MAT4010: Functional Analysis Homework 9

李肖鹏 (116010114)

Due date: Nov. 12, 2019

Problem 4.8-1. If $x_n \in \mathcal{C}[a, b]$ and $x_n \xrightarrow{w} x \in \mathcal{C}[a, b]$, show that (x_n) is pointwise convergent on [a, b], that is, $(x_n(t))$ converges for every $t \in [a, b]$.

For each fixed $t \in [a, b]$, define $f_t(x) = x(t)$ for all $x \in \mathcal{C}[a, b]$. Then, $f_t(x)$ is linear because for all scalar a, b and $y \in \mathcal{C}[a, b]$, we have

$$f_t(ax + by) = (ax + by)(t) = ax(t) + by(t) = af_t(x) + bf_t(y)$$

 $f_t(x)$ is bounded because $||x|| = \sup_{t \in [a,b]} |x(t)|$, and $||f_t|| = \sup_{||x||=1} |x(t)| = 1$. Since $x_n \xrightarrow{w} x$, we have $\lim_{n \to \infty} f_t(x_n) \to f_t(x)$ for each fixed t, i.e., $\lim_{n \to \infty} x_n(t) \to x(t)$. This implies that $(x_n(t))$ converges for every $t \in [a,b]$.

Problem 4.8-8. A weak Cauchy sequence in a real or complex normed space X is a sequence (x_n) in X such that for every $f \in X'$ the sequence $(f(x_n))$ is Cauchy in \mathbb{R} or \mathbb{C} , respectively. Show that a weak Cauchy sequence is bounded.

Since $(f(x_n))$ is Cauchy, $f(x_n)$ must be convergent, and hence bounded, i.e., $\sup_n |f(x_n)| < \infty$ for all f. Since $f(x_n) = Cx_n(f)$ for all f, where C is the Canonical map, we can see $\sup_n |Cx_n(f)| < \infty$. ∞ . Since X^* is Banach space, by Banach-Steinhauss, $\sup_n ||Cx_n|| < \infty$. Since C is isometric mapping, $\sup_n ||x_n|| < \infty$, i.e., x_n is bounded.

Extra Problem 1. Let H be Hilbert.

(i) Suppose *H* is also separable, then $x_n \xrightarrow{w} x_\infty$ as $n \to \infty$ if and only if $||x_n||$ is bounded over $n \in \mathbb{N}^+$ and $\langle x_n, e_k \rangle_H \to \langle x_\infty, e_k \rangle_H$ as $n \to \infty$, for all $k \ge 1$.

For "only if" part, that weak convergence implies bounded has been proved in lecture; by Riesz representation, there exists $f_{e_k} \in H^*$ such that $\langle x_n, e_k \rangle_H = \langle f_{e_k}, x_n \rangle_{H^*, H}$ and $\langle x_\infty, e_k \rangle_H = \langle f_{e_k}, x_\infty \rangle_{H^*, H}$. By weak convergence, $\langle f_{e_k}, x_n \rangle_{H^*, H} \rightarrow \langle f_{e_k}, x_\infty \rangle_{H^*, H}$. Therefore, we can conclude that $\langle x_n, e_k \rangle_H \rightarrow \langle x_\infty, e_k \rangle_H$ for all $k \geq 1$.

For "if" part, since all $f \in H^*$ can be represented by $\langle \cdot, z \rangle_H$ for unique $z \in H$, we only need to prove for all $z \in H$, $\langle x_n, z \rangle_H \to \langle x_\infty, z \rangle_H$. Write $z = \sum_{i=1}^{\infty} b_i e_i$, where $b_i = \langle z, e_i \rangle_H$. This implies that

$$\langle x_{\infty}, z \rangle_{H} = \sum_{i=1}^{\infty} \bar{b}_{i} \langle x_{\infty}, e_{i} \rangle_{H} = \lim_{m \to \infty} \lim_{n \to \infty} \left\langle x_{n}, \sum_{i=1}^{m} b_{i} e_{i} \right\rangle_{H} = \lim_{m \to \infty} \lim_{n \to \infty} a_{mn}$$

Since $\langle x_n, e_k \rangle_H \to \langle x_\infty, e_k \rangle_H$ for all $k, a_{mn} \to a_m$ pointwise for any fixed n, where $a_m = \langle x_\infty, \sum_{i=1}^m b_i e_i \rangle_H$. Now consider

$$\left\langle x_n, \sum_{i=1}^m b_i e_i \right\rangle_H - \left\langle x_n, \sum_{i=1}^\infty b_i e_i \right\rangle_H = \left\langle x_n, \sum_{i=m+1}^\infty b_i e_i \right\rangle_H \le \|x_n\| \left\| \sum_{i=m+1}^\infty b_i e_i \right\|_H$$

Since $||x_n||$ is bounded, and

$$\left\|\sum_{i=m+1}^{\infty} b_i e_i\right\|^2 = \sum_{i=m+1}^{\infty} |\langle z, e_i \rangle|^2 \to 0$$

We can conclude that $a_{mn} \rightarrow a_n$ uniformly on m. Thus, by Theorem 7.11 in Rudin's book, we can exchange the order of limit, i.e.,

$$\langle x_{\infty}, z \rangle_{H} = \lim_{m \to \infty} \lim_{n \to \infty} a_{mn} = \lim_{n \to \infty} \lim_{m \to \infty} a_{mn} = \lim_{n \to \infty} \langle x_{n}, z \rangle_{H}$$

Therefore, we proved that $\langle x_n, z \rangle_H \to \langle x_\infty, z \rangle_H$ for all z, and this implies that x_n is weakly convergent to x_∞ .

(ii) $x_n \to x_\infty$ if and only if $x_n \xrightarrow{w} x_\infty$ and $||x_n|| \to ||x_\infty||$ as $n \to \infty$.

The "only if" part is trivial, because strong convergence implies weak convergence and norm convergence.

For the "if" part, since $x_n \xrightarrow{w} x_\infty$, by Riesz representation, $\langle x_n, z \rangle_H \to \langle x_\infty, z \rangle_H$ for all $z \in H$. Take $z = x_\infty$, then we have $\langle x_n, x_\infty \rangle_H \to \langle x_\infty, x_\infty \rangle_H$. Notice that

$$\begin{aligned} \|x_n - x_{\infty}\|^2 &= |\langle x_n, x_n \rangle_H - \langle x_n, x_{\infty} \rangle_H - \langle x_{\infty}, x_n \rangle_H + \langle x_{\infty}, x_{\infty} \rangle_H | \\ &= |(\langle x_n, x_n \rangle_H - \langle x_{\infty}, x_{\infty} \rangle_H) - (\langle x_n, x_{\infty} \rangle_H - \langle x_{\infty}, x_{\infty} \rangle_H) - (\langle x_{\infty}, x_n \rangle_H - \langle x_{\infty}, x_{\infty} \rangle_H) | \\ &\leq |\langle x_n, x_n \rangle_H - \langle x_{\infty}, x_{\infty} \rangle_H | + |\langle x_n, x_{\infty} \rangle_H - \langle x_{\infty}, x_{\infty} \rangle_H | + |\langle x_{\infty}, x_{\infty} \rangle_H | \\ \end{aligned}$$

Since $||x_n|| \to ||x_\infty||$, we have $\langle x_n, x_n \rangle_H \to \langle x_\infty, x_\infty \rangle_H$. Furthermore,

$$|\langle x_n, x_\infty \rangle_H - \langle x_\infty, x_\infty \rangle_H| = |\langle x_\infty, x_n \rangle_H - \langle x_\infty, x_\infty \rangle_H|$$

Therefore, $||x_n - x_\infty||^2 \le |\langle x_n, x_n \rangle_H - \langle x_\infty, x_\infty \rangle_H| + 2|\langle x_n, x_\infty \rangle_H - \langle x_\infty, x_\infty \rangle_H| \to 0$. We can conclude that $||x_n - x_\infty|| \to 0$, thus $x_n \to x_\infty$.

(iii) If $x_n \xrightarrow{w} x_\infty$, $y \to y_\infty$ as $n \to \infty$, then $\langle x_n, y_n \rangle_H \to \langle x_\infty, y_\infty \rangle_H$ as $n \to \infty$.

Again, by Riesz representation, weak convergence of x_n to x_∞ implies that $\langle x_n, y_\infty \rangle_H \to \langle x_\infty, y_\infty \rangle_H$. Notice that

$$\begin{aligned} |\langle x_n, y_n \rangle_H - \langle x_\infty, y_\infty \rangle_H| &\leq |\langle x_n, y_n \rangle_H - \langle x_n, y_\infty \rangle_H| + |\langle x_n, y_\infty \rangle_H - \langle x_\infty, y_\infty \rangle_H| \\ &\leq ||x_n|| ||y_n - y_\infty|| + |\langle x_n, y_\infty \rangle_H - \langle x_\infty, y_\infty \rangle_H| \end{aligned}$$

Since $x_n \xrightarrow{w} x_\infty$, $||x_n||$ is bounded, and $y_n \to y_\infty$ implies $||y_n - y_\infty|| \to 0$, we conclude that $\langle x_n, y_n \rangle_H \to \langle x_\infty, y_\infty \rangle_H$.

Extra Problem 2. Let K be a closed convex subset of a real normed space X.

(i) Prove that K is weakly closed, i.e., if $\{x_n\}_{n=1}^{\infty} \subset K$ and $x_n \xrightarrow{w} x_{\infty}$ in X as $n \to \infty$, then $x_{\infty} \in K$.

Suppose $\{x_n\}_{n=1}^{\infty} \subset K$, but $x_{\infty} \notin K$, then since K is convex and closed, by Ascoli Theorem, there exists $f \in X^*$, such that $f(x_n) < c < f(x_{\infty})$ for all n. By weak convergence, $\lim_{n\to\infty} f(x_n) = f(x_{\infty})$, so we obtain $f(x_{\infty}) \leq c < f(x_{\infty})$ by taking limit on both sides, but it is impossible that $f(x_{\infty}) < f(x_{\infty})$, so contradiction shows that $x_{\infty} \in K$. Hence, K is weakly closed.

(ii) Prove that if $x_n \xrightarrow{w} x_0$, then $x_0 \in \overline{\operatorname{span}(x_n)}$. Also show that any closed subspace Y of a normed space X contains the limits of all weakly convergent sequences of its elements.

Since span (x_n) is closed, and it is also a subspace of X (the closure of a subspace is also subspace), since any subspace of X is convex, it is closed and convex. Then by (i), if $x_n \xrightarrow{w} x_0$, $x_0 \in \overline{\text{span}(x_n)}$.

Again, since any subspace Y of X must be convex, and in addition, it is closed, so by (i), it is weakly closed, i.e., any weakly convergent sequence of Y must weakly converge to a point in Y.

(iii) If (x_n) is a weakly convergent sequence in X, say, $x_n \xrightarrow{w} x_0$, show that there is a sequence (y_m) of linear combinations of elements of (x_n) which converges strongly to x_0 .

By (ii), $x_n \xrightarrow{w} x_0$ implies $x_0 \in \text{span}(x_n)$, this implies that there exists a sequence $y_n \in \text{span}(x_n)$, and $y_n \to x_0$ strongly. However, $y_n \in \text{span}(x_n)$ just means y_n is a linear combinations of elements of (x_n) , so the proof is finished.

Extra Problem 3. Let K and X be given in last problem, Assume that X is also reflexive. Prove that

(i) $\forall y_0 \in X \setminus K$, $\exists x_0 \in K$ such that $||x_0 - y_0|| = \operatorname{dist}(y_0, K)$.

Let $\operatorname{dist}(y_0, K) = c$ be a constant. By definition of distance, there exists $x_n \in K$ such that $||x_n - y_0|| \to c$. It is obvious that $||x_n||$ is bounded, and X is reflexive, then by Banach-Eberlein Theorem, $x_n \xrightarrow{w} x_\infty \in K$. Now we claim that $||y_0 - x_\infty|| = c$, i.e., x_∞ is the required x_0 in the question.

Since $x_{\infty} \in K$, $c = \inf_{x \in K} ||y_0 - x|| \le ||y_0 - x_{\infty}||$, so we only need to show $||y_0 - x_{\infty}|| \le c$. Recall application 2 of Hahn-Banach in lecture,

$$\|x_{\infty} - y_{0}\| = \sup_{\|f\|=1, f \in X^{*}} |f(x_{\infty} - y_{0})| = \sup_{\|f\|=1, f \in X^{*}} |\lim_{n \to \infty} f(x_{n} - y_{0})|$$
$$= \sup_{\|f\|=1, f \in X^{*}} \lim_{n \to \infty} |f(x_{n} - y_{0})| \le \sup_{\|f\|=1, f \in X^{*}} \lim_{n \to \infty} ||x_{n} - y_{0}||$$
$$= \lim_{n \to \infty} ||x_{n} - y_{0}|| = c$$

Therefore, we can conclude that $||y_0 - x_{\infty}|| = c$.

(ii) Assume also that K is bounded. Prove that $\forall f \in X^*$, f attains its maximum and minimum over K.

Let $A = \{f(x) \mid x \in K\}$, then $A \subset \mathbb{R}$ and A is bounded because f is linear bounded function, so it maps bounded set to bounded set. Then A has supremum c and infimum d. Then there exists $x_n, y_n \in K$ such that $f(x_n) \to c$ and $f(y_n) \to d$. Also, x_n, y_n are bounded, by Banach-Elberlein again, $x_n \to x_\infty$ and $y_n \to y_\infty$. Since K is weakly closed, $x_\infty, y_\infty \in K$. Therefore, $f(x_n) \to f(x_\infty) = c$ and $f(y_n) \to f(y_\infty) = d$, so f attains its maximum and minimum over K.

Extra Problem 4. Prove that $x_k \xrightarrow{w} x_\infty$ in l^1 implies strong convergence $x_k \to x_\infty$ as $k \to \infty$.

Suppose $y_k = x_k - x_\infty$, then $y_k \xrightarrow{w} 0$. Assume $x_k \not\rightarrow x_\infty$, then $y_k \not\rightarrow 0$ and so there exists a subsequence of y_k , i.e., y_{k_j} such that $\|y_{k_j}\|$ is bounded away from zero, then there exists a constant c > 0 such that $\|y_{k_j}\| \ge c$, so let $z_j = y_{k_j}/c$, $\|z_j\| \ge 1$.

Now we obtain a sequence z_j such that $z_j \xrightarrow{w} 0$ and $||z_j|| \ge 1$. Since $z_j \xrightarrow{w} 0$, for all $f \in (l^1)^*$, $f(z_j) \to f(0) = 0$. Consider a sequence of f_n defined by $f_n(z_j) = z_{j,n}$, where $z_{j,n}$ is the *n*-th entry of z_j . Such functions must be linear and bounded, so this implies that $z_{j,n} \to 0$ as $j \to \infty$ for any fixed *n*.

Since $z_1 \in l^1$, we can choose K_1 large enough such that $\sum_{n=K_1+1}^{\infty} |z_{1,n}| < \frac{1}{5}$. Combined with $z_{j,n} \to 0$, we have $\sum_{n=1}^{K_1} |z_{j,n}| \to 0$ as $j \to \infty$. Thus, we can find j_2 such that $\sum_{n=1}^{K_1} |z_{j_2,n}| < \frac{1}{5}$. Since $Z_{j_2} \in l^1$, we can choose $K_2 > K_1$ such that $\sum_{n=K_2+1}^{\infty} |z_{j_2,n}| < \frac{1}{5}$. Continue this process, let $j_1 = 1$, then the subsequence $z_{j_m,n}$ satisfies $\sum_{n=1}^{K_{m-1}} |z_{j_m,n}| < \frac{1}{5}$ (for all $m \ge 2$) and $\sum_{n=K_m+1}^{\infty} |z_{j_m,n}| < \frac{1}{5}$ (for all $m \in \mathbb{N}^+$).

Now we define $u = (u_1, \ldots, u_n, \ldots)$ by $u_n = \frac{|z_{j_m,n}|}{z_{j_m,n}}$ for $K_{m-1} < n \le K_m$ $(K_0 = 0)$. If $z_{j_m,n} = 0$, then let $u_n = 1$. Then $u \in l^{\infty}$ $(|u_n| = 1$ for all n), so u can be treated as a linear and bounded functional defined l^1 . By our assumption, weak convergence implies that $\langle u, z_{j_m} \rangle_{(l^1)^*, l^1} \to 0$ as $m \to \infty$. However, for all $m \ge 2$,

$$\left|\sum_{n=1}^{\infty} z_{j_m,n} u_n\right| \ge \left|\sum_{n=K_{m-1}+1}^{K_m} z_{j_m,n} u_n\right| - \left|\sum_{n=1}^{K_{m-1}} z_{j_m,n} u_n\right| - \left|\sum_{n=K_m+1}^{\infty} z_{j_m,n} u_n\right|$$
$$\ge \sum_{n=K_{m-1}+1}^{K_m} |z_{j_m,n}| - \sum_{n=1}^{K_{m-1}} |z_{j_m,n}| - \sum_{n=K_m+1}^{\infty} |z_{j_m,n}|$$
$$= \sum_{n=1}^{\infty} |z_{j_m,n}| - 2\sum_{n=1}^{K_{m-1}} |z_{j_m,n}| - 2\sum_{n=K_m+1}^{\infty} |z_{j_m,n}| > \frac{1}{5}$$

This implies that $\langle u, z_{j_m} \rangle_{(l^1)^*, l^1} \neq 0$, contradiction implies that our assumption is wrong, i.e., such c and z_j does not exist, and $y_k \to 0$ strongly.