. Let K and X be given in last problem, Assume that X is also reflexive. Prove that
(i) $\forall y_{0} \in X \backslash K, \exists x_{0} \in K$ such that $\left\|x_{0}-y_{0}\right\|=\operatorname{dist}\left(y_{0}, K\right)$.

Let $\operatorname{dist}\left(y_{0}, K\right)=c$ be a constant. By definition of distance, there exists $x_{n} \in K$ such that $\left\|x_{n}-y_{0}\right\| \rightarrow c$. It is obvious that $\left\|x_{n}\right\|$ is bounded, and X is reflexive, then by Banach-Eberlein Theorem, $x_{n} \xrightarrow{w} x_{\infty} \in K$. Now we claim that $\left\|y_{0}-x_{\infty}\right\|=c$, i.e., x_{∞} is the required x_{0} in the question.
Since $x_{\infty} \in K, c=\inf _{x \in K}\left\|y_{0}-x\right\| \leq\left\|y_{0}-x_{\infty}\right\|$, so we only need to show $\left\|y_{0}-x_{\infty}\right\| \leq c$. Recall application 2 of Hahn-Banach in lecture,

$$
\begin{aligned}
\left\|x_{\infty}-y_{0}\right\| & =\sup _{\|f\|=1, f \in X^{*}}\left|f\left(x_{\infty}-y_{0}\right)\right|=\sup _{\|f\|=1, f \in X^{*}}\left|\lim _{n \rightarrow \infty} f\left(x_{n}-y_{0}\right)\right| \\
& =\sup _{\|f\|=1, f \in X^{*}} \lim _{n \rightarrow \infty}\left|f\left(x_{n}-y_{0}\right)\right| \leq \sup _{\|f\|=1, f \in X^{*}} \lim _{n \rightarrow \infty}\left\|x_{n}-y_{0}\right\| \\
& =\lim _{n \rightarrow \infty}\left\|x_{n}-y_{0}\right\|=c
\end{aligned}
$$

Therefore, we can conclude that $\left\|y_{0}-x_{\infty}\right\|=c$.
(ii) Assume also that K is bounded. Prove that $\forall f \in X^{*}, f$ attains its maximum and minimum over K.

Let $A=\{f(x) \mid x \in K\}$, then $A \subset \mathbb{R}$ and A is bounded because f is linear bounded function, so it maps bounded set to bounded set. Then A has supremum c and infimum d. Then there exists $x_{n}, y_{n} \in K$ such that $f\left(x_{n}\right) \rightarrow c$ and $f\left(y_{n}\right) \rightarrow d$. Also, x_{n}, y_{n} are bounded, by BanachElberlein again, $x_{n} \rightarrow x_{\infty}$ and $y_{n} \rightarrow y_{\infty}$. Since K is weakly closed, $x_{\infty}, y_{\infty} \in K$. Therefore, $f\left(x_{n}\right) \rightarrow f\left(x_{\infty}\right)=c$ and $f\left(y_{n}\right) \rightarrow f\left(y_{\infty}\right)=d$, so f attains its maximum and minimum over K.

Extra Problem 4. Prove that $x_{k} \xrightarrow{w} x_{\infty}$ in l^{1} implies strong convergence $x_{k} \rightarrow x_{\infty}$ as $k \rightarrow \infty$.
Suppose $y_{k}=x_{k}-x_{\infty}$, then $y_{k} \xrightarrow{w} 0$. Assume $x_{k} \nrightarrow x_{\infty}$, then $y_{k} \nrightarrow 0$ and so there exists a subsequence of y_{k}, i.e., $y_{k_{j}}$ such that $\left\|y_{k_{j}}\right\|$ is bounded away from zero, then there exists a constant $c>0$ such that $\left\|y_{k_{j}}\right\| \geq c$, so let $z_{j}=y_{k_{j}} / c,\left\|z_{j}\right\| \geq 1$.

Now we obtain a sequence z_{j} such that $z_{j} \xrightarrow{w} 0$ and $\left\|z_{j}\right\| \geq 1$. Since $z_{j} \xrightarrow{w} 0$, for all $f \in\left(l^{1}\right)^{*}$, $f\left(z_{j}\right) \rightarrow f(0)=0$. Consider a sequence of f_{n} defined by $f_{n}\left(z_{j}\right)=z_{j, n}$, where $z_{j, n}$ is the n-th entry of z_{j}. Such functions must be linear and bounded, so this implies that $z_{j, n} \rightarrow 0$ as $j \rightarrow \infty$ for any fixed n.

Since $z_{1} \in l^{1}$, we can choose K_{1} large enough such that $\sum_{n=K_{1}+1}^{\infty}\left|z_{1, n}\right|<\frac{1}{5}$. Combined with $z_{j, n} \rightarrow 0$, we have $\sum_{n=1}^{K_{1}}\left|z_{j, n}\right| \rightarrow 0$ as $j \rightarrow \infty$. Thus, we can find j_{2} such that $\sum_{n=1}^{K_{1}}\left|z_{j_{2}, n}\right|<\frac{1}{5}$. Since $Z_{j_{2}} \in l^{1}$, we can choose $K_{2}>K_{1}$ such that $\sum_{n=K_{2}+1}^{\infty}\left|z_{j_{2}, n}\right|<\frac{1}{5}$. Continue this process, let $j_{1}=1$, then the subsequence $z_{j_{m}, n}$ satisfies $\sum_{n=1}^{K_{m-1}}\left|z_{j_{m}, n}\right|<\frac{1}{5}$ (for all $m \geq 2$) and $\sum_{n=K_{m}+1}^{\infty}\left|z_{j_{m}, n}\right|<\frac{1}{5}$ (for all $m \in \mathbb{N}^{+}$).

Now we define $u=\left(u_{1}, \ldots, u_{n}, \ldots\right)$ by $u_{n}=\frac{\left|z_{j_{m}, n}\right|}{z_{j_{m}, n}}$ for $K_{m-1}<n \leq K_{m}\left(K_{0}=0\right)$. If $z_{j_{m}, n}=0$, then let $u_{n}=1$. Then $u \in l^{\infty}\left(\left|u_{n}\right|=1\right.$ for all $\left.n\right)$, so u can be treated as a linear and bounded functional defined l^{1}. By our assumption, weak convergence implies that $\left\langle u, z_{j_{m}}\right\rangle_{\left(l^{1}\right)^{*}, l^{1}} \rightarrow 0$ as $m \rightarrow \infty$. However, for all $m \geq 2$,

$$
\begin{aligned}
\left|\sum_{n=1}^{\infty} z_{j_{m}, n} u_{n}\right| & \geq\left|\sum_{n=K_{m-1}+1}^{K_{m}} z_{j_{m}, n} u_{n}\right|-\left|\sum_{n=1}^{K_{m-1}} z_{j_{m}, n} u_{n}\right|-\left|\sum_{n=K_{m}+1}^{\infty} z_{j_{m}, n} u_{n}\right| \\
& \geq \sum_{n=K_{m-1}+1}^{K_{m}}\left|z_{j_{m}, n}\right|-\sum_{n=1}^{K_{m-1}}\left|z_{j_{m}, n}\right|-\sum_{n=K_{m}+1}^{\infty}\left|z_{j_{m}, n}\right| \\
& =\sum_{n=1}^{\infty}\left|z_{j_{m}, n}\right|-2 \sum_{n=1}^{K_{m-1}}\left|z_{j_{m}, n}\right|-2 \sum_{n=K_{m}+1}^{\infty}\left|z_{j_{m}, n}\right|>\frac{1}{5}
\end{aligned}
$$

This implies that $\left\langle u, z_{j_{m}}\right\rangle_{\left(l^{1}\right)^{*}, l^{1}} \nrightarrow 0$, contradiction implies that our assumption is wrong, i.e., such c and z_{j} does not exist, and $y_{k} \rightarrow 0$ strongly.

