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Due date: Nov. 12, 2019
Problem 4.8-1. If xn ∈ C[a, b] and xn

w−→ x ∈ C[a, b], show that (xn) is pointwise convergent on
[a, b], that is, (xn(t)) converges for every t ∈ [a, b].

For each fixed t ∈ [a, b], define ft(x) = x(t) for all x ∈ C[a, b]. Then, ft(x) is linear because for
all scalar a, b and y ∈ C[a, b], we have

ft(ax+ by) = (ax+ by)(t) = ax(t) + by(t) = aft(x) + bft(y)

ft(x) is bounded because ∥x∥ = supt∈[a,b] |x(t)|, and ∥ft∥ = sup∥x∥=1 |x(t)| = 1. Since xn
w−→ x, we

have limn→∞ ft(xn) → ft(x) for each fixed t, i.e., limn→∞ xn(t) → x(t). This implies that (xn(t))

converges for every t ∈ [a, b].

Problem 4.8-8. A weak Cauchy sequence in a real or complex normed space X is a sequence (xn)

in X such that for every f ∈ X ′ the sequence (f(xn)) is Cauchy in R or C, respectively. Show that
a weak Cauchy sequence is bounded.

Since (f(xn)) is Cauchy, f(xn) must be convergent, and hence bounded, i.e., supn |f(xn)| < ∞
for all f . Since f(xn) = Cxn(f) for all f , where C is the Canonical map, we can see supn |Cxn(f)| <
∞. Since X∗ is Banach space, by Banach-Steinhauss, supn∥Cxn∥ < ∞. Since C is isometric
mapping, supn∥xn∥ < ∞, i.e., xn is bounded.

Extra Problem 1. Let H be Hilbert.

(i) Suppose H is also separable, then xn
w−→ x∞ as n → ∞ if and only if ∥xn∥ is bounded over

n ∈ N+ and ⟨xn, ek⟩H → ⟨x∞, ek⟩H as n → ∞, for all k ≥ 1.

For “only if” part, that weak convergence implies bounded has been proved in lecture; by Riesz
representation, there exists fek ∈ H∗ such that ⟨xn, ek⟩H = ⟨fek , xn⟩H∗,H and ⟨x∞, ek⟩H =

⟨fek , x∞⟩H∗,H . By weak convergence, ⟨fek , xn⟩H∗,H → ⟨fek , x∞⟩H∗,H . Therefore, we can con-
clude that ⟨xn, ek⟩H → ⟨x∞, ek⟩H for all k ≥ 1.

For “if” part, since all f ∈ H∗ can be represented by ⟨·, z⟩H for unique z ∈ H, we only need
to prove for all z ∈ H, ⟨xn, z⟩H → ⟨x∞, z⟩H . Write z =

∑∞
i=1 biei, where bi = ⟨z, ei⟩H . This

implies that

⟨x∞, z⟩H =
∞∑
i=1

b̄i⟨x∞, ei⟩H = lim
m→∞

lim
n→∞

⟨
xn,

m∑
i=1

biei

⟩
H

= lim
m→∞

lim
n→∞

amn
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Since ⟨xn, ek⟩H → ⟨x∞, ek⟩H for all k, amn → am pointwise for any fixed n, where am =

⟨x∞,
∑m

i=1 biei⟩H . Now consider⟨
xn,

m∑
i=1

biei

⟩
H

−

⟨
xn,

∞∑
i=1

biei

⟩
H

=

⟨
xn,

∞∑
i=m+1

biei

⟩
H

≤ ∥xn∥

∥∥∥∥∥
∞∑

i=m+1

biei

∥∥∥∥∥
Since ∥xn∥ is bounded, and ∥∥∥∥∥

∞∑
i=m+1

biei

∥∥∥∥∥
2

=
∞∑

i=m+1

|⟨z, ei⟩|2 → 0

We can conclude that amn → an uniformly on m. Thus, by Theorem 7.11 in Rudin’s book, we
can exchange the order of limit, i.e.,

⟨x∞, z⟩H = lim
m→∞

lim
n→∞

amn = lim
n→∞

lim
m→∞

amn = lim
n→∞

⟨xn, z⟩H

Therefore, we proved that ⟨xn, z⟩H → ⟨x∞, z⟩H for all z, and this implies that xn is weakly
convergent to x∞.

(ii) xn → x∞ if and only if xn
w−→ x∞ and ∥xn∥ → ∥x∞∥ as n → ∞.

The “only if” part is trivial, because strong convergence implies weak convergence and norm
convergence.

For the “if” part, since xn
w−→ x∞, by Riesz representation, ⟨xn, z⟩H → ⟨x∞, z⟩H for all z ∈ H.

Take z = x∞, then we have ⟨xn, x∞⟩H → ⟨x∞, x∞⟩H . Notice that

∥xn − x∞∥2 = |⟨xn, xn⟩H − ⟨xn, x∞⟩H − ⟨x∞, xn⟩H + ⟨x∞, x∞⟩H |

= |(⟨xn, xn⟩H − ⟨x∞, x∞⟩H)− (⟨xn, x∞⟩H − ⟨x∞, x∞⟩H)− (⟨x∞, xn⟩H − ⟨x∞, x∞⟩H)|

≤ |⟨xn, xn⟩H − ⟨x∞, x∞⟩H |+ |⟨xn, x∞⟩H − ⟨x∞, x∞⟩H |+ |⟨x∞, xn⟩H − ⟨x∞, x∞⟩H |

Since ∥xn∥ → ∥x∞∥, we have ⟨xn, xn⟩H → ⟨x∞, x∞⟩H . Furthermore,

|⟨xn, x∞⟩H − ⟨x∞, x∞⟩H | = |⟨x∞, xn⟩H − ⟨x∞, x∞⟩H |

Therefore, ∥xn − x∞∥2 ≤ |⟨xn, xn⟩H − ⟨x∞, x∞⟩H | + 2|⟨xn, x∞⟩H − ⟨x∞, x∞⟩H | → 0. We can
conclude that ∥xn − x∞∥ → 0, thus xn → x∞.

(iii) If xn
w−→ x∞, y → y∞ as n → ∞, then ⟨xn, yn⟩H → ⟨x∞, y∞⟩H as n → ∞.

Again, by Riesz representation, weak convergence of xn to x∞ implies that ⟨xn, y∞⟩H →
⟨x∞, y∞⟩H . Notice that

|⟨xn, yn⟩H − ⟨x∞, y∞⟩H | ≤ |⟨xn, yn⟩H − ⟨xn, y∞⟩H |+ |⟨xn, y∞⟩H − ⟨x∞, y∞⟩H |

≤ ∥xn∥∥yn − y∞∥+ |⟨xn, y∞⟩H − ⟨x∞, y∞⟩H |

Since xn
w−→ x∞, ∥xn∥ is bounded, and yn → y∞ implies ∥yn − y∞∥ → 0, we conclude that

⟨xn, yn⟩H → ⟨x∞, y∞⟩H .
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Extra Problem 2. Let K be a closed convex subset of a real normed space X.

(i) Prove that K is weakly closed, i.e., if {xn}∞n=1 ⊂ K and xn
w−→ x∞ in X as n → ∞, then

x∞ ∈ K.

Suppose {xn}∞n=1 ⊂ K, but x∞ /∈ K, then since K is convex and closed, by Ascoli Theo-
rem, there exists f ∈ X∗, such that f(xn) < c < f(x∞) for all n. By weak convergence,
limn→∞ f(xn) = f(x∞), so we obtain f(x∞) ≤ c < f(x∞) by taking limit on both sides, but it
is impossible that f(x∞) < f(x∞), so contradiction shows that x∞ ∈ K. Hence, K is weakly
closed.

(ii) Prove that if xn
w−→ x0, then x0 ∈ span(xn). Also show that any closed subspace Y of a

normed space X contains the limits of all weakly convergent sequences of its elements.

Since span(xn) is closed, and it is also a subspace of X (the closure of a subspace is also
subspace), since any subspace of X is convex, it is closed and convex. Then by (i), if xn

w−→ x0,
x0 ∈ span(xn).

Again, since any subspace Y of X must be convex, and in addition, it is closed, so by (i), it is
weakly closed, i.e., any weakly convergent sequence of Y must weakly converge to a point in
Y .

(iii) If (xn) is a weakly convergent sequence in X, say, xn
w−→ x0, show that there is a sequence

(ym) of linear combinations of elements of (xn) which converges strongly to x0.

By (ii), xn
w−→ x0 implies x0 ∈ span(xn), this implies that there exists a sequence yn ∈ span(xn),

and yn → x0 strongly. However, yn ∈ span(xn) just means yn is a linear combinations of
elements of (xn), so the proof is finished.

Extra Problem 3. Let K and X be given in last problem, Assume that X is also reflexive. Prove
that

(i) ∀ y0 ∈ X \K, ∃x0 ∈ K such that ∥x0 − y0∥ = dist(y0,K).

Let dist(y0,K) = c be a constant. By definition of distance, there exists xn ∈ K such that
∥xn−y0∥ → c. It is obvious that ∥xn∥ is bounded, and X is reflexive, then by Banach-Eberlein
Theorem, xn

w−→ x∞ ∈ K. Now we claim that ∥y0 − x∞∥ = c, i.e., x∞ is the required x0 in the
question.

Since x∞ ∈ K, c = infx∈K∥y0 − x∥ ≤ ∥y0 − x∞∥, so we only need to show ∥y0 − x∞∥ ≤ c.
Recall application 2 of Hahn-Banach in lecture,

∥x∞ − y0∥ = sup
∥f∥=1,f∈X∗

|f(x∞ − y0)| = sup
∥f∥=1,f∈X∗

| lim
n→∞

f(xn − y0)|

= sup
∥f∥=1,f∈X∗

lim
n→∞

|f(xn − y0)| ≤ sup
∥f∥=1,f∈X∗

lim
n→∞

∥xn − y0∥

= lim
n→∞

∥xn − y0∥ = c

Therefore, we can conclude that ∥y0 − x∞∥ = c.
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(ii) Assume also that K is bounded. Prove that ∀ f ∈ X∗, f attains its maximum and minimum
over K.

Let A = {f(x) |x ∈ K}, then A ⊂ R and A is bounded because f is linear bounded function,
so it maps bounded set to bounded set. Then A has supremum c and infimum d. Then there
exists xn, yn ∈ K such that f(xn) → c and f(yn) → d. Also, xn, yn are bounded, by Banach-
Elberlein again, xn → x∞ and yn → y∞. Since K is weakly closed, x∞, y∞ ∈ K. Therefore,
f(xn) → f(x∞) = c and f(yn) → f(y∞) = d, so f attains its maximum and minimum over K.

Extra Problem 4. Prove that xk
w−→ x∞ in l1 implies strong convergence xk → x∞ as k → ∞.

Suppose yk = xk − x∞, then yk
w−→ 0. Assume xk ̸→ x∞, then yk ̸→ 0 and so there exists a

subsequence of yk, i.e., ykj
such that ∥ykj

∥ is bounded away from zero, then there exists a constant
c > 0 such that ∥ykj

∥ ≥ c, so let zj = ykj
/c, ∥zj∥ ≥ 1.

Now we obtain a sequence zj such that zj
w−→ 0 and ∥zj∥ ≥ 1. Since zj

w−→ 0, for all f ∈ (l1)∗,
f(zj) → f(0) = 0. Consider a sequence of fn defined by fn(zj) = zj,n, where zj,n is the n-th entry
of zj . Such functions must be linear and bounded, so this implies that zj,n → 0 as j → ∞ for any
fixed n.

Since z1 ∈ l1, we can choose K1 large enough such that
∑∞

n=K1+1 |z1,n| <
1
5
. Combined with

zj,n → 0, we have
∑K1

n=1 |zj,n| → 0 as j → ∞. Thus, we can find j2 such that
∑K1

n=1 |zj2,n| <
1
5
. Since

Zj2 ∈ l1, we can choose K2 > K1 such that
∑∞

n=K2+1 |zj2,n| <
1
5
. Continue this process, let j1 = 1,

then the subsequence zjm,n satisfies
∑Km−1

n=1 |zjm,n| < 1
5

(for all m ≥ 2) and
∑∞

n=Km+1 |zjm,n| < 1
5

(for all m ∈ N+).

Now we define u = (u1, . . . , un, . . .) by un = |zjm,n|
zjm,n

for Km−1 < n ≤ Km (K0 = 0). If zjm,n = 0,
then let un = 1. Then u ∈ l∞ (|un| = 1 for all n), so u can be treated as a linear and bounded
functional defined l1. By our assumption, weak convergence implies that ⟨u, zjm⟩(l1)∗,l1 → 0 as
m → ∞. However, for all m ≥ 2,∣∣∣∣∣

∞∑
n=1

zjm,nun

∣∣∣∣∣ ≥
∣∣∣∣∣∣

Km∑
n=Km−1+1

zjm,nun

∣∣∣∣∣∣−
∣∣∣∣∣
Km−1∑
n=1

zjm,nun

∣∣∣∣∣−
∣∣∣∣∣

∞∑
n=Km+1

zjm,nun

∣∣∣∣∣
≥

Km∑
n=Km−1+1

|zjm,n| −
Km−1∑
n=1

|zjm,n| −
∞∑

n=Km+1

|zjm,n|

=
∞∑

n=1

|zjm,n| − 2

Km−1∑
n=1

|zjm,n| − 2
∞∑

n=Km+1

|zjm,n| >
1

5

This implies that ⟨u, zjm⟩(l1)∗,l1 ̸→ 0, contradiction implies that our assumption is wrong, i.e., such
c and zj does not exist, and yk → 0 strongly.
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